US20040072262A1 - Methods and systems for detecting MHC class I binding peptides - Google Patents
Methods and systems for detecting MHC class I binding peptides Download PDFInfo
- Publication number
- US20040072262A1 US20040072262A1 US10/269,473 US26947302A US2004072262A1 US 20040072262 A1 US20040072262 A1 US 20040072262A1 US 26947302 A US26947302 A US 26947302A US 2004072262 A1 US2004072262 A1 US 2004072262A1
- Authority
- US
- United States
- Prior art keywords
- mhc
- binding
- monomer
- monomers
- hla
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000009739 binding Methods 0.000 title claims abstract description 107
- 230000027455 binding Effects 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 95
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 87
- 102000004196 processed proteins & peptides Human genes 0.000 title abstract description 36
- 108091054437 MHC class I family Proteins 0.000 title description 7
- 102000043129 MHC class I family Human genes 0.000 title description 6
- 239000000178 monomer Substances 0.000 claims abstract description 273
- 108010066345 MHC binding peptide Proteins 0.000 claims abstract description 68
- 239000007787 solid Substances 0.000 claims abstract description 58
- LZOIGVDSAMDBIO-LXWJMTKESA-N (2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-4-amino-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-phenylpropanoyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-3-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoic acid Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](N)CCSC)C1=CC=CC=C1 LZOIGVDSAMDBIO-LXWJMTKESA-N 0.000 claims description 56
- 102000015736 beta 2-Microglobulin Human genes 0.000 claims description 28
- 108010081355 beta 2-Microglobulin Proteins 0.000 claims description 28
- 239000003446 ligand Substances 0.000 claims description 18
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 15
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 claims description 15
- 108010075704 HLA-A Antigens Proteins 0.000 claims description 15
- 239000000872 buffer Substances 0.000 claims description 15
- 150000001413 amino acids Chemical class 0.000 claims description 14
- 108090001008 Avidin Proteins 0.000 claims description 11
- 238000011534 incubation Methods 0.000 claims description 11
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 claims description 10
- 108010058607 HLA-B Antigens Proteins 0.000 claims description 10
- 239000011324 bead Substances 0.000 claims description 9
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229960002685 biotin Drugs 0.000 claims description 7
- 235000020958 biotin Nutrition 0.000 claims description 7
- 239000011616 biotin Substances 0.000 claims description 7
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 claims description 6
- 108010052199 HLA-C Antigens Proteins 0.000 claims description 6
- 108010090804 Streptavidin Proteins 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims description 4
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 3
- 210000004899 c-terminal region Anatomy 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims description 3
- 210000004408 hybridoma Anatomy 0.000 claims description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 3
- 238000009506 drug dissolution testing Methods 0.000 claims 2
- 102000003992 Peroxidases Human genes 0.000 claims 1
- 238000004090 dissolution Methods 0.000 claims 1
- 108010087904 neutravidin Proteins 0.000 claims 1
- 108040007629 peroxidase activity proteins Proteins 0.000 claims 1
- 238000010494 dissociation reaction Methods 0.000 abstract description 12
- 230000005593 dissociations Effects 0.000 abstract description 12
- 230000001419 dependent effect Effects 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000003556 assay Methods 0.000 description 34
- 210000004027 cell Anatomy 0.000 description 30
- 108090000623 proteins and genes Proteins 0.000 description 26
- 108700028369 Alleles Proteins 0.000 description 25
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 210000001744 T-lymphocyte Anatomy 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 15
- 229940024606 amino acid Drugs 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- 239000012634 fragment Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 125000003275 alpha amino acid group Chemical group 0.000 description 10
- 230000013595 glycosylation Effects 0.000 description 10
- 238000006206 glycosylation reaction Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 241001529936 Murinae Species 0.000 description 8
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 8
- 230000000890 antigenic effect Effects 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 102000003886 Glycoproteins Human genes 0.000 description 7
- 108090000288 Glycoproteins Proteins 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 238000012217 deletion Methods 0.000 description 7
- 230000037430 deletion Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000003018 immunoassay Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 6
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 238000004153 renaturation Methods 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 5
- 108010033276 Peptide Fragments Proteins 0.000 description 5
- 102000007079 Peptide Fragments Human genes 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 229920000936 Agarose Polymers 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 108091008874 T cell receptors Proteins 0.000 description 4
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 230000009918 complex formation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000159 protein binding assay Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 3
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108090000526 Papain Proteins 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000012417 linear regression Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 229940055729 papain Drugs 0.000 description 3
- 235000019834 papain Nutrition 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 108700005078 Synthetic Genes Proteins 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000002169 hydrotherapy Methods 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 102000035118 modified proteins Human genes 0.000 description 2
- 108091005573 modified proteins Proteins 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- VZQHRKZCAZCACO-PYJNHQTQSA-N (2s)-2-[[(2s)-2-[2-[[(2s)-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]propanoyl]amino]prop-2-enoylamino]-3-methylbutanoyl]amino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)C(=C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCNC(N)=N VZQHRKZCAZCACO-PYJNHQTQSA-N 0.000 description 1
- GHCZTIFQWKKGSB-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O GHCZTIFQWKKGSB-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 1
- 102000006306 Antigen Receptors Human genes 0.000 description 1
- 108010083359 Antigen Receptors Proteins 0.000 description 1
- OMLWNBVRVJYMBQ-YUMQZZPRSA-N Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O OMLWNBVRVJYMBQ-YUMQZZPRSA-N 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 206010056740 Genital discharge Diseases 0.000 description 1
- 108010053070 Glutathione Disulfide Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102210024302 HLA-B*0702 Human genes 0.000 description 1
- 108010078301 HLA-B*07:02 antigen Proteins 0.000 description 1
- 101150017040 I gene Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 101150076359 Mhc gene Proteins 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 108700011066 PreScission Protease Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000000961 alloantigen Effects 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 108010068380 arginylarginine Proteins 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002967 competitive immunoassay Methods 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 229940068840 d-biotin Drugs 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 238000007421 fluorometric assay Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 1
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000002794 lymphocyte assay Methods 0.000 description 1
- 230000001589 lymphoproliferative effect Effects 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000002764 solid phase assay Methods 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
- G01N33/56977—HLA or MHC typing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6854—Immunoglobulins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00279—Features relating to reactor vessels
- B01J2219/00306—Reactor vessels in a multiple arrangement
- B01J2219/00313—Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
- B01J2219/00315—Microtiter plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00452—Means for the recovery of reactants or products
- B01J2219/00454—Means for the recovery of reactants or products by chemical cleavage from the solid support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/005—Beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/0061—The surface being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00621—Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00623—Immobilisation or binding
- B01J2219/0063—Other, e.g. van der Waals forces, hydrogen bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00632—Introduction of reactive groups to the surface
- B01J2219/00637—Introduction of reactive groups to the surface by coating it with another layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00725—Peptides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/0074—Biological products
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/70539—MHC-molecules, e.g. HLA-molecules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2458/00—Labels used in chemical analysis of biological material
Definitions
- This invention relates generally to the field of immunoassays, especially using immunoassays to detect and measure binding of peptides to MHC alleles.
- the Class I histocompatibility ternary complex consists of three parts associated by noncovalent bonds.
- a transmembrane protein, called the MHC heavy chain is mostly exposed at the cell surface.
- the cell surface domains of the MHC heavy chain contain two segments of alpha helix that form two ridges with a groove between them.
- a short peptide binds noncovalently (“fits”) into this groove between the two alpha helices, and a molecule of beta-2 microglobulin binds noncovalently along side the outer two domains of the MHC monomer, forming a ternary complex.
- Peptides that bind noncovalently to one MHC subtype heavy chain usually will not bind to another subtype. However, all bind with the same type of beta-2 microglobulin.
- MHC molecules are synthesized and displayed by most of the cells of the body.
- HLA molecules are referred to as HLA molecules. Humans primarily synthesize three different sub-types of MHC class I molecules designated HLA-A, HLA-B and HLA-C, differing only in the heavy chains.
- the MHC works coordinately with a specialized type of T cell (the cytotoxic T cell) to rid the body of “nonself” or foreign viral proteins.
- the antigen receptor on T-cells recognizes an epitope that is a mosaic of the bound peptide and portions of the alpha helices of the making up the groove flanking it.
- the presentation of peptide fragments by the MHC molecule allows for MHC-restricted cytotoxic T cells to survey cells for the expression of “nonself” or foreign viral proteins.
- a functional T-cell will exhibit a cytotoxic immune response upon recognition of an MHC molecule containing bound antigenic peptide for which the T-cell is specific.
- HLA-A, B, and C heavy chains interact with a multitude of peptides of about 8 to about 10, possibly about 8 to about 11, or about 8 to about 12 amino acids in length. Only certain peptides bind into the binding pocket in the heavy chain of each HLA sub-type as the monomer folds, although certain subtypes cross-react.
- complete coding region sequences had been determined for each of 43 HLA-A, 89 HLA-B and 11 HLA-C alleles (P. Parham et al., Imunology Review 143:141-180, 1995).
- Class II histocompatibility molecules consist of two transmembrane polypeptides that interact to form a groove at their outer end which, like the groove in class I molecules, non-covalently associates with an antigenic peptide.
- the antigenic peptides bound to class II molecules are derived from antigens that the cell has taken in from its surroundings.
- peptides that bind to class II histocompatibility molecules are 15 to about 25 or to about 30 amino acids in length. Only cells, such as macrophages, dendritic cells and B lymphocytes, that specialize in taking up antigen from extracellular fluids, express class II molecules.
- Another approach to identifying MHC-binding peptides uses a competition-based binding assay. All competition assays yield a comparison of binding affinities of different peptides. However, such assays do not yield an absolute dissociation constant since the result is dependent on the reference peptide used.
- Still another approach used for determining MHC-binding peptides is the classical reconstitution assay, e.g. using “T2” cells, in which cells expressing an appropriate MHC allele are “stripped” of a native binding peptide by incubating at pH 2-3 for a short period of time. Then, to determine the binding affinity of a putative MHC-binding peptide for the same MHC allele, the stripped MHC monomer is combined in solution with the putative MHC-binding peptide, beta2-microglobulin and a conformation-dependent monoclonal antibody.
- the difference in fluorescence intensity determined between cells incubated with and without the test binding peptide after labeling can be used to determine binding of the test peptide.
- soluble MHC monomers stripped at low pH aggregate immediately, making their use in high through-put assays difficult and impractical.
- in vitro assays for cell mediated immunity which use cells from the donor.
- the assays include situations where the cells are from the donor, however, many assays provide a source of antigen presenting cells from other sources, e.g., B cell lines.
- These in vitro assays include the cytotoxic T lymphocyte assay; lymphoproliferative assays, e.g., tritiated thymidine incorporation; the protein kinase assays, the ion transport assay and the lymphocyte migration inhibition function assay (Hickling, J. K. et al, J. Virol., 61: 3463 (1987); Hengel, H. et al, J.
- MHC tetramers which are complexes of four MHC monomers with streptavidin, a molecule having tetrameric binding sites for biotin, to which is bound a fluorochrome, e.g., phycoerythrin.
- a fluorochrome e.g., phycoerythrin.
- soluble subunits of ⁇ 2-microglobulin, the peptide fragment containing a putative T-cell epitope, and of a MHC heavy chain corresponding to the predicted MHC subtype of the peptide fragment of interest are obtained by expression of the polypeptides in host cells.
- Each of the four monomers contained in the MHC tetramer is produced as a monomer by refolding these soluble subunits under conditions that favor assembly of the soluble units into reconstituted monomers, each containing a beta2-microglobulin, a peptide fragment, and the corresponding MHC heavy chain.
- An MHC tetramer is constructed from the monomers by biotinylation of the monomers and subsequent contact of the biotinylated reconstituted monomers with fluorochrome-labeled streptavidin.
- T cells When contacted with a diverse population of T cells, such as is contained in a sample of the peripheral blood lymphocytes (PBLs) of a subject, those tetramers containing reconstituted monomers that are recognized by a T cell in the sample will bind to the matched T cell. Contents of the reaction is analyzed using fluorescence flow cytometry, to determine, quantify and/or isolate those T-cells having a MHC tetramer bound thereto (See U.S. Pat. No. 5,635,363).
- PBLs peripheral blood lymphocytes
- At least one other test is required to determine whether a test peptide recognized by a T-cell by the MHC tetramer assay will activate the T-cell to generate an immune response, a so-called “functional test”.
- the enzyme-linked immunospot (ELISpot) assay has been adapted for the detection of individual cells secreting specific cytokines or other effector molecules by attachment of a monoclonal antibody specific for a cytokine or effector molecule on a microplate. Cells stimulated by an antigen are contacted with the immobilized antibody.
- a tagged polyclonalantibody or more often, a monoclonal antibody, specific for the same cytokine or other effector molecule is added to the wells.
- a colorant that binds to the tagged antibody is added such that a blue-black colored precipitate (or spot) forms at the sites of cytokine localization.
- the spots can be counted manually or with automated ELISpot reader system to quantitated the response.
- a final confirmation of T-cell activation by the test peptide may require in vivo testing, for example in a mouse model.
- the route to final confirmation of the efficacy of a MHC-binding peptide is expensive and time consuming.
- the present invention is based on the discovery that MHC class I monomers when immobilized to a solid surface are still capable of reconstituting to incorporate from solution an MHC-binding peptide and form a ternary complex.
- the invention provides a system comprising a solid surface, wherein the surface has attached thereto one or more MHC monomer or modified MHC monomer, wherein the monomer denatures in a denaturing condition and reconstitutes to form a ternary complex containing a suitable MHC-binding peptide in the binding pocket under reconstituting conditions.
- a kit comprising the invention system is also provided.
- the invention provides methods for determining binding between a MHC monomer or modified MHC monomer and a putative MHC-binding peptide therefor.
- a solid surface having attached thereto a plurality of previously denatured MHC monomers or modified MHC monomers is incubated under reconstituting conditions in the presence and absence of the putative MHC-binding peptide such that the monomers reconstitute to form a ternary complex containing a suitable MHC-binding peptide under the reconstituting conditions. Binding to the ternary complex of a monoclonal antibody that does not bind to dissociated components of the complex indicates binding between the putative MHC-binding peptide and the monomers.
- the invention provides methods for determining the degree of binding affinity of an MHC monomer or modified MHC monomer for a putative MHC-binding peptide therefor.
- at least one denatured MHC monomer or modified MHC monomer attached to a solid surface is incubated under reconstituting conditions with the putative MHC-binding peptide and a monoclonal antibody that specifically binds to a conformational epitope of a corresponding reconstituted MHC monomer that is not present in the denatured monomer.
- Binding of the monoclonal antibody to a monomer that binds to the putative MHC-binding peptide is compared with binding of the monoclonal antibody to a corresponding monomer having a known MHC-binding peptide bound thereto. The difference in the binding indicates the relative degree of binding affinity of the reconstituted monomer for the putative MHC-binding peptide.
- the invention provides methods for determining the stability at 37° C. of an MHC monomer or modified MHC monomer for a putative MHC-binding peptide therefor.
- at least one denatured MHC monomer or modified MHC monomer attached to a solid surface is incubated under reconstituting conditions with the putative MHC-binding peptide and a monoclonal antibody that specifically binds to a conformational epitope of a corresponding reconstituted MHC monomer that is not present in the denatured monomer.
- the reconstituted ternary complex with the monoclonal antibody is incubated at different temperatures and different times. The difference in the signal obtained at different temperatures and different times, indicates the relative stability of the reconstituted monomer for the putative MHC-binding peptide.
- FIG. 1 is a schematic representation of the immunoassay.
- FIG. 2 is a graph showing calibration of the anti-HLA-class I-FITC mAb for fluorometric assay.
- FIG. 3 is a graph showing a decrease in binding of anti-HLA-class I-FITC mAb to a reconstituted HLA heavy chain monomer Mart1 26-35 with increasing temperature as determined by fluorescence of bound antibody.
- FIG. 4 is a graph showing the binding of an anti-HLA-class I-FITC monoclonal antibody to human and mouse alleles as determined by fluorescence of bound antibody.
- FIG. 5 is a graph showing renaturation in various buffer solutions of the MHC heavy chain monomers attached to a plate as detected by an anti-HLA-class I-FITC mAb.
- FIG. 6 is a graph showing antibody binding to monomer at concentrations of anti-HLA-class I mAb of 1 to 2 ⁇ g/ml for various HLA heavy chain monomer concentrations to determine the optimal concentration of the anti-HLA-class I antibody for use with a microtiter plate assay.
- FIGS. 7A and 7B are graphs showing the dose response curve obtained with two different HLA heavy chain monomers
- FIG. 8 is a graph showing the specificity of the anti-HLA-class I antibody for various HLA-A and HLA-B alleles.
- FIG. 9 is a schematic drawing showing formation of a human-mouse chimeric MHC modified monomer according to the invention.
- FIGS. 10 A-D show graphs of the dissociation curves for renatured peptides (HBV core peptide; 26-35L; 26-35; 27-35, respectively).
- FIGS. 10 E-H show graphs of the off rates for peptides HBV core; 26-35L; 26-35; and 27-35, respectively.
- FIG. 10I shows the effect of temperature on monomer dissociation.
- the present invention relates in general to immunoassays directed to detection and measurement of the binding affinity of MHC heavy chain monomers, especially MHC heavy chain monomers immobilized on a surface, for putative MHC-binding peptides. It is the discovery of the present invention that MHC heavy chain monomers and modified MHC monomers immobilized to a solid surface are still capable of refolding so as to bind from solution beta2-microglobulin and a MHC-binding peptide that has the requisite binding.
- binding can be detected in an immunoassay format, such as one utilizing a conformation-dependent monoclonal antibody that specifically binds to a ternary complex containing such refolded or reconstituted MHC monomers but does not bind to dissociated components of the ternary complex,.
- MHC monomer and HLA monomer refer to a class I MHC heavy chain that maintains the ability to assemble into a ternary complex with an appropriate MHC-binding or HLA-binding peptide and beta-2 microglobulin under renaturing conditions.
- MHC monomer and HLA monomer are also used to refer to the denatured form of the monomer that results from subjecting the ternary complex to denaturing conditions, causing the monomer to unfold and dissociate from a MHC-binding peptide and from beta-2 microglobulin.
- modified MHC monomer and “modified HLA monomer” refer to class I monomers as described above, but which have been engineered to introduce modifications as described below. These terms also encompass functional fragments of the MHC monomer that maintain the ability to assemble into a ternary complex with an appropriate MHC-binding or HLA-binding peptide and beta-2 microglobulin under renaturing conditions and to dissociate under denaturing conditions.
- a functional fragment can comprise only the ⁇ 1 , ⁇ 2 , ⁇ 3 , domains, or only ⁇ 1 , ⁇ 2 domains, of the class I heavy chain, i.e., the cell surface domains, that participate in formation of the ternary complex.
- modified MHC monomers can be class I heavy chain molecules, or functional fragments thereof, contained in a fusion protein or “single chain” molecule and may further include an amino acid sequence functioning as a linker between cell surface domains of the monomer, a detectable marker or as a ligand to attach the molecule to a solid support that is coated with a second ligand with which the ligand in the fusion protein reacts.
- modified MHC monomer and “modified HLA monomer” are intended to encompass chimera containing domains of class I heavy chain molecules from more than one species or from more than one class I subclass.
- the Class I MHC in humans is located on chromosome 6 and has three loci, HLA-, HLA-B, and HLA-C.
- the first two loci have a large number of alleles encoding alloantigens. These are found to consist of a 44 Kd heavy chain subunit and a 12 Kd .beta 2 -microglobulin subunit which is common to all antigenic specificities.
- soluble HLA-A2 can be purified after papain digestion of plasma membranes from the homozygous human lymphoblastoid cell line J-Y as described by Turner, M. J. et al., J. Biol. Chem. (1977) 252:7555-7567. Papain cleaves the 44 Kd heavy chain close to the transmembrane region, yielding a molecule comprised of ⁇ 1 , ⁇ 2 , ⁇ 3 domains and beta-2 microglobulin.
- the MHC monomers can be isolated from appropriate cells or can be recombinantly produced, for example as described by Paul et al, Fundamental Immunology, 2d Ed., W. E. Paul, ed., Ravens Press N.Y. 1989, Chapters 16-18) and readily modified, as described below.
- isolated refers to an MHC glycoprotein heavy chain of MHC class I, which is in other than its native state, for example, not associated with the cell membrane of a cell that normally expresses MHC.
- This term embraces a full length subunit chain, as well as a functional fragment of the MHC monomer.
- a functional fragment is one comprising an antigen binding site and sequences necessary for recognition by the appropriate T cell receptor. It typically comprises at least about 60-80%, typically 90-95% of the sequence of the full-length chain.
- the “isolated” MHC subunit component may be recombinantly produced or solubilized from the appropriate cell source.
- MHC glycoprotein monomers will vary somewhat in length because of deletions, substitutions, and insertions or additions of one or more amino acids in the sequences. Thus, MHC monomers are subject to substantial natural modification, yet are still capable of retaining their functions.
- Modified protein chains can also be readily designed and manufactured utilizing various recombinant DNA techniques well known to those skilled in the art and described in detail, below. For example, the chains can vary from the naturally occurring sequence at the primary structure level by amino acid substitutions, additions, deletions, and the like. These modifications can be used in a number of combinations to produce the final modified protein chain.
- modifications of the genes encoding the MHC monomer may be readily accomplished by a variety of well-known techniques, such as site-directed mutagenesis.
- the effect of any particular modification can be evaluated by routine screening in a suitable assay for the desired characteristic. For instance, a change in the immunological character of the subunit can be detected by competitive immunoassay with an appropriate antibody.
- the effect of a modification on the ability of the monomer to activate T cells can be tested using standard in vitro cellular assays or the methods described in the example section, below. Modifications of other properties such as redox or thermal stability, hydrophobicity, susceptibility to proteolysis, or the tendency to aggregate are all assayed according to standard techniques.
- This invention provides amino acid sequence modification of MHC monomers prepared with various objectives in mind, including increasing the affinity of the subunit for antigenic peptides and/or T cell receptors, facilitating the stability, purification and preparation of the subunits.
- the monomers may also be modified to modify plasma half life, improve therapeutic efficacy, or to lessen the severity or occurrence of side effects during therapeutic use of complexes of the present invention.
- the amino acid sequence modifications of the subunits are usually predetermined variants not found in nature or naturally occurring alleles. The variants typically exhibit the same biological activity (for example, MHC-peptide binding) as the naturally occurring analogue.
- Insertional modifications of the present invention are those in which one or more amino acid residues are introduced into a predetermined site in the MHC monomer and which displace the preexisting residues.
- insertional modifications can be fusions of heterologous proteins or polypeptides to the amino or carboxyl terminus of the subunits.
- modifications include fusions of the monomer with a heterologous signal sequence and fusions of the monomer to polypeptides having enhanced plasma half life (ordinarily>about 20 hours) such as immunoglobulin chains or fragments thereof as is known in the art.
- Substitutional modifications are those in which at least one residue has been removed and a different residue inserted in its place.
- Nonnatural amino acid i.e., amino acids not normally found in native proteins
- isosteric analogs amino acid or otherwise
- Substantial changes in function or immunological identity are made by selecting substituting residues that differ in their effect on maintaining the structure of the polypeqptide backbone (e.g., as a sheet or helical conformation), the charge or hydrophobicity of the molecule at the target site, or the bulk of the side chain.
- substitutions which in general are expected to produce the greatest changes in function will be those in which (a) a hydrophilic residue, e.g., serine or threonine, is substituted for (or by) a hydrophobic residue, e.g.
- electropositive side chain e.g., lysine, arginine, or histidine
- an electronegative residue e.g., glutamine or aspartine
- a residue having a bulky side chain e.g., phenylalanine
- Substitutional modifications of the monomers also include those where functionally homologous (having at least about 70% homology) domains of other proteins are substituted by routine methods for one or more of the MHC subunit domains.
- Particularly preferred proteins for this purpose are domains from other species, such as murine species as illustrated in FIG. 9 herein.
- deletional modifications are characterized by the removal of one or more amino acid residues from the MHC monomer sequence. Typically, the transmembrane and cytoplasmic domains are deleted. Deletions of cysteine or other labile residues also may be desirable, for example in increasing the oxidative stability of the MHC complex. Deletion or substitutions of potential proteolysis sites, e.g., ArgArg, is accomplished by deleting one of the basic residues or substituting one by glutaminyl or histidyl residues.
- a preferred class of substitutional or deletional modifications comprises those involving the transmembrane region of the subunit.
- Transmembrane regions of MHC monomers are highly hydrophobic or lipophilic domains that are the proper size to span the lipid bilayer of the cellular membrane. They are believed to anchor the MHC molecule in the cell membrane.
- Inactivation of the transmembrane domain typically by deletion or substitution of transmembrane domain hydroxylation residues, will facilitate recovery and formulation by reducing its cellular or membrane lipid affinity and improving its aqueous solubility.
- the transmembrane and cytoplasmic domains can be deleted to avoid the introduction of potentially immunogenic epitopes. Inactivation of the membrane binding function is accomplished by deletion of sufficient residues to produce a substantially hydrophilic hydropathy profile at this site or by substitution with heterologous residues which accomplish the same result.
- transmembrane-inactivated MHC monomer A principal advantage of the transmembrane-inactivated MHC monomer is that it may be secreted into the culture medium of recombinant hosts. This variant is soluble in body fluids such as blood and does not have an appreciable affinity for cell membrane lipids, thus considerably simplifying its recovery from recombinant cell culture.
- modified MHC monomers of this invention will not have a functional transmembrane domain and preferably will not have a functional cytoplasmic sequence.
- modified MHC monomers will consist essentially of the effective portion of the extracellular domain of the MHC monomer. In some circumstances, the monomer comprises sequences from the transmembrane region (up to about 10 amino acids), so long as solubility is not significantly affected.
- the transmembrane domain may be substituted by any amino acid sequence, e.g., a random or predetermined sequence of about 5 to 50 serine, threonine, lysine, arginine, glutamine, aspartic acid and like hydrophilic residues, which altogether exhibit a hydrophilic hydropathy profile.
- a random or predetermined sequence of about 5 to 50 serine, threonine, lysine, arginine, glutamine, aspartic acid and like hydrophilic residues, which altogether exhibit a hydrophilic hydropathy profile.
- these monomers are secreted into the culture medium of recombinant hosts.
- Glycosylation variants are included within the scope of this invention. They include variants completely lacking in glycosylation (unglycosylated) and variants having at least one less glycosylated site than the native form (deglycosylated) as well as variants in which the glycosylation has been changed. Included are deglycosylated and unglycosylated amino acid sequence variants, deglycosylated and unglycosylated subunits having the native, unmodified amino acid sequence.
- substitutional or deletional mutagenesis is employed to eliminate the N- or O-linked glycosylation sites of the subunit, e.g., the asparagine residue is deleted or substituted for by another basic residue such as lysine or histidine.
- flanking residues making up the glycosylation site are substituted or deleted, even though the asparagine residues remain unchanged, in order to prevent glycosylation by eliminating the glycosylation recognition site.
- unglycosylated MHC monomers which have the amino acid sequence of the native monomers are produced in recombinant prokaryotic cell culture because prokaryotes are incapable of introducing glycosylation into polypeptides.
- Glycosylation variants are conveniently produced by selecting appropriate host cells or by in vitro methods.
- Yeast for example, introduce glycosylation which varies significantly from that of mammalian systems.
- mammalian cells having a different species e.g., hamster, murine, insect, porcine, bovine or ovine
- tissue origin e.g., lung, liver, lymphoid, mesenchymal or epidermal
- In vitro processing of the subunit typically is accomplished by enzymatic hydrolysis, e.g., neuraminidase digestion.
- MHC glycoproteins suitable for use in the present invention have been isolated from a multiplicity of cells using a variety of techniques including solubilization by treatment with papain, by treatment with 3M KCl, and by treatment with detergent. For example, detergent extraction of Class I protein followed by affinity purification can be used. Detergent can then be removed by dialysis or selective binding beads. The molecules can be obtained by isolation from any MHC I bearing cell, for example from an individual suffering from a targeted cancer or viral disease.
- Isolation of individual heavy chain from the isolated MHC glycoproteins is easily achieved using standard techniques known to those skilled in the art.
- the heavy chain can be separated using SDS/PAGE and electroelution of the heavy chain from the gel (see, e.g., Dornimair et al., supra and Hunkapiller, et al., Methods in Enzymol. 91:227-236 (1983).
- Separate subunits from MHC I molecules are also isolated using SDS/PAGE followed by electroelution as described in Gorga et al. J. Biol. Chem. 262:16087-16094 (1987) and Dommair et al. Cold Spring Harbor Symp. Quant. Biol. 54:409-416 (1989)
- ion exchange chromatography size exclusion chromatography or affinity chromatography.
- the amino acid sequences of a number of Class I proteins are known, and the genes have been cloned, therefore, the heavy chain monomers can be expressed using recombinant methods.
- recombinant techniques provide methods for carboxy terminal truncation which deletes the hydrophobic transmembrane domain.
- the carboxy termini can also be arbitrarily chosen to facilitate the conjugation of ligands or labels, for example, by introducing cysteine and/or lysine residues into the molecule.
- the synthetic gene will typically include restriction sites to aid insertion into expression vectors and manipulation of the gene sequence.
- the genes encoding the appropriate monomers are then inserted into expression vectors, expressed in an appropriate host, such as E. coli , yeast, insect, or other suitable cells, and the recombinant proteins are obtained.
- a second generation of construction includes chimeric constructs, as illustrated in FIG. 9.
- the ⁇ 1 , ⁇ 2 , ⁇ 3 , domains of the class I heavy chain are linked typically by the ⁇ 3 domain of Class I with beta-2 microglobulin and coexpressed to stabilize the complex.
- the transmembrane and intracellular domains of the Class I gene can optionally also be included.
- Expression can be in procaryotic or eucaryotic systems.
- Suitable eucaryotic systems include yeast, plant and insect systems, such as the Drosophila expression vectors under an inducible promoter.
- Procaryotes most frequently are represented by various strains of E. coli .
- other microbial strains may also be used, such as bacilli, for example Bacillus subtilis , various species of Pseudomonas, or other bacterial strains.
- plasmid vectors which contain replication sites and control sequences derived from a species compatible with the host are used.
- E. coli is typically transformed using derivatives of pBR322, a plasmid derived from an E.
- procaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, including such commonly used promoters as the ⁇ -lactamase (penicillinase) and lactose (lac) promoter systems (Change et al., Nature (1977) 198:1056) and the tryptophan (trp) promoter system (Goeddel et al., Nucleic Acids Res.
- promoters for transcription initiation optionally with an operator
- ribosome binding site sequences including such commonly used promoters as the ⁇ -lactamase (penicillinase) and lactose (lac) promoter systems (Change et al., Nature (1977) 198:1056) and the tryptophan (trp) promoter system (Goeddel et al., Nucleic Acids Res.
- the expression systems useful in the eucaryotic hosts comprise promoters derived from appropriate eucaryotic genes.
- a class of promoters useful in yeast include promoters for synthesis of glycolytic enzymes, including those for 3-phosphoglycerate kinase (Hitzeman, et al., J. Biol. Chem. (1980) 255:2073).
- Other promoters include, for example, those from the enolase gene (Holland, M. J., et al. J. Biol. Chem. (1981) 256:1385) or the Leu2 gene obtained from YEp13 (Broach, J., et al., Gene (1978) 8:121).
- a Drosophila expression system under an inducible promoter can also be used.
- Suitable mammalian promoters include the early and late promoters from SV40 (Fiers, et al., Nature (1978) 273:113) or other viral promoters such as those derived from polyoma, adenovirus II, bovine papilloma virus or avian sarcoma viruses. Suitable viral and mammalian enhancers are cited above.
- the expression system is constructed from the foregoing control elements operably linked to the MHC sequences using standard methods, employing standard ligation and restriction techniques which are well understood in the art. Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and religated in the form desired.
- Site-specific DNA cleavage is performed by treatment with the suitable restriction enzyme (or enzymes) under conditions which are generally understood in the art, and the particulars of which are specified by the manufacturer of these commercially available restriction enzymes.
- suitable restriction enzyme or enzymes
- about 1 ⁇ g of plasmid or DNA sequence is cleaved by one unit of enzyme in about 20 ⁇ l of buffer solution; an excess of restriction enzyme may be used to insure complete digestion of the DNA substrate.
- protein is removed by extraction with phenol/chloroform, and may be followed by ether extraction, and the nucleic acid recovered from aqueous fractions by precipitation with ethanol followed by running over a Sephadex G-50 spin column. If desired, size separation of the cleaved fragments may be performed.
- Restriction cleaved fragments may be blunt ended by treating with the large fragment of E. coli DNA polymerase I (Klenow) in the presence of the four deoxynucleotide triphosphates (dNTPs) After treatment with Klenow, the mixture is extracted with phenol/chloroform and ethanol precipitated followed by running over a Sephadex G-50 spin column.
- Klenow E. coli DNA polymerase I
- dNTPs deoxynucleotide triphosphates
- Synthetic oligonucleotides are prepared using commercially available automated oligonucleotide synthesizers. In the proteins of the invention, however, a synthetic gene is conveniently employed.
- the gene design can include restriction sites which permit easy manipulation of the gene to replace coding sequence portions with these encoding analogs.
- the constructed vector is then transformed into a suitable host for production of the protein.
- transformation is done using standard techniques appropriate to such cells.
- the calcium treatment employing calcium chloride, as described by Cohen, S. N., Proc. Natl. Acad. Sci. USA (1972) 69:2110, or the RbCl method described in Maniatis, et al., Molecular Cloning: A Laboratory Manual (1982) Cold Spring Harbor Press, p. 254 is used for procaryotes or other cells which contain substantial cell wall barriers.
- the calcium phosphate precipitation method of Graham and van der Eb, Virology (1978) 52:546 or electroporation is preferred.
- Transformations into yeast are carried out according to the method of Van Solingen, P., et al., J. Bacter. (1977) 130:946 and Hsiao, C. L., et al., Proc. Natl. Acad. Sci. USA (1979) 76:3829.
- the transformed cells are then cultured under conditions favoring expression of the MHC sequence and the recombinantly produced protein recovered from the culture.
- MHC-binding peptides are thought to be about 8 to about 10, possibly about 8 to about 11, or about 8 to about 12 residues in length, and contain both the agretope (recognized by the MHC molecule) and the epitope (recognized by T cell receptor on the T cell).
- the epitope is a contiguous or noncontiguous sequence of about 5-6 amino acids that is recognized by the antigen-specific T cell receptor.
- the agretope is a continuous or noncontiguous sequence that is responsible for binding of the peptide with the MHC glycoproteins.
- the invention provides systems, kits, and assays for evaluating putative MHC-binding peptides to determine whether such fragments can be incorporated into a ternary complex with an MHC monomer or modified MHC monomer.
- the invention provides systems, kits and screening methods to be used in screening of candidate peptides for use in diagnostic assays, vaccines, and other treatment modalities.
- Putative MHC-binding peptides for use in the invention methods can be made using any method known in the art, the most convenient being peptide synthesis for fragments of 8 to 12 amino acids in length.
- the invention provides a system comprising a solid surface having attached thereto one or more MHC monomer or modified MHC monomer wherein the monomer denatures in a denaturing condition and reconstitutes to form a functional binding pocket containing a suitable MHC-binding peptide under reconstituting conditions.
- a plurality of the monomers can be bound to a single surface.
- the surface of the system can be any known or later discovered solid surface including, without any limitation, any solid, polymer, membrane, synthetic surface, and the like.
- the solid surface of the invention system can be a microtiter plate, such as the wells of a microtiter plate, or a bead, such as an agarose A bead, an agarose G bead, and the like.
- the solid surface of the invention system is suitable for use in a high throughput scanning system, e.g., the surface is compatible with the high throughput system or allows a system to work with the entities associated with the surface in a high throughput manner, such as fluorescence determined flow cytometry.
- streptagII binding affinity
- StrepTactin a short peptide sequence
- the molecule d-biotin, which binds with higher affinity to strepTactin (Kd ⁇ 1 ⁇ 10 ⁇ 13M) effectively competes with the StrepTagII for the binding site.
- Attachment of the MHC monomers to the solid surface can be accomplished by any method known in the art.
- the solid surface can be coated with a first binding ligand, such as avidin, and the monomer is then provided with a second binding ligand, such as biotin, wherein the first ligand binds specifically with the second ligand.
- the second binding ligand may optionally be attached to the monomers via a C-terminal end. Attachment of the one or more monomers to the solid surface is optionally reversible or cleavable.
- cleavable binding complex is commercially available from Amersham Bioscience Bioscience (Orsay France) such as Factor Xa, PreScission Protease and thrombin. All of these proteases can be used with the GST affinity tag from proteins expressed using pGEX-T vectors
- the invention system comprising a solid support with attached MHC monomers is preferably stored in a renatured state, by causing formation of a ternary complex with the MHC monomer containing a MHC binding peptide of 8 to 12, or about 9 to 11 amino acids in the binding pocket and a beta-2 microglobulin molecule bound thereto, as described herein.
- renaturation Formation of the ternary complex containing a MHC heavy chainor modified MHC attached to a solid support is referred to herein as “renaturation” and is accomplished under renaturing conditions as is know in the art and described herein.
- renaturing conditions typically include the presence of a suitable MHC binding peptide for the monomer, the presence of beta-2 microglobulin, and a suitable refolding buffer having a pH of from about 7 to about 8.5. Suitable refolding buffers are illustrated in the Examples herein and are known in the art.
- the solid support with bound MHC monomer(s) can be dried while in a renatured state, for example by exposure to a buffer containing sugars.
- the solid support and attached MHC monomers in ternary complex are exposed to denaturing conditions to cause dissociation and unfolding of the monomers.
- denaturing conditions can comprise exposure of the solid support and bound monomers to a pH of about 2 to about 4 for sufficient time to cause dissociation of the ternary complexes without damage to the monomers.
- the invention system may further comprise a monoclonal antibody, described in greater detail below, that binds specifically to a conformational epitope that is present in the ternary complex and absent in the dissociated components of such a complex.
- a conformational epitope may be formed in the reconstituted MHC monomers or modified MHC monomers used in the system and absent in the denatured monomers.
- the invention system may further contain a supply of beta-2 microglobulin.
- the MHC monomer used in the invention systems and methods can be any MHC monomer or modified MHC monomer, i.e., class I heavy chain, capable of binding a peptide in the range of 8 to 11 amino acids, for example 8 to 10 amino acids under renaturing conditions.
- the MHC monomer can be encoded by any partial or full-length modified or unmodified MHC gene sequence from any species or subtype, or a combination thereof, including without limitation human and murine species, and chimera thereof.
- Preferred MHC encoding gene sequences are those encoding any HLA allele genotype and any variation or polymorphism thereof.
- the MHC monomer utilized in the invention systems and methods can be any partial or full-length HLA heavy chain that binds an HLA-binding peptide under renaturing conditions, i.e., any subtype or allele of HLA-A, HLA-B, or HLA-C,
- the MHC monomer is modified by truncation to include only the ⁇ 1 , ⁇ 2 and the ⁇ 3 domains of an HLA heavy chain.
- the MHC monomer can be a chimeric, such as a fusion protein, containing these MHC domains and an anchor domain, wherein the MHC domain binds to a MHC-binding a peptide, as described herein, while the anchor domain is suitable for immobilizing the MHC monomer to a surface.
- the anchor domain can be a polypeptide fused with the HLA domain to form a fusion protein or can be any entity coupled to the HLA domain through any suitable means known in the art, e.g., biotinylated MHC monomer.
- the MHC monomer can be attached to the solid surface by any suitable means known in the art.
- the MHC monomer can be immobilized to a surface either directly or indirectly, e.g., via an anchoring or connecting entity.
- the solid surface of the invention system is coated with a first ligand entity, which binds to or interacts with a second ligand connected to or within the MHC monomer, e.g., via covalent or noncovalent bond.
- the surface is coated with avidin or its derivatives, e.g., streptavidin, and the MHC monomer contains biotin or its derivatives as its anchor domain. Attachment of the MHC monomer to the solid surface, in one embodiment of the invention, is reversible or cleavable.
- the MHC monomer coated or immobilized to a solid surface can be denatured, e.g., stripped or dissociated in a denaturing condition, and then renatured, e.g., refolded from a denatured form under a non-denaturing or renaturing condition so as to bind an appropriate MHC-binding peptide.
- the surface coated with the MHC monomer provided by the present invention can be dried and stored for use at a later time.
- the storage is at 4 degrees C.
- the system of the invention can further include a monoclonal antibody and a peptide.
- the peptide can be any peptide that binds to the HLA heavy chain monomers, e.g., MHC-binding peptides.
- the peptide has high affinity to the MHC monomer, e.g., HBc high affinity peptide.
- the monoclonal antibody used in the invention systems and methods can be any monoclonal antibody that specifically binds to a conformational epitope present only in a ternary complex of an MHC monomer and not present in dissociated components of the ternary complex.
- the conformational epitope can be present in beta-2 microglobulin when incorporated into the ternary complex.
- the monoclonal antibody can recognize a conformational epitope present in the MHC monomer or modified MHC monomer being used in a particular invention system or method.
- the monoclonal antibody may be species-matched to the MHC monomers, for example, when the solid support has attached HLA class I monomers, the monoclonal antibody is a murine, human or humanized anti-MHC class I monoclonal antibody.
- the modified MHC monomer is a chimera containing domains from more than one species, the anti-MHC monoclonal antibody can be selected to bind to a conformational epitope present in only one of the domains. For example, as illustrated in FIG.
- a ternary complex containing modified MHC monomer that is a chimera containing alpha-1 and alpha 2 domains of HLA-A2 heavy chain and a murine alpha-3 domain of H-2 Kb can be detected by a murine monoclonal antibody that binds to a conformational domain in the murine alpha-3 domain.
- the monoclonal antibody can be any anti-MHC class I monoclonal antibody that recognizes any subclass of HLA monomer in a ternary complex, i.e., HLA-A, HLA-B or HLA-C.
- a preferred anti-MHC-class I monoclonal antibody for use in the invention systems and methods is a mouse IgG2a conformational dependent anti-HLA monoclonal antibody produced by hybridoma B9.12.1, which as been deposited under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty) at Collection Nationale de Cultures de Microorganismes (CNCM), Institut Pasteur 25, Rue du Dotica Roux, F75724 Paris Cedex 15 France, under registration number CNCM I-2941. This assures maintenance of viable cultures for 30 years from the date of deposit.
- the monoclonal antibody used in the invention systems and methods is provided with a detectable label, i.e., a label that produces a detectable signal as is known in the art.
- Labels may be conjugated to the antibody using any of a variety of procedures known in the art.
- the antibody can be produced to include a label, such as a radioactive amino acid.
- Labels suitable for use in the invention systems, kits and methods include, but are not limited to, radioisotopes, fluorochromes, enzymes, biotin and electron dense molecules.
- Binding of the monoclonal antibody indicates formation of a ternary complex by binding of a MHC-binding peptide to the monomer and can be easily detected and/or quantified by detecting the signals produced by the signal entity after washing away unbound antibody and other components of the system.
- a detectable label presently preferred is a fluorescent label, e.g., FITC.
- the binding of fluorescently labeled antibodies on the solid support can be readily detected using a fluorimeter or by fluorescence determined flow cytometry.
- the invention system can be provided either as part of another system or as a kit.
- microtiter plates coated with the MHC monomers or modified monomers e.g., in dried form
- a kit which can optionally additionally include, in separate vials or containers, an anti-MHC monoclonal antibody or an anti-beta-2 microglobulin antibody, as described herein, and a control peptide that binds specifically to the monomers attached to the solid support.
- the kit includes an instruction explaining the procedures for using the system to conduct immunoassays, e.g., the methods provided by the present invention.
- the kit can optionally also include any or all of the following: denaturing or refolding buffers, controls for the MHC monomers, the peptide, or the monoclonal antibody.
- the invention provides methods for determining binding between a MHC monomer or modified MHC monomer and a putative MHC-binding peptide to be tested for binding to the monomer(s).
- a solid surface having attached thereto a plurality of MHC monomers or modified MHC monomers is incubated in the presence and absence of the putative MHC-binding peptide.
- the solid surface is one belonging to an invention system or kit and is prepared as described herein.
- the MHC monomers attached to the solid support at the start of the assay procedure are in a reconstituted form
- the MHC monomers are prepared for the assay by exposure to denaturing conditions as described herein, for example by exposure to a pH in the range from about 2 to about 4, or exposure overnight to a temperature higher than about 37° C. After denaturation, unbound MHC-binding peptides are washed away.
- the solid support with attached denatured MHC monomers or modified MHC monomers is incubated with a putative MHC-binding peptide under reconstituting conditions for a suitable period of time to allow for formation of ternary complexes.
- the reconstituting conditions will include the presence of a sufficient amount of beta-2 microglobulin (or beta 2 microglobulin modified to increase binding or stabilize ternary complex formation) to saturate the MHC monomers.
- beta 2-microglobulin may be modified by attachment thereto of a stabilizing molecule, such as a leucine zipper, or the like, to stabilize ternary complex formation.
- the reconstituting conditions may also include a temperature in the range from about minus 18° C. to about 37° C., for example about 4° C. to about 8° C.
- binding to the MHC monomers of the putative MHC-binding peptide is determined by contacting the MHC monomers on the solid support with a monoclonal antibody that binds to a conformational epitope present only in ternary complex, for example a conformational epitope present in the refolded MHC monomer of the ternary complex and not present in a denatured MHC monomer. Binding of the antibody with the ternary complex attached to the solid support indicates that the putative MHC-binding peptide is an MHC-binding peptide specific for the MHC monomers or modified MHC monomers used in the assay.
- a parallel assay (e.g., under the same reconstituting conditions, same monomer, and in the presence of the same monoclonal antibody) may be conducted using the monomers. Binding of the monoclonal antibody in the parallel assay to the ternary complex containing the standard MHC-binding peptide can be compared to binding of the monoclonal antibody to the ternary complex in the test assay to aid in determining the binding efficiency of the putative MHC-binding peptide, using computational methods known in the art..
- the invention provides methods for determining the degree of binding affinity of an MHC monomer or modified MHC monomer for a putative MHC-binding peptide.
- at least one denatured MHC monomer or modified MHC monomer attached to a solid surface is incubated under reconstituting conditions with the putative MHC-binding peptide and a monoclonal antibody that specifically binds to a conformational epitope created by formation of a ternary complex containing a corresponding reconstituted MHC monomer that is not present in any of the dissociated components of the complex.
- Binding of the monoclonal antibody to the ternary complex so formed is compared with binding of the monoclonal antibody to a corresponding ternary complex containing the same MHC monomer or modified MHC monomer and a known MHC-binding peptide.
- the difference in the binding indicates the relative degree of binding affinity of the reconstituted MHC monomer or modified MHC monomer for the putative MHC-binding peptide.
- the test is done in multiples using different peptide concentrations in each parallel test.
- the MHC monomers may belong to any species for which determination of appropriate class I binding peptides is desired, including, without limitation, murine and human or a chimera containing monomer subunits from a combination of species or subtypes.
- Various readily available means can be used to determine the specific binding of the monoclonal antibody to the ternary complex containing the reconstituted MHC monomer.
- the binding can be detected by directly labeling the monoclonal antibody with a detectable label, i.e., one that produces a detectable signal, and detecting the signal or via a secondary antibody which is detectably labeled and recognizes the monoclonal antibody that binds to the ternary complex containing the MHC monomer used in the assay.
- Suitable detectable labels that can be used for this purpose are well known in the art and include labels selected from the group consisting of radioisotopes, fluorochromes, enzymes, biotin, electron dense molecules, and the like.
- Fluorochromes or fluorescent labels are currently preferred since binding can readily be detected by subjecting the solid support to a fluorimeter.
- the solid support is a plate, such as a 96 well microtiter plate, or beads, such as agarose A or agarose G beads
- the assay can take advantage of high through-put florescence scanning using any of the methods known in the art.
- HLA-A2m monomer in ternary complex with binding peptide Mart-1 26-35L was incubated at various concentrations with an anti-HLA-ABC-FITC or anti-HLA-FITC monoclonal antibody at concentrations of 0, 0.25, 0.5, 1, 2, and 4 ⁇ g/ml. Specifically, for each antibody concentration, the HLA monomer was added at concentrations of 0, 0.0078, 0.0156, 0.03125, 0.0625, 0.125, 0.25, and 0.5 ⁇ g/ml.
- Buffer 1 Tris, Arginine, EDTA, GSH, GSSG and BSA
- Buffer 2 Tris, NaCl, EDTA, NaN 3 , BSA and 0.05% TWEEN 20® detergent
- Buffer 3 Tris, NaCl, EDTA, NaN 3 , BSA and 0.05% NONIDET® P40 detergent.
- Renaturation of the HLA monomers was tested after 24 hours and 48 hours of incubation with 2 ⁇ g/ml of anti-HLA-class I-FITC conjugate. As shown in FIG. 5, the FITC signal increased as a function of the peptide concentration. This result shows that the HLA monomer renaturated by incorporation into a ternary complex and that renaturation of MHC monomers can be effectively detected with an anti-HLA-class I-FITC antibody. It was found that the best renaturation buffer was the Buffer 2 containing TWEEN 20®. Interestingly no refolding was measured with Buffer 1.
- the best temperature for the antibody binding assay was 4° C.-8° C. and the best incubation period to allow renaturation was 24 hours.
- Each well of white 96-well microtiter plates were coated with 200 ⁇ l of a 5 ⁇ g/ml biotinylated BSA solution in PBS and the plates were incubated for 16 hours at 4° C. The plates were washed and then 200 ⁇ l/well of avidin solution at 5 ⁇ g/ml was added. The plates were then incubated for another 16 hours at 4° C.
- the assay procedure was as follows. Each sample 200 ⁇ l/well containing the HLA monomer in ternary complex at 0.25 ⁇ g/ml and diluted in Tris 10 mM, NaCl 150 mM, EDTA 0.5 mM, NaN3 0.1%, BSA 0.2%, was loaded into wells of the avidin-coated plate and incubated for 1 hour at room temperature on an orbital shaker in the dark. The wells were then rinsed three times with an automatic washer (SLT, Salzburg, Austria) using 300 ⁇ l of a 9 g/l NaCl solution containing 0.05% TWEEN 80®.
- FITC-conjugated anti-HLA-class I antibody at 2 ⁇ g/ml were added.
- the plates were incubated for 45 min at room temperature on an orbital shaker in the dark, washed three times, and 200 ⁇ l/well of Tris 10 mM, NaCl 150 mM, EDTA 0.5mM, NaN3 0.1%, BSA 0.2% were added.
- the FITC fluorescence was measured with a Perkin Elmer LS-50B fluorimeter following these parameters:
- Step 1 Step 2 Step 3 Step 4
- HLA Incubate 200 ⁇ l/well Three washes Three washes heavy of each sample in Add 200 ⁇ l/well of Add 200 ⁇ l of chain and the 96-well anti-HLA-class I buffer Fluores- streptavidin streptavidin coated mAb at 2 ⁇ g/ml cence deter- PE white plates.
- Incubate 45 min at mination Incubate 1 hour at room temperature in room temperature in the dark under the dark under agitation agitation
- HLA-A*0201/Mart1 reconstituted monomers in various concentrations was incubated with various concentrations of the anti-HLA-class I-FITC mAb. As shown in FIG. 6, a plateau was reached with concentrations of anti-HLA-class I mAb at 1 to 2 ⁇ g/ml for all HLA heavy chain monomer concentrations.
- a dose response curve at various concentration of reconstituted monomers was plotted using using 2 ⁇ g/ml of anti-HLA-ABC mAb. As shown in FIGS. 7A and 7B, the signal remained linear with increasing concentrations until 0.5 ⁇ g/ml of reconstituted HLA monomer was used. Concentrations of the reconstituted HLA monomer higher than 0.5 ⁇ g/ml provided signals that were very close to a plateau.
- the data summarized in FIGS. 7A and 7B demonstrate that for the best result, the assay conditions should include 0.25 ⁇ g/ml of reconstituted HLA monomer and 2 ⁇ g/ml of anti-HLA-class I FITC mAb. These data also indicated that the sensitivity of the assay is about 4 to 6 ng/ml of the reconstituted HLA monomer.
- class I MHC molecules For effective CD8+ T cell responses, class I MHC molecules must bind many peptides of diverse sequence in sufficient abundance for a long period of time. Many tumor cells appear to escape the immune response because antigenic peptides do not bind well to class I MHC molecules that present them. If a peptide does not bind efficiently to the MHC molecule, circulating T cells will not recognize the MHC ternary complex, and cells presenting them will not be eliminated.
- Typical half-lives of immunodominant peptides are greater than 20 hours at 37° C. (Stuber, et al., (1994) Eur. J. immunol. 24, 765-768, and Pogue, et al., (1995) Proc. Natl. Acad. Sci. US 92, 8166-8170). From this evidence, a test was developed to use the invention solid phase assay to determine the stability of various complexes at different temperatures, and thus calculate the off rate of the peptides. This parameter is very valuable to know when peptides are used in vaccination for the purpose of eliciting an immune response.
- B0 is the fluorescence determined at time zero. The time zero corresponds to the moment when the plates were washed once the monomer was reconstituted and the plates were placed at different temperatures. B is the fluorescence obtained at each time. After the Ln (Fluorescence Emission) as a function of the time was plotted.
- FIG. 10 shows graphs of the dissociation curves for renatured peptides.
- FIGS. 10 E-H shows graphs of the off rates for peptides.
- FIG. 10I shows the effect of temperature on monomer dissociation).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/269,473 US20040072262A1 (en) | 2002-10-11 | 2002-10-11 | Methods and systems for detecting MHC class I binding peptides |
US10/684,268 US20040137537A1 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting MHC class I and II binding peptides |
CA2501864A CA2501864C (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting mhc class i and class ii binding peptides |
PCT/US2003/032370 WO2004034033A2 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting mhc class i and class ii binding peptides |
EP03776344A EP1549952B1 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting mhc class i and class ii binding peptides |
CN2003801010208A CN1703624B (zh) | 2002-10-11 | 2003-10-10 | 用于检测mhc-ⅰ类和mhc-ⅱ类结合肽的方法和体系 |
AU2003284113A AU2003284113B2 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting MHC class I and class II binding peptides |
JP2004543745A JP4607590B2 (ja) | 2002-10-11 | 2003-10-10 | Mhcクラスiおよびクラスii結合ペプチドを検出するための方法およびシステム |
US13/029,902 US8815528B2 (en) | 2002-10-11 | 2011-02-17 | Methods and systems for detecting MHC class I binding peptides |
US14/336,944 US20150072886A1 (en) | 2002-10-11 | 2014-07-21 | Methods and Systems for Detecting MHC Class I Binding Peptides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/269,473 US20040072262A1 (en) | 2002-10-11 | 2002-10-11 | Methods and systems for detecting MHC class I binding peptides |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/684,268 Continuation-In-Part US20040137537A1 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting MHC class I and II binding peptides |
US13/029,902 Continuation US8815528B2 (en) | 2002-10-11 | 2011-02-17 | Methods and systems for detecting MHC class I binding peptides |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040072262A1 true US20040072262A1 (en) | 2004-04-15 |
Family
ID=32068790
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/269,473 Abandoned US20040072262A1 (en) | 2002-10-11 | 2002-10-11 | Methods and systems for detecting MHC class I binding peptides |
US10/684,268 Abandoned US20040137537A1 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting MHC class I and II binding peptides |
US13/029,902 Expired - Lifetime US8815528B2 (en) | 2002-10-11 | 2011-02-17 | Methods and systems for detecting MHC class I binding peptides |
US14/336,944 Abandoned US20150072886A1 (en) | 2002-10-11 | 2014-07-21 | Methods and Systems for Detecting MHC Class I Binding Peptides |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/684,268 Abandoned US20040137537A1 (en) | 2002-10-11 | 2003-10-10 | Methods and systems for detecting MHC class I and II binding peptides |
US13/029,902 Expired - Lifetime US8815528B2 (en) | 2002-10-11 | 2011-02-17 | Methods and systems for detecting MHC class I binding peptides |
US14/336,944 Abandoned US20150072886A1 (en) | 2002-10-11 | 2014-07-21 | Methods and Systems for Detecting MHC Class I Binding Peptides |
Country Status (7)
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040137537A1 (en) * | 2002-10-11 | 2004-07-15 | Beckman Coulter, Inc. | Methods and systems for detecting MHC class I and II binding peptides |
US20050095655A1 (en) * | 2003-11-03 | 2005-05-05 | Montero-Julian Felix A. | Solution-based methods for detecting MHC-binding peptides |
US20050287611A1 (en) * | 2004-05-07 | 2005-12-29 | Nugent C T Iv | MHC bridging system for detecting CTL-mediated lysis of antigen presenting cells |
US20060040332A1 (en) * | 2004-06-17 | 2006-02-23 | Beckman Coulter | Mycobacterium tuberculosis epitopes and methods of use thereof |
WO2006031883A3 (en) * | 2004-09-13 | 2006-09-14 | Xencor Inc | Analysis of mhc-peptide binding interactions |
WO2007034151A3 (en) * | 2005-09-19 | 2007-08-16 | Proimmune Ltd | A method of screening mhc molecules |
US20080064060A1 (en) * | 2004-05-06 | 2008-03-13 | Rainer Blasczyk | Method For Productoin Of Soluble Mhc Proteins |
WO2008057366A2 (en) | 2006-11-01 | 2008-05-15 | Beckman Coulter, Inc. | Binding surfaces for affinity assays |
US20090061478A1 (en) * | 2006-01-30 | 2009-03-05 | Lene Have Poulsen | High-Speed Quantification of Antigen Specific T-Cells in Whole Blood by Flow Cytometry |
US20100248257A1 (en) * | 2007-07-03 | 2010-09-30 | Dako Denmark A/S | Compiled Methods for Analysing and Sorting Samples |
EP2232257A4 (en) * | 2008-01-08 | 2011-05-25 | Siemens Healthcare Diagnostics | Stabilization of test reagents on a solid surface |
US20110195435A1 (en) * | 2008-09-20 | 2011-08-11 | Andrew Kelvin Sewell | Use of a protein kinase inhibitor to detect immune cells, such as t cells |
US20110212090A1 (en) * | 2008-07-23 | 2011-09-01 | Dako Denmark A/S | Combinatorial Analysis and Repair |
WO2012022975A1 (en) * | 2010-08-17 | 2012-02-23 | Isis Innovation Limited | Identification of ligands and their use |
US8268964B2 (en) | 2007-03-26 | 2012-09-18 | Dako Denmark A/S | MHC peptide complexes and uses thereof in infectious diseases |
US10351847B2 (en) | 2013-07-26 | 2019-07-16 | Oxford University Innovation Limited | Identification and display of peptide ligands |
US10369204B2 (en) | 2008-10-02 | 2019-08-06 | Dako Denmark A/S | Molecular vaccines for infectious disease |
WO2019211864A1 (en) * | 2018-04-29 | 2019-11-07 | Chimera Translational Research Fraternity Private Limited | Molecular fluorescent multiplex assay to identify allo-antibodies against mhc antigens |
US10611818B2 (en) | 2007-09-27 | 2020-04-07 | Agilent Technologies, Inc. | MHC multimers in tuberculosis diagnostics, vaccine and therapeutics |
US10968269B1 (en) | 2008-02-28 | 2021-04-06 | Agilent Technologies, Inc. | MHC multimers in borrelia diagnostics and disease |
US11992518B2 (en) | 2008-10-02 | 2024-05-28 | Agilent Technologies, Inc. | Molecular vaccines for infectious disease |
US12258373B2 (en) | 2018-12-17 | 2025-03-25 | Immudex Aps | Panel comprising Borrelia MHC multimers |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070192033A1 (en) * | 2006-02-16 | 2007-08-16 | Microsoft Corporation | Molecular interaction predictors |
US8396671B2 (en) * | 2006-02-16 | 2013-03-12 | Microsoft Corporation | Cluster modeling, and learning cluster specific parameters of an adaptive double threading model |
US8706421B2 (en) * | 2006-02-16 | 2014-04-22 | Microsoft Corporation | Shift-invariant predictions |
US8121797B2 (en) | 2007-01-12 | 2012-02-21 | Microsoft Corporation | T-cell epitope prediction |
US7972804B2 (en) * | 2007-07-03 | 2011-07-05 | One Lambda | Methods of detecting antibodies specific for denatured HLA antigens |
US8628932B2 (en) | 2007-07-03 | 2014-01-14 | One Lambda | Methods of detecting antibodies specific for denatured HLA antigens |
TWI498461B (zh) | 2010-04-12 | 2015-09-01 | Univ Nat Yang Ming | 利用人類白血球抗原(hla)篩檢預測藥物不良反應之方法 |
US8847005B2 (en) | 2011-10-28 | 2014-09-30 | Regeneron Pharmaceuticals, Inc. | Genetically modified major histocompatibility complex mice |
SMT201800614T1 (it) | 2013-02-22 | 2019-01-11 | Regeneron Pharma | Topi che esprimono complesso maggiore di istocompatibilita' umanizzato |
KR20170083534A (ko) | 2014-09-19 | 2017-07-18 | 리제너론 파마슈티칼스 인코포레이티드 | 키메라 항원 수용체 |
EP4248744A3 (en) | 2015-04-06 | 2023-12-27 | Regeneron Pharmaceuticals, Inc. | Humanized t cell mediated immune responses in non-human animals |
US20170205404A1 (en) * | 2016-01-19 | 2017-07-20 | General Electric Company | Multifunctional beads and methods of use for capturing rare cells |
RU2653017C1 (ru) * | 2017-06-22 | 2018-05-04 | Общество с ограниченной ответственностью "Лидер Гласс" | Способ переработки специальных видов стекла |
WO2019054409A1 (ja) * | 2017-09-12 | 2019-03-21 | 国立大学法人北海道大学 | Hlaタンパク質に相互作用する物質のスクリーニング方法及びスクリーニング用キット |
CA3165862A1 (en) * | 2019-12-23 | 2021-07-01 | The Regents Of The University Of California | Stabilization of mhc complexes |
CA3213460A1 (en) | 2021-03-31 | 2022-10-06 | Regeneron Pharmaceuticals, Inc. | Genetically modified mice comprising humanized cellular immune system components with improved diversity of tcrb repertoire |
Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017597A (en) * | 1974-10-30 | 1977-04-12 | Monsanto Company | Unitized solid phase immunoassay kit and method |
US4048298A (en) * | 1975-02-25 | 1977-09-13 | Rohm And Haas Company | Solid phase double-antibody radioimmunoassay procedure |
US4120945A (en) * | 1976-07-06 | 1978-10-17 | Becton, Dickinson & Company | Substrate coated with receptor and labeled ligand for assays |
US4208479A (en) * | 1977-07-14 | 1980-06-17 | Syva Company | Label modified immunoassays |
US4228237A (en) * | 1978-09-21 | 1980-10-14 | Calbiochem-Behring Corp. | Methods for the detection and determination of ligands |
US4478946A (en) * | 1981-07-02 | 1984-10-23 | South African Inventions Development Corporation | Carrier bound immunosorbent |
US4912030A (en) * | 1985-01-15 | 1990-03-27 | Institute Of Cancer Research | Viral isolates and their use in diagnosis |
US5187065A (en) * | 1989-12-22 | 1993-02-16 | Schutzer Steven E | Method and materials for detecting lyme disease |
US5514557A (en) * | 1994-06-06 | 1996-05-07 | Genetic Testing Institute Inc. | Method and kit for detecting antibodies specific for HLA and/or platelet glycoproteins |
US5534416A (en) * | 1993-04-13 | 1996-07-09 | Molecular Probes, Inc. | Fluorescent viability assay using cyclic-substituted unsymmetrical cyanine dyes |
US5583031A (en) * | 1992-02-06 | 1996-12-10 | President And Fellows Of Harvard College | Empty major histocompatibility class II heterodimers |
US5599720A (en) * | 1982-08-27 | 1997-02-04 | Multilyte Limited | Measurement of analyte concentration |
US5635363A (en) * | 1995-02-28 | 1997-06-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for the detection, quantitation and purification of antigen-specific T cells |
US5734023A (en) * | 1991-11-19 | 1998-03-31 | Anergen Inc. | MHC class II β chain/peptide complexes useful in ameliorating deleterious immune responses |
US5759774A (en) * | 1988-05-18 | 1998-06-02 | Cobe Laboratories, Inc. | Method of detecting circulating antibody types using dried or lyophilized cells |
US5919639A (en) * | 1996-06-26 | 1999-07-06 | University Of Massachusetts | Ii peptide therapeutics to enhance antigen presentation |
US5965532A (en) * | 1996-06-28 | 1999-10-12 | Trustees Of Tufts College | Multivalent compounds for crosslinking receptors and uses thereof |
US6037135A (en) * | 1992-08-07 | 2000-03-14 | Epimmune Inc. | Methods for making HLA binding peptides and their uses |
US6046013A (en) * | 1997-08-01 | 2000-04-04 | Gti | Process for identifying specific antibodies associated with HLA |
US6225042B1 (en) * | 1995-03-08 | 2001-05-01 | The Scripps Research Institute | Antigen presenting system and methods for activation of T-cells |
US6270772B1 (en) * | 1997-09-16 | 2001-08-07 | Oregon Health Sciences University | Recombinant MHC molecules useful for manipulation of antigen-specific T-cells |
US6306636B1 (en) * | 1997-09-19 | 2001-10-23 | Arch Development Corporation | Nucleic acid segments encoding wheat acetyl-CoA carboxylase |
US20020006903A1 (en) * | 1997-03-28 | 2002-01-17 | Jonathan Schneck | Use of multivalent chimeric peptide-loaded, MHC/Ig molecules to detect, activate or suppress antigen-specific T cell-dependent immune responses |
US6355479B1 (en) * | 1996-05-23 | 2002-03-12 | The Scripps Research Institute | MHC class II antigen-presenting systems and methods for activating CD4+ T cells |
US6413517B1 (en) * | 1997-01-23 | 2002-07-02 | Epimmune, Inc. | Identification of broadly reactive DR restricted epitopes |
US6419931B1 (en) * | 1991-08-26 | 2002-07-16 | Epimmune Inc. | Compositions and methods for eliciting CTL immunity |
US20020106708A1 (en) * | 2000-11-13 | 2002-08-08 | Sigma-Aldrich Co. | Assays reagents and kits for detecting or determining the concentration of analytes |
US20020146746A1 (en) * | 2001-04-05 | 2002-10-10 | Douglas Nixon | Methods of detecting specific cell lysis |
US6485913B1 (en) * | 1999-03-10 | 2002-11-26 | Sequenom, Inc. | Systems and methods for performing reactions in an unsealed environment |
US20030044415A1 (en) * | 1998-06-05 | 2003-03-06 | Savage Philip Michael | Method for producing or enhancing a T-cell response against a target cell using a complex comprising an HLA class I molecule and an attaching means |
US20030044389A1 (en) * | 2001-07-02 | 2003-03-06 | Brown Patrick O. | Microarrays for cell phenotyping and manipulation |
US20030124613A1 (en) * | 2001-03-09 | 2003-07-03 | Hildebrand William H. | Epitope testing using soluble HLA |
US20030124513A1 (en) * | 2001-05-29 | 2003-07-03 | Mcswiggen James | Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV |
US20030166057A1 (en) * | 1999-12-17 | 2003-09-04 | Hildebrand William H. | Method and apparatus for the production of soluble MHC antigens and uses thereof |
US6727093B2 (en) * | 1996-11-12 | 2004-04-27 | City Of Hope | HCMV-reactive T cells and uses therefor |
US20040137537A1 (en) * | 2002-10-11 | 2004-07-15 | Beckman Coulter, Inc. | Methods and systems for detecting MHC class I and II binding peptides |
US20040253632A1 (en) * | 2000-05-25 | 2004-12-16 | Sunol Molecular Corporation | Modulation of T -cell receptor interactions |
US20050059107A1 (en) * | 2001-10-17 | 2005-03-17 | Bernard Maillere | Method of selecting hla-dp4 ligands and the applications thereof |
US20050095655A1 (en) * | 2003-11-03 | 2005-05-05 | Montero-Julian Felix A. | Solution-based methods for detecting MHC-binding peptides |
US20050287611A1 (en) * | 2004-05-07 | 2005-12-29 | Nugent C T Iv | MHC bridging system for detecting CTL-mediated lysis of antigen presenting cells |
US6992176B2 (en) * | 2002-02-13 | 2006-01-31 | Technion Research & Development Foundation Ltd. | Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease |
US20060040332A1 (en) * | 2004-06-17 | 2006-02-23 | Beckman Coulter | Mycobacterium tuberculosis epitopes and methods of use thereof |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4444879A (en) * | 1981-01-29 | 1984-04-24 | Science Research Center, Inc. | Immunoassay with article having support film and immunological counterpart of analyte |
GB8508340D0 (en) * | 1985-03-29 | 1985-05-09 | Creighton T E | Production of protein |
FR2658197B1 (fr) * | 1990-02-14 | 1992-05-22 | Inst Nat Sante Rech Med | Anticorps monoclonaux restreints reconnaissant un peptide associe a un antigene du complexe majeur d'histocompatibilite - applications au diagnostic et au traitement. |
CA2095323A1 (en) | 1990-10-30 | 1992-05-01 | Jonathan B. Rothbard | Peptide binding assays with mhc antigens |
EP0636696B1 (en) | 1992-10-15 | 2002-09-04 | Toray Industries, Inc. | Process for producing recombinant major histocompatibility antigen class ii protein in microorganisms |
DE4238416A1 (de) | 1992-11-13 | 1994-05-19 | Max Planck Gesellschaft | Bestimmung von Peptidmotiven auf MHC-Molekülen |
AU674568B2 (en) * | 1993-02-04 | 1997-01-02 | Anaphore, Inc. | Improved method for the refolding of proteins |
CA2168950A1 (en) | 1993-08-06 | 1995-02-16 | Esteban Celis | Methods for ex vivo therapy using peptide-loaded antigen presenting cells for the activation of ctl |
US6120992A (en) * | 1993-11-04 | 2000-09-19 | Valigene Corporation | Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, and allele identification in a diseased human |
AU6280596A (en) | 1995-06-15 | 1997-01-15 | University Of Victoria Innovation And Development Corporation | Mycobacterium tuberculosis dna sequences encoding immunostimlatory peptides |
DE19525784A1 (de) | 1995-07-14 | 1997-01-16 | Boehringer Mannheim Gmbh | Autoreaktive Peptide aus der humanen Glutamin-Decarboxylase (GAD) |
AU7158796A (en) | 1995-09-01 | 1997-03-27 | Corixa Corporation | Compounds and methods for diagnosis of tuberculosis |
AU736977C (en) | 1996-11-13 | 2007-10-18 | Meiji Co., Ltd. | Peptide-based immunotherapeutic agent |
EP0948570A1 (en) | 1996-11-27 | 1999-10-13 | Eastman Chemical Company | Method for preparing light-absorbing polymeric compositions |
GB9725764D0 (en) | 1997-12-04 | 1998-02-04 | Isis Innovation | HLA-E binding |
WO1999050637A2 (en) | 1998-03-27 | 1999-10-07 | Ludwig Institute For Cancer Research | Isolated multimeric complexes useful in analysis of t cells, peptides useful in making the complexes, and uses thereof |
IL139093A0 (en) * | 1998-05-01 | 2001-11-25 | Maxygen Inc | Optimization of pest resistance genes using dna shuffling |
MXPA01002674A (es) * | 1998-09-14 | 2002-06-04 | Ostergaard Pedersen Lars | Un metodo para producir una proteina de la superfamilia de inmunoglobulina funcional. |
WO2000025813A1 (en) * | 1998-10-29 | 2000-05-11 | Dana-Farber Cancer Institute | CANCER IMMUNOTHERAPHY AND DIAGNOSIS USING UNIVERSAL TUMOR ASSOCIATED ANTIGENS, INCLUDING hTERT |
ES2549440T3 (es) * | 1999-05-18 | 2015-10-28 | Dyax Corp. | Bibliotecas de fragmentos de Fab y métodos para su uso |
US20060276629A9 (en) * | 1999-12-17 | 2006-12-07 | Hildebrand William H | Purification and characterization of soluble human HLA proteins |
US6649419B1 (en) * | 2000-11-28 | 2003-11-18 | Large Scale Proteomics Corp. | Method and apparatus for protein manipulation |
EP2336167B1 (en) * | 2001-03-14 | 2019-05-29 | Dako Denmark A/S | MHC molecule constructs and their uses for diagnosis and therapy |
US20040248205A1 (en) | 2003-04-16 | 2004-12-09 | Stern Lawrence J. | Major histocompatibility complex (MHC)-peptide arrays |
WO2005010026A2 (en) | 2003-07-22 | 2005-02-03 | Beckman Coulter, Inc. | Methods for detecting activation of t-cells by mhc binding peptides |
JP4505401B2 (ja) | 2005-10-28 | 2010-07-21 | 学校法人同志社 | 受光素子 |
-
2002
- 2002-10-11 US US10/269,473 patent/US20040072262A1/en not_active Abandoned
-
2003
- 2003-10-10 US US10/684,268 patent/US20040137537A1/en not_active Abandoned
- 2003-10-10 AU AU2003284113A patent/AU2003284113B2/en not_active Expired
- 2003-10-10 JP JP2004543745A patent/JP4607590B2/ja not_active Expired - Lifetime
- 2003-10-10 CN CN2003801010208A patent/CN1703624B/zh not_active Expired - Lifetime
- 2003-10-10 EP EP03776344A patent/EP1549952B1/en not_active Expired - Lifetime
- 2003-10-10 WO PCT/US2003/032370 patent/WO2004034033A2/en active Application Filing
- 2003-10-10 CA CA2501864A patent/CA2501864C/en not_active Expired - Lifetime
-
2011
- 2011-02-17 US US13/029,902 patent/US8815528B2/en not_active Expired - Lifetime
-
2014
- 2014-07-21 US US14/336,944 patent/US20150072886A1/en not_active Abandoned
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4017597A (en) * | 1974-10-30 | 1977-04-12 | Monsanto Company | Unitized solid phase immunoassay kit and method |
US4048298A (en) * | 1975-02-25 | 1977-09-13 | Rohm And Haas Company | Solid phase double-antibody radioimmunoassay procedure |
US4120945A (en) * | 1976-07-06 | 1978-10-17 | Becton, Dickinson & Company | Substrate coated with receptor and labeled ligand for assays |
US4208479A (en) * | 1977-07-14 | 1980-06-17 | Syva Company | Label modified immunoassays |
US4228237A (en) * | 1978-09-21 | 1980-10-14 | Calbiochem-Behring Corp. | Methods for the detection and determination of ligands |
US4478946A (en) * | 1981-07-02 | 1984-10-23 | South African Inventions Development Corporation | Carrier bound immunosorbent |
US5599720A (en) * | 1982-08-27 | 1997-02-04 | Multilyte Limited | Measurement of analyte concentration |
US4912030A (en) * | 1985-01-15 | 1990-03-27 | Institute Of Cancer Research | Viral isolates and their use in diagnosis |
US5759774A (en) * | 1988-05-18 | 1998-06-02 | Cobe Laboratories, Inc. | Method of detecting circulating antibody types using dried or lyophilized cells |
US5187065A (en) * | 1989-12-22 | 1993-02-16 | Schutzer Steven E | Method and materials for detecting lyme disease |
US6419931B1 (en) * | 1991-08-26 | 2002-07-16 | Epimmune Inc. | Compositions and methods for eliciting CTL immunity |
US5734023A (en) * | 1991-11-19 | 1998-03-31 | Anergen Inc. | MHC class II β chain/peptide complexes useful in ameliorating deleterious immune responses |
US5583031A (en) * | 1992-02-06 | 1996-12-10 | President And Fellows Of Harvard College | Empty major histocompatibility class II heterodimers |
US6037135A (en) * | 1992-08-07 | 2000-03-14 | Epimmune Inc. | Methods for making HLA binding peptides and their uses |
US5534416A (en) * | 1993-04-13 | 1996-07-09 | Molecular Probes, Inc. | Fluorescent viability assay using cyclic-substituted unsymmetrical cyanine dyes |
US5514557A (en) * | 1994-06-06 | 1996-05-07 | Genetic Testing Institute Inc. | Method and kit for detecting antibodies specific for HLA and/or platelet glycoproteins |
US5635363A (en) * | 1995-02-28 | 1997-06-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for the detection, quantitation and purification of antigen-specific T cells |
US6225042B1 (en) * | 1995-03-08 | 2001-05-01 | The Scripps Research Institute | Antigen presenting system and methods for activation of T-cells |
US6355479B1 (en) * | 1996-05-23 | 2002-03-12 | The Scripps Research Institute | MHC class II antigen-presenting systems and methods for activating CD4+ T cells |
US5919639A (en) * | 1996-06-26 | 1999-07-06 | University Of Massachusetts | Ii peptide therapeutics to enhance antigen presentation |
US5965532A (en) * | 1996-06-28 | 1999-10-12 | Trustees Of Tufts College | Multivalent compounds for crosslinking receptors and uses thereof |
US6727093B2 (en) * | 1996-11-12 | 2004-04-27 | City Of Hope | HCMV-reactive T cells and uses therefor |
US6413517B1 (en) * | 1997-01-23 | 2002-07-02 | Epimmune, Inc. | Identification of broadly reactive DR restricted epitopes |
US20020006903A1 (en) * | 1997-03-28 | 2002-01-17 | Jonathan Schneck | Use of multivalent chimeric peptide-loaded, MHC/Ig molecules to detect, activate or suppress antigen-specific T cell-dependent immune responses |
US6046013A (en) * | 1997-08-01 | 2000-04-04 | Gti | Process for identifying specific antibodies associated with HLA |
US6270772B1 (en) * | 1997-09-16 | 2001-08-07 | Oregon Health Sciences University | Recombinant MHC molecules useful for manipulation of antigen-specific T-cells |
US6306636B1 (en) * | 1997-09-19 | 2001-10-23 | Arch Development Corporation | Nucleic acid segments encoding wheat acetyl-CoA carboxylase |
US20030044415A1 (en) * | 1998-06-05 | 2003-03-06 | Savage Philip Michael | Method for producing or enhancing a T-cell response against a target cell using a complex comprising an HLA class I molecule and an attaching means |
US6485913B1 (en) * | 1999-03-10 | 2002-11-26 | Sequenom, Inc. | Systems and methods for performing reactions in an unsealed environment |
US20030166057A1 (en) * | 1999-12-17 | 2003-09-04 | Hildebrand William H. | Method and apparatus for the production of soluble MHC antigens and uses thereof |
US20040253632A1 (en) * | 2000-05-25 | 2004-12-16 | Sunol Molecular Corporation | Modulation of T -cell receptor interactions |
US20020106708A1 (en) * | 2000-11-13 | 2002-08-08 | Sigma-Aldrich Co. | Assays reagents and kits for detecting or determining the concentration of analytes |
US20030124613A1 (en) * | 2001-03-09 | 2003-07-03 | Hildebrand William H. | Epitope testing using soluble HLA |
US20020146746A1 (en) * | 2001-04-05 | 2002-10-10 | Douglas Nixon | Methods of detecting specific cell lysis |
US20030124513A1 (en) * | 2001-05-29 | 2003-07-03 | Mcswiggen James | Enzymatic nucleic acid treatment of diseases or conditions related to levels of HIV |
US20030044389A1 (en) * | 2001-07-02 | 2003-03-06 | Brown Patrick O. | Microarrays for cell phenotyping and manipulation |
US20050059107A1 (en) * | 2001-10-17 | 2005-03-17 | Bernard Maillere | Method of selecting hla-dp4 ligands and the applications thereof |
US6992176B2 (en) * | 2002-02-13 | 2006-01-31 | Technion Research & Development Foundation Ltd. | Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease |
US20040137537A1 (en) * | 2002-10-11 | 2004-07-15 | Beckman Coulter, Inc. | Methods and systems for detecting MHC class I and II binding peptides |
US20050095655A1 (en) * | 2003-11-03 | 2005-05-05 | Montero-Julian Felix A. | Solution-based methods for detecting MHC-binding peptides |
US20050287611A1 (en) * | 2004-05-07 | 2005-12-29 | Nugent C T Iv | MHC bridging system for detecting CTL-mediated lysis of antigen presenting cells |
US20060040332A1 (en) * | 2004-06-17 | 2006-02-23 | Beckman Coulter | Mycobacterium tuberculosis epitopes and methods of use thereof |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040137537A1 (en) * | 2002-10-11 | 2004-07-15 | Beckman Coulter, Inc. | Methods and systems for detecting MHC class I and II binding peptides |
US20050095655A1 (en) * | 2003-11-03 | 2005-05-05 | Montero-Julian Felix A. | Solution-based methods for detecting MHC-binding peptides |
US20080064060A1 (en) * | 2004-05-06 | 2008-03-13 | Rainer Blasczyk | Method For Productoin Of Soluble Mhc Proteins |
US20050287611A1 (en) * | 2004-05-07 | 2005-12-29 | Nugent C T Iv | MHC bridging system for detecting CTL-mediated lysis of antigen presenting cells |
US20060040332A1 (en) * | 2004-06-17 | 2006-02-23 | Beckman Coulter | Mycobacterium tuberculosis epitopes and methods of use thereof |
US7678379B2 (en) | 2004-06-17 | 2010-03-16 | Beckman Coulter, Inc. | Mycobacterium tuberculosis epitopes and methods of use thereof |
WO2006031883A3 (en) * | 2004-09-13 | 2006-09-14 | Xencor Inc | Analysis of mhc-peptide binding interactions |
US20080206789A1 (en) * | 2005-09-19 | 2008-08-28 | Proimmune Limited | Method of Screening Mhc Molecules |
WO2007034151A3 (en) * | 2005-09-19 | 2007-08-16 | Proimmune Ltd | A method of screening mhc molecules |
US20090061478A1 (en) * | 2006-01-30 | 2009-03-05 | Lene Have Poulsen | High-Speed Quantification of Antigen Specific T-Cells in Whole Blood by Flow Cytometry |
WO2008057366A2 (en) | 2006-11-01 | 2008-05-15 | Beckman Coulter, Inc. | Binding surfaces for affinity assays |
US20080176340A1 (en) * | 2006-11-01 | 2008-07-24 | Beckman Coulter, Inc. | Binding surfaces for affinity assays |
EP2069790A4 (en) * | 2006-11-01 | 2009-11-25 | Beckman Coulter Inc | BONDING SURFACES FOR AFFINITY TESTS |
KR101457716B1 (ko) | 2006-11-01 | 2014-11-03 | 베크만 컬터, 인코포레이티드 | 친화도 분석을 위한 결합 표면 |
US10336808B2 (en) | 2007-03-26 | 2019-07-02 | Dako Denmark A/S | MHC peptide complexes and uses thereof in infectious diseases |
US8268964B2 (en) | 2007-03-26 | 2012-09-18 | Dako Denmark A/S | MHC peptide complexes and uses thereof in infectious diseases |
US10030065B2 (en) | 2007-07-03 | 2018-07-24 | Dako Denmark A/S | MHC multimers, methods for their generation, labeling and use |
US20100248257A1 (en) * | 2007-07-03 | 2010-09-30 | Dako Denmark A/S | Compiled Methods for Analysing and Sorting Samples |
US10611818B2 (en) | 2007-09-27 | 2020-04-07 | Agilent Technologies, Inc. | MHC multimers in tuberculosis diagnostics, vaccine and therapeutics |
EP2232257A4 (en) * | 2008-01-08 | 2011-05-25 | Siemens Healthcare Diagnostics | Stabilization of test reagents on a solid surface |
US10968269B1 (en) | 2008-02-28 | 2021-04-06 | Agilent Technologies, Inc. | MHC multimers in borrelia diagnostics and disease |
US20110212090A1 (en) * | 2008-07-23 | 2011-09-01 | Dako Denmark A/S | Combinatorial Analysis and Repair |
US10722562B2 (en) | 2008-07-23 | 2020-07-28 | Immudex Aps | Combinatorial analysis and repair |
US9404916B2 (en) | 2008-09-20 | 2016-08-02 | University College Cardiff Consultants Limited | Use of a protein kinase inhibitor to detect immune cells, such as T cells |
US20110195435A1 (en) * | 2008-09-20 | 2011-08-11 | Andrew Kelvin Sewell | Use of a protein kinase inhibitor to detect immune cells, such as t cells |
US10369204B2 (en) | 2008-10-02 | 2019-08-06 | Dako Denmark A/S | Molecular vaccines for infectious disease |
US11992518B2 (en) | 2008-10-02 | 2024-05-28 | Agilent Technologies, Inc. | Molecular vaccines for infectious disease |
WO2012022975A1 (en) * | 2010-08-17 | 2012-02-23 | Isis Innovation Limited | Identification of ligands and their use |
US10351847B2 (en) | 2013-07-26 | 2019-07-16 | Oxford University Innovation Limited | Identification and display of peptide ligands |
WO2019211864A1 (en) * | 2018-04-29 | 2019-11-07 | Chimera Translational Research Fraternity Private Limited | Molecular fluorescent multiplex assay to identify allo-antibodies against mhc antigens |
US12258373B2 (en) | 2018-12-17 | 2025-03-25 | Immudex Aps | Panel comprising Borrelia MHC multimers |
Also Published As
Publication number | Publication date |
---|---|
CA2501864C (en) | 2012-12-18 |
CA2501864A1 (en) | 2004-04-22 |
AU2003284113B2 (en) | 2010-02-18 |
US8815528B2 (en) | 2014-08-26 |
EP1549952B1 (en) | 2012-06-06 |
WO2004034033A2 (en) | 2004-04-22 |
US20110171752A1 (en) | 2011-07-14 |
JP4607590B2 (ja) | 2011-01-05 |
CN1703624B (zh) | 2012-07-04 |
WO2004034033A3 (en) | 2004-09-10 |
US20040137537A1 (en) | 2004-07-15 |
JP2006502416A (ja) | 2006-01-19 |
US20150072886A1 (en) | 2015-03-12 |
CN1703624A (zh) | 2005-11-30 |
EP1549952A4 (en) | 2007-04-25 |
EP1549952A2 (en) | 2005-07-06 |
AU2003284113A1 (en) | 2004-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8815528B2 (en) | Methods and systems for detecting MHC class I binding peptides | |
US20050095655A1 (en) | Solution-based methods for detecting MHC-binding peptides | |
US20060228758A1 (en) | Analysis of MHC-peptide binding interactions | |
US7678379B2 (en) | Mycobacterium tuberculosis epitopes and methods of use thereof | |
US20060228759A1 (en) | Analysis of MHC-peptide binding interactions | |
US20050287611A1 (en) | MHC bridging system for detecting CTL-mediated lysis of antigen presenting cells | |
TWI795365B (zh) | 製造和使用可溶性主要組織相容性複合體(mhc)分子類之方法 | |
US20060084116A1 (en) | Analysis of MHC-peptide binding interactions | |
WO2022026921A1 (en) | Identification and use of t cell epitopes in designing diagnostic and therapeutic approaches for covid-19 | |
EP1648919B1 (en) | Methods for detecting activation of t-cells by mhc binding peptides | |
WO2021138688A1 (en) | Systems and methods for identification of mhc-i peptide epitopes | |
US20250216401A1 (en) | Method of detecting human leukocyte antigens (hla) | |
CN109963584B (zh) | 结合mhc的肽阵列及其使用方法 | |
WO2007032778A2 (en) | Analysis of mhc-peptide binding interactions via population specific mhc-arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BECKMAN COULTER INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MONTERO-JULIAN, FELIX A.;MONSEAUX, SYLVAIN;REEL/FRAME:013742/0414 Effective date: 20021105 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |