US20020007123A1 - Method and system for characterization and mapping of tissue lesions - Google Patents

Method and system for characterization and mapping of tissue lesions Download PDF

Info

Publication number
US20020007123A1
US20020007123A1 US09/739,089 US73908900A US2002007123A1 US 20020007123 A1 US20020007123 A1 US 20020007123A1 US 73908900 A US73908900 A US 73908900A US 2002007123 A1 US2002007123 A1 US 2002007123A1
Authority
US
United States
Prior art keywords
tissue
light
optical
alterations
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/739,089
Other languages
English (en)
Inventor
Constantinos Balas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forth Photonics Ltd
Original Assignee
FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS (FORTH)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS (FORTH) filed Critical FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS (FORTH)
Priority to CNB018073522A priority Critical patent/CN100413460C/zh
Priority to CA2400702A priority patent/CA2400702C/en
Priority to DK01917343T priority patent/DK1267707T3/da
Priority to EP09001994.4A priority patent/EP2057936B1/en
Priority to PT90019944T priority patent/PT2057936E/pt
Priority to JP2001570178A priority patent/JP4217403B2/ja
Priority to AT01917343T priority patent/ATE424757T1/de
Priority to PT01917343T priority patent/PT1267707E/pt
Priority to ES01917343T priority patent/ES2322235T3/es
Priority to ES09001994.4T priority patent/ES2464718T3/es
Priority to RU2002128728/14A priority patent/RU2288636C2/ru
Priority to PCT/GR2001/000017 priority patent/WO2001072214A1/en
Priority to BRPI0108944A priority patent/BRPI0108944B8/pt
Priority to DE60137914T priority patent/DE60137914D1/de
Priority to EP01917343A priority patent/EP1267707B1/en
Priority to US10/240,367 priority patent/US7515952B2/en
Priority to AU4442301A priority patent/AU4442301A/xx
Assigned to FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS (FORTH), THE reassignment FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS (FORTH), THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALAS, CONSTANTINOS
Publication of US20020007123A1 publication Critical patent/US20020007123A1/en
Priority to FI20021477A priority patent/FI20021477A/fi
Priority to US10/346,338 priority patent/US20030163049A1/en
Priority to HK03108410.2A priority patent/HK1056108A1/xx
Priority to US10/850,955 priority patent/US20050054936A1/en
Priority to US10/978,101 priority patent/US8173432B2/en
Priority to US11/266,021 priority patent/US7598088B2/en
Priority to JP2008115094A priority patent/JP2008220977A/ja
Priority to CY20091100583T priority patent/CY1109134T1/el
Assigned to FORTH PHOTONICS LIMITED reassignment FORTH PHOTONICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALAS, CONSTANTINOS, PELECOUDAS, DEMETRIOS, THE FOUNDATION OF RESEARCH AND TECHNOLOGY HELLAS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/303Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the vagina, i.e. vaginoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6423Spectral mapping, video display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the present invention is directed to a method and apparatus for the in vivo, non invasive detection and mapping of the biochemical and/or functional pathologic alterations of human tissues.
  • Cancer precursors signs are the so called pre-cancerous states, which are curable if they are detected at an early stage.
  • the lesion can progress in depth, resulting in the development of invasive cancer and metastases.
  • the possibilities of successful therapy are dramatically diminished. Consequently, the early detection and the objective identification of the severity (stage) of the precancerous lesion are of crucial importance.
  • biopsy samples are obtained from suspicious areas, which are submitted for histological examination.
  • biopsy sampling poses several problems, such as : a) risk for sampling errors associated with the visual limitations in detecting and localizing suspicious areas; b) biopsy can alter the natural history of the intraepithelial lesion; c) mapping and monitoring of the lesion require multiple tissue sampling, which is subjected to several risks and limitations; d) the diagnostic procedure performed with biopsy sampling and histologic evaluation is qualitative, subjective, time consuming, costly and labor intensive.
  • Dombrowski in U.S. Pat. No. 5,424,543 describes a multi-wavelength, imaging system, capable of capturing tissue images in several spectral bands. With the aid of such a system it is possible in general to map characteristics of diagnostic importance based on their particular spectral characteristics. However, due to the insignificance of the spectral differences between normal and pathologic tissue, which is in general the case, inspection in narrow spectral bands does not allow the highlighting of these characteristics and even more so, the identification and staging of the pathologic area.
  • D. R. Sandison et al in U.S. Pat. No. 5,920,399 describe an imaging system, developed for the in vivo investigation of cells, which combines multi-band imaging and light excitation of the tissue.
  • the system also employs a dual fiber optic bundle for the transferring of the emitted from the source light onto the tissue and the remitted light from the tissue to the optical detector. These bundles are placed in contact with the tissue, and various wavelengths of excitation and imaging are combined in attempt to enhance the spectral differentiation between normal and pathologic tissue.
  • the conventional (non-spectral) imaging techniques provide the capability of mapping characteristics of diagnostic importance in two or three dimensions. They are basically used for measuring morphological characteristics and as clinical documentation tools.
  • the optics used for the imaging of the area of interest are of general purpose and are not comply with the special technical requirements for the clinical implementation of the method.
  • Clinical implementation of the presented system is also hindered by the fact that it does not integrate appropriate means for ensuring the stability of the relative position between the tissue surface and image capturing module, during the snapshot imaging procedure. This is very important since small movements of the patient (i.e. breathing) are always present during the examination procedure. If micro-movements are taking place during successive capturing of images, after application of the agent, then the spatial features of the captured images are not coincide. This reduces substantially the precision in the calculation of the curves in any spatial point, that express the kinetics of marker-tissue interaction.
  • the present invention provides, at least in part, a method for monitoring the effects of a pathology differentiating agent on a tissue sample by applying a pathology differentiating agent, e.g., acetic acid, on a tissue sample and monitoring the rate of change of light reflection from the tissue sample over time, thereby monitoring the effects of a pathology differentiating agent on a tissue sample.
  • a pathology differentiating agent e.g., acetic acid
  • the tissue may be a cervical, ear, oral, skin, esophagus, or stomach tissue.
  • the pathology differentiating agent provokes transient alterations in the light scattering properties of the tissue, e.g., the abnormal epithelium.
  • the present invention features a method for the in vivo diagnosis of a tissue abnormality, e.g., a tissue atypia, a tissue dysplasia, a tissue neoplasia (such as a cervical intraepithelial neoplasia, CINI, CINII, CINIII) or cancer, in a subject.
  • a tissue abnormality e.g., a tissue atypia, a tissue dysplasia, a tissue neoplasia (such as a cervical intraepithelial neoplasia, CINI, CINII, CINIII) or cancer
  • the method includes contacting a tissue in a subject with a pathology differentiating agent, e.g., an acetic acid solution or a combination of solutions selected from a plurality of acidic and basic solutions, exposing the tissue in the subject to optical radiation; and monitoring the intensity of light emitted from the tissue over time, thereby diagnosing a tissue abnormality in a subject.
  • a pathology differentiating agent e.g., an acetic acid solution or a combination of solutions selected from a plurality of acidic and basic solutions
  • the optical radiation may be broad band optical radiation, preferably polarized optical radiation.
  • the non-invasive methods of the present invention are useful for the in vivo early detection of tissue abnormalities/alterations and mapping of the grade of these tissue abnormalities/alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues, during the development of tissue atypias, dysplasias, neoplasias and cancers.
  • the tissue area of interest is illuminated with a broad band optical radiation and contacted with a pathology differentiating agent, e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue.
  • a pathology differentiating agent e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue.
  • the light that is re-emitted from the tissue may be in the form of reflection, diffuse scattering, fluorescence or combinations or subcombinations thereof.
  • the intensity of the light emitted from the tissue may be measured, e.g., simultaneously, in every spatial point of the tissue area of interest, at a given time point or over time (e.g., for the duration of agent-t
  • a diagnosis may be made based on the quantitative assessment of the spatial distribution of alterations in the characteristics of the light re-emitted from the tissue at given time points, before and after the optical and chemical excitation of the tissue and/or based on the quantitative assessment of the spatial distribution of parameters, calculated from the characteristic curves that express the kinetics of the provoked alterations in the characteristics of the light re-emitted from the tissue, which characteristic curves are simultaneously measured in every spatial point of the area under examination during the optical and chemical excitation of the tissue.
  • the step of tissue illumination comprises exposing the tissue area under analysis to optical radiation of narrower spectral width than the spectral width of the light emitted by the illumination source.
  • the step of measuring the intensity of light comprises measuring the intensity of the re-emitted light in a spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
  • the step of measuring the intensity of light comprises measuring simultaneously the intensity of the re-emitted light in a plurality of spectral bands, the spectral widths of which are narrower than the spectral width of the detector's sensitivity.
  • the present invention features an apparatus for the in vivo, non-invasive early detection of tissue abnormalities/alterations and mapping of the grade of these tissue abnormalities/alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues, during the development of tissue atypias, dysplasias, neoplasias and cancers.
  • the apparatus includes optics for collecting the light re-emitted by the area under analysis, selecting magnification and focusing the image of the area; optical imaging detector(s); means for the modulation, transfer, display and capturing of the image of the tissue area of interest; a computer which includes data storage, processing and analysis means; a monitor for displaying images, curves and numerical data; optics for the optical multiplication of the image of the tissue area of interest; a light source for illuminating the area of interest; optionally, optical filters for selecting the spectral band of imaging and illumination; means for transmitting light and illuminating the area of interest; control electronics; and optionally, software for the analysis and processing of data, which also enables the tissue image capturing and storing in specific time points and for a plurality of time points, before and after administration of the pathology differentiating agent.
  • an image or a series of images may be created which express the spatial distribution of the characteristics of the kinetics of the provoked changes in the tissue's optical characteristics, before and after the administration of the agent, with pixel values corresponding with the spatial distribution of the alterations in the intensity of the light emitted from the tissue, in given time instances, before and after the optical and chemical excitation of tissue and/or with the spatial distribution of parameters derived from the function: pixel gray value versus time.
  • the foregoing function may be calculated from the captured and stored images and for each row of pixels with the same spatial coordinates.
  • the step of optical filtering the imaging detector comprises an optical filter that is placed in the optical path of the rays that form the image of the tissue, for the recording of temporally successive images in a selected spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
  • the image multiplication optics comprise light beam splitting optics that create two identical images of the area of interest, which are recorded by two imaging detectors, in front of which optical filters are placed, with in general different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that two groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • the image multiplication optics comprise more than one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed, with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded in different sub-areas of the same detector, and in front these areas optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously in the different areas of the detector, each one corresponding to a different spectral band.
  • the step of filtering the light source comprises an optical filter, which is placed in the optical path of an illumination light beam, and transmits light of spectral width shorter than the spectral width of sensitivity of the detector used.
  • the step of filtering the light source comprises a plurality of optical filters and a mechanism for selecting the filter that is interposed to the tissue illumination optical path, thus enabling the tuning of the center wavelength and the spectral width of the light illuminating the tissue.
  • the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on the pixel values of one image, from the group of the recorded temporally successive images of the tissue area of interest.
  • the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on the pixel values belonging to plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
  • the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on numerical data derived from mathematical operations and calculations between the pixel values belonging a plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
  • a pseudo-color scale which represents with different colors the different pixel values of the image or of the images used for the mapping of abnormal tissue areas, is used for the visualization of the mapping of the grade of the alterations to the biochemical and /or functional characteristics of the tissue area under examination.
  • the image or images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue are used for the in vivo detection, mapping, as well as for the determination of the borders of epithelial lesions.
  • the pixel values of the image or of the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used as diagnostic indices for the in vivo identification and staging of epithelial lesions.
  • the image or the images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue can be overimposed onto the color or black and white image of the same area of tissue under examination displayed on the monitor, so that abnormal tissue areas are highlighted and their borders are demarcated, facilitating the selection of a representative area for taking a biopsy sample, the selective surgical removal of the abnormal area and the evaluation of the accuracy in selecting and removing the appropriate section of the tissue.
  • the image or the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used for the evaluation of the effectiveness of various therapeutic modalities such as radiotherapy, nuclear medicine treatments, pharmacological therapy, and chemotherapy.
  • the optics for collecting the light re-emitted by the area under analysis comprises the optomechanical components employed in microscopes used in clinical diagnostic examinations, surgical microscopes, colposcopes and endoscopes.
  • the apparatus may comprise a speculum, an articulated arm onto which the optical head is attached, which optical head comprises a refractive objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, and an illuminator, where the speculum is attached in a fixed location onto the system articulated arm-optical head, in such a way such that the central longitudinal axis of the speculum is perpendicular to the central area of the objective lens, so that when the speculum is inserted into the vagina and fixed in it, the relative position of the image-capturing optics and of the tissue area of interest remains unaltered, regardless of micro-movements of the cervix, which are taking place during the examination of the female subject.
  • the apparatus may further comprise an atomizer for delivering the agent, where the atomizer is attached in a fixed point onto the system articulated arm-optical head of the apparatus and in front of the vaginal opening, where the spraying of the tissue may be controlled and synchronized with a temporally successive image capturing procedure, with the aid of electronic control means.
  • the image capturing detector means and image display means comprise a camera system with detector spatial resolution greater than 1000 ⁇ 1000 pixels and a monitor of at least 17 inches (diagonal), so that high magnification is ensured together with a large field of view, while the image quality is maintained.
  • microscopes used in clinical diagnostic examinations comprise an articulated arm onto which the optical head is attached, which optical head comprises an objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, an illuminator and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed image is eliminated.
  • the endoscope may comprise optical means for transferring light from the light source onto the tissue surface and for collecting and transferring along almost the same axis and focusing the rays that form the image of the tissue, and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed by the endoscope image is eliminated.
  • surgical microscopes and colposcopes may additionally comprise a reflective objective lens, where the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its optical front aperture the second reflection mirror is located, and in the rear part (non-reflective) of this mirror, illumination means are attached from which light is emitted toward the object, so that with or without illumination beam zooming and focusing optics the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging lens, and with the aid of zooming and focusing optics of illumination beam that may be adjusted simultaneously and automatically with the mechanism for varying the magnification of the optical imaging system, the illuminated area and the field-of-view of the imaging system, are varying simultaneously and proportionally, so that any decrease in image brightness caused by increasing the magnification, is compensated with the simultaneous zooming and focusing of the illumination beam.
  • the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its optical
  • FIG. 1 is a schematic representation of the present method's basic principle.
  • FIG. 2 illustrates an embodiment of the invention comprising a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent
  • FIG. 3 illustrates another embodiment of the invention comprising a method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • FIG. 4 illustrates a schematic diagram of a medical microscope comprising a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
  • LS light source
  • MS magnification selection mechanism
  • EP eyepiece
  • CA image capturing module
  • CA image capturing module
  • FIG. 5 illustrates an endoscope comprising an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • EP eyepiece
  • optical fibers or crystals for the transmission of both illumination and image rays
  • optics for the linear polarization of light one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • FIG. 6 depicts a colposcopic apparatus comprising an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
  • AA articulated arm
  • OH optical head
  • LS light source
  • OBJ objective lens
  • EP eye-piece
  • MS magnification
  • FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
  • the present invention is directed to a method and system for the in-vivo, non-invasive detection and mapping of the biochemical and or functional alterations of tissue, e.g., tissue within a subject.
  • tissue e.g., tissue within a subject.
  • this agent is administered, e.g., topically to the tissue.
  • the tissue (T) is sprayed using an atomizer (A), which contains the agent, e.g., acetic acid.
  • the tissue is illuminated with a source that emits light at a specific spectral band, depending on the optical characteristics of both the agent and the tissue.
  • Illumination and selection of the spectral characteristics of the incident to the tissue light can be performed with the aid of a light source (LS) and a mechanism for selecting optical filters (OFS).
  • LS light source
  • OFS optical filters
  • images can be captured and used as reference.
  • the detector (D) captures images of the tissue, in successive time instances, which are then stored in the computer's data-storage means.
  • the capturing rate is proportional to the rate at which the tissue's optical characteristics are altered, following the administration of the agent.
  • FIG. 1 images of the same tissue area are schematically illustrated, which have been stored successively before and after administering the agent (STI).
  • the black areas represent tissue areas that do not alter their optical characteristics (NAT), while the gray-white tones represent areas which alter their optical characteristics (AT), following the administration of the agent.
  • NAT tissue areas that do not alter their optical characteristics
  • AT optical characteristics
  • FIG. 1 two curves are illustrated: pixel value in position xy (Pvxy), versus time t.
  • the curve ATC corresponds to an area where agent administration provoked alterations (AT) in the tissue's optical characteristics.
  • the curve (NATC) corresponds to an area where no alteration took place (NAT).
  • the pseudocolor image of the phenomenon's kinetics (KI), which expresses the spatial distribution of one or more parameters, can be overimposed (after being calculated) on the tissue image, which is displayed in real-time on the monitor.
  • the using the overimposed image as a guide facilitates substantially the determination of the lesion's boundaries, for successful surgical removal of the entire lesion, or for locating suspicious areas in order to obtain a biopsy sample(s).
  • the measured quantitative data and the parameters that derive from them can constitute quantitative clinical indices for the in vivo staging of the lesion or of sub-areas of the latter.
  • the simultaneous imaging in more than one spectral bands can assist in minimizing the contribution of the unwanted endogenous scattering, fluorescence and reflection of the tissue, to the optical signal captured by the detector.
  • the captured optical signal comprise the optical signal generated by the marker-tissue interaction and the light emitted from the endogenous components of the tissue.
  • the recorded response of the components of the tissue constitute noise, since it occludes the generated optical signal, which caries the diagnostic information. Therefore, separation of these signals, based on their particular spectral characteristics, will result in the maximization of the signal-to-noise ratio and consequently in the improvement of the obtained diagnostic information.
  • FIG. 2 illustrates a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • the remitted from the tissue light is collected and focused by the optical imaging module (L) and passes through a beam splitting (BSP) optical element.
  • BSP beam splitting
  • two identical images of the tissue (T) are generated, which can be captured by two detectors (D 1 , D 2 ).
  • appropriate optical filters (Of ⁇ 1 ), (Of ⁇ 2 ) can be placed, so that images with different spectral characteristics are captured.
  • the detectors (D 1 ), (D 2 ) are synchronized so that they capture simultaneously the corresponding spectral images of the tissue (Ti ⁇ 1 ), (Ti ⁇ 2 ) and in successive time-intervals, which are stored in the computer's data storage means.
  • multiple spectral images can be captured simultaneously by combining multiple splitting elements, filters and sources.
  • FIG. 3 illustrates another method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • MIP prism
  • imaging optics it is possible to form multiple copies of the same image onto the surface of the same detector (D).
  • Various optical filters OF ⁇ 1 ),(OF ⁇ 2 ),(OF ⁇ 3 ),(OF ⁇ 4 ), can be interposed along the length of the optical path of the rays that form the copies of the object's image, so that the captured multiple images correspond to different spectral areas.
  • the different implementations of image capturing module described above can be integrated to conventional optical imaging diagnostic devises.
  • Such devises are the various medical microscopes, colposcopes and endoscopes, which are routinely used for the in vivo diagnostic inspection of tissues. Imaging of internal tissues of the human body requires in most cases the illumination and imaging rays to travel along the same optical path, through the cavities of the body. Due to this fact, in the common optical diagnostic devises the tissue's surface reflection contributes substantially in the formed image. This limits the imaging information for the subsurface characteristics, which are in general of great diagnostic importance.
  • FIG. 4 illustrates a schematic diagram of a medical microscope consisted from a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
  • LS light source
  • MS magnification selection mechanism
  • EP eyepiece
  • CA image capturing module
  • CA image capturing module
  • TS surface reflected light
  • the other linear polarizer By interposing the other linear polarizer to the optical path of the rays that are remitted from the tissue and form the optical image of the object, with its polarization plane perpendicular to the polarization level of the incident to the tissue light (IPO), the contribution of the surface reflection to the image of the object is eliminated.
  • the light which is not surface-reflected enters the tissue, where due to multiple scattering, light polarization is randomized.
  • a portion of the re-emitted light passes through the imaging polarization optics, carrying improved information for the subsurface features.
  • FIG. 5 illustrates an endoscope consisted of an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • the polarization plane of the polarizing optics which are adapted to the exit of light from the endoscope (LPO), is perpendicular to the polarization plane of the polarizer, which is adapted to the point where the light enters the endoscope (IL).
  • the polarization optics of the incident to the tissue light could also be adapted at the point where the light enters the endoscope (IL) but in this case, the endoscope has to be constructed using polarization preserving crystals or fiber optics for transferring the light. If polarization preserving light transmission media are used, then the polarizing optics of the imaging rays can be interposed in their path and before or after the eyepiece (EP).
  • a problem for the effective clinical implementation of the described method herein is the micro-movements of the patient, which are always present during the snapshot imaging of the same tissue area. Obviously this problem is eliminated in case that the patient is under anesthesia (open surgery). In most cases however the movements of the tissue relative to the image capturing module, occurring during the successive image capturing time-course, have the consequence that the image pixels, with the same image coordinates, do not correspond to exactly the same spatial point x,y of the tissue area under examination.
  • FIG. 6 A colposcopic apparatus is illustrated in FIG. 6, consisted of an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
  • AA articulated arm
  • OBJ objective lens
  • EP eye-piece
  • MS magnification
  • the image capturing module is attached to the optical head (OH), through an opto-mechanical adapter.
  • the speculum enters the vagina and its blades are opened up compressing the side walls of the vagina.
  • the Speculum (KD) been mechanically connected with the optical head (OH), transfer any micromovement of the patient to the optical head (OH), which been mounted on an articulated arm (AA), follows these movements.
  • the relative position between tissue and optical head remains almost constant.
  • FIG. 6 illustrates an atomizer (A) attached to the optical head of the microscope.
  • the unit (MIC) is comprised of electronics for controlling the agent sprayer and it can incorporate also the container for storing the agent.
  • the unit (MIC) receives the proper command from the computer it sprays a predetermined amount of the agent onto the tissue surface, while the same or another command initiates the snapshot image capturing procedure.
  • the illuminator of the imaging apparatus emits linearly polarized light
  • the multiple reflections are randomizing the polarization plane of the incident light.
  • the incident to the tissue under analysis light is not linearly polarized, then the elimination of the contribution of the surface reflection to the captured image can not be effective.
  • FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
  • the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging apparatus.
  • a reflective-objective lens is used, consisted at least of a first reflection ( 1 RM) and a second reflection ( 2 RM) mirror, where at the rear part of the first reflection mirror ( 2 RM), a light source (LS) is attached together (if required) with optics for light beam manipulation such as zooming and focusing (SO).
  • the reflective objective lens by replacing the common refractive-objective, which is used in conventional microscopes, provides imaging capability in cavities of small diameter, with freedom in choosing the working distance.
  • the zooming and focusing optics of the light beam can be adjusted simultaneously with the mechanism for varying the magnification of the optical imaging system, so that the illumination area and the field-of-view of the imaging system, are varying simultaneously and proportionally. This has as a result, the preservation of image brightness regardless of the magnification level of the lens.
  • the imaging-illumination geometry embodied in this optical imaging apparatus among with the light beam manipulation options, enable the efficient elimination of the contribution of the surface reflection to the captured image and consequently the efficient clinical implementation of the method described herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Endoscopes (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Credit Cards Or The Like (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
US09/739,089 2000-03-28 2000-12-15 Method and system for characterization and mapping of tissue lesions Abandoned US20020007123A1 (en)

Priority Applications (25)

Application Number Priority Date Filing Date Title
DE60137914T DE60137914D1 (de) 2000-03-28 2001-03-28 Verfahren und vorrichtung zur charakterisierung und abbildung von gewebeläsionen
US10/240,367 US7515952B2 (en) 2000-03-28 2001-03-28 System for characterization and mapping of tissue lesions
EP01917343A EP1267707B1 (en) 2000-03-28 2001-03-28 Method and system for characterization and mapping of tissue lesions
EP09001994.4A EP2057936B1 (en) 2000-03-28 2001-03-28 Method and system for characterization and mapping of tissue lesions
CA2400702A CA2400702C (en) 2000-03-28 2001-03-28 Method and system for characterization and mapping of tissue lesions
JP2001570178A JP4217403B2 (ja) 2000-03-28 2001-03-28 組織病巣の特徴付けおよびマッピングのためのシステム
AT01917343T ATE424757T1 (de) 2000-03-28 2001-03-28 Verfahren und vorrichtung zur charakterisierung und abbildung von gewebeläsionen
PT01917343T PT1267707E (pt) 2000-03-28 2001-03-28 Método e sistema para caracterização e mapeamento de lesões de tecido
ES01917343T ES2322235T3 (es) 2000-03-28 2001-03-28 Metodo y sistema para caracterizacion y cartografia de lesiones tisulares.
ES09001994.4T ES2464718T3 (es) 2000-03-28 2001-03-28 Método y sistema para caracterización y cartografía de lesiones tisulares
RU2002128728/14A RU2288636C2 (ru) 2000-03-28 2001-03-28 Способ и системы для определения параметров и картографирования поражений ткани
AU4442301A AU4442301A (en) 2000-03-28 2001-03-28 Method and system for characterization and mapping of tissue lesions
BRPI0108944A BRPI0108944B8 (pt) 2000-03-28 2001-03-28 método para monitoramento dos efeitos de um agente diferenciador na patologia de uma amostra de tecido e sistema para caracterização e mapeamento de lesões do tecido.
CNB018073522A CN100413460C (zh) 2000-03-28 2001-03-28 组织病灶的表征和绘图的方法和系统
DK01917343T DK1267707T3 (da) 2000-03-28 2001-03-28 Metode og system til karakterisering og kartografi af vævslesioner
PT90019944T PT2057936E (pt) 2000-03-28 2001-03-28 Método e sistema para caracterização e mapeamento de lesões de tecido
PCT/GR2001/000017 WO2001072214A1 (en) 2000-03-28 2001-03-28 Method and system for characterization and mapping of tissue lesions
FI20021477A FI20021477A (fi) 2000-03-28 2002-08-14 Menetelmä ja järjestelmä kudosleesioiden karakterisoimiseksi ja kartoittamiseksi
US10/346,338 US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions
HK03108410.2A HK1056108A1 (en) 2000-03-28 2003-11-19 Method and system for characterization and mapping of tissue lesions
US10/850,955 US20050054936A1 (en) 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions
US10/978,101 US8173432B2 (en) 2000-03-28 2004-10-29 Method and system for characterization and mapping of tissue lesions
US11/266,021 US7598088B2 (en) 2000-03-28 2005-11-03 Optical imaging method and system for characterization and mapping of tissue lesions
JP2008115094A JP2008220977A (ja) 2000-03-28 2008-04-25 組織病巣の特徴付けおよびマッピングのための方法およびシステム
CY20091100583T CY1109134T1 (el) 2000-03-28 2009-06-01 Μεθοδος και συστημα χαρακτηρισμου και χαρτογραφησης αλλοιωσεων των ιστων

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GR20000100102 2000-03-28
GR20000100102 2000-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/346,338 Continuation US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions

Publications (1)

Publication Number Publication Date
US20020007123A1 true US20020007123A1 (en) 2002-01-17

Family

ID=40328199

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/739,089 Abandoned US20020007123A1 (en) 2000-03-28 2000-12-15 Method and system for characterization and mapping of tissue lesions
US10/240,367 Expired - Lifetime US7515952B2 (en) 2000-03-28 2001-03-28 System for characterization and mapping of tissue lesions
US10/346,338 Abandoned US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions
US10/850,955 Abandoned US20050054936A1 (en) 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions
US10/978,101 Expired - Fee Related US8173432B2 (en) 2000-03-28 2004-10-29 Method and system for characterization and mapping of tissue lesions
US11/266,021 Expired - Fee Related US7598088B2 (en) 2000-03-28 2005-11-03 Optical imaging method and system for characterization and mapping of tissue lesions
US12/368,647 Expired - Fee Related US7974683B2 (en) 2000-03-28 2009-02-10 Method and system for characterization and mapping of tissue lesions via light and special chemical agents

Family Applications After (6)

Application Number Title Priority Date Filing Date
US10/240,367 Expired - Lifetime US7515952B2 (en) 2000-03-28 2001-03-28 System for characterization and mapping of tissue lesions
US10/346,338 Abandoned US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions
US10/850,955 Abandoned US20050054936A1 (en) 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions
US10/978,101 Expired - Fee Related US8173432B2 (en) 2000-03-28 2004-10-29 Method and system for characterization and mapping of tissue lesions
US11/266,021 Expired - Fee Related US7598088B2 (en) 2000-03-28 2005-11-03 Optical imaging method and system for characterization and mapping of tissue lesions
US12/368,647 Expired - Fee Related US7974683B2 (en) 2000-03-28 2009-02-10 Method and system for characterization and mapping of tissue lesions via light and special chemical agents

Country Status (18)

Country Link
US (7) US20020007123A1 (ja)
EP (2) EP1267707B1 (ja)
JP (2) JP4217403B2 (ja)
CN (1) CN100413460C (ja)
AT (1) ATE424757T1 (ja)
AU (1) AU4442301A (ja)
BR (1) BRPI0108944B8 (ja)
CA (1) CA2400702C (ja)
CY (1) CY1109134T1 (ja)
DE (1) DE60137914D1 (ja)
DK (1) DK1267707T3 (ja)
ES (2) ES2322235T3 (ja)
FI (1) FI20021477A (ja)
GR (1) GR1004180B (ja)
HK (1) HK1056108A1 (ja)
PT (2) PT1267707E (ja)
RU (1) RU2288636C2 (ja)
WO (1) WO2001072214A1 (ja)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020133073A1 (en) * 1998-12-23 2002-09-19 Nordstrom Robert J. Spectroscopic system employing a plurality of data types
US20020177777A1 (en) * 1998-12-23 2002-11-28 Medispectra, Inc. Optical methods and systems for rapid screening of the cervix
US20030095721A1 (en) * 1999-12-15 2003-05-22 Thomas Clune Methods and systems for correcting image misalignment
US20030144585A1 (en) * 1999-12-15 2003-07-31 Howard Kaufman Image processing using measures of similarity
US20030153812A1 (en) * 2001-12-22 2003-08-14 Hutchison Iain Louis Method of examining potential cellular abnormalities
US20030153825A1 (en) * 2002-02-12 2003-08-14 Science & Engineering Associates, Inc. Cancer detection and adaptive dose optimization treatment system
US20030173503A1 (en) * 2002-03-14 2003-09-18 Science & Engineering Associates, Inc. Multiple imaging system and method for designing same
US20030207250A1 (en) * 1999-12-15 2003-11-06 Medispectra, Inc. Methods of diagnosing disease
US20030232445A1 (en) * 2002-01-18 2003-12-18 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system
US20040006274A1 (en) * 2000-10-16 2004-01-08 Cole Giller Method and apparatus for probe localization in brain matter
US20040010187A1 (en) * 2002-07-10 2004-01-15 Schomacker Kevin T. Colonic polyp discrimination by tissue fluorescence and fiberoptic probe
US20040007674A1 (en) * 2002-07-09 2004-01-15 Schomacker Kevin T. Method and apparatus for identifying spectral artifacts
US20040023406A1 (en) * 2002-07-09 2004-02-05 Schomacker Kevin T. Optimal windows for obtaining optical data for characterization of tissue samples
US6768918B2 (en) 2002-07-10 2004-07-27 Medispectra, Inc. Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof
US20040152987A1 (en) * 2002-11-11 2004-08-05 Carl-Zeiss-Stiftung Trading As Carl Zeiss Inspection system and inspection method
US20040186382A1 (en) * 1997-01-13 2004-09-23 Medispectra, Inc. Spectral volume microprobe arrays
US20040208390A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for processing image data for use in tissue characterization
US20040208385A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for visually enhancing images
US20040209237A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US20050043929A1 (en) * 2000-12-15 2005-02-24 Medispectra, Inc. System for normalizing spectra
US20050131284A1 (en) * 2002-04-02 2005-06-16 Yeda Research And Development Co. Ltd. Characterization of moving objects in a stationary background
US20050159646A1 (en) * 1997-01-13 2005-07-21 Medispectra, Inc. Optical probe accessory device for use in in vivo diagnostic procedures
US20060155195A1 (en) * 2001-06-28 2006-07-13 Chemimage Method of chemical imaging to determine tissue margins during surgery
WO2006091853A2 (en) * 2001-06-28 2006-08-31 Chemimage Corporation Method of chemical imaging to determine tissue margins during surgery
US20070182959A1 (en) * 2004-06-30 2007-08-09 Chemimage, Inc. Dynamic imaging of biological cells and other subjects
US20080194928A1 (en) * 2007-01-05 2008-08-14 Jadran Bandic System, device, and method for dermal imaging
US20090076368A1 (en) * 2007-04-11 2009-03-19 Forth Photonics Ltd. Integrated imaging workstation and a method for improving, objectifying and documenting in vivo examinations of the uterus
US20090163827A1 (en) * 2007-12-20 2009-06-25 Yeda Research And Development Co. Ltd Time-based imaging
US20090221912A1 (en) * 2005-05-06 2009-09-03 Darin Nelson Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle
US20090245603A1 (en) * 2007-01-05 2009-10-01 Djuro Koruga System and method for analysis of light-matter interaction based on spectral convolution
US20100081127A1 (en) * 2001-06-28 2010-04-01 Chemlmage Corporation System and Method of Chemical Imaging Using Pulsed Laser Excitation and Time-Gated Detection to Determine Tissue Margins During Surgery
US20100111382A1 (en) * 2007-02-14 2010-05-06 Pola Chemical Industries, Inc. Method of supporting the differentiation of corneocytes
US20100130969A1 (en) * 2008-11-25 2010-05-27 Apogen Technologies, Inc. System and method for dermatological treatment
US20100185064A1 (en) * 2007-01-05 2010-07-22 Jadran Bandic Skin analysis methods
US20110184272A1 (en) * 2008-06-13 2011-07-28 Kun Zeng Portable Diagnostic Device for Precancerous Lesion of Cervical Cancer
WO2011144390A1 (de) * 2010-05-19 2011-11-24 Eberhard-Karls-Universitaet Tuebingen Universitaetsklinikum Direktuntersuchung von biologischem material ex vivo
US20130046153A1 (en) * 2011-08-16 2013-02-21 Elwha LLC, a limited liability company of the State of Delaware Systematic distillation of status data relating to regimen compliance
US8390924B2 (en) 2010-05-19 2013-03-05 Olympus Medical Systems Corp. Endoscope and endoscope apparatus
US20140278831A1 (en) * 2013-03-14 2014-09-18 Profiles International, Inc. System and method for embedding report descriptors into an xml string to assure report consistency
US20170084024A1 (en) * 2015-09-23 2017-03-23 Novadaq Technologies Inc. Methods and systems for assessing healing of tissue
US20170303800A1 (en) * 2014-10-09 2017-10-26 Novadaq Technologies Inc. Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US20180132752A1 (en) * 2004-11-29 2018-05-17 Senorx, Inc. Graphical user interface for tissue biopsy system
US10085643B2 (en) 2007-01-05 2018-10-02 Jadran Bandic Analytic methods of tissue evaluation
US10285603B2 (en) 2013-06-14 2019-05-14 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography
US10426361B2 (en) 2013-06-14 2019-10-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10646128B2 (en) 2016-02-16 2020-05-12 Novadaq Technologies ULC Facilitating assessment of blood flow and tissue perfusion using fluorescence-mediated photoplethysmography
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US11452464B2 (en) 2012-04-19 2022-09-27 Koninklijke Philips N.V. Guidance tools to manually steer endoscope using pre-operative and intra-operative 3D images

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041843A1 (en) * 1999-02-02 2001-11-15 Mark Modell Spectral volume microprobe arrays
AU2001251164B2 (en) * 2000-03-28 2006-11-02 Board Of Regents, The University Of Texas System Methods and apparatus for diagnostic multispectral digital imaging
GR1004180B (el) 2000-03-28 2003-03-11 ����������� ����� ��������� (����) Μεθοδος και συστημα χαρακτηρισμου και χαρτογραφησης αλλοιωσεων των ιστων
US6967015B1 (en) * 2000-07-20 2005-11-22 Zila, Inc. Diagnostic method for detecting dysplastic epithelial tissue
US6954667B2 (en) * 2001-06-28 2005-10-11 Chemimage Corporation Method for Raman chemical imaging and characterization of calcification in tissue
US7309867B2 (en) * 2003-04-18 2007-12-18 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US7469160B2 (en) * 2003-04-18 2008-12-23 Banks Perry S Methods and apparatus for evaluating image focus
US7136518B2 (en) * 2003-04-18 2006-11-14 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
US7459696B2 (en) * 2003-04-18 2008-12-02 Schomacker Kevin T Methods and apparatus for calibrating spectral data
US7282723B2 (en) * 2002-07-09 2007-10-16 Medispectra, Inc. Methods and apparatus for processing spectral data for use in tissue characterization
US7376456B2 (en) * 2002-08-05 2008-05-20 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US7486985B2 (en) * 2002-08-05 2009-02-03 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
CA2563459A1 (en) * 2003-04-18 2004-11-04 Medispectra, Inc. Systems for identifying, displaying, marking, and treating suspect regions of tissue
AU2004273992B2 (en) * 2003-09-19 2010-01-21 The General Hospital Corporation Fluorescence polarization imaging devices and methods
WO2005052558A1 (en) * 2003-11-28 2005-06-09 Bc Cancer Agency Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy
DE102004002918B4 (de) * 2004-01-20 2016-11-10 Siemens Healthcare Gmbh Vorrichtung zur Untersuchung der Haut
US20060155178A1 (en) * 2004-03-26 2006-07-13 Vadim Backman Multi-dimensional elastic light scattering
US20050234526A1 (en) * 2004-04-14 2005-10-20 Gilhuly Terence J Systems and methods for detection of disease including oral scopes and ambient light management systems (ALMS)
US7697576B2 (en) * 2004-05-05 2010-04-13 Chem Image Corporation Cytological analysis by raman spectroscopic imaging
US20060281068A1 (en) * 2005-06-09 2006-12-14 Chemimage Corp. Cytological methods for detecting a disease condition such as malignancy by Raman spectroscopic imaging
WO2006036149A1 (en) * 2004-09-28 2006-04-06 Zila Pharmaceuticals, Inc. Methods for detecting abnormal epithelial tissue
CA2583702A1 (en) * 2004-10-12 2006-04-20 Led Medical Diagnostics, Inc. Systems and methods relating to colposcopic viewing tubes for enhanced viewing and examination
JP4602825B2 (ja) * 2005-04-18 2010-12-22 オリンパスメディカルシステムズ株式会社 画像表示装置
WO2006133030A2 (en) 2005-06-06 2006-12-14 Board Of Regents Oct using spectrally resolved bandwidth
US8253936B2 (en) * 2008-08-08 2012-08-28 Chemimage Corporation Raman characterization of transplant tissue
EP1738682B1 (fr) * 2005-07-01 2008-02-13 Ecole Polytechnique Système d'imagerie polarimétrique électronique pour appareil de colposcopie
JP2009504333A (ja) * 2005-08-15 2009-02-05 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム 針生検イメージングシステム
US7749162B2 (en) * 2005-09-29 2010-07-06 Forth Photonics Ltd. Vaginal speculum arrangement
DK1769731T3 (da) * 2005-09-29 2009-07-06 Forth Photonics Ltd Vaginalspekulum
US8956396B1 (en) 2005-10-24 2015-02-17 Lockheed Martin Corporation Eye-tracking visual prosthetic and method
US8945197B1 (en) 2005-10-24 2015-02-03 Lockheed Martin Corporation Sight-restoring visual prosthetic and method using infrared nerve-stimulation light
US20080077200A1 (en) * 2006-09-21 2008-03-27 Aculight Corporation Apparatus and method for stimulation of nerves and automated control of surgical instruments
US8012189B1 (en) 2007-01-11 2011-09-06 Lockheed Martin Corporation Method and vestibular implant using optical stimulation of nerves
US20070179368A1 (en) * 2005-10-27 2007-08-02 Northwestern University Method of recognizing abnormal tissue using the detection of early increase in microvascular blood content
US9314164B2 (en) 2005-10-27 2016-04-19 Northwestern University Method of using the detection of early increase in microvascular blood content to distinguish between adenomatous and hyperplastic polyps
US20070129615A1 (en) * 2005-10-27 2007-06-07 Northwestern University Apparatus for recognizing abnormal tissue using the detection of early increase in microvascular blood content
US20090203977A1 (en) * 2005-10-27 2009-08-13 Vadim Backman Method of screening for cancer using parameters obtained by the detection of early increase in microvascular blood content
US20070129630A1 (en) * 2005-12-07 2007-06-07 Shimko Daniel A Imaging method, device and system
EP2412300B1 (en) * 2005-12-28 2014-03-26 Olympus Medical Systems Corp. Image processing device and image processing method in image processing device
CA2683657A1 (en) * 2006-04-10 2007-10-18 Led Medical Diagnostics, Inc. Multipurpose diseased tissue detection devices, systems and methods
DE102006022878B3 (de) * 2006-05-15 2007-09-06 Sartorius Biotech Gmbh Verfahren und Detektionsvorrichtung zur bildgebenden Erfassung einer Probe
EP2034890A4 (en) * 2006-06-01 2011-02-16 Gen Hospital Corp IN VIVO OPTICAL IMAGING METHOD COMPRISING THE ANALYSIS OF DYNAMIC IMAGES
US8340745B2 (en) 2006-06-05 2012-12-25 Forth Photonics Ltd. Methods for characterizing cancer and pre-cancer tissues
US8125648B2 (en) 2006-06-05 2012-02-28 Board Of Regents, The University Of Texas System Polarization-sensitive spectral interferometry
US8065802B2 (en) * 2006-07-14 2011-11-29 The Gillette Company Shaving razor
EP2094151A1 (en) * 2006-11-21 2009-09-02 Koninklijke Philips Electronics N.V. A system, method, computer-readable medium and use for imaging of tissue in an anatomical structure
US20080118886A1 (en) * 2006-11-21 2008-05-22 Rongguang Liang Apparatus for dental oct imaging
EP2086396A1 (en) * 2006-11-21 2009-08-12 Koninklijke Philips Electronics N.V. A system, device, method, computer-readable medium, and use for in vivo imaging of tissue in an anatomical structure
ATE526882T1 (de) * 2006-12-19 2011-10-15 Koninkl Philips Electronics Nv Kombiniertes photoakustisches und ultraschall- darstellungssystem
AU2008207265B2 (en) * 2007-01-19 2013-08-01 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US7883536B1 (en) 2007-01-19 2011-02-08 Lockheed Martin Corporation Hybrid optical-electrical probes
US7951075B2 (en) * 2007-04-23 2011-05-31 Olympus Medical Systems Corp. Inspection method with endoscope
US8131054B2 (en) * 2007-08-03 2012-03-06 Sti Medical Systems, Llc Computerized image analysis for acetic acid induced cervical intraepithelial neoplasia
US8998914B2 (en) 2007-11-30 2015-04-07 Lockheed Martin Corporation Optimized stimulation rate of an optically stimulating cochlear implant
PL2291640T3 (pl) 2008-05-20 2019-07-31 University Health Network Urządzenie i sposób obrazowania i monitorowania w oparciu o fluorescencję
US8416405B2 (en) * 2008-08-08 2013-04-09 Chemimage Corporation Raman chemical imaging of implantable drug delivery devices
WO2010042211A1 (en) * 2008-10-10 2010-04-15 Sti Medical Systems, Llc Methods for tissue classification in cervical imagery
JP4697289B2 (ja) * 2008-11-05 2011-06-08 ソニー株式会社 撮像装置、撮像装置の表示制御方法
US9241622B2 (en) * 2009-02-12 2016-01-26 Alcon Research, Ltd. Method for ocular surface imaging
WO2010093772A1 (en) * 2009-02-12 2010-08-19 Alcon Research, Ltd. Method and apparatus for ocular surface imaging
WO2010120769A2 (en) * 2009-04-14 2010-10-21 The General Hospital Corporation Method and apparatus for multimodal imaging of biological tissue
US8063385B2 (en) * 2009-05-29 2011-11-22 General Electric Company Method and apparatus for ultraviolet scan planning
FR2955763B1 (fr) * 2010-02-02 2012-03-09 Commissariat Energie Atomique Sonde optique peroperatoire bi-spectrale
US8484922B2 (en) * 2010-02-17 2013-07-16 Sealed Air Corporation (Us) Alkaline and heat resistant foam composite and floor underlayment
EP2596456B1 (en) * 2010-07-21 2019-09-25 Diopsys, Inc. Method and system for analyzing optical coherence tomography (oct) results using color reflectivity discretization analysis
GB201014783D0 (en) * 2010-09-06 2010-10-20 St George S Hospital Medical School Apparatus and method for positioning a probe for observing microcirculation vessels
US9208556B2 (en) * 2010-11-26 2015-12-08 Quantitative Insights, Inc. Method, system, software and medium for advanced intelligent image analysis and display of medical images and information
US20120165681A1 (en) * 2010-12-23 2012-06-28 Tyco Healthcare Group Lp Delineating Skin or Surface Lesions
TWI554243B (zh) * 2011-01-21 2016-10-21 愛爾康研究有限公司 用於光學同調斷層掃描、照明或光凝治療的組合式外科內探針
US9014789B2 (en) 2011-09-22 2015-04-21 The George Washington University Systems and methods for visualizing ablated tissue
JP5926806B2 (ja) 2011-09-22 2016-05-25 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity アブレーションされた組織を視覚化するシステムと方法
US10165976B2 (en) 2011-12-21 2019-01-01 Orlucent, Inc. System for imaging lesions aligning tissue surfaces
US20140357950A1 (en) * 2012-01-18 2014-12-04 Joel Gerardo Diaz Sanchez Photodynamic diagnosis stereo colposcope (pdd) for female genital tract diseases and early detection of neoplastic lesion
JP6144915B2 (ja) * 2012-01-30 2017-06-07 キヤノン株式会社 生体組織画像の再構成方法、取得方法及び装置
EP2844983A2 (en) 2012-04-30 2015-03-11 Mayo Foundation For Medical Education And Research Spectrometric systems and methods for improved focus localization of time-and space-varying measurements
JP2017000838A (ja) * 2012-06-01 2017-01-05 ソニー株式会社 医療用装置及び制御方法
US20140066756A1 (en) * 2012-09-04 2014-03-06 Ninepoint Medical, Inc. Low cost molded optical probe with astigmatic correction, fiber port, low back reflection, and highly reproducible in manufacturing quantities
US10231782B2 (en) 2012-09-06 2019-03-19 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US10226297B2 (en) 2012-09-06 2019-03-12 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
CN104661584B (zh) * 2012-09-21 2017-06-27 皇家飞利浦有限公司 标注宫颈图像
WO2014060983A1 (en) * 2012-10-18 2014-04-24 Koninklijke Philips N.V. Arrangement for an analysis system, analysis system having the arrangement and method for use of the arrangement
WO2014168734A1 (en) 2013-03-15 2014-10-16 Cedars-Sinai Medical Center Time-resolved laser-induced fluorescence spectroscopy systems and uses thereof
US9844318B2 (en) 2013-03-26 2017-12-19 Novartis Ag Devices, systems, and methods for calibrating an OCT imaging system in a laser surgical system
JP6737705B2 (ja) 2013-11-14 2020-08-12 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity 損傷部位の深さを決定するシステムの動作方法及び心臓組織の画像を生成するシステム
CN105744883B (zh) 2013-11-20 2022-03-01 乔治华盛顿大学 用于心脏组织高光谱分析的系统和方法
US10028649B2 (en) 2013-12-02 2018-07-24 Welch Allyn, Inc. Digital colposcope system
CN103750810B (zh) * 2013-12-30 2015-10-07 深圳市理邦精密仪器股份有限公司 对电子阴道镜取得图像进行特征分析的方法及装置
DE202014102353U1 (de) 2014-05-20 2014-05-27 Borcad Cz S.R.O. Kolposkop
US9757182B2 (en) 2014-06-02 2017-09-12 Biosense Webster (Israel) Ltd. Identification and visualization of gaps between cardiac ablation sites
CN115919256A (zh) 2014-07-24 2023-04-07 大学健康网络 用于诊断目的的数据的收集和分析
USD788786S1 (en) * 2014-07-31 2017-06-06 The Mathworks, Inc. Display screen or portion thereof with color graphical user interface
GB201414631D0 (en) * 2014-08-18 2014-10-01 Univ Singapore Apparatus and methods for simultaneous multimodal nonlinear optical microscopy for label-free bio-imaging
US10231667B2 (en) 2014-10-31 2019-03-19 Koninklijke Philips N.V. Non-invasive dehydration monitoring
CN113208723A (zh) 2014-11-03 2021-08-06 460医学股份有限公司 用于接触质量的评估的系统和方法
JP2017537681A (ja) 2014-11-03 2017-12-21 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity 損傷評価システム及びその方法
CN107072552A (zh) * 2014-11-06 2017-08-18 皇家飞利浦有限公司 皮肤处理系统
KR102560348B1 (ko) 2014-11-26 2023-07-28 데비코어 메디컬 프로덕츠, 인코포레이티드 생검 장치의 그래픽 사용자 인터페이스
AU2016214922B2 (en) * 2015-02-02 2019-07-25 Stryker European Operations Limited Methods and systems for characterizing tissue of a subject
US11206987B2 (en) 2015-04-03 2021-12-28 Suzhou Caring Medical Co., Ltd. Method and apparatus for concurrent imaging at visible and infrared wavelengths
JP2018532132A (ja) * 2015-07-16 2018-11-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. デジタル病理学システム
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment
US10656089B2 (en) 2016-04-01 2020-05-19 Black Light Surgical, Inc. Systems, devices, and methods for time-resolved fluorescent spectroscopy
US9895112B2 (en) * 2016-05-04 2018-02-20 National Chung Cheng University Cancerous lesion identifying method via hyper-spectral imaging technique
RU169745U1 (ru) * 2016-06-21 2017-03-30 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Оптоакустический микроскоп для биоимиджинга
CN106974611B (zh) * 2016-06-29 2020-08-28 郑洪� 口腔健康检查装置、手持部件及内窥镜
EP3490454A4 (en) 2016-07-29 2020-08-05 Novadaq Technologies ULC METHODS AND SYSTEMS FOR CHARACTERIZING A SUBJECT FABRIC USING MACHINE LEARNING
FR3059885B1 (fr) * 2016-12-08 2020-05-08 Koelis Dispositif de visualisation d’un organe interne d’un patient ainsi qu’un procede de visualisation associe
CN110072435B (zh) * 2016-12-08 2022-07-19 皇家飞利浦有限公司 表面组织跟踪
RU2639790C1 (ru) * 2016-12-26 2017-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Система для адресного контроля нейронов мозга живых свободноподвижных животных на основе размыкаемого волоконно-оптического зонда с многоканальными волокнами
US10952799B2 (en) * 2017-05-31 2021-03-23 Covidien Lp Systems and methods for navigational bronchoscopy and selective drug delivery
CN107527069A (zh) * 2017-08-22 2017-12-29 京东方科技集团股份有限公司 图像处理方法、装置、电子设备及计算机可读介质
WO2019094514A1 (en) * 2017-11-07 2019-05-16 Canfield Scientific, Incorporated Enhancing pigmentation in dermoscopy images
RU2671418C1 (ru) * 2017-12-26 2018-10-31 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Устройство для беспроводной чрескожной передачи оптической энергии для питания имплантируемых медицинских приборов
US11672425B2 (en) 2018-02-15 2023-06-13 Speclipse, Inc. Stand-alone apparatus and methods for in vivo detection of tissue malignancy using laser spectroscopy
GB201812050D0 (en) * 2018-07-24 2018-09-05 Dysis Medical Ltd Computer classification of biological tissue
AU2019437773B2 (en) * 2019-03-22 2021-10-28 Speclipse, Inc. Diagnostic method using laser induced breakdown spectroscopy, and diagnostic device for performing same
CN109977955B (zh) * 2019-04-03 2021-11-30 南昌航空大学 一种基于深度学习的宫颈癌前病变识别的方法
TWI691936B (zh) * 2019-09-02 2020-04-21 臺中榮民總醫院 偵測、分類及定量醫學影像中多目標之方法
RU2752711C2 (ru) * 2019-11-18 2021-07-30 Общество с ограниченной ответственностью «Лаборатория межклеточных технологий «Интерсел Рэнд» (ООО «Интерсел Рэнд») Способ и устройство для спектроскопии живой ткани
DE112021003948T5 (de) 2020-07-24 2023-05-25 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Bildrekonstruktion und endoskopische verfolgung
KR102369740B1 (ko) * 2020-09-21 2022-03-02 부경대학교 산학협력단 자궁경부암 조기진단을 위한 모바일 질확대경 장치
RU208537U1 (ru) * 2021-08-16 2021-12-23 Общество с ограниченной ответственностью "Промышленные технологии" Многоканальный видеоэндоскоп
JP7484849B2 (ja) * 2021-08-30 2024-05-16 カシオ計算機株式会社 機器のスタンド

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122A (en) * 1850-02-26 Dotjgall
US127735A (en) * 1872-06-11 Improvement in pruning-shears
US4273110A (en) * 1978-07-13 1981-06-16 Jean Groux Ultraviolet endoscope
US5647368A (en) * 1996-02-28 1997-07-15 Xillix Technologies Corp. Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071020A (en) * 1976-06-03 1978-01-31 Xienta, Inc. Apparatus and methods for performing in-vivo measurements of enzyme activity
JPS57211109A (en) * 1981-06-22 1982-12-24 Konan Camera Kenkyusho:Kk Microscope
US5143054A (en) * 1988-12-28 1992-09-01 Adair Edwin Lloyd Cervical videoscope with detachable camera unit
US5699798A (en) * 1990-08-10 1997-12-23 University Of Washington Method for optically imaging solid tumor tissue
US5235984A (en) * 1992-03-30 1993-08-17 Hewlett-Packard Company On-line acoustic densitometry tool for use with an ultrasonic imaging system
US5956144A (en) 1992-09-03 1999-09-21 Micro Research, Inc. Method and apparatus for use of polarized light vectors in identifying and evaluating constituent compounds in a specimen
US5424543A (en) 1993-04-19 1995-06-13 Surface Optics Corporation Imaging spectroradiometer
US5421339A (en) 1993-05-12 1995-06-06 Board Of Regents, The University Of Texas System Diagnosis of dysplasia using laser induced fluoroescence
US5450857A (en) 1994-05-19 1995-09-19 Board Of Regents, The University Of Texas System Method for the diagnosis of cervical changes
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
US5572608A (en) * 1994-08-24 1996-11-05 International Business Machines Corporation Sinc filter in linear lumen space for scanner
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US6411835B1 (en) 1997-01-13 2002-06-25 Medispectra, Inc. Spectral volume microprobe arrays
US5995856A (en) * 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US5646368A (en) * 1995-11-30 1997-07-08 International Business Machines Corporation Printed circuit board with an integrated twisted pair conductor
JP3796635B2 (ja) * 1996-03-06 2006-07-12 富士写真フイルム株式会社 蛍光検出装置
US5842995A (en) * 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US6101408A (en) * 1996-08-22 2000-08-08 Western Research Company, Inc. Probe and method to obtain accurate area measurements from cervical lesions
US5791346A (en) 1996-08-22 1998-08-11 Western Research Company, Inc. Colposcope device and method for measuring areas of cervical lesions
US6135965A (en) 1996-12-02 2000-10-24 Board Of Regents, The University Of Texas System Spectroscopic detection of cervical pre-cancer using radial basis function networks
US5920399A (en) 1997-03-18 1999-07-06 Sandia Corporation Multispectral imaging method and apparatus
US5989184A (en) 1997-04-04 1999-11-23 Medtech Research Corporation Apparatus and method for digital photography useful in cervical cancer detection
US6081740A (en) * 1997-04-23 2000-06-27 Accumed International, Inc. Method and apparatus for imaging and sampling diseased tissue
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
AU1108499A (en) 1997-10-20 1999-05-10 Board Of Regents, The University Of Texas System Acetic acid as a signal enhancing contrast agent in fluorescence spectroscopy
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
AU749688B2 (en) * 1998-02-23 2002-07-04 Phylonix Pharmaceuticals, Inc. Methods of screening agents for activity using teleosts
US6370422B1 (en) * 1998-03-19 2002-04-09 Board Of Regents, The University Of Texas System Fiber-optic confocal imaging apparatus and methods of use
US6332092B1 (en) 1998-07-08 2001-12-18 Lifespex, Incorporated Optical probe having and methods for uniform light irradiation and/or light collection over a volume
JP3717675B2 (ja) * 1998-08-21 2005-11-16 フジノン株式会社 内視鏡用光源装置
US6299860B1 (en) 1998-10-15 2001-10-09 Fluoro Probe, Inc. Method for viewing diseased tissue located within a body cavity
US6292683B1 (en) * 1999-05-18 2001-09-18 General Electric Company Method and apparatus for tracking motion in MR images
US20040111031A1 (en) * 1999-07-22 2004-06-10 Alfano Robert R. Spectral polarizing tomographic dermatoscope
US20020007122A1 (en) 1999-12-15 2002-01-17 Howard Kaufman Methods of diagnosing disease
GR1004180B (el) 2000-03-28 2003-03-11 ����������� ����� ��������� (����) Μεθοδος και συστημα χαρακτηρισμου και χαρτογραφησης αλλοιωσεων των ιστων

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122A (en) * 1850-02-26 Dotjgall
US127735A (en) * 1872-06-11 Improvement in pruning-shears
US4273110A (en) * 1978-07-13 1981-06-16 Jean Groux Ultraviolet endoscope
US5647368A (en) * 1996-02-28 1997-07-15 Xillix Technologies Corp. Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159646A1 (en) * 1997-01-13 2005-07-21 Medispectra, Inc. Optical probe accessory device for use in in vivo diagnostic procedures
US6826422B1 (en) 1997-01-13 2004-11-30 Medispectra, Inc. Spectral volume microprobe arrays
US20040186382A1 (en) * 1997-01-13 2004-09-23 Medispectra, Inc. Spectral volume microprobe arrays
US20020177777A1 (en) * 1998-12-23 2002-11-28 Medispectra, Inc. Optical methods and systems for rapid screening of the cervix
US20020133073A1 (en) * 1998-12-23 2002-09-19 Nordstrom Robert J. Spectroscopic system employing a plurality of data types
US20050033186A1 (en) * 1998-12-23 2005-02-10 Medispectra, Inc. Substantially monostatic, substantially confocal optical systems for examination of samples
US6760613B2 (en) 1998-12-23 2004-07-06 Medispectra, Inc. Substantially monostatic, substantially confocal optical systems for examination of samples
US20050064602A1 (en) * 1999-12-15 2005-03-24 Medispectra, Inc. Methods of monitoring effects of chemical agents on a sample
US20030095721A1 (en) * 1999-12-15 2003-05-22 Thomas Clune Methods and systems for correcting image misalignment
US7260248B2 (en) * 1999-12-15 2007-08-21 Medispectra, Inc. Image processing using measures of similarity
US20030144585A1 (en) * 1999-12-15 2003-07-31 Howard Kaufman Image processing using measures of similarity
US20030207250A1 (en) * 1999-12-15 2003-11-06 Medispectra, Inc. Methods of diagnosing disease
US20040006274A1 (en) * 2000-10-16 2004-01-08 Cole Giller Method and apparatus for probe localization in brain matter
US20050043929A1 (en) * 2000-12-15 2005-02-24 Medispectra, Inc. System for normalizing spectra
US7596404B2 (en) * 2001-06-28 2009-09-29 Chemimage Corporation Method of chemical imaging to determine tissue margins during surgery
US20100081127A1 (en) * 2001-06-28 2010-04-01 Chemlmage Corporation System and Method of Chemical Imaging Using Pulsed Laser Excitation and Time-Gated Detection to Determine Tissue Margins During Surgery
US20060155195A1 (en) * 2001-06-28 2006-07-13 Chemimage Method of chemical imaging to determine tissue margins during surgery
US8078268B2 (en) * 2001-06-28 2011-12-13 Chemimage Corporation System and method of chemical imaging using pulsed laser excitation and time-gated detection to determine tissue margins during surgery
WO2006091853A2 (en) * 2001-06-28 2006-08-31 Chemimage Corporation Method of chemical imaging to determine tissue margins during surgery
WO2006091853A3 (en) * 2001-06-28 2008-05-08 Chemimage Corp Method of chemical imaging to determine tissue margins during surgery
US20030153812A1 (en) * 2001-12-22 2003-08-14 Hutchison Iain Louis Method of examining potential cellular abnormalities
US7404929B2 (en) * 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
US20030232445A1 (en) * 2002-01-18 2003-12-18 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system
US20030153825A1 (en) * 2002-02-12 2003-08-14 Science & Engineering Associates, Inc. Cancer detection and adaptive dose optimization treatment system
US7328060B2 (en) * 2002-02-12 2008-02-05 Science & Engineering Associates, Inc. Cancer detection and adaptive dose optimization treatment system
WO2003068064A1 (en) * 2002-02-12 2003-08-21 Science & Engineering Associates, Inc. Cancer detection and adaptive dose optimization treatment system
US7177085B2 (en) 2002-03-14 2007-02-13 Science & Engineering Associates, Inc. Multiple imaging system and method for designing same
WO2003079093A3 (en) * 2002-03-14 2004-04-15 Science & Engineering Associat Multiple imaging system and method for designing same
WO2003079093A2 (en) * 2002-03-14 2003-09-25 Science & Engineering Associates, Inc. Multiple imaging system and method for designing same
US20030173503A1 (en) * 2002-03-14 2003-09-18 Science & Engineering Associates, Inc. Multiple imaging system and method for designing same
US7912534B2 (en) * 2002-04-02 2011-03-22 Yeda Research And Development Co. Ltd. Characterization of moving objects in a stationary background
US20050131284A1 (en) * 2002-04-02 2005-06-16 Yeda Research And Development Co. Ltd. Characterization of moving objects in a stationary background
US20040007674A1 (en) * 2002-07-09 2004-01-15 Schomacker Kevin T. Method and apparatus for identifying spectral artifacts
US20040214156A1 (en) * 2002-07-09 2004-10-28 Medispectra, Inc. Method and apparatus for identifying spectral artifacts
US6818903B2 (en) 2002-07-09 2004-11-16 Medispectra, Inc. Method and apparatus for identifying spectral artifacts
US20040023406A1 (en) * 2002-07-09 2004-02-05 Schomacker Kevin T. Optimal windows for obtaining optical data for characterization of tissue samples
US20050043635A1 (en) * 2002-07-10 2005-02-24 Medispectra, Inc. Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof
US20080091110A1 (en) * 2002-07-10 2008-04-17 Zelenchuk Alex R Fluorescent Fiberoptic Probe for Tissue Health Discrimination and Method of Use Thereof
US20040010187A1 (en) * 2002-07-10 2004-01-15 Schomacker Kevin T. Colonic polyp discrimination by tissue fluorescence and fiberoptic probe
US6768918B2 (en) 2002-07-10 2004-07-27 Medispectra, Inc. Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof
US8005527B2 (en) 2002-07-10 2011-08-23 Luma Imaging Corporation Method of determining a condition of a tissue
US20040152987A1 (en) * 2002-11-11 2004-08-05 Carl-Zeiss-Stiftung Trading As Carl Zeiss Inspection system and inspection method
US20040208390A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for processing image data for use in tissue characterization
US20040209237A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US20040208385A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for visually enhancing images
US20110110567A1 (en) * 2003-04-18 2011-05-12 Chunsheng Jiang Methods and Apparatus for Visually Enhancing Images
US7564546B2 (en) 2004-06-30 2009-07-21 Chemimage Corporation Dynamic imaging of biological cells and other subjects
US20070182959A1 (en) * 2004-06-30 2007-08-09 Chemimage, Inc. Dynamic imaging of biological cells and other subjects
US10687733B2 (en) * 2004-11-29 2020-06-23 Senorx, Inc. Graphical user interface for tissue biopsy system
US20180132752A1 (en) * 2004-11-29 2018-05-17 Senorx, Inc. Graphical user interface for tissue biopsy system
US20090221912A1 (en) * 2005-05-06 2009-09-03 Darin Nelson Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle
US8172763B2 (en) 2005-05-06 2012-05-08 Yeda Research And Development Co., Ltd. Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle
US20100185064A1 (en) * 2007-01-05 2010-07-22 Jadran Bandic Skin analysis methods
US10085643B2 (en) 2007-01-05 2018-10-02 Jadran Bandic Analytic methods of tissue evaluation
US20090245603A1 (en) * 2007-01-05 2009-10-01 Djuro Koruga System and method for analysis of light-matter interaction based on spectral convolution
US20080194928A1 (en) * 2007-01-05 2008-08-14 Jadran Bandic System, device, and method for dermal imaging
US20100111382A1 (en) * 2007-02-14 2010-05-06 Pola Chemical Industries, Inc. Method of supporting the differentiation of corneocytes
US8526689B2 (en) * 2007-02-14 2013-09-03 Pola Chemical Industries Inc Method of supporting the differentiation of corneocytes
US20090076368A1 (en) * 2007-04-11 2009-03-19 Forth Photonics Ltd. Integrated imaging workstation and a method for improving, objectifying and documenting in vivo examinations of the uterus
US20090163827A1 (en) * 2007-12-20 2009-06-25 Yeda Research And Development Co. Ltd Time-based imaging
US8403862B2 (en) 2007-12-20 2013-03-26 Yeda Research And Development Co. Ltd. Time-based imaging
US10835138B2 (en) 2008-01-25 2020-11-17 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US11564583B2 (en) 2008-01-25 2023-01-31 Stryker European Operations Limited Method for evaluating blush in myocardial tissue
US20110184272A1 (en) * 2008-06-13 2011-07-28 Kun Zeng Portable Diagnostic Device for Precancerous Lesion of Cervical Cancer
US20100130969A1 (en) * 2008-11-25 2010-05-27 Apogen Technologies, Inc. System and method for dermatological treatment
US10571389B2 (en) 2010-05-19 2020-02-25 Eberhard-Karls-Universitaet Tuebingen Universitaetsklinikum Direct examination of biological material ex vivo
WO2011144390A1 (de) * 2010-05-19 2011-11-24 Eberhard-Karls-Universitaet Tuebingen Universitaetsklinikum Direktuntersuchung von biologischem material ex vivo
US8390924B2 (en) 2010-05-19 2013-03-05 Olympus Medical Systems Corp. Endoscope and endoscope apparatus
US9770189B2 (en) 2011-08-16 2017-09-26 Elwha Llc Systematic distillation of status data relating to regimen compliance
US20130046153A1 (en) * 2011-08-16 2013-02-21 Elwha LLC, a limited liability company of the State of Delaware Systematic distillation of status data relating to regimen compliance
US11452464B2 (en) 2012-04-19 2022-09-27 Koninklijke Philips N.V. Guidance tools to manually steer endoscope using pre-operative and intra-operative 3D images
US11284801B2 (en) 2012-06-21 2022-03-29 Stryker European Operations Limited Quantification and analysis of angiography and perfusion
US9471892B2 (en) * 2013-03-14 2016-10-18 Profiles International, Inc. System and method for embedding report descriptors into an XML string to assure report consistency
US20140278831A1 (en) * 2013-03-14 2014-09-18 Profiles International, Inc. System and method for embedding report descriptors into an xml string to assure report consistency
US10426361B2 (en) 2013-06-14 2019-10-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10285603B2 (en) 2013-06-14 2019-05-14 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography
US11696695B2 (en) 2013-06-14 2023-07-11 Stryker European Operations Limited Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography
US10631746B2 (en) * 2014-10-09 2020-04-28 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US20170303800A1 (en) * 2014-10-09 2017-10-26 Novadaq Technologies Inc. Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US20190355116A1 (en) * 2015-09-23 2019-11-21 Novadaq Technologies ULC Methods and systems for assessing healing of tissue
US10636144B2 (en) * 2015-09-23 2020-04-28 Novadaq Technologies ULC Methods and systems for assessing healing of tissue
US10311567B2 (en) * 2015-09-23 2019-06-04 Novadaq Technologies ULC Methods and systems for assessing healing of tissue
US20170084024A1 (en) * 2015-09-23 2017-03-23 Novadaq Technologies Inc. Methods and systems for assessing healing of tissue
US10646128B2 (en) 2016-02-16 2020-05-12 Novadaq Technologies ULC Facilitating assessment of blood flow and tissue perfusion using fluorescence-mediated photoplethysmography
US11701016B2 (en) 2016-02-16 2023-07-18 Stryker European Operations Limited Facilitating assessment of blood flow and tissue perfusion using fluorescence-mediated photoplethysmography
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
US20030163049A1 (en) 2003-08-28
PT2057936E (pt) 2014-07-16
BR0108944B1 (pt) 2012-02-07
US20060141633A1 (en) 2006-06-29
US20030114762A1 (en) 2003-06-19
CA2400702A1 (en) 2001-10-04
WO2001072214A1 (en) 2001-10-04
CA2400702C (en) 2010-07-20
BR0108944A (pt) 2003-06-03
JP4217403B2 (ja) 2009-02-04
US20050090751A1 (en) 2005-04-28
BRPI0108944B8 (pt) 2021-06-22
DE60137914D1 (de) 2009-04-23
US20050054936A1 (en) 2005-03-10
CY1109134T1 (el) 2014-07-02
EP2057936B1 (en) 2014-05-07
RU2002128728A (ru) 2004-03-27
ES2322235T3 (es) 2009-06-18
CN100413460C (zh) 2008-08-27
GR20000100102A (el) 2001-11-30
CN1419428A (zh) 2003-05-21
US7598088B2 (en) 2009-10-06
US20090253991A1 (en) 2009-10-08
AU4442301A (en) 2001-10-08
JP2003527915A (ja) 2003-09-24
HK1056108A1 (en) 2004-02-06
PT1267707E (pt) 2009-06-05
GR1004180B (el) 2003-03-11
JP2008220977A (ja) 2008-09-25
ATE424757T1 (de) 2009-03-15
EP1267707B1 (en) 2009-03-11
US8173432B2 (en) 2012-05-08
FI20021477A (fi) 2002-08-14
DK1267707T3 (da) 2009-07-06
US7515952B2 (en) 2009-04-07
EP1267707A1 (en) 2003-01-02
US7974683B2 (en) 2011-07-05
RU2288636C2 (ru) 2006-12-10
EP2057936A1 (en) 2009-05-13
ES2464718T3 (es) 2014-06-03

Similar Documents

Publication Publication Date Title
US8173432B2 (en) Method and system for characterization and mapping of tissue lesions
US10314490B2 (en) Method and device for multi-spectral photonic imaging
US6766184B2 (en) Methods and apparatus for diagnostic multispectral digital imaging
US6507747B1 (en) Method and apparatus for concomitant structural and biochemical characterization of tissue
US20060184040A1 (en) Apparatus, system and method for optically analyzing a substrate
AU2001251164A1 (en) Methods and apparatus for diagnostic multispectral digital imaging
JP3923080B2 (ja) 光学的微細プローベ及び材料のスペクトル分析方法
KR20160067869A (ko) 광학 검경
AU2001244423B2 (en) Method and system for characterization and mapping of tissue lesions
Kang et al. System for fluorescence diagnosis and photodynamic therapy of cervical disease
AU2001244423A1 (en) Method and system for characterization and mapping of tissue lesions
RU104836U1 (ru) Лазерный спектрально-флуоресцентный кольпоскоп
Richards-Kortum et al. Methods and apparatus for diagnostic multispectral digital imaging
Wu et al. Detecting neoplastic growths in vivo with autofluorescence imaging

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOUNDATION FOR RESEARCH AND TECHNOLOGY-HELLAS (FOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BALAS, CONSTANTINOS;REEL/FRAME:012417/0703

Effective date: 20010909

AS Assignment

Owner name: FORTH PHOTONICS LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BALAS, CONSTANTINOS;PELECOUDAS, DEMETRIOS;THE FOUNDATION OF RESEARCH AND TECHNOLOGY HELLAS;REEL/FRAME:023493/0215

Effective date: 20020814

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION