US20020173656A1 - Guanidine and amidine derivatives as factor Xa inhibitors - Google Patents

Guanidine and amidine derivatives as factor Xa inhibitors Download PDF

Info

Publication number
US20020173656A1
US20020173656A1 US10/004,422 US442201A US2002173656A1 US 20020173656 A1 US20020173656 A1 US 20020173656A1 US 442201 A US442201 A US 442201A US 2002173656 A1 US2002173656 A1 US 2002173656A1
Authority
US
United States
Prior art keywords
alkyl
another
unsubstituted
mono
trisubstituted independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/004,422
Other languages
English (en)
Inventor
Anuschirwan Peyman
David Will
Uwe Gerlach
Marc Nazare
Gerhard Zoller
Hans-Peter Nestler
Hans Matter
Fahad Al-Obeidi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis Deutschland GmbH
Original Assignee
Aventis Pharma Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Pharma Deutschland GmbH filed Critical Aventis Pharma Deutschland GmbH
Assigned to AVENTIS PHARMA DEUTSCHLAND GMBH reassignment AVENTIS PHARMA DEUTSCHLAND GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AL-OBEIDI, FAHAD, NESTLER, HANS-PETER, MATTER, HANS, GERLACH, UWE, ZOLLER, GERHARD, NAZRARE, MARC, PEYMAN, ANUSCHIRWAN, WILL, DAVID WILLIAM
Publication of US20020173656A1 publication Critical patent/US20020173656A1/en
Priority to US10/886,312 priority Critical patent/US7435747B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/26Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to compounds of the formula I,
  • the compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor VIIa (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is intended.
  • the invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.
  • the present invention satisfies the above needs by providing novel compounds of the formula I which exhibit factor Xa and/or factor VIIa inhibitory activity and are favorable agents for inhibiting unwanted blood clotting and thrombus formation.
  • R 0 is
  • R 2 is
  • Q and Q′ are independently of one another identical or different and are a direct bond, —O—, —S—, —NR 10 —, —C(O)NR 10 —, —NR 10 C(O)—, —S(O)—, —SO 2 —, —NR 10 —SO 2 —, —SO 2 —NR 10 -oder —C(O)—;
  • R 10 is hydrogen atom or (C 1 -C 4 )-alkyl-
  • alkylen is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, amino group or hydroxy group,
  • D is an atom out of the group carbon, oxygen, sulfur and nitrogen, the substructure of formula III
  • Het mono- or bicyclic 5-to 10-membered heterocyclic group (Het), containing one or more heteroatoms as ring heteroatoms, such as nitrogen, sulfur or oxygen, wherein said Het group is unsubstituted or mono-, di- or trisubstituted independently of one another by R 1 , or
  • R 1 is
  • R 11 and R 12 together with the nitrogen atom to which they are bonded form a saturated or unsaturated 5- to 6-membered monocyclic heterocyclic ring which in addition to the nitrogen atom carrying R 11 and R 12 can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen, and in which one or two of the ring carbon atoms can be substituted by oxo to form —C(O)— residue(s),
  • R 13 is
  • V is a residue of the formulae IIa, IIb, IIc, IId, IIe or IIf,
  • L is is a direct bond or (C 1 -C 3 )-alkylene, wherein alkylene is unsubstituted or mono-, di- or trisubstituted independently of one another by A,
  • U is —NH 2 , (C 1 -C 4 )-alkyl-,—NH—C(O)—O—(C 1 -C 4 )-alkyl or —NH—C(O)—O—(C 1 -C 4 )-alkyl-aryl,
  • M is hydrogen atom, (C 1 -C 3 )-alkyl- or —OH,
  • R 4 and R 5 are independently of one another identical or different and are
  • Het- wherein Het- is unsubstituted or mono-, di- or trisubstituted independently of one another by R 13 as defined above, or
  • R 4 and R 5 together with the nitrogen atom to which they are bonded form a saturated 3- to 8-membered monocyclic heterocyclic ring which in addition to the nitrogen atom carrying R 4 and R 5 can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen;
  • R 0 is phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R 2 , or
  • pyridyl wherein pyridyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R 2 ,
  • R 2 is
  • D is an atom out of the group carbon and nitrogen
  • phenyl wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R 1 , or
  • R 10 is hydrogen atom or methyl
  • V is a fragment of the formula IIa, IIb, IIc, IId, IIe or IIf as defined above, wherein
  • L, U, M, R 4 and R 5 are as defined above, and
  • R 0 is phenyl, wherein phenyl is mono-, di- or trisubstituted independently of one another by R 2 , or
  • pyridyl wherein pyridyl is mono-, di- or trisubstituted independently of one another by R 2 ,
  • Q and Q′ are independently of one another identical or different and are a direct bond, —O—, —C(O)NR 10 —, —NR 10 C(O)—; —NR 10 —SO 2 —; or —SO 2 —NR 10 —;
  • alkylen is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, amino group or hydroxy group,
  • D is an atom out of the group carbon and nitrogen
  • phenyl or pyridyl wherein phenyl and pyridyl are unsubstituted or mono-, di- or trisubstituted independently of one another by R 1 ,
  • R 1 is
  • R 10 is hydrogen atom or methyl
  • V is a fragment of the formula IIa, IIb, IIc, IId, IIe or IIf as defined above, wherein
  • L is a direct bond or (C 1 -C 3 )-alkylen-
  • A is hydrogen atom, —C(O)—OH, —C(O)—O—(C 1 -C 4 )-alkyl, —C(O)—NR 4 R 5 or (C 1 -C 4 )-alkyl,
  • U is —NH 2 , methyl, —NH—C(O)—O—(C 1 -C 4 )-alkyl or —NH—C(O)—O—(CH 2 )-phenyl,
  • M is hydrogen atom, (C 1 -C 3 )-alkyl- or —OH, and
  • R 4 and R 5 are independently of one another hydrogen atom or (C 1 -C 4 )-alkyl-.
  • R 0 is phenyl or pyridyl, wherein phenyl and pyridyl independently from one another are mono-, di- or trisubstituted independently of one another by R 2 ,
  • Q and Q′ are independently of one another identical or different and are a direct bond, —O—, —C(O)NR 10 —, —NR 10 C(O)—; —NR 10 —SO 2 —; or —SO 2 —NR 10 —;
  • X is —(C 1 -C 3 )-alkylen-, wherein alkylen is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, amino group or hydroxy group,
  • D is the atom carbon
  • phenyl wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R 1 ,
  • R 10 is hydrogen atom
  • V is a fragment of the formula IIa, IIb, IIc or IId as defined above, wherein
  • L is a direct bond or (C 1 -C 2 )-alkylen-
  • A is hydrogen atom, —C(O)—OH, —C(O)—O—(C 1 -C 4 )-alkyl, —C(O)—NR 4 R 5 or (C 1 -C 4 )-alkyl,
  • U is —NH 2 , methyl, —NH—C(O)—O—(C 1 -C 4 )-alkyl or —NH—C(O)—O—(CH 2 )-phenyl,
  • M is hydrogen atom or (C 1 -C 3 )-alkyl-.
  • R 0 is phenyl, wherein phenyl is mono-, di- or trisubstituted independently of one another by R 2 ,
  • Q and Q′ are independently of one another identical or different and are a direct bond, —O—, —C(O)NR 10 —, —NR 10 C(O)—; —NR 10 —SO 2 —; or —SO 2 —NR 10 —;
  • X is —(C 1 -C 3 )-alkylen-
  • D is the atom carbon
  • phenyl wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R 1 ,
  • R 10 is hydrogen atom
  • V is a fragment of the formula IIa, IIb, IIc or IId as defined above, wherein
  • L is a direct bond or (C 1 -C 2 )-alkylen-
  • A is hydrogen atom, —C(O)—OH, —C(O)—O—(C 1 -C 4 )-alkyl, —C(O)—NR 4 R 5 or —(C 1 -C 4 )-alkyl,
  • U is —NH 2 , methyl, —NH—C(O)—O—(C 1 -C 4 )-alkyl or —NH—C(O)—O—(CH 2 )-phenyl,
  • M is hydrogen atom or methyl
  • R 4 and R 5 are independently of one another hydrogen atom or methyl.
  • R 0 is phenyl, wherein phenyl is disubstituted independently of one another by R 2 ,
  • Q and Q′ are independently of one another identical or different and are a direct bond or —O—,
  • X is —CH 2 —CH 2 —
  • D is the atom carbon
  • phenyl wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R 1 ,
  • R 13 is fluorine or chlorine
  • R 10 is hydrogen atom
  • V is a fragment of the formula IIa, IIb, IIc or IId as defined above, wherein
  • L is a direct bond or (C 1 -C 2 )-alkylen-
  • A is hydrogen atom, —C(O)—OH, —C(O)—O—(C 1 -C 4 )-alkyl, —C(O)—NR 4 R 5 or —(C 1 -C 4 )-alkyl,
  • U is —NH 2 , methyl, —NH—C(O)—O—(C 1 -C 4 )-alkyl or —NH—C(O)—O—(CH 2 )-phenyl,
  • M is hydrogen atom
  • R 4 and R 5 are independently of one another hydrogen atom or methyl.
  • alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i.e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits.
  • alkyl as used herein expressly includes saturated groups as well as unsaturated groups which latter groups contain one or more, for example one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a manner that an aromatic system results.
  • alkyl group occurs as a substituent on another residue, for example in an alkyloxy residue, an alkyloxycarbonyl residue or an arylalkyl residue.
  • alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8carbon atoms are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, isohexyl, sec-butyl, tert-butyl, tert-pentyl, sec-butyl, tert-butyl or tert-pentyl.
  • Unsaturated alkyl residues are, for example, alkenyl residues such as vinyl, 1-propenyl, 2-propenyl ( ⁇ allyl), 2-butenyl, 3-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 5-hexenyl or 1,3-pentadienyl, or alkynyl residues such as ethynyl, 1-propynyl, 2-propynyl ( ⁇ propargyl) or 2-butynyl. Alkyl residues can also be unsaturated when they are substituted.
  • alkenyl residues such as vinyl, 1-propenyl, 2-propenyl ( ⁇ allyl), 2-butenyl, 3-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 5-hexenyl or 1,3-pentadienyl
  • alkynyl residues such as ethynyl, 1-propynyl, 2-prop
  • cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5 or 6 ring carbon atoms like cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which can also be substituted and/or unsaturated.
  • Unsaturated cyclic alkyl groups and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom.
  • a cyclic alkyl group has to contain at least three carbon atoms, and an unsaturated alkyl group has to contain at least two carbon atoms.
  • a group like (C 1 -C 8 )-alkyl is to be understood as comprising, among others, saturated acyclic (C 1 -C 8 )-alkyl, (C 3 -C 6 )-cycloalkyl, and unsaturated (C 2 -C 8 )-alkyl like (C 2 -C 8 )-alkenyl or (C 2 -C 8 )-alkynyl.
  • a group like (C 1 -C 4 )-alkyl is to be understood as comprising, among others, saturated acyclic (C 1 -C 4 )-alkyl, and unsaturated (C 2 -C 4 )-alkyl like (C 2 -C 4 )-alkenyl or (C 2 -C 4 )-alkynyl.
  • alkyl preferably comprises acyclic saturated hydro-carbon residues which have from one to six carbon atoms and which can be linear or branched.
  • a particular group of saturated acyclic alkyl residues is formed by (C 1 -C 4 )-alkyl residues like methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • alkyl groups can in general be unsubstituted or substituted by one or more, for example one, two or three, identical or different substituents. Any kind of substituents present in substituted alkyl residues can be present in any desired position provided that the substitution does not lead to an unstable molecule.
  • substituted alkyl residues are alkyl residues in which one or more, for example 1, 2 or 3, hydrogen atoms are replaced with halogen atoms, in particular fluorine atoms.
  • mono- or bicyclic 5- to 10-membered carbocyclic aryl group refers to for example phenyl or napthyl.
  • mono- or bicyclic 5- to 10-membered heteroaryl containing one or two nitrogen atoms as ring heteroatoms refers to (C 5 -C 10 )-aryl in which one or more of the 5 to 10 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur.
  • Examples are pyridyl; such as 2-pyridyl, 3-pyridyl or 4-pyridyl; pyrrolyl; such as 2-pyrrolyl and 3-pyrrolyl; furyl; such as 2-furyl and 3-furyl; thienyl; such as 2-thienyl and 3-thienyl; imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, tetrazolyl, pyridazinyl, pyrazinyl, pyrimidinyl, indolyl, isoindolyl, indazolyl, phthalazinyl, quinolyl, isoquinolyl or quinoxalinyl.
  • pyridyl such as 2-pyridyl, 3-pyridyl or 4-pyridyl
  • pyrrolyl such as 2-pyrrolyl and 3-pyrrolyl
  • R 11 and R 12 together with the nitrogen atom to which they are bonded form a saturated or unsaturated 5- to 6-membered monocyclic heterocyclic ring refers to pyrrol, piperidin, pyrrolidine, morpholine, piperazine, pyridine, pyrimidine, imidazole or thiomorpholine.
  • aryl refers to a monocyclic or polycyclic hydrocarbon residue in which at least one carbocyclic ring is present that has a conjugated pi electron system.
  • a (C 6 -C 14 )-aryl residue from 6 to 14 ring carbon atoms are present.
  • Examples of (C 6 -C 14 )-aryl residues are phenyl, naphthyl, biphenylyl, fluorenyl or anthracenyl.
  • aryl residues for example phenyl, naphthyl or fluorenyl, can in general be unsubstituted or substituted by one or more, for example one, two or three, identical or different substituents.
  • Aryl residues can be bonded via any desired position, and in substituted aryl residues the substituents can be located in any desired position.
  • substituents that can be present in substituted aryl groups are, for example, (C 1 -C 8 )-alkyl, in particular (C 1 -C 4 )-alkyl, such as methyl, ethyl or tert-butyl, hydroxy, (C 1 -C 8 )-alkyloxy, in particular (C 1 -C 4 )-alkyloxy, such as methoxy, ethoxy or tert-butoxy, methylenedioxy, ethylenedioxy, F, Cl, Br, I, cyano, nitro, trifluoromethyl, trifluoromethoxy, hydroxymethyl, formyl, acetyl, amino, mono- or di-(C 1 -C 4 )-alkylamino, ((C 1 -C 4 )-alkyl)carbonylamin
  • a substituted aryl group which is present in a specific position of the compounds of formula I can independently of other aryl groups be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the specific definition of that group.
  • a substituted aryl group may be substituted by one or more identical or different substituents chosen from (C 1 -C 4 )-alkyl, hydroxy, (C 1 -C 4 )-alkyloxy, F, Cl, Br, I, cyano, nitro, trifluoromethyl, amino, phenyl, benzyl, phenoxy and benzyloxy.
  • substituents selected from any desired subgroup of the substituents listed before and/or in the specific definition of that group.
  • a substituted aryl group may be substituted by one or more identical or different substituents chosen from (C 1 -C 4 )-alkyl, hydroxy, (C 1 -C 4 )-alkyloxy, F, Cl, Br,
  • the substituent can be located in the 2-position, the 3-position or the 4-position, with the 3-position and the 4-position being preferred. If a phenyl group carries two substituents, they can be located in 2,3-position, 2,4-position, 2,5-position, 2,6-position, 3,4-position or 3,5-position. In phenyl residues carrying three substituents the substituents can be located in 2,3,4-position, 2,3,5-position, 2,3,6-position, 2,4,5-position, 2,4,6-position, or 3,4,5-position. Naphthyl residues can be 1-naphthyl and 2-naphthyl.
  • the substituents can be located in any positions, for example in monosubstituted 1-naphthyl residues in the 2-, 3-, 4-, 5-, 6-, 7-, or 8-position and in monosubstituted 2-naphthyl residues in the 1-, 3-, 4-, 5-, 6-, 7-, or 8-position.
  • Biphenylyl residues can be 2-biphenylyl, 3-biphenylyl and 4-biphenylyl.
  • Fluorenyl residues can be 1-, 2-, 3-, 4- or 9-fluorenyl. In monosubstituted fluorenyl residues bonded via the 9-position the substituent is preferably present in the 1-, 2-, 3- or 4-position.
  • the group Het comprises groups containing 5, 6, 7, 8, 9 or 10 ring atoms in the parent monocyclic or bicyclic heterocyclic ring system.
  • the heterocyclic ring preferably is a 5-membered, 6-membered or 7-membered ring, particularly preferably a 5-membered or 6-membered ring.
  • bicyclic groups Het preferably two fused rings are present one of which is a 5-membered ring or 6-membered heterocyclic ring and the other of which is a 5-membered or 6-membered heterocyclic or carbocyclic ring, i.e. a bicyclic ring Het preferably contains 8, 9 or 10 ring atoms, particularly preferably 9 or 10 ring atoms.
  • Het comprises saturated heterocyclic ring systems which do not contain any double bonds within the rings, as well as mono-unsaturated and poly-unsaturated heterocyclic ring systems which contain one or more, for example one, two, three, four or five, double bonds within the rings provided that the resulting system is stable.
  • Unsaturated rings may be non-aromatic or aromatic, i.e. double bonds within the rings in the group Het may be arranged in such a manner that a conjugated pi electron system results.
  • Aromatic rings in a group Het may be 5-membered or 6-membered rings, i.e. aromatic groups in a group Het contain 5 to 10 ring atoms.
  • Aromatic rings in a group Het thus comprise 5-membered and 6-membered monocyclic heterocycles and bicyclic heterocycles composed of two 5-membered rings, one 5-membered ring and one 6-membered ring, or two 6-membered rings.
  • bicyclic aromatic groups in a group Het one or both rings may contain heteroatoms.
  • Aromatic groups Het may also be referred to by the customary term heteroaryl for which all the definitions and explanations above and below relating to Het correspondingly apply.
  • Het and any other heterocyclic groups preferably 1, 2, 3 or 4 identical or different ring heteroatoms chosen from nitrogen, oxygen and sulfur are present. Particularly preferably in these groups one or two identical or different heteroatoms chosen from nitrogen, oxygen and sulfur are present.
  • the ring heteroatoms can be present in any desired number and in any position with respect to each other provided that the resulting heterocyclic system is known in the art and is stable and suitable as a subgroup in a drug substance.
  • Examples of parent structures of heterocycles from which the group Het can be derived are aziridine, oxirane, azetidine, pyrrole, furan, thiophene, dioxole, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyran, thiopyran, pyridazine, pyrimidine, pyrazine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, azepine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine,
  • a pyrrolyl residue can be 1-pyrrolyl, 2-pyrrolyl or 3-pyrrolyl
  • a pyrrolidinyl residue can be pyrrolidin-1-yl ( ⁇ pyrrolidino), pyrrolidin-2-yl or pyrrolidin-3-yl
  • a pyridinyl residue can be pyridin-2-yl, pyridin-3-yl or pyridin-4-yl
  • a piperidinyl residue can be piperidin-1-yl ( ⁇ piperidino), piperidin-2-yl, piperidin-3-yl or piperidin-4-yl.
  • Furyl can be 2-furyl or 3-furyl
  • thienyl can be 2-thienyl or 3-thienyl
  • imidazolyl can be imidazol-1-yl, imidazol-2-yl, imidazol-4-yl or imidazol-5-yl
  • 1,3-oxazolyl can be 1,3-oxazol-2-yl, 1,3-oxazol-4-yl or 1,3-oxazol-5-yl
  • 1,3-thiazolyl can be 1,3-thiazol-2-yl, 1,3-thiazol-4-yl or 1,3-thiazol-5-yl
  • pyrimidinyl can be pyrimidin-2-yl, pyrimidin-4-yl ( ⁇ 6-pyrimidinyl) or 5-pyrimidinyl
  • piperazinyl can be piperazin-1-yl ( ⁇ piperazin-4-yl ⁇ piperazino) or piperazin-2-yl.
  • Indolyl can be indol-1-yl, indol-2-yl, indol-3-yl, indol-4-yl, indol-5-yl, indol-6-yl or indol-7-yl.
  • benzimidazolyl, benzoxazolyl and benzothiazol residues can be bonded via the 2-position and via any of the positions 4, 5, 6, and 7.
  • Quinolinyl can be quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl or quinolin-8-yl
  • isoqinolinyl can be isoquinol-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl or isoquinolin-8-yl.
  • 1,2,3,4-tetrahydroquinolinyl and 1,2,3,4-tetrahydroisoquinolinyl can also be bonded via the nitrogen atoms in 1-position and 2-position, respectively.
  • the group Het can be unsubstituted or substituted on ring carbon atoms with one or more, for example one, two, three, four or five, identical or different substituents like (C 1 -C 8 )-alkyl, in particular (C 1 -C 4 )-alkyl, (C 1 -C 8 )-alkyloxy, in particular (C 1 -C 4 )-alkyloxy, (C 1 -C 4 )-alkylthio, halogen, nitro, amino, ((C 1 -C 4 )-alkyl)carbonylamino like acetylamino, trifluoromethyl, trifluoromethoxy, hydroxy, oxo, hydroxy-(C 1 -C 4 )-alkyl such as, for example, hydroxymethyl or 1-
  • the substituents can be present in any desired position provided that a stable molecule results.
  • an oxo group cannot be present in an aromatic ring.
  • Each suitable ring nitrogen atom in a group Het can independently of each other be unsubstituted, i.e. carry a hydrogen atom, or can be substituted, i.e.
  • (C 1 -C 8 )-alkyl for example (C 1 -C 4 )-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C 1 -C 4 )-alkyl, for example benzyl, optionally substituted in the phenyl group, hydroxy-(C 2 -C 4 )-alkyl such as, for example 2-hydroxyethyl, acetyl or another acyl group, methylsulfonyl or another sulfonyl group, aminocarbonyl, (C 1 -C 4 )-alkyloxycarbonyl, etc.
  • substituent like (C 1 -C 8 )-alkyl for example (C 1 -C 4 )-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C 1 -C 4 )-alkyl, for example benzyl, optionally substituted in
  • nitrogen heterocycles can also be present as N-oxides or as quaternary salts.
  • Ring sulfur atoms can be oxidized to the sulfoxide or to the sulfone.
  • a tetrahydrothienyl residue may be present as S,S-dioxotetrahydrothienyl residue or a thiomorpholinyl residue like thiomorpholin-4-yl may be present as 1-oxo-thiomorpholin-4-yl or 1,1-dioxo-thiomorpholin-4-yl.
  • a substituted group Het that can be present in a specific position of the compounds of formula I can independently of other groups Het be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine.
  • Optically active carbon atoms present in the compounds of the formula I can independently of each other have R configuration or S configuration.
  • the compounds of the formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example in the form of racemates.
  • the present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers.
  • the invention comprises mixtures of two or of more than two stereoisomers of the formula I, and it comprises all ratios of the stereoisomers in the mixtures.
  • the invention relates both to pure E isomers and pure Z isomers and to E/Z mixtures in all ratios.
  • the invention also comprises all tautomeric forms of the compounds of the formula I.
  • Diastereomers including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example by chromatography on chiral phases or by resolution, for example by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically unifom compounds of the formula I can also be obtained by employing stereochemically uniform starting materials or by using stereoselective reactions.
  • the choice of incorporating into a compound of the formula I a building block with R configuration or S configuration, or in the case of an amino acid unit present in a compound of the formula I of incorporating a building block designated as D-amino acid or L-amino acid can depend, for example, on the desired characteristics of the compound of the formula I.
  • the incorporation of a D-amino acid building block can confer increased stability in vitro or in vivo.
  • the incorporation of a D-amino acid building block also can achieve a desired increase or decrease in the pharmacological activity of the compound. In some cases it can be desirable to allow the compound to remain active for only a short period of time.
  • an L-amino acid building block in the compound can allow endogenous peptidases in an individual to digest the compound in vivo, thereby limiting the individual's exposure to the active compound.
  • a similar effect may also be observed in the compounds of the invention by changing the configuration in another building block from S configuration to R configuration or vice versa.
  • Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular pharmaceutically utilizable salts.
  • Such salts of compounds of the formula I containing acidic groups, for example a carboxy group COOH are for example alkali metal salts or alkaline earth metal salts such as sodium salts, potassium salts, magnesium salts and calcium salts, and also salts with physiologically tolerable quarternary ammonium ions such as tetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or tris-(2-hydroxyethyl)amine.
  • Basic groups contained in the compounds of the formula 1, for example amino groups or guanidino groups form acid addition salts, for example with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid.
  • Compounds of the formula I which simultaneously contain a basic group and an acidic group, for example a guanidino group and a carboxy group, can also be present as zwitterions (betaines) which are likewise included in the present invention.
  • Salts of compounds of the formula I can be obtained by customary methods known to those skilled in the art, for example by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange.
  • the present invention also includes all salts of the compounds of the formula I which, because of low physiologically tolerability, are not directly suitable for use in pharmaceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of the formula I or as starting materials for the preparation of physiologically tolerable salts.
  • the present invention furthermore includes all solvates of compounds of the formula I, for example hydrates or adducts with alcohols.
  • the invention also includes derivatives and modifications of the compounds of the formula I, for example prodrugs, protected forms and other physiologically tolerable derivatives, as well as active metabolites of the compounds of the formula I.
  • the invention relates in particular to prodrugs and protected forms of the compounds of the formula I which can be converted into compounds of the formula I under physiological conditions.
  • Suitable prodrugs for the compounds of the formula I i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H.
  • Suitable prodrugs for the compounds of the formula I are especially acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups such as amino groups and the guanidino group and also ester prodrugs and amide prodrugs of carboxylic acid groups which may be present in compounds of the formula I.
  • acyl prodrugs and carbamate prodrugs one or more, for example one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate, preferably a (C 1 -C 6 )-alkyloxycarbonyl group.
  • Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups R p1 —CO— and R p2 O—CO—, in which R p1 is hydrogen, (C 1 -C 18 )-alkyl, (C 3 -C 8 )-cycloalkyl, (C 3 -C 8 )-cycloalkyl-(C 1 -C 4 )-alkyl-, (C 6 -C 14 )-aryl, Het-, (C 6 -C 14 )-aryl-(C 1 -C 4 )-alkyl- or Het-(C 1 -C 4 )-alkyl- and in which R p2 has the meanings indicated for R p1 with the exception of hydrogen.
  • a further embodiement of the present invention are prodrugs of the compounds of the formula 1, preferably (C 1 -C 6 )-acyl prodrugs and (C 1 -C 6 )-alkyloxycarbonyl prodrugs.
  • the present invention also relates to processes of preparation by which the compounds of the formula I are obtainable and which comprise carrying out one or more of the synthesis steps described below.
  • the compounds of the formula I can generally be prepared, for example in the course of a convergent synthesis, by linkage of two or more fragments which can be derived retrosynthetically from the formula 1.
  • it can generally be advantageous or necessary to introduce functional groups which could lead to undesired reactions or side reactions in the respective synthesis step, in the form of precursor groups which are later converted into the desired functional groups, or to temporarily block functional groups by a protective group strategy suited to the synthesis problem.
  • a phenolic hydroxy group can be attached to a trityl-polystyrene resin, which serves as a protecting group, and the molecule is cleaved from this resin by treatment with TFA at a later stage iof the synthesis.
  • R 0 , Q, Q′, X are as defined above for the compounds of the formula I but functional groups can optionally also be present in the form of precursor groups or can be protected by protective groups known to those skilled in the art, e.g. an amino group can be protected with a tert.-butyloxycarbonyl group or a benzyloxycarbonyl group.
  • R 1′ , R 1′′ , R 1′′′ , R 1′′′′ are defined as hydrogen or as R 1 which has the same meaning as in formula I but can optionally also be present in the form of precursor groups or can be protected by protective groups known to those skilled in the art, e.g. a hydroxy group may be attached to a polystyrene resin, and Y is a nucleophilically substituable leaving group or a hydroxyl group, is reacted with a fragment of the formula III
  • R 10 and V are as defined above for the compounds of the formula I but functional groups can optionally also be present in the form of precursor groups or can be protected by protective groups.
  • the group COY in the formula XI is preferably the carboxylic acid group COOH or an activated carboxylic acid derivative.
  • Y can thus be, for example, hydroxyl, halogen, in particular chlorine or bromine, alkoxy, in particular methoxy or ethoxy, aryloxy, for example phenoxy or pentafluorophenoxy, phenylthio, methylthio, 2-pyridylthio or a residue of a nitrogen heterocycle bonded via a nitrogen atom, in particular a residue of an azole, such as, for example, 1-imidazolyl.
  • Y can furthermore be, for example, ((C 1 -C 4 )-alkyl)—O—CO—O— or tolylsulfonyloxy and the activated acid derivative can thus be a mixed anhydride.
  • the carboxylic acid is expediently first activated, for example by one of the various methods used for peptide couplings which are well known to those skilled in the art.
  • suitable activation agents are O-((cyano(ethoxycarbonyl) methylene)amino)-1,1,3,3-tetramethyluronium tetrafluoroborate (TOTU); (König et al., Proc. 21st Europ. Peptide Symp. 1990 (eds. Giralt, Andreu), Escom, Leiden 1991, p.
  • HBTU O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
  • HATU O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
  • carbodiimides like dicyclohexylcarbodiimide or diisopropylcarbodiimide.
  • the activation of the carboxylic acid function may also favorably be carried, for example, by conversion of the carboxylic acid group into the pentafluorophenyl ester using dicyclohexylcarbodiimide and pentafluorophenol.
  • a number of suitable methods for the preparation of activated carboxylic acid derivatives are also indicated with details of source literature in J. March, Advanced Organic Chemistry, Fourth Edition, John Wiley & Sons, 1992.
  • the activation and the subsequent reaction with the compound of the formula III are usually carried in the presence of an inert solvent or diluent, for example DCM, chloroform, THF, diethyl ether, n-heptane, n-hexane, n-pentane, cyclohexane, diisopropyl ether, methyl tert-butyl ether, acetonitrile, DMF, DMSO, dioxane, toluene, benzene, ethyl acetate or a mixture of these solvents, if appropriate with addition of a base such as, for example, potassium tert-butoxide or tributylamine or triethylamine or diisoprpylethylamine.
  • an inert solvent or diluent for example DCM, chloroform, THF, diethyl ether, n-heptane, n-hexane, n
  • the resulting product is a compound of the formula I in which functional groups can also be present in the form of precursor groups or can be protected by protective groups. If still any protective groups or precursor groups are present they are then removed by known methods (see Greene and Wuts, Protective Groups in Organic Synthesis, Wiley, 1991), or converted in the desired final groups, respectively. E.g., if a carboxylic acid group protected as tert-butyl ester and the free carboxylic acid is to be prepared as the final compound the protective group can be removed by reaction with trifluoroacetic acid or tert.-butyloxycarbonyl protecting groups can be removed by treatment with trifluoroacetic acid. If desired, with the obtained compounds further reactions can then be carried out by standard processes, for example acylation reactions or esterification reactions, or the compounds can be converted into physiologically tolerable salts or prodrugs by standard processes known to those skilled in the art.
  • R 0 , Q, Q′, X and Y are as defined above for the compounds of the formula I, W is the substructure of formula III, but functional groups can optionally also be present in the form of precursor groups or can be protected by protective groups known to those skilled in the art, e.g. an amino group can be protected with a tert.-butyloxycarbonyl group or a benzyloxycarbonyl group or a hydroxy group may be attached to a polystyrene resin.
  • the compounds of the present invention are serine protease inhibitors which inhibit the activity of the blood coagulation enzymes factor Xa and/or factor VIIa. In particular, they are highly active inhibitors of factor Xa. They are specific serine protease inhibitors inasmuch as they do not substantially inhibit the activity of other proteases whose inhibition is not desired.
  • the activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art.
  • a preferred embodiment of the invention comprises compounds which have a Ki 1 for factor Xa inhibition as determined in the assay described below, with or without concomitant factor VIIa inhibition, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis whose inhibition is not desired (using the same concentration of the inhibitor).
  • the compounds of the invention inhibit factor Xa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor Xa into the prothrombinase complex.
  • the present invention also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation, inflammatory response or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses.
  • the invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxis.
  • the present invention also relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a customary pharmaceutically acceptable carrier, i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
  • a customary pharmaceutically acceptable carrier i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
  • disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty, transient ischemic attacks, stroke, pathologic thrombus formation occuring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intra
  • the compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations which permit enteral or parenteral administration.
  • the pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures. Administration, however, can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.
  • compositions according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
  • pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
  • pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
  • Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc.
  • Suitable carriers for the production of solutions for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc.
  • Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid.
  • the pharmaceutical preparations normally contain about 0.5% to 90% by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs.
  • the amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 mg to about 1000 mg, preferably from about 1 mg to about 500 mg.
  • the pharmaceutical preparations can contain additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs.
  • a pharmaceutical preparation contains two or more compounds of the formula I the selection of the individual compounds can aim at a specific overall pharmacological profile of the pharmaceutical preparation. For example, a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency.
  • the flexibility permitted with respect to the choice of substituents in the compounds of the formula I allows a great deal of control over the biological and physicochemical properties of the compounds and thus allows the selection of such desired compounds.
  • the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients.
  • the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor Xa and/or factor VIIa plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor Xa and/or factor VIIa or decreasing their activities, or for the prevention, alleviation or cure of which an inhibition of factor Xa and/or factor VIIa or a decrease in their activity is desired by the physician.
  • the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which can favorably be influenced by reducing blood clotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician.
  • a specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations therefor.
  • Conditions in which a compound of the formula I can be favorably used include, for example, cardiovascular disorders, thromboembolic diseases or complications associated, for example, with infection or surgery.
  • the compounds of the present invention can also be used to reduce an inflammatory response.
  • specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory disstress syndrome, multi-organ failure, stroke and disseminated intravascular clotting disorder.
  • Examples of related complications associated with surgery are thromboses like deep vein and proximal vein thrombosis which can occur following surgery.
  • the compounds of the invention can replace or supplement other anticoagulant agents such as heparin.
  • the use of a compound of the invention can result, for example, in a cost saving as compared to other anticoagulants.
  • the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out.
  • An appropriate dosage can be established using clinical approaches well known in the medical art.
  • the daily dose for achieving the desired results in an adult weighing about 75 kg is from 0.01 mg/kg to 100 mg/kg, preferably from 0.1 mg/kg to 50 mg/kg, in particular from 0.1 mg/kg to 10 mg/kg, (in each case in mg per kg of body weight).
  • the daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2, 3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated.
  • a compound of the formula I can also advantageously be used as an anticoagulant outside an individual.
  • an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample.
  • a compound of the formula I and its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations.
  • a compound of the formula I can be used in an assay to identify the presence of factor Xa and/or factor VIIa or to isolate factor Xa and/or factor VIIa in a substantially purified form.
  • a compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound bound to factor Xa and/or factor VIIa is then detected using a routine method useful for detecting the particular label.
  • a compound of the formula I or a salt thereof can be used as a probe to detect the location or amount of factor Xa and/or factor VIIa activity in vivo, in vitro or ex vivo.
  • the compounds of the formula I can be used as synthesis intermediates for the preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups.
  • the product was analyzed by HPLC and had a retention time of 3.65 on 5 cm C 18 reversed phase column with flow rate of 2.5 mL/min of pure acetonitrile (for solvent A) and 0.1% aqueous trifluroacetic acid (for solvent B).
  • step (c) The resin from step (b) was washed with anhydrous THF (3 times) and suspended in 4 mL of anhydrous THF containing 511 mg of triphenylphosphine and 745 mg of 2,4-dichlorophenethyl alcohol. The suspension was cooled to ⁇ 15° C. and 0.384 mL of DIAD was added. The resin suspension was agitated at room temperature for 12 h. The solvent was removed by filtration and the resin was washed with THF (9 times), DMF (5 times), DCM (5 times). The resin was used in the next step.
  • step (d) The resin from step (c) was suspended in DCM and 365 mg of 1,3-dimethylbarbituric acid was added in the presence of 45 mg of Pd (0)(PPh 3 ) 4 under argon. The resin suspension was agitated for one hour at room temperature. The solvent was removed by filtration and the resin was washed with DCM and dried.
  • step (e) Dried resin from step (d) was washed with DMF and suspended in 3 mL DMF containing 265 mg of HOAt and 0.302 mL of DIC. The resin was agitated for 5 minutes and 613 mg of (S)-amino-[1-(tert-butoxycarbonylamino-imino-methyl)-piperidin-4-yl]-acetic acid methyl ester was added. The resin suspension was agitated for 12 h. The resin was washed with DMF and DCM and dried under reduced pressure for 6-8 h.
  • step (f) The dried resin from step (e) was suspended in DCM containing 50% TFA and agitated at room temperature for 45 minutes. The resin suspension was filtered, washed with DCM: TFA (1:1) and the washings combined with the cleavage filtrate. The cleavage solution was dried under reduced pressure. The solid product was lyophilized from 30% aqueous acetonitrile and crude product purified by HPLC on reverse phase C 18 column.
  • step (b) 4-Bromo-3,5-dihydroxy-benzoic acid allyl ester was used instead of 3,5-dihydroxy-benzoic acid allyl ester;
  • step (e) [(4-aminomethyl-piperidin-1-yl)-imino-methyl]-carbamic acid tert-butyl ester was used instead of (S)-amino-[1-(tert-butoxycarbonylamino-imino-methyl)-piperidin-4-yl]-acetic acid methyl ester.
  • the ability of the compounds of the formula I to inhibit factor Xa or factor VIIa or other enzymes like thrombin, plasmin, or trypsin can be assessed by determining the concentration of the compound of the formula I that inhibits enzyme activity by 50%, i.e. the IC 50 value, which is related to the inhibition constant Ki.
  • Purified enzymes are used in chromogenic assays.
  • the concentration of inhibitor that causes a 50% decrease in the rate of substrate hydrolysis is determined by linear regression after plotting the relative rates of hydrolysis (compared to the uninhibited control) versus the log of the concentration of the compound of formula I.
  • the IC 50 value is corrected for competition with substrate using the formula
  • Ki IC 50 / ⁇ 1+(substrate concentration/Km) ⁇
  • Km is the Michaelis-Menten constant (Chen and Prusoff, Biochem. Pharmacol. 22 (1973), 3099-3108; I. H. Segal, Enzyme Kinetics, 1975, John Wiley & Sons, New York, 100-125; which are incorporated herein by reference).
  • TBS-PEG buffer 50 mM Tris-HCl, pH 7.8, 200 mM NaCl, 0.05% (w/v) PEG-8000, 0.02% (w/v) NaN 3 ) was used.
  • the IC 50 was determined by combining in appropriate wells of a Costar half-area microtiter plate 25 ⁇ l human factor Xa (Enzyme Research Laboratories, Inc.; South Bend, Ind.) in TBS-PEG; 40 ⁇ l 10% (v/v) DMSO in TBS-PEG (uninhibited control) or various concentrations of the compound to be tested diluted in 10% (v/v) DMSO in TBS-PEG; and substrate S-2765 (N( ⁇ )-benzyloxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Franklin, Ohio) in TBS-PEG.
  • the assay was performed by pre-incubating the compound of formula I plus enzyme for 10 min. Then the assay was initiated by adding substrate to obtain a final volume of 100 ⁇ l. The initial velocity of chromogenic substrate hydrolysis was measured by the change in absorbance at 405 nm using a Bio-tek Instruments kinetic plate reader (Ceres UV900HDi) at 25° C. during the linear portion of the time course (usually 1.5 min after addition of substrate). The enzyme concentration was 0.5 nM and substrate concentration was 140 ⁇ M.
  • a typical assay consisted of 25 ⁇ l human factor VIIa and TF (5 nM and 10 nM, respective final concentration) combined with 40 ⁇ l of inhibitor dilutions in 10% DMSO/TBS-PEG buffer (50 mM Tris, 15 mM NaCl, 5 mM CaCl 2 , 0.05% PEG 8000, pH 8.15). Following a 15 minute preincubation period, the assay was initiated by the addition of 35 ⁇ l of the chromogenic substrate S-2288 (D-Ile-Pro-Arg-p-nitroanilide, Pharmacia Hepar Inc., 500 ⁇ M final concentration).
  • Example 14 Ki(FXa) 5.077 micromolar (Prodrug)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogenated Pyridines (AREA)
  • Plural Heterocyclic Compounds (AREA)
US10/004,422 2000-12-06 2001-12-06 Guanidine and amidine derivatives as factor Xa inhibitors Abandoned US20020173656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/886,312 US7435747B2 (en) 2000-12-06 2004-07-07 Guanidine and amidine derivatives as factor Xa inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00126750 2000-12-06
EP00126750.9 2000-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/886,312 Continuation US7435747B2 (en) 2000-12-06 2004-07-07 Guanidine and amidine derivatives as factor Xa inhibitors

Publications (1)

Publication Number Publication Date
US20020173656A1 true US20020173656A1 (en) 2002-11-21

Family

ID=8170585

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/004,422 Abandoned US20020173656A1 (en) 2000-12-06 2001-12-06 Guanidine and amidine derivatives as factor Xa inhibitors
US10/886,312 Expired - Fee Related US7435747B2 (en) 2000-12-06 2004-07-07 Guanidine and amidine derivatives as factor Xa inhibitors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/886,312 Expired - Fee Related US7435747B2 (en) 2000-12-06 2004-07-07 Guanidine and amidine derivatives as factor Xa inhibitors

Country Status (26)

Country Link
US (2) US20020173656A1 (es)
EP (1) EP1345900B1 (es)
JP (1) JP4274522B2 (es)
KR (1) KR20040015036A (es)
CN (1) CN1479722A (es)
AR (1) AR033684A1 (es)
AU (2) AU2002233206B2 (es)
BR (1) BR0115938A (es)
CA (1) CA2430518C (es)
CZ (1) CZ20031554A3 (es)
DE (1) DE60126143T2 (es)
DK (1) DK1345900T3 (es)
EE (1) EE200300192A (es)
ES (1) ES2278798T3 (es)
HR (1) HRP20030447A2 (es)
HU (1) HUP0302604A3 (es)
IL (2) IL156214A0 (es)
MX (1) MXPA03004848A (es)
NO (1) NO20032489L (es)
NZ (1) NZ526269A (es)
PL (1) PL362320A1 (es)
PT (1) PT1345900E (es)
RU (1) RU2003120070A (es)
SK (1) SK6862003A3 (es)
WO (1) WO2002046159A1 (es)
ZA (1) ZA200303847B (es)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110832A1 (en) * 2002-08-09 2004-06-10 Mjalli Adnan M.M. Aryl and heteroaryl compounds and methods to modulate coagulation
US20050059705A1 (en) * 2003-08-08 2005-03-17 Mjalli Adnan M.M. Aryl and heteroaryl compounds, compositions, and methods of use
US20050059713A1 (en) * 2003-08-08 2005-03-17 Mjalli Adnan M.M. Aryl and heteroaryl compounds, compositions, and methods of use
US20050171148A1 (en) * 2003-08-08 2005-08-04 Mjalli Adnan M. Aryl and heteroaryl compounds, compositions, methods of use
US9126999B2 (en) 2012-05-31 2015-09-08 Eisai R&D Management Co., Ltd. Tetrahydropyrazolopyrimidine compounds
US10647661B2 (en) 2017-07-11 2020-05-12 Vertex Pharmaceuticals Incorporated Carboxamides as modulators of sodium channels

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405210B2 (en) 2003-05-21 2008-07-29 Osi Pharmaceuticals, Inc. Pyrrolopyridine-2-carboxylic acid amide inhibitors of glycogen phosphorylase
EP1693069B1 (en) * 2003-10-10 2013-07-24 Chugai Seiyaku Kabushiki Kaisha Remedy for solid tumor
US7884112B2 (en) 2004-03-08 2011-02-08 Stuart Edward Bradley Pyrrolopyridine-2-carboxylic acid hydrazides
WO2006059164A2 (en) 2004-12-02 2006-06-08 Prosidion Limited Pyrrolopyridine-2-carboxylic acid amides
DE102006048300A1 (de) 2006-01-26 2007-08-02 Hellstern, Peter, Prof. Dr.med. Inhibitoren des Blutgerinnungsfaktors Xa zur Verwendung als Antikoagulans
WO2010098866A1 (en) 2009-02-27 2010-09-02 Supergen, Inc. Cyclopentathiophene/cyclohexathiophene dna methyltransferase inhibitors
US8507640B2 (en) 2010-08-19 2013-08-13 International Business Machines Corporation Methods of ring opening polymerization and catalysts therefor
EA202090871A1 (ru) 2017-10-06 2020-07-03 Форма Терапьютикс, Инк. Ингибирование убиквитин-специфической пептидазы 30
EP4218934A1 (en) 2018-10-05 2023-08-02 Forma Therapeutics, Inc. Inhibiting ubiquitin-specific protease 30 (usp30)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016339A1 (en) * 1998-03-23 2002-02-07 Klein Scott I. Piperididinyl and N-amidinopiperidinyl derivatives
US6417200B1 (en) * 1997-06-26 2002-07-09 Eli Lilly And Company Antithrombotic agents

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201303B (es) * 1990-07-05 1993-03-01 Hoffmann La Roche
US5506134A (en) 1990-10-22 1996-04-09 Corvas International, Inc. Hypridoma and monoclonal antibody which inhibits blood coagulation tissue factor/factor VIIa complex
US5833982A (en) 1991-02-28 1998-11-10 Zymogenetics, Inc. Modified factor VII
US5788965A (en) 1991-02-28 1998-08-04 Novo Nordisk A/S Modified factor VII
ES2103181B1 (es) * 1994-08-01 1998-04-01 Menarini Lab Amidas naftalenicas con accion antagonista de los leucotrienos.
ES2214500T3 (es) * 1994-04-26 2004-09-16 Aventis Pharmaceuticals, Inc. Inhibidores de factor xa.
US5792769A (en) * 1995-09-29 1998-08-11 3-Dimensional Pharmaceuticals, Inc. Guanidino protease inhibitors
GB9602166D0 (en) * 1996-02-02 1996-04-03 Zeneca Ltd Aminoheterocyclic derivatives
TW542822B (en) * 1997-01-17 2003-07-21 Ajinomoto Kk Benzamidine derivatives
JP4495339B2 (ja) * 1998-03-23 2010-07-07 アベンティス・ファーマスーティカルズ・インコーポレイテツド ピペリジニルおよびn−アミジノピペリジニル誘導体
EP0987274A1 (en) 1998-09-15 2000-03-22 Hoechst Marion Roussel Deutschland GmbH Factor VIIa Inhibitors
KR20020047175A (ko) * 1999-09-17 2002-06-21 밀레니엄 파머슈티컬스 인코퍼레이티드 Xa 인자의 억제제

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417200B1 (en) * 1997-06-26 2002-07-09 Eli Lilly And Company Antithrombotic agents
US20020016339A1 (en) * 1998-03-23 2002-02-07 Klein Scott I. Piperididinyl and N-amidinopiperidinyl derivatives

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122580B2 (en) 2002-08-09 2006-10-17 Transtech Pharma, Inc. Aryl and heteroaryl compounds and methods to modulate coagulation
US20040110832A1 (en) * 2002-08-09 2004-06-10 Mjalli Adnan M.M. Aryl and heteroaryl compounds and methods to modulate coagulation
US20060276518A1 (en) * 2002-08-09 2006-12-07 Mjalli Adnan M M Aryl and heteroaryl compounds and methods to modulate coagulation
US7459472B2 (en) 2003-08-08 2008-12-02 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
US7544699B2 (en) 2003-08-08 2009-06-09 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions, and methods of use
US20050059713A1 (en) * 2003-08-08 2005-03-17 Mjalli Adnan M.M. Aryl and heteroaryl compounds, compositions, and methods of use
US7208601B2 (en) 2003-08-08 2007-04-24 Mjalli Adnan M M Aryl and heteroaryl compounds, compositions, and methods of use
US20070254916A1 (en) * 2003-08-08 2007-11-01 Mjalli Adnan M Aryl and heteroaryl compounds, compositions, and methods of use
US20050059705A1 (en) * 2003-08-08 2005-03-17 Mjalli Adnan M.M. Aryl and heteroaryl compounds, compositions, and methods of use
US7501538B2 (en) 2003-08-08 2009-03-10 Transtech Pharma, Inc. Aryl and heteroaryl compounds, compositions and methods of use
US20050171148A1 (en) * 2003-08-08 2005-08-04 Mjalli Adnan M. Aryl and heteroaryl compounds, compositions, methods of use
US9126999B2 (en) 2012-05-31 2015-09-08 Eisai R&D Management Co., Ltd. Tetrahydropyrazolopyrimidine compounds
US9446046B2 (en) 2012-05-31 2016-09-20 Eisai R&D Management Co., Ltd. Tetrahydropyrazolopyrimidine compounds
US9850242B2 (en) 2012-05-31 2017-12-26 Eisai R&D Management Co., Ltd Tetrahydropyrazolopyrimidine compounds
US10640500B2 (en) 2012-05-31 2020-05-05 Eisai R&D Management Co., Ltd. Tetrahydropyrazolopyrimidine compounds
US11130758B2 (en) 2012-05-31 2021-09-28 Eisai R&D Management Co., Ltd. Tetrahydropyrazolopyrimidine compounds
US10647661B2 (en) 2017-07-11 2020-05-12 Vertex Pharmaceuticals Incorporated Carboxamides as modulators of sodium channels
US11603351B2 (en) 2017-07-11 2023-03-14 Vertex Pharmaceuticals Incorporated Carboxamides as modulators of sodium channels

Also Published As

Publication number Publication date
NZ526269A (en) 2004-11-26
AU2002233206B2 (en) 2006-06-22
MXPA03004848A (es) 2003-08-19
IL156214A0 (en) 2003-12-23
AR033684A1 (es) 2004-01-07
NO20032489D0 (no) 2003-06-02
AU3320602A (en) 2002-06-18
CZ20031554A3 (cs) 2003-08-13
CA2430518C (en) 2010-06-15
US7435747B2 (en) 2008-10-14
NO20032489L (no) 2003-07-25
PL362320A1 (en) 2004-10-18
SK6862003A3 (en) 2004-02-03
HUP0302604A2 (hu) 2003-11-28
HRP20030447A2 (en) 2005-04-30
PT1345900E (pt) 2007-03-30
EE200300192A (et) 2003-08-15
DE60126143D1 (de) 2007-03-08
ZA200303847B (en) 2004-04-15
RU2003120070A (ru) 2004-12-27
CN1479722A (zh) 2004-03-03
KR20040015036A (ko) 2004-02-18
DE60126143T2 (de) 2007-11-15
HUP0302604A3 (en) 2005-09-28
ES2278798T3 (es) 2007-08-16
EP1345900B1 (en) 2007-01-17
DK1345900T3 (da) 2007-05-21
BR0115938A (pt) 2003-12-23
CA2430518A1 (en) 2002-06-13
WO2002046159A1 (en) 2002-06-13
EP1345900A1 (en) 2003-09-24
US20050143419A1 (en) 2005-06-30
JP4274522B2 (ja) 2009-06-10
JP2004515492A (ja) 2004-05-27
IL156214A (en) 2010-05-31

Similar Documents

Publication Publication Date Title
US7067665B2 (en) Oxybenzamide derivatives useful for inhibiting factor Xa or Vlla
EP1299354B1 (en) Factor viia inhibitory (thio)urea derivatives, their preparation and their use
US7435747B2 (en) Guanidine and amidine derivatives as factor Xa inhibitors
AU2002233206A1 (en) Guanidine and amidine derivatives as factor xa inhibitors
EP1509516B1 (en) Inhibitors of the gpib -vwf interaction, their preparation and use
US6664393B2 (en) N-guanidinoalkylamides, their preparation, their use, and pharmaceutical preparations comprising them
US6645992B2 (en) Malonamid and malonamic ester derivatives with antithrombotic activity, their preparation, and their use

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVENTIS PHARMA DEUTSCHLAND GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PEYMAN, ANUSCHIRWAN;WILL, DAVID WILLIAM;GERLACH, UWE;AND OTHERS;REEL/FRAME:012919/0846;SIGNING DATES FROM 20011206 TO 20011220

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION