US20040121615A1 - Method of forming fine patterns - Google Patents

Method of forming fine patterns Download PDF

Info

Publication number
US20040121615A1
US20040121615A1 US10/681,145 US68114503A US2004121615A1 US 20040121615 A1 US20040121615 A1 US 20040121615A1 US 68114503 A US68114503 A US 68114503A US 2004121615 A1 US2004121615 A1 US 2004121615A1
Authority
US
United States
Prior art keywords
over
patterns
coating agent
substrate
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/681,145
Other languages
English (en)
Inventor
Fumitake Kaneko
Yoshiki Sugeta
Toshikazu Tachikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Assigned to TOKYO OHKA KOGYO CO., LTD. reassignment TOKYO OHKA KOGYO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUGETA, YOSHIKI, TACHIKAWA, TOSHIKAZU, KANEKO, FUMITAKE
Publication of US20040121615A1 publication Critical patent/US20040121615A1/en
Priority to US12/232,517 priority Critical patent/US7553610B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • This invention relates to a method of forming fine patterns in the field of photolithographic technology. More particularly, the invention relates to a method of forming or defining fine patterns, such as hole patterns and trench patterns, that can meet today's requirements for higher packing densities and smaller sizes of semiconductor devices.
  • the photolithographic technology which, in order to perform a treatment such as etching on the substrate, first forms a film (photoresist layer) over the substrate using a so-called radiation-sensitive photoresist which is sensitive to activating radiations, then performs exposure of the film by selective illumination with an activating radiation, performs development to dissolve away the photoresist layer selectively to form an image pattern (photoresist pattern), and forms a variety of patterns including contact providing patterns such as a hole pattern and a trench pattern using the photoresist pattern as a protective layer (mask pattern).
  • JP-5-241348 discloses a pattern forming method comprising the steps of depositing a resin, which becomes insoluble in the presence of an acid, on a substrate having formed thereon a resist pattern containing an acid generator, heat treating the assembly so that the acid is diffused from the resist pattern into said resin insoluble in the presence of an acid to form a given thickness of insolubilized portion of the resist near the interface between the resin and the resist pattern, and developing the resist to remove the resin portion through which no acid has been diffused, thereby ensuring that the feature size of the pattern is reduced by an amount comparable to the dimension of said given thickness.
  • JP-1-307228A discloses a method comprising the steps of forming a resist pattern on a substrate and applying heat treatment to deform the cross-sectional shape of the resist pattern, thereby defining a fine pattern.
  • JP-4-364021A discloses a method comprising the steps of forming a resist pattern and heating it to fluidize the resist pattern, thereby changing the dimensions of its resist pattern to form or define a fine-line pattern.
  • the wafer's in-plane heat dependency is only a few nanometers per degree Celsius and is not very problematic.
  • JP-7-45510A An evolved version of those methods is disclosed in JP-7-45510A and it comprises the steps of forming a resist pattern on a substrate, forming a stopper resin on the substrate to prevent excessive thermal fluidizing of the resist pattern, then applying heat treatment to fluidize the resist so as to change the dimensions of its pattern, and thereafter removing the stopper resin to form or define a fine-line pattern.
  • a water-soluble resin specifically, polyvinyl alcohol is employed singly.
  • polyvinyl alcohol singly.
  • the use of polyvinyl alcohol singly is not highly soluble in water and cannot be readily removed completely by washing with water, introducing difficulty in forming a pattern of good profile.
  • the pattern formed is not completely satisfactory in terms of stability over time.
  • polyvinyl alcohol cannot be applied efficiently by coating. Because of these and other problems, the method disclosed in JP-7-45510 has yet to be adopted commercially.
  • JP 2001-281886A discloses a method comprising the steps of covering a surface of a resist pattern with an acidic film made of a resist pattern size reducing material containing a water-soluble resin, rendering the surface layer of the resist pattern alkali-soluble, then removing said surface layer and the acidic film with an alkaline solution to reduce the feature size of the resist pattern.
  • JP-2002-184673A discloses a method comprising the steps of forming a resist pattern on a substrate, then forming a film containing a water-soluble film forming component on said resist pattern, heat treating said resist pattern and film, and immersing the assembly in an aqueous solution of tetramethylammonium hydroxide, thereby forming a fine-line resist pattern without involving a dry etching step.
  • both methods are simply directed to reducing the size of resist trace patterns themselves and therefore are totally different from the present invention in object.
  • those publications do not describe or suggest the effects of reducing the occurrence of defects by way of adjusting the times of removing step by washing with water.
  • the present invention has been accomplished under these circumstances and has as an object providing a method of forming fine patterns on a substrate having photoresist patterns (mask patterns) as it is covered with an over-coating agent.
  • the method has high ability to reduce the occurrence of defects and to improve throughput.
  • the present invention provides a method of forming fine patterns comprising: covering a substrate having photoresist patterns with an over-coating agent for forming fine patterns, applying heat treatment to cause thermal shrinkage of the over-coating agent so that the spacing between adjacent photoresist patterns is lessened by the resulting thermal shrinking action, and removing the over-coating agent substantially completely by way of bringing thusly treated substrate into contact with a remover solution for over 60 seconds.
  • the heat treatment is performed at a temperature that does not cause thermal fluidizing of the photoresist patterns on the substrate.
  • the method of preparing the substrate used in the present invention having photoresist patterns thereon is not limited to any particular type and it can be prepared by conventional methods employed in the fabrication of semiconductor devices, liquid-crystal display devices, magnetic heads and microlens arrays.
  • a photoresist composition of chemically amplifiable or other type is spin- or otherwise coated on a substrate such as a silicon wafer and dried to form a photoresist layer, which is illuminated with an activating radiation such as ultraviolet, deep-ultraviolet or excimer laser light through a desired mask pattern using a reduction-projection exposure system or subjected to electron beam photolithography, then heated and developed with a developer such as an alkaline aqueous solution, typically a 1-10 mass % tetramethylammonium hydroxide (TMAH) aqueous solution, thereby forming a photoresist pattern on the substrate.
  • an activating radiation such as ultraviolet, deep-ultraviolet or excimer laser light
  • TMAH tetramethylammonium hydroxide
  • the photoresist composition serving as a material from which photoresist patterns are formed is not limited in any particular way and any common photoresist compositions may be employed including those for exposure to i- or g-lines, those for exposure with an excimer laser (e.g. KrF, ArF or F 2 ) and those for exposure to EB (electron beams).
  • an excimer laser e.g. KrF, ArF or F 2
  • EB electron beams
  • An over-coating agent is applied to cover entirely the said substrate having photoresist patterns (mask patterns) thereon.
  • the substrate may optionally be pre-baked at a temperature of 80-100° C. for 30-90 seconds.
  • the over-coating agent may be applied by any methods commonly employed in the conventional heat flow process. Specifically, an aqueous solution of the over-coating agent for forming fine patterns is applied to the substrate by any known application methods including bar coating, roll coating and whirl coating with a spinner.
  • the over-coating agent employed in the invention is to cover entirely the substrate having photoresist patterns (mask patterns) thereon, including patterns typified by hole patterns or trench patterns, each of these patterns are defined by spacing between adjacent photoresist patterns (mask patterns).
  • the applied film of over-coating agent shrinks to increase the width of each of the photoresist patterns, thereby narrowing or lessening adjacent hole patterns or trench patterns as defined by spacing between the photoresist patterns and, thereafter, the applied film is removed substantially completely to form or define fine featured patterns.
  • removing the applied film substantially completely means that after lessening the spacing between adjacent photoresist patterns by the heat shrinking action of the applied over-coating agent, said film is removed in such a way that no significant thickness of the over-coating agent will remain at the interface with the photoresist patterns. Therefore, the present invention does not include methods in which a certain thickness of the over-coating agent is left intact near the interface with the photoresist pattern so that the feature size of the pattern is reduced by an amount corresponding to the residual thickness of the over-coating agent.
  • the over-coating agent is preferably employed that contains a water-soluble polymer.
  • the water-soluble polymer may be any polymer that can dissolve in water at room temperature and various types may be employed without particular limitation; preferred examples include acrylic polymers, vinyl polymers, cellulosic derivatives, alkylene glycol polymers, urea polymers, melamine polymers, epoxy polymers and amide polymers.
  • Exemplary acrylic polymers include polymers and copolymers having monomeric components, such as acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, N,N-dimethylacrylamide, N,N-dimethylaminopropylmethacrylamide, N,N-dimethylaminopropylacrylamide, N-methylacrylamide, diacetone acrylamide, N,N-dimethylamlnoethyl methacrylate, N,N-diethylaminoethyl methacrylate, N,N-dimethylamlnoethyl acrylate, acryloylmorpholine, etc.
  • monomeric components such as acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, N,N-dimethylacrylamide, N,N-dimethylaminopropylmethacrylamide, N,N-dimethylaminopropylacrylamide, N-methylacrylamide, diacetone acrylamide,
  • Exemplary vinyl polymers include polymers and copolymers having monomeric components, such as N-vinylpyrrolidone, vinyl imidazolidinone, vinyl acetate, etc.
  • Exemplary cellulosic derivatives include hydroxypropylmethyl cellulose phthalate, hydroxypropylmethyl cellulose acetate phthalate, hydroxypropylmethyl cellulose hexahydrophthalate, hydroxypropylmethyl cellulose acetate succinate, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, cellulose acetate hexahydrophthalate, carboxymethyl cellulose, ethyl cellulose, methylcellulose, etc.
  • Exemplary alkylene glycol polymers include addition polymers and copolymers of ethylene glycol, propylene glycol, etc.
  • Exemplary urea polymers include those having methylolurea, dimethylolurea, ethyleneurea, etc. as components.
  • Exemplary melamine polymers include those having methoxymethylated melamine, methoxymethylated isobutoxymethylated melamine, methoxyethylated melamine, etc. as components.
  • epoxy polymers and amide polymers those which are water-soluble may also be employed.
  • Acrylic polymers are most preferred since they provide ease in pH adjustment.
  • Copolymers comprising acrylic polymers and water-soluble polymers other than acrylic polymers are also preferred since during heat treatment, the efficiency of shrinking the spacing between the adjacent photoresist patterns (mask patterns) can be increased while maintaining the shape of the photoresist pattern.
  • the water-soluble polymers can be employed either singly or in combination.
  • the proportions of the components are not limited to any particular values. However, if stability over time is important, the proportion of the acrylic polymer is preferably adjusted to be larger than those of other building polymers. Other than by using excessive amounts of the acrylic polymer, better stability over time can also be obtained by adding acidic compounds such as p-toluenesulfonic acid and dodecylbenzenesulfonic acid.
  • the over-coating agent for forming fine patterns may additionally contain water-soluble amines.
  • Preferred ones include amines having pKa (acid dissociation constant) values of 7.5-13 in aqueous solution at 25° C. in view of the prevention of the generation of impurities and pH adjustment.
  • alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, 2-(2-aminoethoxy)ethanol, N,N-dimethylethanolamine, N,N-diethylethanolamine, N,N-dibutylethanolamine, N-methylethanolamine, N-ethylethanolamine, N-butylethanolamine, N-methyldiethanolamine, monoisopropanolamine, diisopropanolamine and triisopropanolamine; polyalkylenepolyamines, such as diethylenetriamine, triethylenetetramine, propylenediamine, N,N-diethylethylenedlamlne, 1,4-butanediamine, N-ethylethylenediamine, 1,2-propanediamine, 1,3-propanediamine and 1,6-hexanediamine; aliphatic amines, such as triethylamine, 2-ethyl-hexylamine, dioctylamine
  • the water-soluble amine is to be added, it is preferably incorporated in an amount of about 0.1-30 mass %, more preferably about 2-15 mass %, of the over-coating agent (in terms of solids content). If the water-soluble amine is incorporated in an amount of less than 0.1 mass %, the coating fluid may deteriorate over time. If the water-soluble amine is incorporated in an amount exceeding 30 mass %, the photoresist pattern being formed may deteriorate in shape.
  • the over-coating agent for forming fine patterns is adjusted to have pH values of 2-3 by the addition of the water-soluble amine. There may be cases where the over-coating agent for forming fine patterns is applied to the substrate having metallic layers easily corroded by an acid, the pH values may be adjusted to 3-5.
  • the over-coating agent for forming fine patterns may further optionally contain non-amine based, water-soluble organic solvents.
  • any non-amine based organic solvents that can mix with water may be employed and they may be exemplified by the following: sulfoxides, such as dimethyl sulfoxide; sulfones, such as dimethylsulfone, diethylsulfone, bis(2-hydroxyethyl)sulfone and tetramethylenesulfone; amides, such as N,N-dimethylformamide, N-methylformamide, N,N-dimethylacetamide, N-methylacetamine and N,N-diethylacetamide; lactams, such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; imidazolidinones, such as 1,3-dimethyl-2
  • polyhydric alcohols and their derivatives are preferred for the purposes of reducing the dimensions of patterns and controlling the occurrence of defects and glycerol is particularly preferred.
  • the non-amine based, water-soluble organic solvents may be used either singly or in combination.
  • the non-amine based, water-soluble organic solvent is to be added, it is preferably incorporated in an amount of about 0.1-30 mass %, more preferably about 0.5-15 mass %, of the water-soluble polymer. If the non-amine based, water-soluble organic solvent is incorporated in an amount of less than 0.1 mass %, its defect reducing effect tends to decrease. Beyond 30 mass %, a mixing layer is liable to form at the interface with the photoresist pattern.
  • the over-coating agent may optionally contain a surfactant for attaining special effects such as coating uniformity and wafer's in-plane uniformity.
  • the surfactant is preferably employed that, when added to the water-soluble polymer, exhibits certain characteristics such as high solubility, non-formation of a suspension and miscibility with the polymer component.
  • surfactants that satisfy these characteristics, the occurrence of defects can be effectively controlled that is considered to be pertinent to microforming upon coating the over-coating agent.
  • surfactants in the invention are preferably employed at least the one selected among N-alkylpyrrolidones, quaternary ammonium salts and phosphate esters of polyoxyethylene.
  • N-alkylpyrrolidones as surfactant are preferably represented by the following general formula (I):
  • R 1 is an alkyl group having at least 6 carbon atoms.
  • N-alkylpyrrolidones as surfactant include N-hexyl-2-pyrrolidone, N-heptyl-2-pyrrolidone, N-octyl-2-pyrrolidone, N-nonyl-2-pyrrolidone, N-decyl-2-pyrrolidone, N-undecyl-2-pyrrolidone, N-dodecyl-2-pyrrolidone, N-tridecyl-2-pyrrolidone, N-tetradecyl-2-pyrrolidone, N-pentadecyl-2-pyrrolidone, N-hexadecyl-2-pyrrolidone, N-heptadecyl-2-pyrrolidone and N-octadecyl-2-pyrrolidone.
  • N-octyl-2-pyrrolidone (“SURFADONE LP 100” of ISP
  • Quaternary ammonium salts as surfactant are preferably represented by the following general formula (II):
  • R 2 , R 3 , R 4 and R 5 are each independently an alkyl group or a hydroxyalkyl group (provided that at least one of them is an alkyl or hydroxyalkyl group having not less than 6 carbon atoms);
  • X ⁇ is a hydroxide ion or a halogenide ion.
  • quaternary ammonium salts as surfactant include dodecyltrimethylammonium hydroxide, tridecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, pentadecyltrimethylammonium hydroxide, hexadecyltrimethylammonium hydroxide, heptadecyltrimethylammonlum hydroxide and octadecyltrimethylammonium hydroxide.
  • hexadecyltrimethylammonium hydroxide is preferably used.
  • Phosphate esters of polyoxyethylene are preferably represented by the following general formula (III):
  • R 6 is an alkyl or alkylaryl group having 1-10 carbon atoms
  • R 7 is a hydrogen atom or (CH 2 CH 2 O)R 6 (where R 6 is as defined above); n is an integer of 1-20.
  • phosphate esters of polyoxyethylene that can be used as surfactants are commercially available under trade names “PLYSURF A212E” and “PLYSURF A210G” from Dai-ichi Kogyo Seiyaku Co., Ltd.
  • the surfactant is to be added, it is preferably incorporated in an amount of about 0.1-10 mass %, more preferably about 0.2-2 mass %, of the over-coating agent (in terms of solids content).
  • the amount as described above ranges it may effectively prevent the variations in the percent shrinkage of patterns, potentially depending on the wafer's in-plane uniformity which is caused by the deterioration of coating property, and also prevent the occurrence of defects that are considered to have cause-and-effect relations with microfoaming on the applied film that generates as the coating conditions are worsened.
  • the over-coating agent of the invention for forming fine patterns is preferably used as an aqueous solution at a concentration of 3-50 mass %, more preferably at 5-30 mass %. If the concentration of the aqueous solution is less than 3 mass %, poor coverage of the substrate may result. If the concentration of the aqueous solution exceeds 50 mass %, there is no appreciable improvement in the intended effect that justifies the increased concentration and the solution cannot be handled efficiently.
  • the over-coating agent in the invention for forming fine patterns is usually employed as an aqueous solution using water as the solvent.
  • a mixed solvent system comprising water and an alcoholic solvent may also be employed.
  • exemplary alcoholic solvents include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, glycerol, ethylene glycol, propylene glycol, 1,2-butylene glycol, 1,3-buthylene glycol and 2,3-butylene glycol, etc. These alcoholic solvents are mixed with water in amounts not exceeding about 30 mass %.
  • the heating temperature is not limited to any particular value as long as it is high enough to cause thermal shrinkage of the film of the over-coating agent and form or define a fine pattern. Heating is preferably done at a temperature that will not cause thermal fluidizing of the photoresist pattern.
  • the temperature that will not cause thermal fluidizing of the photoresist pattern is such a temperature that when a substrate on which the photoresist pattern has been formed but no film of the over-coating agent has been formed is heated, the photoresist pattern will not experience any dimensional changes. Performing a heat treatment under such temperature conditions is very effective for various reasons, e.g.
  • a fine-line pattern of good profile can be formed more efficiently and the duty ratio in the plane of a wafer, or the dependency on the spacing between photoresist patterns in the plane of a wafer, can be reduced.
  • the preferred heat treatment is usually performed within a temperature range of about 80-160° C. for 30-90 seconds, provided that the temperature is not high enough to cause thermal fluidizing of the photoresist.
  • the thickness of the film of the over-coating agent for the formation of fine-line patterns is preferably just comparable to the height of the photoresist pattern or high enough to cover it.
  • the remaining film of the over-coating agent on the patterns is removed substantially completely by bringing thusly treated substrate into contact with a remover solution for over 60 seconds, and preferably 70 seconds or over.
  • a remover solution for over 60 seconds, and preferably 70 seconds or over.
  • the remover solution is suitably used a water-based solvent, and more preferably pure water. Prior to the removal step, rinsing may optionally be performed with an aqueous solution of alkali (e.g. tetramethylammonium hydroxide (TMAH) or choline).
  • alkali e.g. tetramethylammonium hydroxide (TMAH) or choline.
  • TMAH tetramethylammonium hydroxide
  • the over-coating agent in the present invention is easy to remove by washing with water and it can be completely removed from the substrate and the photoresist pattern.
  • the present invention can effectively reduce the occurrence of defects entirely. Specifically, among varieties of defects, the present invention is extremely effective in reducing the occurrence of the defects that are filled in the portions of holes and spacing areas.
  • each pattern on the substrate has a smaller feature size because each pattern is defined by the narrowed spacing between the adjacent widened photoresist patterns.
  • the fine-line pattern thus formed using the over-coating agent of the present invention has a pattern size smaller than the resolution limit attainable by the conventional methods. In addition, it has a good enough profile and physical properties that can fully satisfy the characteristics required of semiconductor devices.
  • Steps [a.]-[c.] may be repeated several times. By repeating steps [a.]-[c.] several times, the photoresist trace patterns (mask patterns) can be progressively widened. Furthermore, the use of the over-coating agent for forming fine patterns containing a water-soluble polymer allows the over-coating agent be completely removed with water every time in repeating the removal step plural times. Therefore, the present invention offers the advantage that even in the case of using a substrate having thick-film photoresist patterns, fine-line patterns of good profile can be formed on the substrate without causing pattern distortion or deformation.
  • the technical field of the present invention is the semiconductor industry, etc., but it is not limited thereto.
  • a copolymer including polyacrylate (PAA) and polyvinylpyrrolidone (PVP) [2 g: PAA/PVP 2:1 (polymerization ratio)], triethanolamine (0.18 g) and a polyoxyethyelene phosphate ester surfactant (0.02 g; “PLYSURF A210G”, product of Dai-ichi Kogyo Seiyaku Co, Ltd.) were dissolved in water (52 g) to prepare an over-coating agent.
  • PAA polyacrylate
  • PVP polyvinylpyrrolidone
  • PVP polyvinylpyrrolidone
  • a substrate (8-inch diameter) was whirl coated with a positive-acting photoresist TDUR-PO36PM (product of Tokyo Ohka Kogyo Co., Ltd.) and baked at 80° C. for 90 seconds to form a photoresist layer in a thickness of 0.48 ⁇ m.
  • TDUR-PO36PM product of Tokyo Ohka Kogyo Co., Ltd.
  • the photoresist layer was exposed with an exposure unit (Canon EPA-3000EX3, product of Canon Inc.), subjected to heat treatment at 120° C. for 90 seconds and developed with an aqueous solution of 2.38 mass % TMAH (tetramethylammonium hydroxide) to form photoresist patterns which defined hole patterns with an each diameter of 178.9 nm (i.e., the spacing between the photoresist patterns, or the initial hole dimension, was 178.9 nm).
  • an exposure unit Canon EPA-3000EX3, product of Canon Inc.
  • TMAH tetramethylammonium hydroxide
  • the previously prepared over-coating agent was applied onto the substrate including hole patterns and subjected to heat treatment at 116° C. for 60 seconds, thereby reducing the each size of the hole patterns. Subsequently, the substrate, while being kept whirling at 1500 rpm, was brought into contact with pure water by dropping it on the substrate for 120 seconds to remove the over-coating agent. The each diameter of the hole patterns was reduced to 150.8 nm. The state of defects on the substrate was observed with KLA (product of KLA Tencor), however, few defects were occurred on the entire substrate.
  • KLA product of KLA Tencor
  • Example 2 The same procedure as described in Example 1 was repeated, except that the substrate was brought into contact with pure water by dropping it on the substrate for 90 seconds. Each diameter of the hole patterns was narrowed to 158.3 nm, and few defects were occurred on the entire substrate
  • Example 2 The same procedure as described in Example 1 was repeated, except that the substrate was brought into contact with pure water by dropping it on the substrate for 60 seconds. Each diameter of the hole patterns was narrowed to 158.8 nm. However, the observation with KLA revealed the occurrence of defects on the order of 10-20 in numbers on the substrate.
  • the present invention provide a method for forming fine patterns, by which advantages obtained of reducing the occurrence of defects and improving throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
US10/681,145 2002-10-10 2003-10-09 Method of forming fine patterns Abandoned US20040121615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/232,517 US7553610B2 (en) 2002-10-10 2008-09-18 Method of forming fine patterns

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002297525A JP3675434B2 (ja) 2002-10-10 2002-10-10 微細パターンの形成方法
JP2002-297525 2002-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/232,517 Continuation US7553610B2 (en) 2002-10-10 2008-09-18 Method of forming fine patterns

Publications (1)

Publication Number Publication Date
US20040121615A1 true US20040121615A1 (en) 2004-06-24

Family

ID=32287206

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/681,145 Abandoned US20040121615A1 (en) 2002-10-10 2003-10-09 Method of forming fine patterns
US12/232,517 Expired - Lifetime US7553610B2 (en) 2002-10-10 2008-09-18 Method of forming fine patterns

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/232,517 Expired - Lifetime US7553610B2 (en) 2002-10-10 2008-09-18 Method of forming fine patterns

Country Status (4)

Country Link
US (2) US20040121615A1 (zh)
JP (1) JP3675434B2 (zh)
KR (1) KR100905894B1 (zh)
TW (1) TWI234808B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180293A1 (en) * 2003-03-10 2004-09-16 Lee Geun Su Cleaning solution for photoresist and method for forming pattern using the same
EP1757988A1 (en) * 2005-08-25 2007-02-28 Fujitsu Ltd. Resist pattern thickening material and process for forming resist pattern, and semiconductor device and process for manufacturing the same
US20100090372A1 (en) * 2007-01-23 2010-04-15 Tokyo Ohka Kogyo Co., Ltd. Coating formation agent for pattern micro-fabrication, and micropattern formation method using the same
US20100330471A1 (en) * 2009-06-26 2010-12-30 Rohm And Haas Electronic Materials Llc Methods of adjusting dimensions of resist patterns
US20110117490A1 (en) * 2009-11-19 2011-05-19 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128398B2 (ja) 2008-07-16 2013-01-23 東京応化工業株式会社 パターン微細化用被覆剤、及びそれを用いた微細パターンの形成方法
US9448483B2 (en) 2014-07-31 2016-09-20 Dow Global Technologies Llc Pattern shrink methods
CN106249540A (zh) 2015-06-03 2016-12-21 陶氏环球技术有限责任公司 图案处理方法
TWI615460B (zh) 2015-06-03 2018-02-21 羅門哈斯電子材料有限公司 用於圖案處理的組合物和方法
TWI617900B (zh) 2015-06-03 2018-03-11 羅門哈斯電子材料有限公司 圖案處理方法
TWI627220B (zh) 2015-06-03 2018-06-21 羅門哈斯電子材料有限公司 用於圖案處理之組合物及方法
US10162265B2 (en) 2015-12-09 2018-12-25 Rohm And Haas Electronic Materials Llc Pattern treatment methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486058B1 (en) * 2000-10-04 2002-11-26 Integrated Device Technology, Inc. Method of forming a photoresist pattern using WASOOM

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610035Y2 (ja) 1987-07-31 1994-03-16 永大産業株式会社 遮音性木質系床材
JPH01307228A (ja) 1988-06-06 1989-12-12 Hitachi Ltd パターン形成法
JPH04364021A (ja) 1991-06-11 1992-12-16 Sumitomo Electric Ind Ltd 半導体装置の製造方法
JPH05166717A (ja) 1991-12-16 1993-07-02 Mitsubishi Electric Corp 微細パターン形成方法
JP3057879B2 (ja) 1992-02-28 2000-07-04 株式会社日立製作所 半導体装置の製造方法
JP3218814B2 (ja) 1993-08-03 2001-10-15 株式会社日立製作所 半導体装置の製造方法
JP3071401B2 (ja) 1996-07-05 2000-07-31 三菱電機株式会社 微細パターン形成材料及びこれを用いた半導体装置の製造方法並びに半導体装置
US5874197A (en) * 1997-09-18 1999-02-23 E. I. Du Pont De Nemours And Company Thermal assisted photosensitive composition and method thereof
JP3189773B2 (ja) 1998-01-09 2001-07-16 三菱電機株式会社 レジストパターン形成方法及びこれを用いた半導体装置の製造方法並びに半導体装置
JP2000347414A (ja) 1999-06-01 2000-12-15 Tokyo Ohka Kogyo Co Ltd レジストパターン微細化用塗膜形成剤及びそれを用いた微細パターン形成方法
JP3950584B2 (ja) 1999-06-29 2007-08-01 Azエレクトロニックマテリアルズ株式会社 水溶性樹脂組成物
JP2002148809A (ja) 2000-11-14 2002-05-22 Victor Co Of Japan Ltd レジスト基板の製造方法及びレジスト基板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486058B1 (en) * 2000-10-04 2002-11-26 Integrated Device Technology, Inc. Method of forming a photoresist pattern using WASOOM

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180293A1 (en) * 2003-03-10 2004-09-16 Lee Geun Su Cleaning solution for photoresist and method for forming pattern using the same
US7238653B2 (en) * 2003-03-10 2007-07-03 Hynix Semiconductor Inc. Cleaning solution for photoresist and method for forming pattern using the same
EP1757988A1 (en) * 2005-08-25 2007-02-28 Fujitsu Ltd. Resist pattern thickening material and process for forming resist pattern, and semiconductor device and process for manufacturing the same
US7550248B2 (en) 2005-08-25 2009-06-23 Fujitsu Limited Resist pattern thickening material and process for forming resist pattern, and semiconductor device and process for manufacturing the same
US20100090372A1 (en) * 2007-01-23 2010-04-15 Tokyo Ohka Kogyo Co., Ltd. Coating formation agent for pattern micro-fabrication, and micropattern formation method using the same
US20100330499A1 (en) * 2009-06-26 2010-12-30 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US8492068B2 (en) * 2009-06-26 2013-07-23 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US20100330503A1 (en) * 2009-06-26 2010-12-30 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US20100330471A1 (en) * 2009-06-26 2010-12-30 Rohm And Haas Electronic Materials Llc Methods of adjusting dimensions of resist patterns
US20110008729A1 (en) * 2009-06-26 2011-01-13 Rohm And Haas Electronic Materials Llc Compositions and methods for forming electronic devices
TWI474378B (zh) * 2009-06-26 2015-02-21 羅門哈斯電子材料有限公司 形成電子裝置的方法
US8338079B2 (en) * 2009-06-26 2012-12-25 Rohm And Haas Electronic Materials Llc Compositions and methods for forming electronic devices
TWI420571B (zh) * 2009-06-26 2013-12-21 羅門哈斯電子材料有限公司 形成電子裝置的方法
US8465901B2 (en) * 2009-06-26 2013-06-18 Rohm And Haas Electronic Materials Llc Methods of adjusting dimensions of resist patterns
US8492075B2 (en) * 2009-06-26 2013-07-23 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US20100330501A1 (en) * 2009-06-26 2010-12-30 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US8507185B2 (en) * 2009-06-26 2013-08-13 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US8394571B2 (en) * 2009-11-19 2013-03-12 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices
US20110117490A1 (en) * 2009-11-19 2011-05-19 Rohm And Haas Electronic Materials Llc Methods of forming electronic devices

Also Published As

Publication number Publication date
KR100905894B1 (ko) 2009-07-02
US7553610B2 (en) 2009-06-30
US20090029297A1 (en) 2009-01-29
JP3675434B2 (ja) 2005-07-27
JP2004133192A (ja) 2004-04-30
TWI234808B (en) 2005-06-21
TW200409198A (en) 2004-06-01
KR20040032769A (ko) 2004-04-17

Similar Documents

Publication Publication Date Title
US8124318B2 (en) Over-coating agent for forming fine patterns and a method of forming fine patterns using such agent
US8187798B2 (en) Method of forming fine patterns
US7553610B2 (en) Method of forming fine patterns
US20090011601A1 (en) Over-coating agent for forming fine patterns and a method of forming fine patterns using such agent
EP1452923B1 (en) Use of an agent for forming coating for narrowing pattern and method for forming fine pattern using such agent
US20100139838A1 (en) Over-coating agent for forming fine patterns and a method of forming fine patterns using such agent
US20090041948A1 (en) Method of forming fine patterns
US8142980B2 (en) Over-coating agent for forming fine patterns and a method of forming fine patterns using such agent
US20050123851A1 (en) Coating material for pattern fineness enhancement and method of forming fine pattern with the same
US7189499B2 (en) Method of forming fine patterns
US8617653B2 (en) Over-coating agent for forming fine patterns and a method of forming fine patterns using such agent
US8043798B2 (en) Method of forming fine patterns
JP3676752B2 (ja) 微細パターンの形成方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO OHKA KOGYO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANEKO, FUMITAKE;SUGETA, YOSHIKI;TACHIKAWA, TOSHIKAZU;REEL/FRAME:014908/0916;SIGNING DATES FROM 20031218 TO 20031219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE