US20020153590A1 - High-speed stacked capacitor in SOI structure - Google Patents
High-speed stacked capacitor in SOI structure Download PDFInfo
- Publication number
- US20020153590A1 US20020153590A1 US10/134,759 US13475902A US2002153590A1 US 20020153590 A1 US20020153590 A1 US 20020153590A1 US 13475902 A US13475902 A US 13475902A US 2002153590 A1 US2002153590 A1 US 2002153590A1
- Authority
- US
- United States
- Prior art keywords
- layer
- electrode
- film
- semiconductor device
- conductive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 101
- 229910052751 metal Inorganic materials 0.000 claims abstract description 106
- 239000002184 metal Substances 0.000 claims abstract description 106
- 239000004065 semiconductor Substances 0.000 claims abstract description 104
- 238000000034 method Methods 0.000 claims abstract description 54
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 claims abstract description 26
- 150000004767 nitrides Chemical class 0.000 claims abstract description 24
- 230000000149 penetrating effect Effects 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 60
- 238000005530 etching Methods 0.000 claims description 25
- 238000000206 photolithography Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 10
- 238000009413 insulation Methods 0.000 claims description 10
- 238000000059 patterning Methods 0.000 claims description 8
- 239000012212 insulator Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 118
- 239000011229 interlayer Substances 0.000 description 43
- 239000000463 material Substances 0.000 description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 19
- 229920005591 polysilicon Polymers 0.000 description 19
- 230000006870 function Effects 0.000 description 14
- 230000003071 parasitic effect Effects 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 229910020177 SiOF Inorganic materials 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 230000005260 alpha ray Effects 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- -1 nickel nitride Chemical class 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004151 rapid thermal annealing Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 1
- WEAMLHXSIBDPGN-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl) thiocyanate Chemical compound CC1=CC(SC#N)=CC=C1O WEAMLHXSIBDPGN-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- YLNSPKBLFZKTHJ-UHFFFAOYSA-L [Si+2]=O.[F-].[F-] Chemical compound [Si+2]=O.[F-].[F-] YLNSPKBLFZKTHJ-UHFFFAOYSA-L 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229910021339 platinum silicide Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
- 229910021355 zirconium silicide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/84—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/0805—Capacitors only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1203—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/66181—Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/038—Making the capacitor or connections thereto the capacitor being in a trench in the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a semiconductor device comprising a capacitor having large capacity and low impedance characteristics, and more particularly to a trench type capacitor formed in an SOI (Silicon On Insulator) substrate and a method for manufacturing the trench type capacitor.
- SOI Silicon On Insulator
- noises are made by switching a current at a high speed. Such noises are caused by the existence of a parasitic inductance, a parasitic capacitance and a parasitic resistance in each element of the circuit.
- a capacitor having a large capacity and a low impedance is often provided between a DC voltage source such as Vcc and a ground.
- Vcc DC voltage source
- the parasitic resistance existing in an electrode portion of the capacitor hinders the noises from being reduced.
- the capacitor should have a smaller parasitic resistance.
- the MOS capacitor is an element constituting a capacitor by using a MOS gate formed on a semiconductor substrate and an active region formed in the semiconductor substrate.
- the MOS capacitor is classified into an inversion type and a storage type.
- the inversion type MOS capacitor is an element having the same structure as the structure of a MOSFET, and designates an element of such a type that a channel layer and a gate electrode in the MOSFET act as both electrodes of the capacitor.
- the storage type MOS capacitor is an element having such a structure that a MOS gate is formed on an active region provided in a semiconductor substrate, and designates an element of such a type that a gate electrode and the active region act as both electrodes of the capacitor.
- the pn junction capacitor is an element utilizing a junction capacitance of a pn junction constituted by p-type and n-type active regions formed in the semiconductor substrate.
- a resistance of an inversion layer acting as an electrode is very high, for example, 5 k ⁇ / ⁇ or more. Therefore, big noises are made during a high-frequency operation.
- an active region cannot be formed thickly because an SOI layer provided on a buried oxide film layer (hereinafter referred to as a BOX (Buried Oxide) layer) has a small thickness. Therefore, a parasitic resistance in the active region acting as an electrode has a great value.
- a parasitic resistance has a great value because an SOI layer has a small thickness in the same manner as the storage type MOS capacitor.
- FIG. 39 is a sectional view showing a memory cell portion and a peripheral circuit portion of a DRAM.
- a stack type capacitor 65 is employed for the memory cell portion.
- the memory cell portion comprises a plurality of memory cells.
- a MOS transistor constituted by a MOS gate structure including a gate insulating film 54 and a gate electrode 55 and active regions 52 and 53 formed in a semiconductor substrate 50 and the stack type capacitor 65 connected to the active region 53 through a contact plug 58 make a set.
- the stack type capacitor 65 is constituted by a first electrode 63 connected to the contact plug 58 , a dielectric film 62 and a second electrode 64 .
- Such a stack type capacitor 65 does not have an electrode thereof formed in the semiconductor substrate 50 . Therefore, the electrode can have an optional shape, thereby reducing a resistance value. Accordingly, if the stack type capacitor is formed on the SOI substrate, it is possible to eliminate the problem of a parasitic resistance generated by forming an electrode on an SOI layer.
- the electrode of the stack type capacitor 65 In order to form the electrode of the stack type capacitor 65 to have an optional shape, however, attention should be paid such that the electrode is not short-circuited with a bit line 59 (which is shown in a broken line because it is present on a section other than a section of FIG. 39). For this reason, the stack type capacitor 65 is often formed in a high position seen from a surface of the semiconductor substrate 50 .
- the stack type capacitor 65 is formed in a high position, the following drawbacks are caused.
- a conductive material is formed on the dielectric film 62 and an interlayer insulating film 57 and is then subjected to patterning.
- the second electrode 64 and the wiring 66 are to be patterned by using a photolithography technique, there is a possibility that a difference Y in height between the memory cell portion and the peripheral circuit portion might exceed a depth of focus of a lens (an index indicating an allowable range of focus). If the difference Y in height exceeds the depth of focus, there is a possibility that either or both of the second electrode 64 and the wiring 66 might be subjected to the patterning in a blurred state, thereby obtaining no design dimension.
- FIG. 40 is a sectional view showing the prior art described in U.S. Pat. No. 5,759,907 as an example of the trench type capacitor.
- FIG. 40 illustrates a trench type capacitor constituted by a dielectric film 119 buried in a trench 118 , an SOI layer 117 and an impurity implantation region 116 which act as a first electrode, and a polysilicon 120 acting as a second electrode.
- the trench 118 is formed deeply to reach a semiconductor substrate 110 through a BOX layer 111 and the SOI layer 117 . Therefore, a contact area of each electrode and the dielectric film can be increased and a large capacity can be implemented.
- the impurity implantation region 116 acting as the first electrode and the polysilicon 120 acting as the second electrode can be formed thickly or largely. Thus, the problem of a parasitic resistance can be restrained.
- the boron 10 B when neutron rays are irradiated on a very small amount of boron 10 B present in BPSG to be used as an interlayer insulating film, the boron 10 B generates ⁇ rays having a low energy of 1 MeV or less so that the soft errors are made.
- the maximum quantity of electric charges are generated within a range of the a rays. Since the range of the ⁇ rays having an energy of 1 MeV is about 5 ⁇ m, for example, the largest number of electric charges are generated in the semiconductor substrate in a position where a depth from the interlayer insulating film is almost equal to the range.
- FIG. 41 is a sectional view showing the art.
- FIG. 41 illustrates a trench type capacitor constituted by a first electrode 228 , a dielectric film 229 and a second electrode 230 which are buried in a trench 227 in a semiconductor substrate 220 .
- the trench type capacitor is formed without penetrating a BOX layer 221 . Therefore, the generation of soft errors can be prevented.
- a semiconductor device comprising a trench type capacitor having such a structure that a soft error tolerance is excellent, a contact resistance between an electrode and a metal wiring has a small value, a fringe capacitance on an end is reduced and area penalty is not increased, and a method for manufacturing the semiconductor device.
- a first aspect of the present invention is directed to a semiconductor device comprising a semiconductor substrate, a first layer of insulation formed on the semiconductor substrate, a second layer including at least a semiconductor layer formed on the first layer, a trench provided with an opening having a predetermined width on a surface of the second layer and reaching the first layer without penetrating the first layer, and a capacitor including a first electrode, a dielectric film and a second electrode which are formed in the trench, wherein an end of the capacitor is positioned in the opening of the trench.
- a second aspect of the present invention is directed to the semiconductor device according to the first aspect of the present invention, further comprising a contact plug connected to the second electrode and set within a range of the predetermined width.
- a third aspect of the present invention is directed to the semiconductor device according to the second aspect of the present invention, further comprising a wiring to be connected to the contact plug, a metal silicide being formed in a portion of the contact plug which is connected to the wiring.
- a fourth aspect of the present invention is directed to the semiconductor device according to the third aspect of the present invention, wherein a metal nitride film is formed between the metal silicide and the wiring.
- a fifth aspect of the present invention is directed to the semiconductor device according to any of the second to fourth aspects of the present invention, further comprising an insulator for covering the end of the capacitor.
- a sixth aspect of the present invention is directed to the semiconductor device according to the fifth aspect of the present invention, wherein the insulator includes a first insulating layer which is provided in contact with the end of the capacitor and has a relatively low degree of mismatching of crystal lattice between the first insulating layer and the first electrode and between the first insulating layer and the second electrode, and a second insulating layer which is formed on the first insulating layer and has a relatively high degree of the mismatching of the crystal lattice between the second insulating layer and the first electrode and between the second insulating layer and the second electrode.
- a seventh aspect of the present invention is directed to the semiconductor device according to any of the first to sixth aspects of the present invention, further comprising an active region connected to the first electrode in the second layer, the active region constituting a part of a transistor or being connected to the transistor.
- An eighth aspect of the present invention is directed to a method for manufacturing a semiconductor device comprising a first step of preparing a semiconductor substrate having a first layer of insulation formed on a surface of the semiconductor substrate and a second layer including at least a semiconductor layer formed on the first layer, a second step of forming a first trench provided with an opening having a predetermined width on a surface of the second layer and reaching the first layer without penetrating the first layer, a third step of forming a first conductive film over a whole surface of the semiconductor substrate, a fourth step of forming a dielectric film on the first conductive film, a fifth step of forming a second conductive film on the dielectric film, and a sixth step of removing portions of the first conducive film, the dielectric film and the second conductive film which are provided on the surface of the second layer.
- a ninth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the eighth aspect of the present invention, further comprising a seventh step of forming a third layer of insulation on the second layer, the first conductive film, the dielectric film and the second conductive film, an eighth step of forming, on the third layer, a second trench provided with an opening set within a range of the predetermined width on a surface of the third layer and connected to the second conductive film, a ninth step of forming a third conductive film over the whole surface of the semiconductor substrate, and a tenth step of removing a portion of the third conductive film provided on the surface of the third layer.
- a tenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the ninth aspect of the present invention, further comprising an eleventh step of forming a metal film to cover the third conductive film, a twelfth step of heat treating the third conductive film and the metal film, a thirteenth step of removing the metal film which has not reacted to the third conductive film, and a fourteenth step of forming a fourth conductive film on the third conductive film which has reacted to the metal film and patterning the fourth conductive film by using a photolithography technique.
- An eleventh aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the tenth aspect of the present invention, wherein the fourteenth step also includes a step of forming a metal nitride film between the third conductive film which has reacted to the metal film and the fourth conductive film.
- a twelfth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to any of the ninth to eleventh aspects of the present invention, wherein the eighth step includes a step of forming, on the third layer, a third trench having the same width as the predetermined width and positioned above the first trench, and then forming a fourth layer of insulation covering the third layer and carrying out anisotropic etching on the fourth layer, thereby forming the second trench.
- a thirteenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the twelfth aspect of the present invention, further comprising a fifteenth step of forming a fifth layer of insulation by heat treating respective surfaces of the first conductive film, the dielectric film and the second conductive film which are exposed to the opening after the sixth step and before the seventh step.
- a fourteenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the thirteenth aspect of the present invention, further comprising a sixteenth step of forming a sixth layer on the second layer and the fifth layer after the fifteenth step and before the seventh step.
- a fifteenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to any of the eighth to fourteenth aspects of the present invention, wherein the first step includes a step of forming, in the second layer, an active region and a transistor connected to or including as a part the active region.
- the first aspect of the present invention it is possible to obtain a trench type capacitor having such a structure that a soft error tolerance is excellent, a fringe capacitance is reduced on an end and area penalty is not increased. Moreover, heat accumulated in the semiconductor substrate and the first layer can be discharged to the outside by the capacitor.
- the contact plug does not increase the area penalty.
- the wiring is formed of a metal and the contact plug is formed of a polysilicon
- a value of a contact resistance between the wiring and the contact plug can be decreased.
- lines of electric force sent from other wirings can be prevented from entering the second electrode.
- the wiring is formed of a metal and the contact plug is formed of a polysilicon, it is possible to prevent the metal constituting the wiring and a metal and silicon in the metal silicide from mutually moving and reacting to generate foreign matters.
- the contact plug is not connected to the first electrode but is connected to the second electrode.
- the capacitor and the transistor can be used as a memory cell of a DRAM, for example.
- the semiconductor device in accordance with the first aspect of the present invention can be manufactured.
- the second layer can be caused to function as a stopper at the sixth step by using, for the second layer, a material having selectivity for each of the first conductive film, the dielectric film and the second conductive film.
- the semiconductor device in accordance with the second aspect of the present invention can be manufactured.
- the second conductive film can be caused to function as a stopper at the eighth step by using, for the second conductive film, a material having selectivity for the third layer.
- the third layer can be caused to function as a stopper at the tenth step by using, for the third layer, a material having selectivity for the third conductive film.
- the semiconductor device in accordance with the third aspect of the present invention can be manufactured.
- the semiconductor device in accordance with the fourth aspect of the present invention can be manufactured.
- the semiconductor device in accordance with the fifth aspect of the present invention can be manufactured.
- the second trench is not connected to the first conductive film but can be connected to the second conductive film.
- the second conductive film can be caused to function as a stopper at the eighth step by using, for the second conductive film, a material having selectivity for the fourth layer.
- the semiconductor device in accordance with the sixth aspect of the present invention can be manufactured. Moreover, even if foreign matters remain in the opening of the first trench, they can be insulated by a heat treatment. Thus, it is guaranteed that the first and second conductive films can be prevented from being short-circuited.
- the sixth layer can be caused to function as a stopper during the formation of the third trench by using, for the sixth layer, a material having selectivity for the third layer.
- the semiconductor device in accordance with the seventh aspect of the present invention can be manufactured.
- FIG. 1 is a sectional view showing a semiconductor device according to a first embodiment
- FIGS. 2 to 15 are sectional views showing each step of a method for manufacturing the semiconductor device according to the first embodiment
- FIGS. 16 and 17 are sectional views showing a variant of the semiconductor device according to the first embodiment
- FIGS. 18 to 20 are sectional views showing each step of the method for manufacturing the semiconductor device according to the first embodiment
- FIGS. 21 and 22 are sectional views illustrating the advantage of a side wall 9 of the semiconductor device according to the first embodiment
- FIG. 23 is a sectional view illustrating the advantage of an insulating film 16 of the semiconductor device according to the first embodiment
- FIG. 24 is a sectional view illustrating the generation of foreign matters in a process of manufacturing the semiconductor device according to the first embodiment
- FIGS. 25 and 26 are sectional views illustrating the advantages of a metal silicide 12 and a metal nitride film 13 of the semiconductor device according to the first embodiment
- FIG. 27 is a sectional view illustrating a line of electric force in a lateral capacitor
- FIG. 28 is a sectional view showing a semiconductor device according to a second embodiment
- FIGS. 29 to 37 are sectional views showing each step of a method for manufacturing the semiconductor device according to the second embodiment
- FIG. 38 is a sectional view showing a variant of the semiconductor device according to the second embodiment.
- FIG. 39 is a sectional view showing a DRAM which employs a stack type capacitor for a memory cell.
- FIGS. 40 and 41 are sectional views showing a trench type capacitor according to the prior art.
- FIG. 1 shows a semiconductor device according to the present embodiment.
- the semiconductor device comprises a semiconductor substrate 0 having a BOX layer 2 formed on a surface, an SOI layer 3 formed on the BOX layer 2 in which an impurity such as phosphorus or arsenic is implanted, and a trench type capacitor formed in a trench 18 a having an opening on a surface of an insulating film 5 through an insulating film 4 and the insulating film 5 which are formed on the SOI layer 3 and having a bottom face in the BOX layer 2 without penetrating the BOX layer 2 .
- the trench 18 a has such a structure that it is provided with an opening having a predetermined width on a surface of the second layer and reaches the first layer but does not penetrate the first layer.
- a first electrode 6 , a dielectric film 7 and a second electrode 8 are sequentially formed in the trench 18 a apart from an internal wall of the trench 18 a , and constitute the trench type capacitor.
- An end of the capacitor, that is, an end of each of the first electrode 6 , the dielectric film 7 and the second electrode 8 is positioned in the opening of the trench 18 a and is flattened.
- a polysilicon having an impurity implanted therein should be employed for the first electrode 6 and the second electrode 8 and a high dielectric film such as tantalum oxide, a silicon oxide film or the like should be used for the dielectric film 7 .
- a silicon oxide film is employed for the insulating film 4 and a silicon nitride film is employed for the insulating film 5 , for example.
- an STI (Shallow Trench Isolation) region 1 for element isolation is provided on the SOI layer 3 .
- an SiOF film silicon oxide fluoride film
- An insulating film 16 is formed to cover the ends of the first electrode 6 , the dielectric film 7 and the second electrode 8 , and furthermore, a side wall 9 is formed on the insulating film 16 with an insulating film 17 interposed therebetween.
- the insulating film 17 is formed on an upper face of the insulating film 5 as well as on an upper face of the insulating film 16 , and an interlayer insulating film 11 is formed on an upper face of the insulating film 17 .
- the interlayer insulating film 11 is not present above the trench 18 a .
- a silicon nitride film is employed for the side wall 9
- a silicon oxide film is employed for the insulating film 16
- a silicon nitride film is employed for the insulating film 17
- an SiOF film or a BPSG film is employed for the interlayer insulating film 11 .
- a contact plug 10 for connecting the second electrode 8 to a metal wiring 14 a provided as an upper layer is buried in a region provided above the trench 18 a where the insulating films 16 and 17 are not present.
- a metal silicide 12 and a metal nitride film 13 are formed in a connecting portion of the contact plug 10 and the metal wiring 14 a .
- a polysilicon having an impurity implanted therein should be employed for a material of the contact plug 10 in the same manner as the first electrode 6 and the second electrode 8 , for example.
- a high-melting-point metal silicide such as cobalt silicide, nickel silicide, tungsten silicide, titanium silicide, molybdenum silicide, platinum silicide, zirconium silicide or the like should be used for the metal silicide 12 .
- the metal silicide 12 By forming the metal silicide 12 , a contact resistance can greatly be reduced. Besides, it is preferable that titanium nitride, nickel nitride, tungsten nitride, molybdenum nitride, platinum nitride, zirconium nitride or the like should be employed for the metal nitride film 13 .
- the metal nitride film has the function of preventing a metal constituting the metal wiring 14 a and a metal and silicon in the metal silicide 12 from mutually moving and reacting to generate foreign matters.
- a metal wiring 14 b is formed through the interlayer insulating film 11 and the insulating films 17 , 5 and 4 , and is connected to the SOI layer 3 .
- the metal silicide 12 and the metal nitride film 13 are also formed in the connecting portion of the metal wiring 14 b and the SOI layer 3 .
- an interlayer insulating film 15 is formed to cover the metal wirings 14 a and 14 b and the interlayer insulating film 11 .
- an SiOF film or a BPSG film is also employed for the interlayer insulating film 15 in the same manner as in the interlayer insulating film 11 .
- the semiconductor device has such a structure that the first electrode 6 and the second electrode 8 are provided within a range of the opening of the trench 18 a as seen from an upper face of the trench type capacitor and the trench type capacitor does not increase area penalty. Moreover, the contact plug 10 is also provided within the range of the opening of the trench 18 a . Therefore, the area penalty is not increased.
- the trench does not penetrate the BOX layer. Consequently, it is possible to obtain a trench type capacitor having an excellent soft error tolerance.
- the first electrode 6 and the second electrode 8 are exposed to the opening of the trench 18 a and a portion protruded from the trench 18 a is not present. Therefore, a fringe capacitance C f1 between the first electrode 6 and the second electrode 8 on an end of the capacitor has a small value.
- the trench type capacitor is provided as a dummy on the substrate, and can also be used as a heat sink for reducing a temperature of the SOI substrate during an operation of a circuit.
- the BOX layer 2 usually has a smaller thermal conductivity than in the SOI layer 3 . Therefore, heat generated during the operation of the circuit is easily accumulated in the BOX layer 2 , and an operating speed of the circuit provided on the SOI substrate is readily reduced.
- the trench type capacitor is used as the heat sink and the metal wiring 14 a is connected to an external heat sink, for example, the heat accumulated in the semiconductor substrate 0 and the BOX layer 2 can be discharged to the outside.
- the trench type capacitor may be annularly formed and used for a dummy pattern of a CMP treatment, for example.
- the metal silicide 12 is formed, the value of the contact resistance between the metal wiring 14 a and the contact plug 10 can be decreased.
- a method for manufacturing the trench type capacitor shown in FIG. 1 will be described below with reference to FIGS. 2 to 15 .
- a semiconductor substrate 0 having a BOX layer 2 and a SOI layer 3 formed thereon is prepared.
- the SOI layer 3 is subjected to patterning by using photolithography and etching techniques, and an SiOF film or the like is then buried therein. Consequently, an STI region 1 is formed.
- a surface of the SOI layer 3 is oxidized by a thermal oxidation method, thereby forming a silicon oxide film as an insulating film 4 .
- an impurity such as phosphorus, arsenic or the like is implanted into the SOI layer 3 , thereby increasing a conductivity of the SOI layer 3 .
- an insulating film 5 made of a silicon nitride film is formed on the insulating film 4 by using a CVD (Chemical Vapor Deposition) method, for example (FIG. 2).
- a CVD Chemical Vapor Deposition
- FIG. 2 an interface state is generated due to mismatching of crystal lattice if the insulating film 5 is directly formed on the SOI layer 3 . Consequently, thermal noises or 1/f noises are made.
- the silicon oxide film should be employed for the insulating film 4 to act as a buffer layer between the insulating film 5 and the SOI layer 3 .
- a trench 18 a having a bottom face in the BOX layer 2 is formed through the insulating film 5 , the insulating film 4 and the SOI layer 3 by using photolithography and etching techniques (FIG. 3).
- Materials of a first electrode 6 , a dielectric film 7 and a second electrode 8 are formed over a whole surface of the substrate in this order, respectively (FIG. 4).
- a CMP (Chemical Mechanical Polishing) treatment is carried out by using the insulating film 5 as a stopper, thereby removing portions of the materials of the first electrode 6 , the dielectric film 7 and the second electrode 8 which are present on a surface of the insulating film 5 (FIG. 5).
- an insulating film 16 made of a silicon oxide film is formed on surfaces of the first electrode 6 , the dielectric film 7 and the second electrode 8 which are exposed to an opening of the trench 18 a (FIG. 6).
- an insulating film 17 is formed over the whole surface of the substrate (FIG. 7), and furthermore, an interlayer insulating film 11 is formed on an upper face of the insulating film 17 (FIG. 8).
- a trench 18 b is formed on the interlayer insulating film 11 provided over the trench 18 a by using the photolithography and etching techniques (FIG. 9).
- the interlayer insulating film 11 is an SiOF film, it is hard to obtain etching selectivity between the insulating film 16 made of the silicon oxide film and the interlayer insulating film 11 . Therefore, there is a high possibility that the insulating film 16 might be removed during the formation of the trench 18 b .
- the insulating film 17 is formed.
- the insulating film 17 functions as an etching stopper of the interlayer insulating film 11 if a silicon nitride film is employed for the insulating film 17 , for example.
- the precision of alignment of the trench 18 a and the trench 18 b can be enhanced by opening the insulating film 5 or the insulating film 17 to form a trench which is deeper than the surface of the SOI layer 3 separately from the trench 18 a and using the trench as an alignment mark, for example.
- a material of a side wall 9 is formed over the whole surface of the substrate (FIG. 10) and is subjected to anisotropic etching to form the side wall 9 and to etch the insulating films 16 and 17 . Consequently, a contact of the second electrode 8 can be obtained (FIG. 11). At this time, the side wall 9 is formed thickly across the first electrode 6 , the dielectric film 7 and the second electrode 8 .
- a material of a contact plug 10 is formed over the whole surface of the substrate (FIG. 12). For example, a portion of the material of the contact plug 10 which is provided on a surface of the interlayer insulating film 11 is removed by using a CMP method (FIG. 13). At this time, the interlayer insulating film 11 and the side wall 9 are used as stoppers of the CMP treatment. The material of the contact plug 10 which is provided on the surface of the interlayer insulating film 11 may be removed by the anisotropic etching.
- a height of the surface of the contact plug 10 is set in a position which is lower than the surface of the interlayer insulating film 11 .
- a via hole 18 c is formed on the interlayer insulating film 11 and the insulating films 17 , 5 and 4 .
- a high-melting-point metal such as cobalt is deposited over the whole surface of the substrate and is subjected to an RTA (Rapid Thermal Annealing) treatment. Consequently, the high-melting-point metal is caused to react to the contact plug 10 and the high-melting-point metal is caused to react to the SOI layer 3 on a bottom of the via hole 18 c .
- RTA Rapid Thermal Annealing
- the high-melting-point metal such as cobalt reacts to only the contact plug 10 and the silicon of the SOI layer 3 , and does not react to the interlayer insulating film 11 and the side wall 9 . Therefore, the metal silicide 12 can be formed in a manner of self-alignment.
- the interlayer insulating film 11 as a stopper for etching, the unreacted high-melting-point metal remaining on the interlayer insulating film 11 is removed by etching. Subsequently, a metal nitride film 13 such as titanium nitride is deposited (FIG. 14).
- the CMP treatment is carried out by using the interlayer insulating film 11 as a stopper, thereby removing the metal nitride film 13 in portions other than the via hole 18 c and the trench 18 b (FIG. 15).
- a metal film made of tungsten, copper, aluminum, molybdenum or the like is formed over the whole surface of the substrate, and the metal wirings 14 a and 14 b are subjected to patterning by using the photolithography and etching techniques. Then, an interlayer insulating film 15 is formed. Thus, the trench type capacitor shown in FIG. 1 can be formed.
- FIG. 16 While a complete separating structure in which the SOI layer 3 is completely separated as the STI region 1 has been employed in FIG. 1, an STI region la having a partial trench structure in which the SOI layer 3 is not completely separated may be used as shown in FIG. 16.
- a channel portion 3 a provided under the STI region 1 a causes an electric potential of the SOI layer 3 to have a common value in each separated region. Therefore, it is not necessary to connect the SOI layer 3 to a DC voltage source such as Vcc, a ground or the like in each separated region. Accordingly, it is sufficient that a small number of wirings and via holes for giving a fixed potential are formed. Correspondingly, area penalty can be reduced.
- the adjacent capacitors may be isolated by using an STI region 1 b as shown in FIG. 17.
- the first electrode 6 of each capacitor is insulated by the STI region 1 b and separate wirings 14 c and 14 d are connected to the second electrodes 8 .
- the above-mentioned SiOF film may be employed for the STI region 1 b
- the STI region 1 b may be changed into a cavity which is to be filled with air, thereby reducing a dielectric constant, for example.
- the metal silicide 12 and the metal nitride film 13 should be formed by the following method if the dishing is not caused.
- a state shown in FIG. 18 is obtained subsequently to the state shown in FIG. 12 because the dishing is not caused.
- a high-melting-point metal such as cobalt is deposited over the whole surface of the substrate and is subjected to an RTA treatment. Consequently, the high-melting-point metal and the contact plug 10 are caused to react to each other, and the high-melting-point metal and the SOI layer 3 are caused to react to each other on a bottom of the via hole 18 c .
- the metal silicide 12 is formed in a manner of self-alignment.
- the unreacted high-melting-point metal remaining on the interlayer insulating film 11 is removed by etching with the interlayer insulating film 11 acting as a stopper.
- an interlayer insulating film 15 a is formed over the whole surface of the substrate. Then, a via hole to be connected to the via hole 18 c is formed on the interlayer insulating film 15 a , and a trench 18 d is formed in the interlayer insulating film 15 a to be connected to the contact plug 10 . Thereafter, a metal nitride film 13 such as titanium nitride is deposited over the whole surface of the substrate and is subjected to the CMP treatment by using the interlayer insulating film 15 a as a stopper. Thus, the metal nitride film 13 in portions other than the via hole 18 c and the trench 18 d is removed (FIG. 19).
- a metal film made of tungsten or the like is formed over the whole surface of the substrate, and the metal wirings 14 b and 14 e are subjected to patterning by using the photolithography and etching techniques. Then, an interlayer insulating film 15 b is formed.
- the same trench type capacitor as the trench type capacitor shown in FIG. 1 can be formed (FIG. 20).
- a diameter of the contact plug 10 is reduced as shown in FIG. 22.
- the first electrode 6 and the second electrode 8 are not short-circuited.
- the diameter of the contact plug 10 is small, a contact resistance is easily increased.
- the first electrode 6 and the second electrode 8 might be short-circuited if the alignment precision of a photomask of the photolithography technique is low and the trench cannot be formed such that it is not connected to the first electrode 6 but is connected to the second electrode 8 .
- the side wall 9 should be formed as shown in FIG. 23. Since a contact face with the metal wiring 14 a is great over an upper face of the contact plug 10 , the contact resistance can be reduced. Furthermore, the side wall 9 can be formed in a manner of self-alignment to cover the ends of the first electrode 6 , the dielectric film 7 and the second electrode 8 in the trench 18 b . Therefore, the first electrode 6 and the second electrode 8 are not short-circuited. More specifically, the side wall 9 assures that the contact plug 10 is not connected to the first electrode 6 but is connected to the second electrode 8 .
- a width of a bottom face of the side wall 9 can be set freely to some extent by adjusting a thickness of a film obtained during deposition and etching conditions. Accordingly, also in the case where the alignment precision of the photomask of the photolithography technique is low and the trench 18 b cannot be formed just above the trench 18 a , the short circuit between the contact plug 10 and the first electrode 6 can be prevented by regulating the width of the bottom face of the side wall 9 .
- a material of the side wall 9 is a silicon nitride film and a polysilicon is employed for the first electrode 6 and the second electrode 8 , for example, there is a possibility that an interface state might be generated between the side wall 9 and the first electrode 6 and second electrode 8 due to the mismatching of the crystal lattice in the same manner as in the case where the insulating film 5 is directly formed on the SOI layer 3 .
- the insulating film 16 made of a silicon oxide film having a low degree of the mismatching of the crystal lattice with the polysilicon should be formed between the side wall 9 and the first electrode 6 and second electrode 8 .
- the interface state from generating between the side wall 9 and the end of the capacitor even if a material having a high degree of the mismatching of the crystal lattice between the side wall 9 and the first electrode 6 and between the side wall 9 and the second electrode 8 is used for the side wall 9 .
- the formation of the insulating film 16 also has the advantages of a manufacturing method which will be described below.
- the ends of the first electrode 6 and the second electrode 8 are exposed to the opening of the filled trench 18 a . Since the first electrode 6 and the second electrode 8 function as both electrodes of the capacitor, they should be electrically isolated from each other. As shown in FIG. 24, however, conducive foreign matters 19 produced during the CMP treatment remain in the opening of the trench 18 a so that the first electrode 6 and the second electrode 8 are short-circuited in some cases.
- the opening of the trench 18 a should be washed by using a mixed solution of ammonium hydroxide and hydrogen peroxide liquid, hydrofluoric acid or the like after the stage of FIG. 5, for example.
- the insulating film 16 is formed by using the thermal oxidation method. Consequently, even if the foreign matters remain in the opening of the trench 18 a , they can be insulated by the thermal oxidation. Thus, it is guaranteed that the short circuit between the first electrode 6 and the second electrode 8 can be prevented.
- FIG. 25 shows a state in which electric lines of force 22 to 25 are generated in the semiconductor device shown in FIG. 1 when an upper metal wiring 20 and an interlayer insulating film 21 are further formed in the semiconductor device.
- the electric line of force has such a characteristic that it vertically intersects an equipotential surface and does not enter the inside of a metal wholly having an equipotential. Moreover, a parasitic capacitance is generated between start and end points of the electric line of force.
- the metal silicide 12 and the metal nitride film 13 are formed above the second electrode 8 . Therefore, the electric line of force 22 generated on the upper metal wiring 20 is cut off on the metal silicide 12 and the metal nitride film 13 and does not reach the second electrode 8 . Accordingly, the electric potential of the second electrode 8 less fluctuates and smaller noises are made on the second electrode 8 . Assuming that the metal wiring 14 a is directly connected to the second electrode 8 as shown in FIG. 26, the electric line of force 22 reaches the second electrode 8 . Therefore, the electric potential of the second electrode 8 easily fluctuates by the influence of the upper metal wiring 20 . Accordingly, it is desirable that the metal silicide 12 and the metal nitride film 13 should be formed on the contact plug 10 .
- a lateral capacitor comprising an upper electrode 26 , a dielectric film 27 and a lower electrode 28 shown in FIG. 27, the metal wiring 20 and the upper electrode 26 or the lower electrode 28 overlap with a large area. Therefore, the electric line of force 22 has a high density. Accordingly, it is apparent that the electric potential of the second electrode 8 in the semiconductor device having the structure shown in FIG. 26 less fluctuates than in the lateral capacitor.
- the present embodiment will describe the case where the semiconductor device according to the first embodiment is applied to a memory cell of a DRAM.
- FIG. 28 shows a semiconductor device according to the present embodiment.
- the semiconductor device comprises a trench type capacitor which is formed in a trench having a bottom face in a BOX layer 2 without penetrating the BOX layer 2 in the same manner as in the semiconductor device according to the first embodiment. Since the same reference numerals as those in FIG. 1 denote portions having the same functions as in the semiconductor device according to the first embodiment, their description will be omitted.
- Active regions 29 , 30 a and 30 b are selectively formed in a part of an SOI layer 3 . Moreover, a gate electrode 33 comprising a polysilicon 32 and a metal silicide 31 is formed on an insulating film 4 provided between the active regions 29 and 30 a .
- the active regions 29 , 30 a and 30 b function as a source/drain region of a MOSFET, the insulating film 4 functions as a gate insulating film of the MOSFET, and the gate electrode 33 functions as a gate of the MOSFET.
- a bit line 34 is connected to the active region 29 through a polysilicon 36 , a metal silicide 12 and a metal nitride film 13 .
- a STI region 1 a having a partial trench structure is employed as an element isolating region.
- a channel cut layer 37 in which an impurity having a reverse type to the type of each of the active regions 29 , 30 a and 30 b is implanted. Consequently, electric charges can be prevented from moving in the active region 30 b and the SOI layer 3 .
- the gate electrode 33 functioning as a wiring is formed above the STI region 1 a.
- wirings to be connected to the metal silicide 12 and the metal nitride film 13 which are formed on a surface of the contact plug 10 , and the contact plug 10 are collectively indicated as a cell plate 35 .
- the cell plate 35 is shown in a broken line to be present on a section other than the section shown in FIG. 28.
- the active region 30 a connected to the trench type capacitor constitutes a part of the MOSFET as the source/drain region. Therefore, the trench type capacitor and the MOSFET can be used as memory cells of the DRAM, for example.
- the active region 30 a does not constitute a part of the MOSFET but is connected to a transistor formed in any portion on a substrate, the same function can be obtained.
- a transfer gate 232 is formed on the capacitor through an insulating film 233 . Therefore, a capacity of the capacitor increases a parasitic capacitance of the transfer gate 232 . As a result, if the transfer gate 232 is used as a word line, the number of memory cells which can be added to one word line is limited. Correspondingly, the number of sense amplifiers is increased so that the area penalty is easily increased.
- the transfer gate 232 is formed on the capacitor. Therefore, in the case where the transfer gate 232 is to be formed by using photolithography and etching techniques simultaneously with the formation of a gate electrode 225 of a MOSFET, there is a possibility that the transfer gate 232 and/or the gate electrode 225 might not have a patterning dimension as designed due to the generation of a difference in height.
- a dielectric film 229 of the capacitor and a gate insulating film 226 of the MOSFET are formed of the same material. For this reason, there is no degree of freedom that a silicon oxide film is employed for the gate insulating film and a high dielectric film is employed for the dielectric film.
- the semiconductor device according to the present embodiment does not cause the above-mentioned problems.
- a method for manufacturing the trench type capacitor shown in FIG. 28 will be described below with reference to FIGS. 29 to 37 .
- a semiconductor substrate 0 having a BOX layer 2 and an SOI layer 3 formed thereon is prepared.
- a channel cut layer 37 is formed by implantation of an impurity.
- An SiOF film or the like is buried in an upper portion of the channel cut layer 37 by using photolithography and etching techniques.
- an STI region 1 a is formed.
- a gate insulating film 4 is formed over a whole surface of the substrate, and a polysilicon 32 and a metal are formed over the whole surface of the substrate.
- a metal silicide 31 is formed by a heat treatment, and the polysilicon 32 and the metal silicide 31 are patterned as a gate electrode 33 .
- an impurity is implanted to form active regions 29 and 30 , and an insulating film 5 is formed over the whole surface of the substrate by using a CVD method, for example (FIG. 29).
- a trench 18 a having a bottom face in the BOX layer 2 is formed through the insulating film 5 , the insulating film 4 , the active region 30 and the SOI layer 3 by using the photolithography and etching techniques (FIG. 30). Consequently, the active region 30 is divided into regions 30 a and 30 b . Then, materials of a first electrode 6 , a dielectric film 7 and a second electrode 8 are formed over the whole surface of the substrate in this order, respectively (FIG. 31). At this time, a surface-roughing treatment may be carried out for a surface of the first electrode 6 on the dielectric film 7 side.
- the surface-roughing treatment designates a treatment for forming concave and convex portions on the surface of the first electrode 6 to increase a contact area of the first electrode 6 and the dielectric film 7 . More specifically, if the first electrode 6 is a polysilicon, for example, it is preferable that a minute nucleus of silicon should be formed on the first electrode 6 by irradiating a silane gas over a surface of an electrode by a CVD device after the formation of the first electrode 6 and a pressure should be then reduced to perform a heat treatment for a while.
- a CMP treatment is carried out by using the insulating film 5 as a stopper, thereby removing portions of the materials of the first electrode 6 , the dielectric film 7 and the second electrode 8 which are provided on a surface of the insulating film 5 (FIG. 32).
- an insulating film 16 made of a silicon oxide film is formed, by a thermal oxidation method, on the surfaces of the first electrode 6 , the dielectric film 7 and the second electrode 8 which are exposed to an opening of the trench 18 a .
- a via hole 18 e to be connected to the active region 29 is formed by using the photolithography and etching techniques and a polysilicon is formed over the whole surface of the substrate.
- a portion of the polysilicon provided on the insulating film 5 is removed by the CMP treatment, thereby burying a polysilicon 36 in the via hole 18 e , for example.
- a surface of the polysilicon 36 is changed into a metal silicide 12 (FIG. 33).
- an insulating film 17 is formed over the whole surface of the substrate.
- a portion of the insulating film 17 which is provided above the via hole 18 e is opened by using the photolithography and etching techniques.
- a metal nitride film 13 is formed in the opening portion (FIG. 34).
- an interlayer insulating film 11 is formed on an upper face of the insulating film 17 .
- a trench 18 b is then formed on the interlayer insulating film 11 provided above the trench 18 a .
- a material of a side wall 9 is formed over the whole surface of the substrate (FIG.
- the side wall 9 is formed thickly across the first electrode 6 , the dielectric film 7 and the second electrode 8 .
- a material of a contact plug 10 is formed over the whole surface of the substrate.
- a portion of the material of the contact plug 10 which is provided on a surface of the interlayer insulating film 11 is removed by using the CMP method, for example.
- the interlayer insulating film 11 and the side wall 9 are used as stoppers for the CMP treatment.
- the material of the contact plug 10 which is provided on the surface of the interlayer insulating film 11 may be removed by the anisotropic etching.
- a via hole is formed on the interlayer insulating films 15 and 11 by using the photolithography and etching techniques such that a contact with the metal nitride film 13 on the via hole 18 e can be obtained.
- a bit line 34 and a contact plug 34 a thereof are formed in the via hole (FIG. 37).
- an interlayer insulating film 21 is formed on the bit line 34 .
- the semiconductor device shown in FIG. 28 is completed.
- FIG. 38 While the STI region 1 a of a partial trench type has been employed in the semiconductor device shown in FIG. 28, an STI region 1 having a complete separating structure may be employed as shown in FIG. 38.
- a leakage current cannot fully be suppressed by the channel cut layer 37 , it can be prevented more reliably by employing the STI region 1 having the complete separating structure. If the leakage current can be suppressed, it is possible to obtain an advantage that a refresh period of the DRAM can be prolonged.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Implemented are a semiconductor device comprising a trench type capacitor having such a structure that a soft error tolerance is excellent, a contact resistance between an electrode and a metal wiring has a small value, a fringe capacitance on an end is reduced and area penalty is not increased, and a method for manufacturing the semiconductor device. The trench type capacitor is formed to have a bottom face in a BOX layer (2) without penetrating the BOX layer (2). Moreover, an end of the capacitor, that is, each of ends of a first electrode (6), a dielectric film (7) and a second electrode (8) is flattened. An insulating film (16) and a side wall (9) are formed to cover the ends of the first electrode (6), the dielectric film (7) and the second electrode (8). Furthermore, a contact plug (10) for connecting the second electrode (8) to a metal wiring (14 a) provided as an upper layer is buried in a region surrounded by the side wall (9). Then, a metal silicide (12) and a metal nitride film (13) are formed in a connecting portion of the contact plug (10) and the metal wiring (14 a).
Description
- 1. Field of the Invention
- The present invention relates to a semiconductor device comprising a capacitor having large capacity and low impedance characteristics, and more particularly to a trench type capacitor formed in an SOI (Silicon On Insulator) substrate and a method for manufacturing the trench type capacitor.
- 2. Description of the Background Art
- In a circuit performing a high-speed operation, noises are made by switching a current at a high speed. Such noises are caused by the existence of a parasitic inductance, a parasitic capacitance and a parasitic resistance in each element of the circuit.
- In order to reduce the noises, a capacitor having a large capacity and a low impedance is often provided between a DC voltage source such as Vcc and a ground. However, the parasitic resistance existing in an electrode portion of the capacitor hinders the noises from being reduced. In a chip in which an operation is performed in response to a minute signal and an analog circuit and a digital circuit are provided together, particularly, such noises cause serious problems. Accordingly, it is desirable that the capacitor should have a smaller parasitic resistance.
- In the case where a capacitor is to be manufactured on a semiconductor substrate, a MOS capacitor or a pn junction capacitor has conventionally been employed.
- The MOS capacitor is an element constituting a capacitor by using a MOS gate formed on a semiconductor substrate and an active region formed in the semiconductor substrate. The MOS capacitor is classified into an inversion type and a storage type. The inversion type MOS capacitor is an element having the same structure as the structure of a MOSFET, and designates an element of such a type that a channel layer and a gate electrode in the MOSFET act as both electrodes of the capacitor. On the other hand, the storage type MOS capacitor is an element having such a structure that a MOS gate is formed on an active region provided in a semiconductor substrate, and designates an element of such a type that a gate electrode and the active region act as both electrodes of the capacitor.
- Moreover, the pn junction capacitor is an element utilizing a junction capacitance of a pn junction constituted by p-type and n-type active regions formed in the semiconductor substrate.
- In the inversion type MOS capacitor, however, a resistance of an inversion layer acting as an electrode is very high, for example, 5 kΩ/□ or more. Therefore, big noises are made during a high-frequency operation. Moreover, in the case where the storage type MOS capacitor is to be formed on an SOI substrate, an active region cannot be formed thickly because an SOI layer provided on a buried oxide film layer (hereinafter referred to as a BOX (Buried Oxide) layer) has a small thickness. Therefore, a parasitic resistance in the active region acting as an electrode has a great value. Furthermore, in the case where the pn junction capacitor is to be formed on the SOI substrate, a parasitic resistance has a great value because an SOI layer has a small thickness in the same manner as the storage type MOS capacitor.
- For this reason, a stack type capacitor shown in FIG. 39 has been devised. FIG.39 is a sectional view showing a memory cell portion and a peripheral circuit portion of a DRAM. A stack type capacitor 65 is employed for the memory cell portion. The memory cell portion comprises a plurality of memory cells. In each memory cell, a MOS transistor constituted by a MOS gate structure including a
gate insulating film 54 and agate electrode 55 andactive regions semiconductor substrate 50 and the stack type capacitor 65 connected to theactive region 53 through acontact plug 58 make a set. The stack type capacitor 65 is constituted by afirst electrode 63 connected to thecontact plug 58, adielectric film 62 and asecond electrode 64. - Such a stack type capacitor65 does not have an electrode thereof formed in the
semiconductor substrate 50. Therefore, the electrode can have an optional shape, thereby reducing a resistance value. Accordingly, if the stack type capacitor is formed on the SOI substrate, it is possible to eliminate the problem of a parasitic resistance generated by forming an electrode on an SOI layer. - In order to form the electrode of the stack type capacitor65 to have an optional shape, however, attention should be paid such that the electrode is not short-circuited with a bit line 59 (which is shown in a broken line because it is present on a section other than a section of FIG. 39). For this reason, the stack type capacitor 65 is often formed in a high position seen from a surface of the
semiconductor substrate 50. - If the stack type capacitor65 is formed in a high position, the following drawbacks are caused. For example, in the case where the
second electrode 64 of the stack type capacitor 65 and awiring 66 in the peripheral circuit portion are to be formed at the same time, a conductive material is formed on thedielectric film 62 and aninterlayer insulating film 57 and is then subjected to patterning. However, in the case where thesecond electrode 64 and thewiring 66 are to be patterned by using a photolithography technique, there is a possibility that a difference Y in height between the memory cell portion and the peripheral circuit portion might exceed a depth of focus of a lens (an index indicating an allowable range of focus). If the difference Y in height exceeds the depth of focus, there is a possibility that either or both of thesecond electrode 64 and thewiring 66 might be subjected to the patterning in a blurred state, thereby obtaining no design dimension. - Moreover, in the case where the
wiring 66 is to be formed simultaneously with the formation of the bit line 59 and thesecond electrode 64 is to be formed simultaneously with the formation of awiring 67 in order to avoid the problems of the depth of focus, an aspect ratio of a contact plug 67 a of thewiring 67 is increased. Consequently, it is hard to form a via hole for the contact plug 67 a and to bury a conductive material in the via hole. - There has been devised a trench type capacitor having such a structure that a capacitor is not formed on a semiconductor substrate but is fabricated in the semiconductor substrate differently from the stack type capacitor.
- FIG. 40 is a sectional view showing the prior art described in U.S. Pat. No. 5,759,907 as an example of the trench type capacitor. FIG. 40 illustrates a trench type capacitor constituted by a
dielectric film 119 buried in atrench 118, anSOI layer 117 and animpurity implantation region 116 which act as a first electrode, and apolysilicon 120 acting as a second electrode. According to this technique, thetrench 118 is formed deeply to reach asemiconductor substrate 110 through aBOX layer 111 and theSOI layer 117. Therefore, a contact area of each electrode and the dielectric film can be increased and a large capacity can be implemented. Moreover, theimpurity implantation region 116 acting as the first electrode and thepolysilicon 120 acting as the second electrode can be formed thickly or largely. Thus, the problem of a parasitic resistance can be restrained. - In the case where αrays enter the
semiconductor substrate 110 to generate a large number of electron—hole pairs in the trench type capacitor shown in FIG. 40, their electric charges move to a DC voltage source or a ground through theimpurity implantation region 116, thepolysilicon 120 in a trench 118 a and ametal wiring 125. Consequently, there is a problem in that a fluctuation in a source voltage is caused. In other words, a tolerance to soft errors is small. For example, when neutron rays are irradiated on a very small amount of boron 10B present in BPSG to be used as an interlayer insulating film, the boron 10B generates αrays having a low energy of 1 MeV or less so that the soft errors are made. The maximum quantity of electric charges are generated within a range of the a rays. Since the range of the αrays having an energy of 1 MeV is about 5 μm, for example, the largest number of electric charges are generated in the semiconductor substrate in a position where a depth from the interlayer insulating film is almost equal to the range. - In the trench type capacitor shown in FIG. 40, moreover, the
polysilicon 120 acting as the electrode and themetal wiring 125 are directly provided in contact with each other. Therefore, there is a problem in that a contact resistance is raised, resulting in an increase in a parasitic resistance value of the capacitor. - In order to enhance a soft error tolerance, it can also be supposed that a trench type capacitor is formed on a trench which does not penetrate the BOX layer in the SOI substrate. Consequently, even if radioactive rays enter to generate electric charges in the semiconductor substrate, the BOX layer becomes an insulating film for preventing the movement of the electric charges.
- As the trench type capacitor having the above-mentioned structure, for example, Japanese Patent Application Laid-Open Gazette No. P02-288263 has described the art. FIG. 41 is a sectional view showing the art. FIG. 41 illustrates a trench type capacitor constituted by a
first electrode 228, adielectric film 229 and asecond electrode 230 which are buried in atrench 227 in asemiconductor substrate 220. The trench type capacitor is formed without penetrating aBOX layer 221. Therefore, the generation of soft errors can be prevented. - In the structure of the trench type capacitor shown in FIG. 41, however, an A portion of the
first electrode 228 is protruded in a transverse direction from a width of thetrench 227. Consequently, a distance B between thefirst electrode 228 and agate electrode 225 of a MOSFET is reduced. There is a possibility that a leakage current might be generated therebetween. Moreover, since the portion A is protruded, area penalty (a degree of an impediment to the effective utilization of a substrate surface area) is increased. In a DRAM, particularly, a large number of capacitors are formed. Therefore, a slight increase in the area penalty also affects an integration degree. - Furthermore, there is the protruded portion A. Therefore, an area of the
first electrode 228 on an end of the capacitor is increased. Consequently, a fringe capacitance Cf2 between thefirst electrode 228 and thesecond electrode 230 on the end of the capacitor is increased so that big noises are made. - In the art, a contact resistance between an electrode and a metal wiring is not taken into consideration.
- In order to solve the above-mentioned problems, it is an object of the present invention to implement a semiconductor device comprising a trench type capacitor having such a structure that a soft error tolerance is excellent, a contact resistance between an electrode and a metal wiring has a small value, a fringe capacitance on an end is reduced and area penalty is not increased, and a method for manufacturing the semiconductor device.
- A first aspect of the present invention is directed to a semiconductor device comprising a semiconductor substrate, a first layer of insulation formed on the semiconductor substrate, a second layer including at least a semiconductor layer formed on the first layer, a trench provided with an opening having a predetermined width on a surface of the second layer and reaching the first layer without penetrating the first layer, and a capacitor including a first electrode, a dielectric film and a second electrode which are formed in the trench, wherein an end of the capacitor is positioned in the opening of the trench.
- A second aspect of the present invention is directed to the semiconductor device according to the first aspect of the present invention, further comprising a contact plug connected to the second electrode and set within a range of the predetermined width.
- A third aspect of the present invention is directed to the semiconductor device according to the second aspect of the present invention, further comprising a wiring to be connected to the contact plug, a metal silicide being formed in a portion of the contact plug which is connected to the wiring.
- A fourth aspect of the present invention is directed to the semiconductor device according to the third aspect of the present invention, wherein a metal nitride film is formed between the metal silicide and the wiring.
- A fifth aspect of the present invention is directed to the semiconductor device according to any of the second to fourth aspects of the present invention, further comprising an insulator for covering the end of the capacitor.
- A sixth aspect of the present invention is directed to the semiconductor device according to the fifth aspect of the present invention, wherein the insulator includes a first insulating layer which is provided in contact with the end of the capacitor and has a relatively low degree of mismatching of crystal lattice between the first insulating layer and the first electrode and between the first insulating layer and the second electrode, and a second insulating layer which is formed on the first insulating layer and has a relatively high degree of the mismatching of the crystal lattice between the second insulating layer and the first electrode and between the second insulating layer and the second electrode.
- A seventh aspect of the present invention is directed to the semiconductor device according to any of the first to sixth aspects of the present invention, further comprising an active region connected to the first electrode in the second layer, the active region constituting a part of a transistor or being connected to the transistor.
- An eighth aspect of the present invention is directed to a method for manufacturing a semiconductor device comprising a first step of preparing a semiconductor substrate having a first layer of insulation formed on a surface of the semiconductor substrate and a second layer including at least a semiconductor layer formed on the first layer, a second step of forming a first trench provided with an opening having a predetermined width on a surface of the second layer and reaching the first layer without penetrating the first layer, a third step of forming a first conductive film over a whole surface of the semiconductor substrate, a fourth step of forming a dielectric film on the first conductive film, a fifth step of forming a second conductive film on the dielectric film, and a sixth step of removing portions of the first conducive film, the dielectric film and the second conductive film which are provided on the surface of the second layer.
- A ninth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the eighth aspect of the present invention, further comprising a seventh step of forming a third layer of insulation on the second layer, the first conductive film, the dielectric film and the second conductive film, an eighth step of forming, on the third layer, a second trench provided with an opening set within a range of the predetermined width on a surface of the third layer and connected to the second conductive film, a ninth step of forming a third conductive film over the whole surface of the semiconductor substrate, and a tenth step of removing a portion of the third conductive film provided on the surface of the third layer.
- A tenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the ninth aspect of the present invention, further comprising an eleventh step of forming a metal film to cover the third conductive film, a twelfth step of heat treating the third conductive film and the metal film, a thirteenth step of removing the metal film which has not reacted to the third conductive film, and a fourteenth step of forming a fourth conductive film on the third conductive film which has reacted to the metal film and patterning the fourth conductive film by using a photolithography technique.
- An eleventh aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the tenth aspect of the present invention, wherein the fourteenth step also includes a step of forming a metal nitride film between the third conductive film which has reacted to the metal film and the fourth conductive film.
- A twelfth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to any of the ninth to eleventh aspects of the present invention, wherein the eighth step includes a step of forming, on the third layer, a third trench having the same width as the predetermined width and positioned above the first trench, and then forming a fourth layer of insulation covering the third layer and carrying out anisotropic etching on the fourth layer, thereby forming the second trench.
- A thirteenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the twelfth aspect of the present invention, further comprising a fifteenth step of forming a fifth layer of insulation by heat treating respective surfaces of the first conductive film, the dielectric film and the second conductive film which are exposed to the opening after the sixth step and before the seventh step.
- A fourteenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to the thirteenth aspect of the present invention, further comprising a sixteenth step of forming a sixth layer on the second layer and the fifth layer after the fifteenth step and before the seventh step.
- A fifteenth aspect of the present invention is directed to the method for manufacturing a semiconductor device according to any of the eighth to fourteenth aspects of the present invention, wherein the first step includes a step of forming, in the second layer, an active region and a transistor connected to or including as a part the active region.
- According to the first aspect of the present invention, it is possible to obtain a trench type capacitor having such a structure that a soft error tolerance is excellent, a fringe capacitance is reduced on an end and area penalty is not increased. Moreover, heat accumulated in the semiconductor substrate and the first layer can be discharged to the outside by the capacitor.
- According to the second aspect of the present invention, the contact plug does not increase the area penalty.
- According to the third aspect of the present invention, in the case where the wiring is formed of a metal and the contact plug is formed of a polysilicon, a value of a contact resistance between the wiring and the contact plug can be decreased. Moreover, lines of electric force sent from other wirings can be prevented from entering the second electrode.
- According to the fourth aspect of the present invention, in the case where the wiring is formed of a metal and the contact plug is formed of a polysilicon, it is possible to prevent the metal constituting the wiring and a metal and silicon in the metal silicide from mutually moving and reacting to generate foreign matters.
- According to the fifth aspect of the present invention, it is guaranteed that the contact plug is not connected to the first electrode but is connected to the second electrode.
- According to the sixth aspect of the present invention, also in the case where a material having a high degree of the mismatching of the crystal lattice between the first and second electrodes is used for the second insulating layer, it is possible to prevent an interface state from being generated between the insulator and the end of the capacitor.
- According to the seventh aspect of the present invention, the capacitor and the transistor can be used as a memory cell of a DRAM, for example.
- According to the eighth aspect of the present invention, the semiconductor device in accordance with the first aspect of the present invention can be manufactured. Moreover, the second layer can be caused to function as a stopper at the sixth step by using, for the second layer, a material having selectivity for each of the first conductive film, the dielectric film and the second conductive film.
- According to the ninth aspect of the present invention, the semiconductor device in accordance with the second aspect of the present invention can be manufactured. Moreover, the second conductive film can be caused to function as a stopper at the eighth step by using, for the second conductive film, a material having selectivity for the third layer. Furthermore, the third layer can be caused to function as a stopper at the tenth step by using, for the third layer, a material having selectivity for the third conductive film.
- According to the tenth aspect of the present invention, the semiconductor device in accordance with the third aspect of the present invention can be manufactured.
- According to the eleventh aspect of the present invention, the semiconductor device in accordance with the fourth aspect of the present invention can be manufactured.
- According to the twelfth aspect of the present invention, the semiconductor device in accordance with the fifth aspect of the present invention can be manufactured. By adjusting a thickness of the fourth layer and etching conditions, moreover, the second trench is not connected to the first conductive film but can be connected to the second conductive film. Furthermore, the second conductive film can be caused to function as a stopper at the eighth step by using, for the second conductive film, a material having selectivity for the fourth layer.
- According to the thirteenth aspect of the present invention, the semiconductor device in accordance with the sixth aspect of the present invention can be manufactured. Moreover, even if foreign matters remain in the opening of the first trench, they can be insulated by a heat treatment. Thus, it is guaranteed that the first and second conductive films can be prevented from being short-circuited.
- According to the fourteenth aspect of the present invention, the sixth layer can be caused to function as a stopper during the formation of the third trench by using, for the sixth layer, a material having selectivity for the third layer.
- According to the fifteenth aspect of the present invention, the semiconductor device in accordance with the seventh aspect of the present invention can be manufactured.
- These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
- FIG. 1 is a sectional view showing a semiconductor device according to a first embodiment;
- FIGS.2 to 15 are sectional views showing each step of a method for manufacturing the semiconductor device according to the first embodiment;
- FIGS. 16 and 17 are sectional views showing a variant of the semiconductor device according to the first embodiment;
- FIGS.18 to 20 are sectional views showing each step of the method for manufacturing the semiconductor device according to the first embodiment;
- FIGS. 21 and 22 are sectional views illustrating the advantage of a
side wall 9 of the semiconductor device according to the first embodiment; - FIG. 23 is a sectional view illustrating the advantage of an insulating
film 16 of the semiconductor device according to the first embodiment; - FIG. 24 is a sectional view illustrating the generation of foreign matters in a process of manufacturing the semiconductor device according to the first embodiment;
- FIGS. 25 and 26 are sectional views illustrating the advantages of a
metal silicide 12 and ametal nitride film 13 of the semiconductor device according to the first embodiment; - FIG. 27 is a sectional view illustrating a line of electric force in a lateral capacitor;
- FIG. 28 is a sectional view showing a semiconductor device according to a second embodiment;
- FIGS.29 to 37 are sectional views showing each step of a method for manufacturing the semiconductor device according to the second embodiment;
- FIG. 38 is a sectional view showing a variant of the semiconductor device according to the second embodiment;
- FIG. 39 is a sectional view showing a DRAM which employs a stack type capacitor for a memory cell; and
- FIGS. 40 and 41 are sectional views showing a trench type capacitor according to the prior art.
- FIG. 1 shows a semiconductor device according to the present embodiment. The semiconductor device comprises a
semiconductor substrate 0 having aBOX layer 2 formed on a surface, anSOI layer 3 formed on theBOX layer 2 in which an impurity such as phosphorus or arsenic is implanted, and a trench type capacitor formed in atrench 18 a having an opening on a surface of an insulatingfilm 5 through an insulatingfilm 4 and the insulatingfilm 5 which are formed on theSOI layer 3 and having a bottom face in theBOX layer 2 without penetrating theBOX layer 2. Assuming that theBOX layer 2 acts as a first layer and theSOI layer 3, the insulatingfilm 4 and the insulatingfilm 5 constitute a second layer together, thetrench 18 a has such a structure that it is provided with an opening having a predetermined width on a surface of the second layer and reaches the first layer but does not penetrate the first layer. Afirst electrode 6, adielectric film 7 and asecond electrode 8 are sequentially formed in thetrench 18 a apart from an internal wall of thetrench 18 a, and constitute the trench type capacitor. An end of the capacitor, that is, an end of each of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 is positioned in the opening of thetrench 18 a and is flattened. - For example, it is preferable that a polysilicon having an impurity implanted therein should be employed for the
first electrode 6 and thesecond electrode 8 and a high dielectric film such as tantalum oxide, a silicon oxide film or the like should be used for thedielectric film 7. Moreover, a silicon oxide film is employed for the insulatingfilm 4 and a silicon nitride film is employed for the insulatingfilm 5, for example. Furthermore, an STI (Shallow Trench Isolation)region 1 for element isolation is provided on theSOI layer 3. For example, an SiOF film (silicon oxide fluoride film) is employed for theSTI region 1. - An insulating
film 16 is formed to cover the ends of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8, and furthermore, aside wall 9 is formed on the insulatingfilm 16 with an insulatingfilm 17 interposed therebetween. The insulatingfilm 17 is formed on an upper face of the insulatingfilm 5 as well as on an upper face of the insulatingfilm 16, and aninterlayer insulating film 11 is formed on an upper face of the insulatingfilm 17. Theinterlayer insulating film 11 is not present above thetrench 18 a. For example, a silicon nitride film is employed for theside wall 9, a silicon oxide film is employed for the insulatingfilm 16, a silicon nitride film is employed for the insulatingfilm 17, and an SiOF film or a BPSG film is employed for theinterlayer insulating film 11. - A
contact plug 10 for connecting thesecond electrode 8 to ametal wiring 14 a provided as an upper layer is buried in a region provided above thetrench 18 a where the insulatingfilms - Moreover, a
metal silicide 12 and ametal nitride film 13 are formed in a connecting portion of thecontact plug 10 and themetal wiring 14 a. It is preferable that a polysilicon having an impurity implanted therein should be employed for a material of thecontact plug 10 in the same manner as thefirst electrode 6 and thesecond electrode 8, for example. Furthermore, it is preferable that a high-melting-point metal silicide such as cobalt silicide, nickel silicide, tungsten silicide, titanium silicide, molybdenum silicide, platinum silicide, zirconium silicide or the like should be used for themetal silicide 12. By forming themetal silicide 12, a contact resistance can greatly be reduced. Besides, it is preferable that titanium nitride, nickel nitride, tungsten nitride, molybdenum nitride, platinum nitride, zirconium nitride or the like should be employed for themetal nitride film 13. The metal nitride film has the function of preventing a metal constituting themetal wiring 14 a and a metal and silicon in themetal silicide 12 from mutually moving and reacting to generate foreign matters. - Furthermore, a
metal wiring 14b is formed through theinterlayer insulating film 11 and the insulatingfilms SOI layer 3. Themetal silicide 12 and themetal nitride film 13 are also formed in the connecting portion of themetal wiring 14 b and theSOI layer 3. - Then, an
interlayer insulating film 15 is formed to cover the metal wirings 14 a and 14 b and theinterlayer insulating film 11. For example, an SiOF film or a BPSG film is also employed for theinterlayer insulating film 15 in the same manner as in theinterlayer insulating film 11. - The semiconductor device according to the present embodiment has such a structure that the
first electrode 6 and thesecond electrode 8 are provided within a range of the opening of thetrench 18 a as seen from an upper face of the trench type capacitor and the trench type capacitor does not increase area penalty. Moreover, thecontact plug 10 is also provided within the range of the opening of thetrench 18 a. Therefore, the area penalty is not increased. - Besides, the trench does not penetrate the BOX layer. Consequently, it is possible to obtain a trench type capacitor having an excellent soft error tolerance.
- Furthermore, the
first electrode 6 and thesecond electrode 8 are exposed to the opening of thetrench 18 a and a portion protruded from thetrench 18 a is not present. Therefore, a fringe capacitance Cf1 between thefirst electrode 6 and thesecond electrode 8 on an end of the capacitor has a small value. - Moreover, the trench type capacitor is provided as a dummy on the substrate, and can also be used as a heat sink for reducing a temperature of the SOI substrate during an operation of a circuit. The
BOX layer 2 usually has a smaller thermal conductivity than in theSOI layer 3. Therefore, heat generated during the operation of the circuit is easily accumulated in theBOX layer 2, and an operating speed of the circuit provided on the SOI substrate is readily reduced. However, if the trench type capacitor is used as the heat sink and themetal wiring 14 a is connected to an external heat sink, for example, the heat accumulated in thesemiconductor substrate 0 and theBOX layer 2 can be discharged to the outside. - Besides, the trench type capacitor may be annularly formed and used for a dummy pattern of a CMP treatment, for example.
- Furthermore, since the
metal silicide 12 is formed, the value of the contact resistance between themetal wiring 14 a and thecontact plug 10 can be decreased. - A method for manufacturing the trench type capacitor shown in FIG. 1 will be described below with reference to FIGS.2 to 15. First of all, a
semiconductor substrate 0 having aBOX layer 2 and aSOI layer 3 formed thereon is prepared. Then, theSOI layer 3 is subjected to patterning by using photolithography and etching techniques, and an SiOF film or the like is then buried therein. Consequently, anSTI region 1 is formed. - For example, thereafter, a surface of the
SOI layer 3 is oxidized by a thermal oxidation method, thereby forming a silicon oxide film as an insulatingfilm 4. Subsequently, an impurity such as phosphorus, arsenic or the like is implanted into theSOI layer 3, thereby increasing a conductivity of theSOI layer 3. - Then, an insulating
film 5 made of a silicon nitride film is formed on the insulatingfilm 4 by using a CVD (Chemical Vapor Deposition) method, for example (FIG. 2). In the case where the insulatingfilm 5 is made of a silicon nitride film, an interface state is generated due to mismatching of crystal lattice if the insulatingfilm 5 is directly formed on theSOI layer 3. Consequently, thermal noises or 1/f noises are made. However, even if the silicon oxide film is formed on theSOI layer 3, a degree of the mismatching of the crystal lattice is low. Therefore, it is preferable that the silicon oxide film should be employed for the insulatingfilm 4 to act as a buffer layer between the insulatingfilm 5 and theSOI layer 3. - Next, a
trench 18 a having a bottom face in theBOX layer 2 is formed through the insulatingfilm 5, the insulatingfilm 4 and theSOI layer 3 by using photolithography and etching techniques (FIG. 3). Materials of afirst electrode 6, adielectric film 7 and asecond electrode 8 are formed over a whole surface of the substrate in this order, respectively (FIG. 4). Subsequently, a CMP (Chemical Mechanical Polishing) treatment is carried out by using the insulatingfilm 5 as a stopper, thereby removing portions of the materials of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 which are present on a surface of the insulating film 5 (FIG. 5). - By the thermal oxidation method, an insulating
film 16 made of a silicon oxide film is formed on surfaces of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 which are exposed to an opening of thetrench 18 a (FIG. 6). - Subsequently, an insulating
film 17 is formed over the whole surface of the substrate (FIG. 7), and furthermore, aninterlayer insulating film 11 is formed on an upper face of the insulating film 17 (FIG. 8). Atrench 18 b is formed on theinterlayer insulating film 11 provided over thetrench 18 a by using the photolithography and etching techniques (FIG. 9). For example, if theinterlayer insulating film 11 is an SiOF film, it is hard to obtain etching selectivity between the insulatingfilm 16 made of the silicon oxide film and theinterlayer insulating film 11. Therefore, there is a high possibility that the insulatingfilm 16 might be removed during the formation of thetrench 18 b. In order to prevent the removal of the insulatingfilm 16, the insulatingfilm 17 is formed. In the case where theinterlayer insulating film 11 is made of the SiOF film as described above, the insulatingfilm 17 functions as an etching stopper of theinterlayer insulating film 11 if a silicon nitride film is employed for the insulatingfilm 17, for example. - Moreover, the precision of alignment of the
trench 18 a and thetrench 18 b can be enhanced by opening the insulatingfilm 5 or the insulatingfilm 17 to form a trench which is deeper than the surface of theSOI layer 3 separately from thetrench 18 a and using the trench as an alignment mark, for example. - Then, a material of a
side wall 9 is formed over the whole surface of the substrate (FIG. 10) and is subjected to anisotropic etching to form theside wall 9 and to etch the insulatingfilms second electrode 8 can be obtained (FIG. 11). At this time, theside wall 9 is formed thickly across thefirst electrode 6, thedielectric film 7 and thesecond electrode 8. - A material of a
contact plug 10 is formed over the whole surface of the substrate (FIG. 12). For example, a portion of the material of thecontact plug 10 which is provided on a surface of theinterlayer insulating film 11 is removed by using a CMP method (FIG. 13). At this time, theinterlayer insulating film 11 and theside wall 9 are used as stoppers of the CMP treatment. The material of thecontact plug 10 which is provided on the surface of theinterlayer insulating film 11 may be removed by the anisotropic etching. - In FIG. 13, assuming that dishing is caused on a surface of the
contact plug 10 due to the CMP method, a height of the surface of thecontact plug 10 is set in a position which is lower than the surface of theinterlayer insulating film 11. - Then, a via
hole 18 c is formed on theinterlayer insulating film 11 and the insulatingfilms contact plug 10 and the high-melting-point metal is caused to react to theSOI layer 3 on a bottom of the viahole 18 c. Thus, ametal silicide 12 is formed. The high-melting-point metal such as cobalt reacts to only thecontact plug 10 and the silicon of theSOI layer 3, and does not react to theinterlayer insulating film 11 and theside wall 9. Therefore, themetal silicide 12 can be formed in a manner of self-alignment. By using theinterlayer insulating film 11 as a stopper for etching, the unreacted high-melting-point metal remaining on theinterlayer insulating film 11 is removed by etching. Subsequently, ametal nitride film 13 such as titanium nitride is deposited (FIG. 14). - Then, the CMP treatment is carried out by using the
interlayer insulating film 11 as a stopper, thereby removing themetal nitride film 13 in portions other than the viahole 18 c and thetrench 18 b (FIG. 15). - Thereafter, a metal film made of tungsten, copper, aluminum, molybdenum or the like is formed over the whole surface of the substrate, and the metal wirings14 a and 14 b are subjected to patterning by using the photolithography and etching techniques. Then, an
interlayer insulating film 15 is formed. Thus, the trench type capacitor shown in FIG. 1 can be formed. - While a complete separating structure in which the
SOI layer 3 is completely separated as theSTI region 1 has been employed in FIG. 1, an STI region la having a partial trench structure in which theSOI layer 3 is not completely separated may be used as shown in FIG. 16. With the partial trench structure, thus, a channel portion 3 a provided under theSTI region 1 a causes an electric potential of theSOI layer 3 to have a common value in each separated region. Therefore, it is not necessary to connect theSOI layer 3 to a DC voltage source such as Vcc, a ground or the like in each separated region. Accordingly, it is sufficient that a small number of wirings and via holes for giving a fixed potential are formed. Correspondingly, area penalty can be reduced. - While the
first electrodes 6 of the adjacent capacitors are connected to each other through theSOI layer 3 and thesecond electrodes 8 are connected to each other through thewiring 14 a in FIG. 1, the adjacent capacitors may be isolated by using anSTI region 1 b as shown in FIG. 17. In that case, thefirst electrode 6 of each capacitor is insulated by theSTI region 1 b andseparate wirings second electrodes 8. Although the above-mentioned SiOF film may be employed for theSTI region 1 b, theSTI region 1 b may be changed into a cavity which is to be filled with air, thereby reducing a dielectric constant, for example. - While a method for forming the
metal silicide 12 and themetal nitride film 13 has been described above on the assumption that the dishing is caused during the CMP treatment of thecontact plug 10, it is preferable that themetal silicide 12 and themetal nitride film 13 should be formed by the following method if the dishing is not caused. - First of all, a state shown in FIG. 18 is obtained subsequently to the state shown in FIG. 12 because the dishing is not caused. Then, a high-melting-point metal such as cobalt is deposited over the whole surface of the substrate and is subjected to an RTA treatment. Consequently, the high-melting-point metal and the
contact plug 10 are caused to react to each other, and the high-melting-point metal and theSOI layer 3 are caused to react to each other on a bottom of the viahole 18 c. Thus, themetal silicide 12 is formed in a manner of self-alignment. The unreacted high-melting-point metal remaining on theinterlayer insulating film 11 is removed by etching with theinterlayer insulating film 11 acting as a stopper. - Next, an
interlayer insulating film 15 a is formed over the whole surface of the substrate. Then, a via hole to be connected to the viahole 18 c is formed on theinterlayer insulating film 15 a, and atrench 18 d is formed in theinterlayer insulating film 15 a to be connected to thecontact plug 10. Thereafter, ametal nitride film 13 such as titanium nitride is deposited over the whole surface of the substrate and is subjected to the CMP treatment by using theinterlayer insulating film 15 a as a stopper. Thus, themetal nitride film 13 in portions other than the viahole 18 c and thetrench 18 d is removed (FIG. 19). - Subsequently, a metal film made of tungsten or the like is formed over the whole surface of the substrate, and the
metal wirings interlayer insulating film 15 b is formed. Thus, the same trench type capacitor as the trench type capacitor shown in FIG. 1 can be formed (FIG. 20). - Advantages obtained by the existence of the
side wall 9 and the insulatingfilm 16 will be described below with reference to FIGS. 21 to 24. First of all, it is assumed that the side wall is not provided but thecontact plug 10 is formed to fill up thetrench 18 b. In this case, thefirst electrode 6 and thesecond electrode 8 are short-circuited in a portion shown by X and do not function as capacitors as shown in FIG. 21. - As a method for solving the problem of FIG. 21, it is proposed that a diameter of the
contact plug 10 is reduced as shown in FIG. 22. With this structure, thefirst electrode 6 and thesecond electrode 8 are not short-circuited. However, since the diameter of thecontact plug 10 is small, a contact resistance is easily increased. When a trench is to be provided to form thecontact plug 10, thefirst electrode 6 and thesecond electrode 8 might be short-circuited if the alignment precision of a photomask of the photolithography technique is low and the trench cannot be formed such that it is not connected to thefirst electrode 6 but is connected to thesecond electrode 8. - Therefore, it is desirable that the
side wall 9 should be formed as shown in FIG. 23. Since a contact face with themetal wiring 14 a is great over an upper face of thecontact plug 10, the contact resistance can be reduced. Furthermore, theside wall 9 can be formed in a manner of self-alignment to cover the ends of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 in thetrench 18 b. Therefore, thefirst electrode 6 and thesecond electrode 8 are not short-circuited. More specifically, theside wall 9 assures that thecontact plug 10 is not connected to thefirst electrode 6 but is connected to thesecond electrode 8. - Moreover, a width of a bottom face of the
side wall 9 can be set freely to some extent by adjusting a thickness of a film obtained during deposition and etching conditions. Accordingly, also in the case where the alignment precision of the photomask of the photolithography technique is low and thetrench 18 b cannot be formed just above thetrench 18 a, the short circuit between thecontact plug 10 and thefirst electrode 6 can be prevented by regulating the width of the bottom face of theside wall 9. - If a material of the
side wall 9 is a silicon nitride film and a polysilicon is employed for thefirst electrode 6 and thesecond electrode 8, for example, there is a possibility that an interface state might be generated between theside wall 9 and thefirst electrode 6 andsecond electrode 8 due to the mismatching of the crystal lattice in the same manner as in the case where the insulatingfilm 5 is directly formed on theSOI layer 3. - Accordingly, it is desirable that the insulating
film 16 made of a silicon oxide film having a low degree of the mismatching of the crystal lattice with the polysilicon should be formed between theside wall 9 and thefirst electrode 6 andsecond electrode 8. Thus, it is possible to prevent the interface state from generating between theside wall 9 and the end of the capacitor even if a material having a high degree of the mismatching of the crystal lattice between theside wall 9 and thefirst electrode 6 and between theside wall 9 and thesecond electrode 8 is used for theside wall 9. - The formation of the insulating
film 16 also has the advantages of a manufacturing method which will be described below. In the stage in which the CMP treatment for thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 is completed (FIG. 5), the ends of thefirst electrode 6 and thesecond electrode 8 are exposed to the opening of the filledtrench 18 a. Since thefirst electrode 6 and thesecond electrode 8 function as both electrodes of the capacitor, they should be electrically isolated from each other. As shown in FIG. 24, however, conduciveforeign matters 19 produced during the CMP treatment remain in the opening of thetrench 18 a so that thefirst electrode 6 and thesecond electrode 8 are short-circuited in some cases. In order to avoid such a problem, it is desirable that the opening of thetrench 18 a should be washed by using a mixed solution of ammonium hydroxide and hydrogen peroxide liquid, hydrofluoric acid or the like after the stage of FIG. 5, for example. - However, the foreign matters cannot be completely removed by the washing in some cases. For this reason, the insulating
film 16 is formed by using the thermal oxidation method. Consequently, even if the foreign matters remain in the opening of thetrench 18 a, they can be insulated by the thermal oxidation. Thus, it is guaranteed that the short circuit between thefirst electrode 6 and thesecond electrode 8 can be prevented. - Advantages other than a reduction in the contact resistance which are obtained by forming the
metal silicide 12 and themetal nitride film 13 on thecontact plug 10 will be described below with reference to FIGS. 25 to 27. - FIG. 25 shows a state in which electric lines of
force 22 to 25 are generated in the semiconductor device shown in FIG. 1 when anupper metal wiring 20 and aninterlayer insulating film 21 are further formed in the semiconductor device. The electric line of force has such a characteristic that it vertically intersects an equipotential surface and does not enter the inside of a metal wholly having an equipotential. Moreover, a parasitic capacitance is generated between start and end points of the electric line of force. - In FIG. 25, the
metal silicide 12 and themetal nitride film 13 are formed above thesecond electrode 8. Therefore, the electric line offorce 22 generated on theupper metal wiring 20 is cut off on themetal silicide 12 and themetal nitride film 13 and does not reach thesecond electrode 8. Accordingly, the electric potential of thesecond electrode 8 less fluctuates and smaller noises are made on thesecond electrode 8. Assuming that themetal wiring 14 a is directly connected to thesecond electrode 8 as shown in FIG. 26, the electric line offorce 22 reaches thesecond electrode 8. Therefore, the electric potential of thesecond electrode 8 easily fluctuates by the influence of theupper metal wiring 20. Accordingly, it is desirable that themetal silicide 12 and themetal nitride film 13 should be formed on thecontact plug 10. - In a lateral capacitor comprising an
upper electrode 26, adielectric film 27 and alower electrode 28 shown in FIG. 27, themetal wiring 20 and theupper electrode 26 or thelower electrode 28 overlap with a large area. Therefore, the electric line offorce 22 has a high density. Accordingly, it is apparent that the electric potential of thesecond electrode 8 in the semiconductor device having the structure shown in FIG. 26 less fluctuates than in the lateral capacitor. - The present embodiment will describe the case where the semiconductor device according to the first embodiment is applied to a memory cell of a DRAM.
- FIG. 28 shows a semiconductor device according to the present embodiment. The semiconductor device comprises a trench type capacitor which is formed in a trench having a bottom face in a
BOX layer 2 without penetrating theBOX layer 2 in the same manner as in the semiconductor device according to the first embodiment. Since the same reference numerals as those in FIG. 1 denote portions having the same functions as in the semiconductor device according to the first embodiment, their description will be omitted. -
Active regions SOI layer 3. Moreover, agate electrode 33 comprising apolysilicon 32 and ametal silicide 31 is formed on an insulatingfilm 4 provided between theactive regions active regions film 4 functions as a gate insulating film of the MOSFET, and thegate electrode 33 functions as a gate of the MOSFET. - A
bit line 34 is connected to theactive region 29 through apolysilicon 36, ametal silicide 12 and ametal nitride film 13. - A
STI region 1 a having a partial trench structure is employed as an element isolating region. In a lower portion of theSTI region 1 a is provided achannel cut layer 37 in which an impurity having a reverse type to the type of each of theactive regions active region 30 b and theSOI layer 3. Moreover, thegate electrode 33 functioning as a wiring is formed above theSTI region 1 a. - In FIG. 28, wirings to be connected to the
metal silicide 12 and themetal nitride film 13 which are formed on a surface of thecontact plug 10, and thecontact plug 10 are collectively indicated as acell plate 35. Thecell plate 35 is shown in a broken line to be present on a section other than the section shown in FIG. 28. - By using the semiconductor device according to the present embodiment, the
active region 30 a connected to the trench type capacitor constitutes a part of the MOSFET as the source/drain region. Therefore, the trench type capacitor and the MOSFET can be used as memory cells of the DRAM, for example. - If the
active region 30 a does not constitute a part of the MOSFET but is connected to a transistor formed in any portion on a substrate, the same function can be obtained. - By a comparison between the trench type capacitor shown in FIG. 41 and the trench type capacitor shown in FIG. 28, the following differences are made in addition to area penalty, a contact resistance between an electrode and a metal wiring, and the like.
- In the trench type capacitor shown in FIG. 41, first of all, a
transfer gate 232 is formed on the capacitor through an insulatingfilm 233. Therefore, a capacity of the capacitor increases a parasitic capacitance of thetransfer gate 232. As a result, if thetransfer gate 232 is used as a word line, the number of memory cells which can be added to one word line is limited. Correspondingly, the number of sense amplifiers is increased so that the area penalty is easily increased. - Moreover, the
transfer gate 232 is formed on the capacitor. Therefore, in the case where thetransfer gate 232 is to be formed by using photolithography and etching techniques simultaneously with the formation of agate electrode 225 of a MOSFET, there is a possibility that thetransfer gate 232 and/or thegate electrode 225 might not have a patterning dimension as designed due to the generation of a difference in height. - In the trench type capacitor shown in FIG. 41, moreover, a
dielectric film 229 of the capacitor and agate insulating film 226 of the MOSFET are formed of the same material. For this reason, there is no degree of freedom that a silicon oxide film is employed for the gate insulating film and a high dielectric film is employed for the dielectric film. - On the other hand, the semiconductor device according to the present embodiment does not cause the above-mentioned problems.
- A method for manufacturing the trench type capacitor shown in FIG. 28 will be described below with reference to FIGS.29 to 37. First of all, a
semiconductor substrate 0 having aBOX layer 2 and anSOI layer 3 formed thereon is prepared. Then, achannel cut layer 37 is formed by implantation of an impurity. An SiOF film or the like is buried in an upper portion of thechannel cut layer 37 by using photolithography and etching techniques. Thus, anSTI region 1 a is formed. Then, agate insulating film 4 is formed over a whole surface of the substrate, and apolysilicon 32 and a metal are formed over the whole surface of the substrate. Thereafter, ametal silicide 31 is formed by a heat treatment, and thepolysilicon 32 and themetal silicide 31 are patterned as agate electrode 33. - Then, an impurity is implanted to form
active regions film 5 is formed over the whole surface of the substrate by using a CVD method, for example (FIG. 29). - Subsequently, a
trench 18 a having a bottom face in theBOX layer 2 is formed through the insulatingfilm 5, the insulatingfilm 4, theactive region 30 and theSOI layer 3 by using the photolithography and etching techniques (FIG. 30). Consequently, theactive region 30 is divided intoregions first electrode 6, adielectric film 7 and asecond electrode 8 are formed over the whole surface of the substrate in this order, respectively (FIG. 31). At this time, a surface-roughing treatment may be carried out for a surface of thefirst electrode 6 on thedielectric film 7 side. The surface-roughing treatment designates a treatment for forming concave and convex portions on the surface of thefirst electrode 6 to increase a contact area of thefirst electrode 6 and thedielectric film 7. More specifically, if thefirst electrode 6 is a polysilicon, for example, it is preferable that a minute nucleus of silicon should be formed on thefirst electrode 6 by irradiating a silane gas over a surface of an electrode by a CVD device after the formation of thefirst electrode 6 and a pressure should be then reduced to perform a heat treatment for a while. - Subsequently, a CMP treatment is carried out by using the insulating
film 5 as a stopper, thereby removing portions of the materials of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 which are provided on a surface of the insulating film 5 (FIG. 32). - Then, an insulating
film 16 made of a silicon oxide film is formed, by a thermal oxidation method, on the surfaces of thefirst electrode 6, thedielectric film 7 and thesecond electrode 8 which are exposed to an opening of thetrench 18 a. Thereafter, a viahole 18 e to be connected to theactive region 29 is formed by using the photolithography and etching techniques and a polysilicon is formed over the whole surface of the substrate. Subsequently, a portion of the polysilicon provided on the insulatingfilm 5 is removed by the CMP treatment, thereby burying apolysilicon 36 in the viahole 18 e, for example. Thus, a surface of thepolysilicon 36 is changed into a metal silicide 12 (FIG. 33). - Subsequently, an insulating
film 17 is formed over the whole surface of the substrate. A portion of the insulatingfilm 17 which is provided above the viahole 18 e is opened by using the photolithography and etching techniques. Ametal nitride film 13 is formed in the opening portion (FIG. 34). Furthermore, aninterlayer insulating film 11 is formed on an upper face of the insulatingfilm 17. By using the photolithography and etching techniques, atrench 18 b is then formed on theinterlayer insulating film 11 provided above thetrench 18 a. Thereafter, a material of aside wall 9 is formed over the whole surface of the substrate (FIG. 35) and is subjected to anisotropic etching to form theside wall 9 and to etch the insulatingfilms second electrode 8 can be obtained. At this time, theside wall 9 is formed thickly across thefirst electrode 6, thedielectric film 7 and thesecond electrode 8. - Then, a material of a
contact plug 10 is formed over the whole surface of the substrate. A portion of the material of thecontact plug 10 which is provided on a surface of theinterlayer insulating film 11 is removed by using the CMP method, for example. At this time, theinterlayer insulating film 11 and theside wall 9 are used as stoppers for the CMP treatment. The material of thecontact plug 10 which is provided on the surface of theinterlayer insulating film 11 may be removed by the anisotropic etching. - Subsequently, a
cell plate 35 connected to thecontact plug 10 is formed. Then, aninterlayer insulating film 15 is formed (FIG. 36). - Thereafter, a via hole is formed on the
interlayer insulating films metal nitride film 13 on the viahole 18 e can be obtained. Abit line 34 and acontact plug 34 a thereof are formed in the via hole (FIG. 37). - Furthermore, an
interlayer insulating film 21 is formed on thebit line 34. Thus, the semiconductor device shown in FIG. 28 is completed. - While the
STI region 1 a of a partial trench type has been employed in the semiconductor device shown in FIG. 28, anSTI region 1 having a complete separating structure may be employed as shown in FIG. 38. In the case where a leakage current cannot fully be suppressed by thechannel cut layer 37, it can be prevented more reliably by employing theSTI region 1 having the complete separating structure. If the leakage current can be suppressed, it is possible to obtain an advantage that a refresh period of the DRAM can be prolonged. - While the invention has been described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is understood that numerous other modifications and variations can be devised without departing from the scope of the invention.
Claims (15)
1. A semiconductor device comprising:
a semiconductor substrate;
a first layer of insulation formed on said semiconductor substrate;
a second layer including at least a semiconductor layer formed on said first layer;
a trench provided with an opening having a predetermined width on a surface of said second layer and reaching said first layer without penetrating said first layer; and
a capacitor including a first electrode, a dielectric film and a second electrode which are formed in said trench,
wherein an end of said capacitor is positioned in said opening of said trench.
2. The semiconductor device according to claim 1 , further comprising a contact plug connected to said second electrode and set within a range of said predetermined width.
3. The semiconductor device according to claim 2 , further comprising a wiring to be connected to said contact plug,
a metal silicide being formed in a portion of said contact plug which is connected to said wiring.
4. The semiconductor device according to claim 3 , wherein a metal nitride film is formed between said metal silicide and said wiring.
5. The semiconductor device according to claim 2 , further comprising an insulator for covering said end of said capacitor.
6. The semiconductor device according to claim 5 , wherein said insulator includes a first insulating layer which is provided in contact with said end of said capacitor and has a relatively low degree of mismatching of crystal lattice between said first insulating layer and said first electrode and between said first insulating layer and said second electrode; and
a second insulating layer which is formed on said first insulating layer and has a relatively high degree of said mismatching of said crystal lattice between said second insulating layer and said first electrode and between said second insulating layer and said second electrode.
7. The semiconductor device according to claim 1 , further comprising an active region connected to said first electrode in said second layer,
said active region constituting a part of a transistor or being connected to said transistor.
8. A method for manufacturing a semiconductor device comprising:
a first step of preparing a semiconductor substrate having a first layer of insulation formed on a surface of said semiconductor substrate and a second layer including at least a semiconductor layer formed on said first layer;
a second step of forming a first trench provided with an opening having a predetermined width on a surface of said second layer and reaching said first layer without penetrating said first layer;
a third step of forming a first conductive film over a whole surface of said semiconductor substrate;
a fourth step of forming a dielectric film on said first conductive film;
a fifth step of forming a second conductive film on said dielectric film; and
a sixth step of removing portions of said first conducive film, said dielectric film and said second conductive film which are provided on said surface of said second layer.
9. The method for manufacturing a semiconductor device according to claim 8 , further comprising:
a seventh step of forming a third layer of insulation on said second layer, said first conductive film, said dielectric film and said second conductive film;
an eighth step of forming, on said third layer, a second trench provided with an opening set within a range of said predetermined width on a surface of said third layer and connected to said second conductive film;
a ninth step of forming a third conductive film over said whole surface of said semiconductor substrate; and
a tenth step of removing a portion of said third conductive film provided on said surface of said third layer.
10. The method for manufacturing a semiconductor device according to claim 9 , further comprising:
an eleventh step of forming a metal film to cover said third conductive film;
a twelfth step of heat treating said third conductive film and said metal film;
a thirteenth step of removing said metal film which has not reacted to said third conductive film; and
a fourteenth step of forming a fourth conductive film on said third conductive film which has reacted to said metal film and patterning said fourth conductive film by using a photolithography technique.
11. The method for manufacturing a semiconductor device according to claim 10 , wherein said fourteenth step also includes a step of forming a metal nitride film between said third conductive film which has reacted to said metal film and said fourth conductive film.
12. The method for manufacturing a semiconductor device according to claim 9 , wherein said eighth step includes a step of forming, on said third layer, a third trench having the same width as said predetermined width and positioned above said first trench, and then forming a fourth layer of insulation covering said third layer and carrying out anisotropic etching on said fourth layer, thereby forming said second trench.
13. The method for manufacturing a semiconductor device according to claim 12 , further comprising a fifteenth step of forming a fifth layer of insulation by heat treating respective surfaces of said first conductive film, said dielectric film and said second conductive film which are exposed to said opening after said sixth step and before said seventh step.
14. The method for manufacturing a semiconductor device according to claim 13 , further comprising a sixteenth step of forming a sixth layer on said second layer and said fifth layer after said fifteenth step and before said seventh step.
15. The method for manufacturing a semiconductor device according to claim 8 , wherein said first step includes a step of forming, in said second layer, an active region and a transistor connected to or including as a part said active region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/134,759 US20020153590A1 (en) | 1999-08-30 | 2002-04-30 | High-speed stacked capacitor in SOI structure |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24264399A JP2001068647A (en) | 1999-08-30 | 1999-08-30 | Semiconductor device and its manufacture |
JP11-242643 | 1999-08-30 | ||
US09/477,013 US6380578B1 (en) | 1999-08-30 | 2000-01-03 | High-speed stacked capacitor in SOI structure |
US10/134,759 US20020153590A1 (en) | 1999-08-30 | 2002-04-30 | High-speed stacked capacitor in SOI structure |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/477,013 Continuation US6380578B1 (en) | 1999-08-30 | 2000-01-03 | High-speed stacked capacitor in SOI structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020153590A1 true US20020153590A1 (en) | 2002-10-24 |
Family
ID=17092108
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/477,013 Expired - Fee Related US6380578B1 (en) | 1999-08-30 | 2000-01-03 | High-speed stacked capacitor in SOI structure |
US10/086,721 Expired - Fee Related US6544831B2 (en) | 1999-08-30 | 2002-03-04 | Semiconductor device and method for manufacturing the same |
US10/134,759 Abandoned US20020153590A1 (en) | 1999-08-30 | 2002-04-30 | High-speed stacked capacitor in SOI structure |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/477,013 Expired - Fee Related US6380578B1 (en) | 1999-08-30 | 2000-01-03 | High-speed stacked capacitor in SOI structure |
US10/086,721 Expired - Fee Related US6544831B2 (en) | 1999-08-30 | 2002-03-04 | Semiconductor device and method for manufacturing the same |
Country Status (4)
Country | Link |
---|---|
US (3) | US6380578B1 (en) |
JP (1) | JP2001068647A (en) |
KR (1) | KR100371655B1 (en) |
TW (1) | TW445469B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040188801A1 (en) * | 2003-03-26 | 2004-09-30 | Ehrichs Edward E. | High emissivity capacitor structure |
US20050013090A1 (en) * | 2001-11-30 | 2005-01-20 | Infineon Technologies Ag | Capacitor and method for producing a capacitor |
US20060105519A1 (en) * | 2004-11-17 | 2006-05-18 | Infineon Technologies Richmond, L.P | DRAM on SOI |
US20060244061A1 (en) * | 2005-04-27 | 2006-11-02 | International Business Machines Corporation | Integrated circuit (ic) with high-q on-chip discrete capacitors |
US20070284743A1 (en) * | 2003-12-12 | 2007-12-13 | Samsung Electronics Co., Ltd. | Fabricating Memory Devices Using Sacrificial Layers and Memory Devices Fabricated by Same |
US20090218624A1 (en) * | 2008-02-29 | 2009-09-03 | Bo Youn Kim | Soi device having an increasing charge storage capacity of transistor bodies and method for manufacturing the same |
CN103022017A (en) * | 2011-09-15 | 2013-04-03 | 英飞凌科技股份有限公司 | Semiconductor structure, semiconductor and method for making semiconductor structure |
US20130164929A1 (en) * | 2007-05-14 | 2013-06-27 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device and method of manufacturing the same |
US8723243B2 (en) * | 2011-11-30 | 2014-05-13 | International Business Machines Corporation | Polysilicon/metal contact resistance in deep trench |
US20150021737A1 (en) * | 2012-04-27 | 2015-01-22 | International Business Machines Corporation | Metal-insulator-metal (mim) capacitor with deep trench (dt) structure and method in a silicon-on-insulator (soi) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6384452B1 (en) * | 2000-07-17 | 2002-05-07 | Agere Systems Guardian Corp | Electrostatic discharge protection device with monolithically formed resistor-capacitor portion |
US6380576B1 (en) * | 2000-08-31 | 2002-04-30 | Micron Technology, Inc. | Selective polysilicon stud growth |
US7118960B2 (en) * | 2000-08-31 | 2006-10-10 | Micron Technology, Inc. | Selective polysilicon stud growth |
DE10051719C2 (en) * | 2000-10-18 | 2003-10-02 | Infineon Technologies Ag | Process for the production of circuit structures on a semiconductor substrate with the aid of a lithography process and arrangement with functional circuit structures and dummy circuit structures |
US6642552B2 (en) * | 2001-02-02 | 2003-11-04 | Grail Semiconductor | Inductive storage capacitor |
KR100499395B1 (en) * | 2001-02-06 | 2005-07-07 | 매그나칩 반도체 유한회사 | Structure of capacitor in semiconductor device and fabricating method thereof |
JP3539946B2 (en) * | 2002-03-28 | 2004-07-07 | 沖電気工業株式会社 | Method for manufacturing semiconductor device having SOI structure |
US6884736B2 (en) * | 2002-10-07 | 2005-04-26 | Taiwan Semiconductor Manufacturing Co, Ltd. | Method of forming contact plug on silicide structure |
US7023041B2 (en) | 2003-01-13 | 2006-04-04 | International Business Machines Corporation | Trench capacitor vertical structure |
US7332389B2 (en) * | 2003-07-02 | 2008-02-19 | Micron Technology, Inc. | Selective polysilicon stud growth |
KR100986630B1 (en) * | 2003-07-11 | 2010-10-08 | 매그나칩 반도체 유한회사 | Trench MOS transistor of semiconductor device and manufacturing method thereof |
DE102004002205B3 (en) * | 2004-01-15 | 2005-06-23 | Infineon Technologies Ag | Forming alignment mask for semiconductor memory unit, includes stages of electrode formation, dielectric deposition, selective filling, collar- and hollow formation |
US7241674B2 (en) * | 2004-05-13 | 2007-07-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming silicided gate structure |
US7015126B2 (en) | 2004-06-03 | 2006-03-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming silicided gate structure |
JP4773697B2 (en) * | 2004-06-30 | 2011-09-14 | ルネサスエレクトロニクス株式会社 | SOI substrate, method of manufacturing the same, and semiconductor device |
US7396767B2 (en) * | 2004-07-16 | 2008-07-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor structure including silicide regions and method of making same |
US20060278912A1 (en) * | 2004-09-02 | 2006-12-14 | Luan Tran | Selective polysilicon stud growth |
JP4282646B2 (en) * | 2005-09-09 | 2009-06-24 | 株式会社東芝 | Manufacturing method of semiconductor device |
KR101009492B1 (en) * | 2008-11-28 | 2011-01-19 | 김영훈 | Cap for reducing squirting-pressure |
US8575753B2 (en) * | 2009-05-27 | 2013-11-05 | Samsung Electronics Co., Ltd. | Semiconductor device having a conductive structure including oxide and non oxide portions |
US8513723B2 (en) * | 2010-01-19 | 2013-08-20 | International Business Machines Corporation | Method and structure for forming high performance MOS capacitor along with fully depleted semiconductor on insulator devices on the same chip |
US8610280B2 (en) * | 2011-09-16 | 2013-12-17 | Micron Technology, Inc. | Platinum-containing constructions, and methods of forming platinum-containing constructions |
US9653671B2 (en) * | 2014-02-13 | 2017-05-16 | Infineon Technologies Ag | Light emitting device and method for operating a plurality of light emitting arrangements |
KR102289376B1 (en) * | 2015-01-19 | 2021-08-17 | 에스케이하이닉스 주식회사 | Semiconductor device with air gap and method for fabricating the same |
KR102403741B1 (en) | 2015-06-16 | 2022-05-30 | 삼성전자주식회사 | Semiconductor devices |
US10084035B2 (en) * | 2015-12-30 | 2018-09-25 | Teledyne Scientific & Imaging, Llc | Vertical capacitor contact arrangement |
KR102068808B1 (en) * | 2018-01-31 | 2020-01-22 | 삼성전기주식회사 | Capacitor component |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02288263A (en) | 1989-04-27 | 1990-11-28 | Mitsubishi Electric Corp | Semiconductor memory |
US5250836A (en) * | 1989-12-20 | 1993-10-05 | Fujitsu Limited | Semiconductor device having silicon-on-insulator structure |
JP2777920B2 (en) * | 1989-12-20 | 1998-07-23 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
WO1992006498A1 (en) * | 1990-09-28 | 1992-04-16 | Seiko Epson Corporation | Semiconductor device |
JP2776149B2 (en) * | 1992-06-15 | 1998-07-16 | 日本電気株式会社 | Semiconductor integrated circuit |
JPH06104399A (en) * | 1992-09-22 | 1994-04-15 | Toshiba Corp | Semiconductor storage device |
JP3272517B2 (en) * | 1993-12-01 | 2002-04-08 | 三菱電機株式会社 | Method for manufacturing semiconductor device |
JPH0888332A (en) * | 1994-09-19 | 1996-04-02 | Toshiba Corp | Manufacture of semiconductor memory device |
JPH0982912A (en) * | 1995-09-13 | 1997-03-28 | Toshiba Corp | Semiconductor storage device and its manufacture |
US5905279A (en) * | 1996-04-09 | 1999-05-18 | Kabushiki Kaisha Toshiba | Low resistant trench fill for a semiconductor device |
JP2935346B2 (en) * | 1996-07-30 | 1999-08-16 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
US5770875A (en) | 1996-09-16 | 1998-06-23 | International Business Machines Corporation | Large value capacitor for SOI |
US5770484A (en) | 1996-12-13 | 1998-06-23 | International Business Machines Corporation | Method of making silicon on insulator buried plate trench capacitor |
KR100228344B1 (en) * | 1997-01-29 | 1999-11-01 | 김영환 | Method of forming storage electrode of semiconductor device |
KR100253077B1 (en) * | 1997-08-16 | 2000-04-15 | 윤종용 | Semiconductor memory device having soi structure and manufacturing method thereof |
CN1213182A (en) * | 1997-09-30 | 1999-04-07 | 西门子公司 | Memory cell for dynamic random access memory (DRAM) |
JPH11163329A (en) | 1997-11-27 | 1999-06-18 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
JP3455097B2 (en) * | 1997-12-04 | 2003-10-06 | 株式会社東芝 | Dynamic semiconductor memory device and method of manufacturing the same |
-
1999
- 1999-08-30 JP JP24264399A patent/JP2001068647A/en active Pending
-
2000
- 2000-01-03 US US09/477,013 patent/US6380578B1/en not_active Expired - Fee Related
- 2000-05-20 TW TW089109740A patent/TW445469B/en not_active IP Right Cessation
- 2000-05-24 KR KR10-2000-0027963A patent/KR100371655B1/en not_active IP Right Cessation
-
2002
- 2002-03-04 US US10/086,721 patent/US6544831B2/en not_active Expired - Fee Related
- 2002-04-30 US US10/134,759 patent/US20020153590A1/en not_active Abandoned
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050013090A1 (en) * | 2001-11-30 | 2005-01-20 | Infineon Technologies Ag | Capacitor and method for producing a capacitor |
US7030457B2 (en) | 2001-11-30 | 2006-04-18 | Infineon Technologies Ag | Capacitor and method for producing a capacitor |
US20040188801A1 (en) * | 2003-03-26 | 2004-09-30 | Ehrichs Edward E. | High emissivity capacitor structure |
US20070284743A1 (en) * | 2003-12-12 | 2007-12-13 | Samsung Electronics Co., Ltd. | Fabricating Memory Devices Using Sacrificial Layers and Memory Devices Fabricated by Same |
US20060105519A1 (en) * | 2004-11-17 | 2006-05-18 | Infineon Technologies Richmond, L.P | DRAM on SOI |
US20060244061A1 (en) * | 2005-04-27 | 2006-11-02 | International Business Machines Corporation | Integrated circuit (ic) with high-q on-chip discrete capacitors |
US20080035977A1 (en) * | 2005-04-27 | 2008-02-14 | International Business Machines Corporation | Integrated circuit (ic) with high-q on-chip discrete capacitors |
US7345334B2 (en) | 2005-04-27 | 2008-03-18 | International Business Machines Corporation | Integrated circuit (IC) with high-Q on-chip discrete capacitors |
US8575017B2 (en) * | 2007-05-14 | 2013-11-05 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device and method of manufacturing the same |
US20130164929A1 (en) * | 2007-05-14 | 2013-06-27 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device and method of manufacturing the same |
US8232149B2 (en) * | 2008-02-29 | 2012-07-31 | Hynix Semiconductor Inc. | SOI device having an increasing charge storage capacity of transistor bodies and method for manufacturing the same |
US20090218624A1 (en) * | 2008-02-29 | 2009-09-03 | Bo Youn Kim | Soi device having an increasing charge storage capacity of transistor bodies and method for manufacturing the same |
CN103022017A (en) * | 2011-09-15 | 2013-04-03 | 英飞凌科技股份有限公司 | Semiconductor structure, semiconductor and method for making semiconductor structure |
US8723243B2 (en) * | 2011-11-30 | 2014-05-13 | International Business Machines Corporation | Polysilicon/metal contact resistance in deep trench |
US20150021737A1 (en) * | 2012-04-27 | 2015-01-22 | International Business Machines Corporation | Metal-insulator-metal (mim) capacitor with deep trench (dt) structure and method in a silicon-on-insulator (soi) |
US8946045B2 (en) * | 2012-04-27 | 2015-02-03 | International Business Machines Corporation | Metal-insulator-metal (MIM) capacitor with deep trench (DT) structure and method in a silicon-on-insulator (SOI) |
US9224797B2 (en) * | 2012-04-27 | 2015-12-29 | Globalfoundries Inc. | Metal-insulator-metal (MIM) capacitor with deep trench (DT) structure and method in a silicon-on-insulator (SOI) |
Also Published As
Publication number | Publication date |
---|---|
US6544831B2 (en) | 2003-04-08 |
TW445469B (en) | 2001-07-11 |
JP2001068647A (en) | 2001-03-16 |
US6380578B1 (en) | 2002-04-30 |
KR100371655B1 (en) | 2003-02-11 |
KR20010020893A (en) | 2001-03-15 |
US20020094615A1 (en) | 2002-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6380578B1 (en) | High-speed stacked capacitor in SOI structure | |
JP4074451B2 (en) | Manufacturing method of semiconductor device | |
KR100268419B1 (en) | A high integrated semiconductor memory device and method fabricating the same | |
US5432365A (en) | Semiconductor memory device | |
US7193262B2 (en) | Low-cost deep trench decoupling capacitor device and process of manufacture | |
JP2673952B2 (en) | Memory cell manufacturing method | |
US6765272B2 (en) | Semiconductor device | |
US5025301A (en) | DRAM which uses MISFETS in the peripheral circuit | |
US5504027A (en) | Method for fabricating semiconductor memory devices | |
KR100676365B1 (en) | Method of manufacturing semiconductor integrated circuit device | |
US7214572B2 (en) | Semiconductor memory device and manufacturing method thereof | |
US7250650B2 (en) | Field-effect transistor structure and associated semiconductor memory cell | |
JP2001148472A (en) | Semiconductor device and manufacturing method therefor | |
US6872629B2 (en) | Method of forming a memory cell with a single sided buried strap | |
KR100609193B1 (en) | Semiconductor device and its manufacturing method | |
US6271564B1 (en) | Semiconductor device and method of manufacturing the same | |
CN115884594B (en) | Semiconductor structure and preparation method thereof | |
JP2689923B2 (en) | Semiconductor device and manufacturing method thereof | |
US6329238B1 (en) | Method of fabricating a memory device having a long data retention time with the increase in leakage current suppressed | |
US6200850B1 (en) | Method for forming a stacked capacitor | |
US7335933B2 (en) | Dynamic random access memory cell and method for fabricating the same | |
JPH1084091A (en) | Semiconductor integrated circuit and its manufacture | |
KR19990087996A (en) | A semiconductor device and a manufacturing process therefor | |
JPH05121691A (en) | Semiconductor storage device | |
CN117998848A (en) | Semiconductor device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RENESAS TECHNOLOGY CORP., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI DENKI KABUSHIKI KAISHA;REEL/FRAME:014502/0289 Effective date: 20030908 |
|
AS | Assignment |
Owner name: RENESAS TECHNOLOGY CORP., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITSUBISHI DENKI KABUSHIKI KAISHA;REEL/FRAME:015185/0122 Effective date: 20030908 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |