US20030015063A1 - Steel making material recycling system - Google Patents

Steel making material recycling system Download PDF

Info

Publication number
US20030015063A1
US20030015063A1 US09/909,487 US90948701A US2003015063A1 US 20030015063 A1 US20030015063 A1 US 20030015063A1 US 90948701 A US90948701 A US 90948701A US 2003015063 A1 US2003015063 A1 US 2003015063A1
Authority
US
United States
Prior art keywords
pcm
steel
processing material
dried
steel processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/909,487
Other languages
English (en)
Inventor
Willard McClintock
Scott Kimmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIMMEL COAL & PACKAGING Inc
Kimmel's Coal And Recycling Inc/ghent Operation
Gallatin Steel Co
Original Assignee
KIMMEL COAL & PACKAGING Inc
Kimmel's Coal And Recycling Inc/ghent Operation
Gallatin Steel Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIMMEL COAL & PACKAGING Inc, Kimmel's Coal And Recycling Inc/ghent Operation, Gallatin Steel Co filed Critical KIMMEL COAL & PACKAGING Inc
Priority to US09/909,487 priority Critical patent/US20030015063A1/en
Assigned to GALLATIN STEEL COMPANY reassignment GALLATIN STEEL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCCLINTOCK, WILLARD K.
Assigned to KIMMEL COAL & PACKAGING, INC. reassignment KIMMEL COAL & PACKAGING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIMMEL, SCOTT B.
Priority to MXPA04001602A priority patent/MXPA04001602A/es
Priority to EP20020750224 priority patent/EP2002023A1/en
Priority to PCT/US2002/023205 priority patent/WO2003008651A1/en
Priority to CA 2459112 priority patent/CA2459112A1/en
Publication of US20030015063A1 publication Critical patent/US20030015063A1/en
Assigned to KIMMEL'S COAL AND RECYCLING, INC./GHENT OPERATION reassignment KIMMEL'S COAL AND RECYCLING, INC./GHENT OPERATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIMMEL'S COAL AND PACKAGING, INC.
Priority to US11/498,905 priority patent/US20070256516A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to steel processing material, methods of preparing such materials and methods of manufacturing steel using such materials.
  • the materials and methods of the invention allow the use of iron-bearing by-product material in the steel industry.
  • FEM Furnace Exhaust Material
  • an exhaust system is used to direct this material to a bag house.
  • the FEM typically is very high in iron (Fe) content.
  • Some of this material, called post combustion material (PCM) comprises particles that are too heavy or too large to be exhausted to the bag house.
  • PCM post combustion material
  • Such material can be gravity fed from the combustion chamber to a drop out box or similar arrangement.
  • FEM is generated from the post combustion chamber drop out box as PCM or is evacuated on to the bag house as bag house dust.
  • the iron content from either location is typically about 40% by weight.
  • the iron content can vary from about 20% to about 75% by weight. These materials can also have about 15-25% by weight moisture, about 20% by weight of material similar in content to the slag foaming material currently added to the furnace, and up to about 5% by weight of other metals and oxides.
  • the slag foaming material can include calcium and magnesium oxides, iron, carbon and/or manganese.
  • the slag foaming materials are originally introduced into the steel making process to develop a foamy slag that, among other things, creates a chemical environment in a heat of steel where the exchange of oxygen and other unwanted materials in the steel can occur.
  • some of the slag foaming materials are undesirably exhausted into the flume or exhaust chamber.
  • some of the iron in the steel and in the slag can also be exhausted into the chamber. These materials typically agglomerate or otherwise combine to create dust or larger particles within the exhaust chamber.
  • the combustion chamber or the post combustion chamber duct work of a steel manufacturing assemblies offer water cooled. Water from leaks, sprays or any other source may travel by gravity through the post combustion chamber and wet the post combustion material.
  • Post combustion material removed from the drop out box is typically stored in an outside yard for farther disposition. Either in the drop out box or in the yard, the PCM can absorb a great deal of moisture from the atmosphere, rain or other sources.
  • the moisture content of wet PCM is usually significantly above 2% and usually is greater than 6% and, more typically, is about 15-20%, all by weight. However, some processes may avoid the moisture pickup thus delivering a dry PCM, confirming less than about 2% by weight.
  • PCM undergoes an expensive secondary reclamation processes to recover the heavy metals or is sent to landfills for disposal.
  • iron-bearing waste materials may be generated throughout the steel making process.
  • bag house dust is continually made in the steel making process.
  • Steel makers continue to struggle with cost effective means of processing, selling or otherwise eliminating bag house dust.
  • the secondary processes in steel making also create a significant amount of iron-bearing waste materials, including for example, scale generated at the caster or rolling mill.
  • Other sources of iron wastes include iron fines generated by the recovery of rolling solution in a cold rolling mill, the cleaning of steel in a galvanizing line or other cleaning/finishing processes.
  • a further source of iron waste is a high purity iron oxide recovered from spent pickle liquor of a pickling process. All of these sources of by-product iron materials create a dilemma for the steel maker in dealing with disposal of these materials.
  • the invention relates to steel processing materials.
  • the steel processing materials comprise a dried post combustion material (PCM) and a slag foaming material.
  • the invention is directed to a method of preparing the steel processing material.
  • the methods comprise recovering PCM from a steel making process and drying the PCM.
  • the methods of preparing the steel processing material comprise recovering dry PCM from a steel making process and mixing the PCM with a slag foaming material.
  • the invention is directed to methods of manufacturing steel.
  • the methods comprise melting a first heat of steel, whereon the heat has a liquid steel portion and a foamy slag portion.
  • the melting generates PCM.
  • the PCM is dried and added into a second heat of steel.
  • a steel processing material comprises a recycled material and a slag foaming material.
  • FIG. 1 illustrates a schematic view of an exemplary embodiment of a PCM reclamation facility in accordance with the present invention.
  • Solid waste material such as Furnace Exhaust Material (FEM) is generated by the steel making process.
  • FEM Furnace Exhaust Material
  • the current invention contemplates removing some of the moisture content and/or otherwise recycling FEM material back into the process.
  • the FEM is typically generated as particles collected from the drop out box, known as Post Combustion Material (PCM), or dust from the bag house, as described above.
  • Post Combustion Material PCM
  • post combustion material as used in this invention should be understood to cover any iron-bearing material from the exhaust of a steel making furnace.
  • Such furnaces may include a basic oxygen furnace, an electric arc furnace, a degasser, or any similar furnace creating solid material from the exhaust chamber.
  • the post combustion material as used in the current invention further includes iron-bearing solid waste materials such as iron fines, scale, iron oxide from pickle liquor, or other similar steel making materials as known to those skilled in the art.
  • PCM is directly reintroduced back into the steel making process, several problems can occur, for example, because the moisture is broken down into its elemental components (H 2 and O 2 ). Excess hydrogen in the steel can decrease the castability and increase porosity of the steel. The increased oxygen both increases melting time, requiring more energy for heat, and produces “dirty” steel. Reactions from both the hydrogen and oxygen can also be detrimental to the life of the furnace. Additional processing costs may also be incurred, for example, by increased cost and time at a treatment facility such as a ladle furnace. Further, the moisture alone can cause safety concerns if the PCM is submerged in liquid steel because the expansion of the moisture, from water to steam, can cause an explosion.
  • H 2 and O 2 elemental components
  • Reintroducing the PCM back into the process may also cause the foamy slag characteristics of the furnace to be changed because the moisture of the PCM decreases the effectiveness of the foamy slag.
  • the chemical reactions between the steel and slag may be decreased and poor coverage of the steel by the foamy slag may occur.
  • Nitrogen pickup may also increase as poor coverage of the foamy slag allows air to contact the liquid steel.
  • wet PCM typically at about 15 to 25% by weight water content
  • the wet PCM is dried to remove at least a portion of the moisture.
  • the PCM is air dried to about 6-15% by weight water content.
  • the PCM can be sorted to facilitate further drying, other processing, or subsequent use of the material.
  • the sorting is accomplished by screening to obtain one or more fractions of desired average particle size.
  • the PCM is sorted to obtain a fraction having a maximum particle size, for example of about 1 inch, more specifically of about 3 ⁇ 4 inch, even more specifically of about ⁇ fraction (5/16) ⁇ inch.
  • the sorted material can then be subjected to further processing, and in one embodiment is dried further to about 2% by weight water content.
  • the PCM now referred to as dried PCM, can be reintroduced into the steel making process.
  • the dried PCM can be added by charging buckets, direct charging, or otherwise reintroduced into the steel making process using techniques known to those skilled in the art.
  • the further drying may be achieved using any apparatus or method known in the art.
  • the drying may be conducted using a rotary dryer, common in the steel industry, or using a screw auger dryer.
  • the screw auger dryer can heat the PCM by, for example, induction heaters, gas-fired heaters or other such heating systems.
  • Use of a screw auger dryer can be beneficial in that an auger is relatively inexpensive as compared with a rotary dryer, the screw auger dryer can be installed in a relatively small space, and installation time for a screw auger dryer can be a few weeks compared to several months for a rotary dryer.
  • a screw auger with an induction drier or other type of electric operated drier may also be more environmentally friendly as compared with a rotary drier such as one requiring natural gas or fuel oil or one having a fluid bed.
  • the induction dryer typically does not need preheat time, does not give off hazardous gasses such as NOX, and allows for tighter temperature control. The tighter the temperature control, the less the likelihood of gases evolving from the material being dried.
  • the screw auger drier may also be useful where environmental conditions need tight control, such as where an increase in gasses are objectionable and/or may complicate permitting issues.
  • the rotary drier may operate more efficiently. If time and space are not critical, a rotary drier could be advantageous.
  • the sorting step preceding the mechanical drying may vary according to the type of dryer, the material processed, i.e., the degree or type of agglomeration or otherwise fused properties of the material, and/or the contamination of the material. Contamination may occur, for example, where large pieces of scrap mix with the PCM because scrap and PCM are often stored adjacent one another. Such scrap could damage a dryer or limit further use of the PCM.
  • the sorting ahead of a rotary dryer may only need to be to a particle size of 3′′, or the sorting may be eliminated.
  • an embodiment using an auger may require screening, sorting, for example, to a maximum of about 3 ⁇ 4 of an inch particle size or less. Other embodiments are contemplated wherein no screening step is required due to the inherent small particle size and lack of contamination.
  • the PCM may remain dry throughout generation and recovery. However, even without the moisture content problem, adding the PCM back into the steel making process may be difficult. For example, injecting PCM may be difficult because of the limited size of an injection gun compared to the size of some PCM particles and other scrap metal which may tend to become mixed with the PCM. Also, injected PCM may displace slag foaming materials inhibiting necessary chemical reaction between the steel and the slag.
  • Additional embodiments may include PCM that has not absorbed moisture and is below 2% moisture content in the drop box.
  • Such “dry PCM” does not need to undergo a further drying process and may be screened and/or mixed with slag foaming materials for injection into the steel making process, as will be discussed.
  • the dried PCM can be sorted further. This may include screening to give a size that will not block or clog an injection gun as is commonly used to add slag foaming material in an electric arc furnace. This screening may be to about ⁇ fraction (5/16) ⁇ of an inch, i.e., to the size of the slag foaming material.
  • the PCM Once the PCM has been sized to about ⁇ fraction (5/16) ⁇ of an inch, it can proceed, for example, via a bucket elevator, into a first PCM container such as a silo. Once in a first container, the PCM can be discharged into a second container such as a super sack or a truck.
  • the PCM can be mixed concurrently with the slag foaming material to make a modified slag foaming material.
  • the modified slag foaming material can be added into the top of an arc furnace, usually by an injection gun, to create a foamy slag on the top of the molten bath of steel.
  • the modified slag foaming material is injected after slag has foamed on a heat of steel.
  • a heat of steel typically has an environment that is hot and oxygen rich enough to cause the generally endothermic materials in the PCM to become exothermic, thus generating heat and reducing power usage.
  • the oxygen may create energy, for example, by oxidizing some of the iron in the PCM.
  • the high temperature may also melt the iron from the PCM.
  • both the carbon from the slag foaming material and other metals in the PCM may reduce the oxidized iron, further allowing recovery of the iron into the liquid steel.
  • Such oxidation and reduction reactions are known to those skilled in the art and may be reviewed by the Gibb's free energy equations and diagrams. An example of generating heat and reducing power will be discussed later.
  • a typical slag foaming material may consist of about 90% coal and about 10% dolomitic stone.
  • a modified slag foaming material that is, a slag foaming material with PCM added, may comprise about 10 to 20% PCM, about 70 to 80% coal and about 8 to 12% dolomitic stone.
  • a modified slag foaming material may comprise from about 0% up to about 30% by weight PCM, and behave efficiently in the steel making process.
  • slag foaming materials such as any other carbon and/or low sulfur products, and/or materials including calcium and magnesium oxides, iron, carbon, and manganese, as known to those skilled in the art, may be mixed with the PCM.
  • FIG. 1 illustrates one exemplary embodiment of a facility 30 for the processing of the PCM in accordance with the invention.
  • the facility 30 includes a first receiving hopper 40 for loading of PCM generated by the steel making process.
  • the material can be processed from the first receiving hopper 40 to a first screen 42 .
  • the first screen 42 comprises a 5′ by 7′ double decked scalping screen.
  • the first screen 42 screens the PCM to obtain a fraction having a desired maximum particle size, for example, of about 3 ⁇ 4 inch.
  • the screened PCM fraction of the desired size is delivered via a discharge conveyer 44 to a first screen fraction or stockpile 46 .
  • Material too large to be screened by the first screen 42 may be stockpiled, for example, in a screened “overs” stockpile 70 , or otherwise processed to reduce its size, or discarded.
  • Material from the first screened fraction stockpile 46 is transported, for example by a front end loader, a conveyor or the like to a second receiving hopper 50 .
  • the PCM is next fed from the second receiving hopper 50 to screw auger 52 .
  • the auger 52 can be a heated, dewatering auger in certain embodiments.
  • the auger may include induction heaters to heat the PCM and evaporate the water content of the material.
  • the PCM is heated to reduce the water content to less than about 2%.
  • the auger 52 can be replaced by a conventional rotary dryer, or any other dryer effective to reduce the water content of the PCM.
  • the material is transported by a feed conveyor 54 to a second screen 56 .
  • the second screen 56 comprises a 4′ by 8′ single deck scalping screen.
  • the second screen 56 screens the PCM to obtain a fraction having a maximum particle size about 1 ⁇ 4 inch.
  • the screened PCM fraction is transported, for example, by a bucket elevator 58 , to a first storage silo 60 .
  • a second storage silo 62 is adjacent the storage silo 60 .
  • the second storage silo 62 may contain any of a variety of slag foaming materials such as anthracitic coal, coke, or any other carbon and/or any other low sulfur product known to those skilled in the art for use in a steel making process.
  • the slag foaming material may additionally include materials such as dolomite or spar.
  • the two storage silos can have a single load out spout (not shown). The single load out spout may allow for mixing of the two materials concurrent with addition of the materials to a container such as a transport truck.
  • bag house dust is stored in a storage silo similar to the PCM.
  • the bag house dust is mixed directly with the slag foaming material.
  • a single load out spout may also allow the mixing of the bag house dust with the slag foaming material concurrently as the materials are added to a transport truck. Since bag house dust typically has a moisture content that is less than 2%, a drying process is typically not necessary.
  • bag house dust is usually small in size, less than ⁇ fraction (5/16) ⁇ inch, and is typically clean or free of other (larger) contaminants, it may not need to be sorted. However, should the bag house dust have a high moisture content greater than about 2%, or be agglomerated in particle size too large to inject, the drying and/or screening process, as described above for the PCM, may also be used.
  • Scale as generated from steel processing, such as caster scale or mill scale, may be treated similarly. However, since such scale may have a higher concentration of iron oxide content, the concentration of scale to slag foaming material may be adjusted. Also, scale is typically high in moisture content. High moisture content scale should be dried as described above with respect to the PCM. That is, the scale may be dried, for example, by a rotary dryer or screw auger dryer to about 2% by weight or less water content. Further, the scale may be screened before and after drying as needed to reach the previously discussed particle sizes. Upon injection and between the scale contained in the modified slag foaming material and the high temperature slag should possibly be exothermic because the Fe 3 O 5 will be oxidized to Fe 2 O 3 .
  • iron-bearing materials such as those generated by the steel cold finishing processes, may also be mixed with slag foaming material to provide a steel processing material.
  • the iron fines recovered from cold mill rolling solution or temper mill rolling solution or from cleaning processes, such as a cleaning process in galvanizing line may also be used. Again, these materials may be wet or of sufficiently large size that drying and/or screening may be necessary. Drying, screening, and/or mixing processes as discussed above may be employed. These materials are typical of high Fe content and may behave similar to PCM in that the oxidation of the iron is an exothermic reaction. Also, a relatively high purity iron oxide may be recovered from spent pickle liquor.
  • This material though possibly already dried by a roaster, may become wet or otherwise increase to moisture content.
  • This material may be screened, dried, and/or mixed according to the methods previously discussed for use with the PCM. Depending on the particular iron oxide materials available to cause an exothermic reaction with the high temperature slag.
  • the dried and mixed PCM contains about 45% by weight of iron and about 1.7% by weight of manganese. This equates to about 144 pounds of iron and 5.4 pounds of manganese.
  • One hundred forty-four pounds of iron, when oxidized during the melting process from approximately 76° F. to 2,900° F. would create about 85 kilowatt hours, if reacted 100% to completion. However, at only 50% reaction, 43 kilowatt hours would be produced.
  • 5.4 pounds of manganese reacted with oxygen from 76° F. to 2,900° F. generates about 5 KWH, when reacted completely or 2.5 KWH when reacted 50%.
  • batch charging recovered PCM increases both power usage and the time necessary to melt a heat. These factors, along with possible decreased quality in steel, make recharging PCM directly very expensive, especially when considering that newly recovered PCM may increase power usage by approximately 8%. Alternatively, the dried and mixed PCM may decrease power usage by approximately 10%.
  • Additional embodiments of the current invention are directed to methods of manufacturing steel.
  • a first heat of steel is melted.
  • a slag foaming material may also be added to the heat.
  • a liquid steel portion and a foamy slag portion are developed.
  • the melting of the heat evolves both some of the steel and the foamy slag as furnace exhaust materials.
  • the furnace exhaust materials may be exhausted toward a bag house.
  • Some of the materials (PCM) may be too heavy or large or may be washed away from the exhaust by a water stream and may not be exhausted to the bag house.
  • a drop out box is typically provided to accumulate these materials.
  • the PCM may become wet from leaks, sprays, rain or any other source inside or external to the exhaust duct or to the drop out box.
  • the PCM may need drying in accordance with the methods discussed above. Drying may be achieved by a screw auger, a rotary dryer, or the like.
  • the PCM may not be wet, but rather a moisture content less than about 2% by weight, and may proceed directly to further processing steps.
  • a method of sorting the PCM before drying may be used to properly size the particles for the drying process.
  • a method of further sorting before storing, mixing, or injecting of the PCM may be used as previously discussed.
  • the PCM is added into a second heat of steel.
  • the PCM may be added by injection with an injection gun, mixing with another material such as a slag foaming material and then injected or added in batch.
  • a build up in the PCM of heavy metals such as zinc and lead may occur.
  • a limit or set point such as 0.0010% by weight of lead, is set for heavy metal concentration in the PCM.
  • the PCM is removed from the iterative process. For example, a clean steel producer may generate PCM that has heavy metals well below a threshold as set by regulation or the producer. Each time PCM is added back into a heat and recovered again, the concentration of these heavy metals increases.
  • the PCM may be removed from the iterative process and sent to a reclamation process.
  • the more concentrated heavy metals may offset the cost of reclamation, should improve the efficiency of the reclamation process and may reduce the steel makers need to land fill the PCM.
  • the PCM with a high concentration of heavy metals may be sent to a landfill. Similar embodiments may be maintained for bag house dust of any other iron bearing material.
  • Some of the beneficial characteristics of this invention may include increased liquid steel yield, decreased energy cost, decreased land fill requirements, and decreased shipping and handling of waste material.
  • the invention both decreases cost for the steel industry and improves the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
US09/909,487 2001-07-20 2001-07-20 Steel making material recycling system Abandoned US20030015063A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/909,487 US20030015063A1 (en) 2001-07-20 2001-07-20 Steel making material recycling system
MXPA04001602A MXPA04001602A (es) 2001-07-20 2002-07-20 Sistema de recirculacion de material de elaboracion de acero.
EP20020750224 EP2002023A1 (en) 2001-07-20 2002-07-20 Steel making material recycling system
PCT/US2002/023205 WO2003008651A1 (en) 2001-07-20 2002-07-20 Steel making material recycling system
CA 2459112 CA2459112A1 (en) 2001-07-20 2002-07-20 Steel making material recycling system
US11/498,905 US20070256516A1 (en) 2001-07-20 2006-11-03 Steel making material recycling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/909,487 US20030015063A1 (en) 2001-07-20 2001-07-20 Steel making material recycling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/498,905 Division US20070256516A1 (en) 2001-07-20 2006-11-03 Steel making material recycling system

Publications (1)

Publication Number Publication Date
US20030015063A1 true US20030015063A1 (en) 2003-01-23

Family

ID=25427307

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/909,487 Abandoned US20030015063A1 (en) 2001-07-20 2001-07-20 Steel making material recycling system
US11/498,905 Abandoned US20070256516A1 (en) 2001-07-20 2006-11-03 Steel making material recycling system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/498,905 Abandoned US20070256516A1 (en) 2001-07-20 2006-11-03 Steel making material recycling system

Country Status (5)

Country Link
US (2) US20030015063A1 (es)
EP (1) EP2002023A1 (es)
CA (1) CA2459112A1 (es)
MX (1) MXPA04001602A (es)
WO (1) WO2003008651A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070266824A1 (en) * 2006-05-19 2007-11-22 Stein Joseph L Using a slag conditioner to beneficiate bag house dust from a steel making furnace
US20200199696A1 (en) * 2018-12-21 2020-06-25 Hickman, Williams & Company Foamy slag conditioner compound
US11295875B2 (en) 2013-05-01 2022-04-05 Sumitomo Electric Industries, Ltd. Insulated electric cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964876A (zh) * 2018-09-29 2020-04-07 新疆八一钢铁股份有限公司 一种尾坯降低转炉合金消耗的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134755A (en) * 1976-08-27 1979-01-16 Koichi Maeda Method for removing zinc type metals and compounds in dust recovery process in iron manufacture
US5186742A (en) * 1991-11-27 1993-02-16 Chemical Lime Company Method and composition for use in recycling metal containing furnace dust
US5493580A (en) * 1993-02-09 1996-02-20 Intracon S.A.R.L. Process for recycling the filter dust in an electric arc furnace for producing steel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772000A (en) * 1971-11-23 1973-11-13 Columbia Gas Syst Method for converting solid ferrous metal to steel
US4119455A (en) * 1977-09-28 1978-10-10 Carad, Inc. Method of recovering iron-bearing by-product flue dust
US4304609A (en) * 1980-02-28 1981-12-08 Morris James B N Drill cuttings treatment apparatus and method
US4304598A (en) * 1980-09-19 1981-12-08 Klockner-Werke Ag Method for producing steel from solid, iron containing pieces
ATE126785T1 (de) * 1990-02-13 1995-09-15 Illawarra Tech Corp Ltd Gemeinsame behandlung von abwasser und abfällen von stahlwerken.
US5218617A (en) * 1990-06-01 1993-06-08 Hylsa S.A. De C.V. Apparatus for feeding iron-bearing materials to metallurgical furnaces
US5496392A (en) * 1990-12-21 1996-03-05 Enviroscience Method of recycling industrial waste
US5855645A (en) * 1992-01-15 1999-01-05 Metals Recycling Technologies Corp. Production of more concentrated iron product from industrial waste materials streams
US5571306A (en) * 1992-01-15 1996-11-05 Metals Recycling Technologies Corp. Method for producing an enriched iron feedstock from industrial furnace waste streams
AT402939B (de) * 1992-07-16 1997-09-25 Voest Alpine Ind Anlagen Verfahren und anlage zum herstellen einer metallschmelze
AT400245B (de) * 1993-12-10 1995-11-27 Voest Alpine Ind Anlagen Verfahren und anlage zum herstellen einer eisenschmelze
US5738694A (en) * 1994-01-21 1998-04-14 Covol Technologies, Inc. Process for recovering iron from iron-containing material
US5425797A (en) * 1994-02-23 1995-06-20 Uni Superkom Blended charge for steel production
US5714113A (en) * 1994-08-29 1998-02-03 American Combustion, Inc. Apparatus for electric steelmaking
US5599375A (en) * 1994-08-29 1997-02-04 American Combustion, Inc. Method for electric steelmaking
US5700308A (en) * 1995-01-20 1997-12-23 Massachusetts Institute Of Technology Method for enhancing reaction rates in metals refining extraction, and recycling operations involving melts containing ionic species such as slags, mattes, fluxes
AT405294B (de) * 1995-04-24 1999-06-25 Voest Alpine Ind Anlagen Verfahren zum verwerten von eisenhältigen hüttenreststoffen sowie anlage zur durchführung des verfahrens
KR100210649B1 (ko) * 1996-04-01 1999-07-15 야마오카 요지로 더스트로부터 산화아연을 회수하는 방법 및 그 장치
GB2324081A (en) * 1997-04-07 1998-10-14 Heckett Multiserv Plc Additives for Electric Arc Furnace
AT405054B (de) * 1997-06-18 1999-05-25 Voest Alpine Ind Anlagen Verfahren und anlage zum herstellen einer eisenschmelze unter einsatz von eisenhältigen hüttenwerksreststoffen
US6024912A (en) * 1997-11-27 2000-02-15 Empco (Canada) Ltd. Apparatus and process system for preheating of steel scrap for melting metallurgical furnaces with concurrent flow of scrap and heating gases
US6214085B1 (en) * 1999-02-01 2001-04-10 Calderon Energy Company Of Bowling Green, Inc. Method for direct steelmaking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134755A (en) * 1976-08-27 1979-01-16 Koichi Maeda Method for removing zinc type metals and compounds in dust recovery process in iron manufacture
US5186742A (en) * 1991-11-27 1993-02-16 Chemical Lime Company Method and composition for use in recycling metal containing furnace dust
US5493580A (en) * 1993-02-09 1996-02-20 Intracon S.A.R.L. Process for recycling the filter dust in an electric arc furnace for producing steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070266824A1 (en) * 2006-05-19 2007-11-22 Stein Joseph L Using a slag conditioner to beneficiate bag house dust from a steel making furnace
US11295875B2 (en) 2013-05-01 2022-04-05 Sumitomo Electric Industries, Ltd. Insulated electric cable
US11742112B2 (en) 2013-05-01 2023-08-29 Sumitomo Electric Industries, Ltd. Insulated electric cable
US20200199696A1 (en) * 2018-12-21 2020-06-25 Hickman, Williams & Company Foamy slag conditioner compound

Also Published As

Publication number Publication date
US20070256516A1 (en) 2007-11-08
MXPA04001602A (es) 2005-03-07
CA2459112A1 (en) 2003-01-30
WO2003008651A1 (en) 2003-01-30
EP2002023A1 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
RU2490333C2 (ru) Способ и устройство для получения чугуна или жидких стальных полупродуктов
CN1771340B (zh) 制备冶金用改质煤的方法以及使用该改质煤制备还原金属和含氧化有色金属的炉渣的方法
WO2003056039A1 (en) An apparatus and method for recycling dust and sludge containing iron in ironmaking process using coal and fine ore
JP5397021B2 (ja) 還元鉄製造方法
KR101493965B1 (ko) 함철아연 폐자원으로부터 철 및 아연의 회수방법
EP1408124B1 (en) Method for producing feed material for molten metal production and method for producing molten metal
JP3339638B2 (ja) 鋳物ダストから鉛と亜鉛を除く方法及び装置
US20070256516A1 (en) Steel making material recycling system
JP2019019346A (ja) 焼却灰からの貴金属回収方法
WO2009131242A1 (ja) 還元鉄の製造方法
JP2000054039A (ja) 鉛含有材料からの金属鉛回収方法
JP3035285B1 (ja) 電気炉ダスト含有製鋼用加炭材の製造方法及びそれにより得られる製鋼用加炭材並びに電気炉ダストのリサイクル方法
JP4130629B2 (ja) 高温金属回収プロセス
JP5271477B2 (ja) 転炉ダストの再利用方法
JPH11152511A (ja) 製鋼炉ダストの処理方法及びダストペレット
JP2003268425A (ja) 高炉ダストの処理方法
KR100879680B1 (ko) 탄화수소 및 철 산화물을 함유하는 폐기물, 특히 밀스케일 슬러지와 미분탄을 이용하는 방법 및 설비
JP5396991B2 (ja) 高亜鉛含有鉄鉱石を用いた粒鉄製造方法
JP7517379B2 (ja) 精錬炉又は反応炉に投入する粉原料の事前処理方法及び精錬炉又は反応炉の操業方法
JP5428495B2 (ja) 高亜鉛含有鉄鉱石を用いた還元鉄製造方法
JP5397020B2 (ja) 還元鉄製造方法
KR20030048809A (ko) 코렉스 공정을 이용한 제철소 발생 함철분진의 처리방법
JPH09310128A (ja) 含油スラッジの処理方法
JPH11189832A (ja) 亜鉛含有粉体の処理方法
JPH0978115A (ja) 転炉製鋼法におけるダストリサイクル方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: GALLATIN STEEL COMPANY, KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCCLINTOCK, WILLARD K.;REEL/FRAME:012627/0639

Effective date: 20010927

AS Assignment

Owner name: KIMMEL COAL & PACKAGING, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIMMEL, SCOTT B.;REEL/FRAME:012627/0615

Effective date: 20010927

AS Assignment

Owner name: KIMMEL'S COAL AND RECYCLING, INC./GHENT OPERATION,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIMMEL'S COAL AND PACKAGING, INC.;REEL/FRAME:016585/0841

Effective date: 20010401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION