US20050054936A1 - Method and system for characterization and mapping of tissue lesions - Google Patents

Method and system for characterization and mapping of tissue lesions Download PDF

Info

Publication number
US20050054936A1
US20050054936A1 US10/850,955 US85095504A US2005054936A1 US 20050054936 A1 US20050054936 A1 US 20050054936A1 US 85095504 A US85095504 A US 85095504A US 2005054936 A1 US2005054936 A1 US 2005054936A1
Authority
US
United States
Prior art keywords
images
tissue
tissue sample
misalignment
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/850,955
Inventor
Constantinos Balas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/850,955 priority Critical patent/US20050054936A1/en
Publication of US20050054936A1 publication Critical patent/US20050054936A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/303Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the vagina, i.e. vaginoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6423Spectral mapping, video display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Definitions

  • the present invention is directed to a method and apparatus for the in vivo, non invasive detection and mapping of the biochemical and/or functional pathologic alterations of human tissues.
  • Cancer precursors signs are the so called pre-cancerous states, which are curable if they are detected at an early stage.
  • the lesion can progress in depth, resulting in the development of invasive cancer and metastases.
  • the possibilities of successful therapy are dramatically diminished. Consequently, the early detection and the objective identification of the severity (stage) of the precancerous lesion are of crucial importance.
  • biopsy samples are obtained from suspicious areas, which are submitted for histological examination.
  • biopsy sampling poses several problems, such as: a) risk for sampling errors associated with the visual limitations in detecting and localizing suspicious areas; b) biopsy can alter the natural history of the intraepithelial lesion; c) mapping and monitoring of the lesion require multiple tissue sampling, which is subjected to several risks and limitations; d) the diagnostic procedure performed with biopsy sampling and histologic evaluation is qualitative, subjective, time consuming, costly and labor intensive.
  • the latter is expressed as low sensitivity and specificity in the detection and classification of tissue lesions.
  • Ramanujan et al in the patent No. WO 98/24369 have presented a method based on the use of neural networks for the analysis of the spectral data. This method is based on the training of a computing system with a large number of spectral patterns, which have been taken from normal and from pathologic tissues. The spectrum that is captured each time is compared with the stored spectral data, facilitating this way, the identification of the tissue pathology.
  • Dombrowski in U.S. Pat. No. 5,424,543 describes a multi-wavelength, imaging system, capable of capturing tissue images in several spectral bands. With the aid of such a system it is possible in general to map characteristics of diagnostic importance based on their particular spectral characteristics. However, due to the insignificance of the spectral differences between normal and pathologic tissue, which is in general the case, inspection in narrow spectral bands does not allow the highlighting of these characteristics and even more so, the identification and staging of the pathologic area.
  • D. R. Sandison et al in U.S. Pat. No. 5,920,399 describe an imaging system, developed for the in vivo investigation of cells, which combines multi-band imaging and light excitation of the tissue.
  • the system also employs a dual fiber optic bundle for the transferring of the emitted from the source light onto the tissue and the remitted light from the tissue to the optical detector. These bundles are placed in contact with the tissue, and various wavelengths of excitation and imaging are combined in attempt to enhance the spectral differentiation between normal and pathologic tissue.
  • J. R. Delfyett et al have presented a method for the diagnosis of diseases of the cervix, which is based on the combination of Spectral Interferometry and Optical Coherence Tomography (OCT). This system combines three-dimensional imaging and spectral analysis of the tissue.
  • OCT Optical Coherence Tomography
  • the optics used for the imaging of the area of interest are of general purpose and are not comply with the special technical requirements for the clinical implementation of the method.
  • Clinical implementation of the presented system is also hindered by the fact that it does not integrate appropriate means for ensuring the stability of the relative position between the tissue surface and image capturing module, during the snapshot imaging procedure. This is very important since small movements of the patient (i.e. breathing) are always present during the examination procedure. If micro-movements are taking place during successive capturing of images, after application of the agent, then the spatial features of the captured images are not coincide. This reduces substantially the precision in the calculation of the curves in any spatial point, that express the kinetics of marker-tissue interaction.
  • the present invention provides, at least in part, a method for monitoring the effects of a pathology differentiating agent on a tissue sample by applying a pathology differentiating agent, e.g., acetic acid, on a tissue sample and monitoring the rate of change of light reflection from the tissue sample over time, thereby monitoring the effects of a pathology differentiating agent on a tissue sample.
  • a pathology differentiating agent e.g., acetic acid
  • the tissue may be a cervical, ear, oral, skin, esophagus, or stomach tissue.
  • the pathology differentiating agent provokes transient alterations in the light scattering properties of the tissue, e.g., the abnormal epithelium.
  • the present invention features a method for the in vivo diagnosis of a tissue abnormality, e.g., a tissue atypia, a tissue dysplasia, a tissue neoplasia (such as a cervical intraepithelial neoplasia, CINI, CINII, CINIII) or cancer, in a subject.
  • the method includes contacting a tissue in a subject with a pathology differentiating agent, e.g., an acetic acid solution or a combination of solutions selected from a plurality of acidic and basic solutions, exposing the tissue in the subject to optical radiation; and monitoring the intensity of light emitted from the tissue over time, thereby diagnosing a tissue abnormality in a subject.
  • the optical radiation may be broad band optical radiation, preferably polarized optical radiation.
  • the non-invasive methods of the present invention are useful for the in vivo early detection of tissue abnormalities/alterations and mapping of the grade of tissue characteristics of epithelial tissues, during the development of tissue atypias, dysplasias neoplasias and cancers.
  • the tissue area of interest is illuminated with a broad band optical radiation and contacted with a pathology differentiating agent, e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue.
  • a pathology differentiating agent e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue.
  • the light that is re-emitted from the tissue may be in the form of reflection, diffuse scattering, fluorescence or combinations or subcombinations thereof.
  • the intensity of the light emitted from the tissue may be measured, e.g., simultaneously, in every spatial point of the tissue area of interest, at a given time point or over time (e.g., for the duration of agent-t
  • a diagnosis may be made based on the quantitative assessment of the spatial distribution of alterations in the characteristics of the light re-emitted from the tissue at given time points, before and after the optical and chemical excitation of the tissue and/or based on the quantitative assessment of the spatial distribution of parameters, calculated from the characteristic curves that express the kinetics of the provoked alterations in the characteristics of the light re-emitted from the tissue, which characteristic curves are simultaneously measured in every spatial point of the area under examination during the optical and chemical excitation of the tissue.
  • the step of tissue illumination comprises exposing the tissue area under analysis to optical radiation of narrower spectral width than the spectral width of the light emitted by the illumination source.
  • the step of measuring the intensity of light comprises measuring the intensity of the re-emitted light in a spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
  • the step of measuring the intensity of light comprises measuring simultaneously the intensity of the re-emitted light in a plurality of spectral bands, the spectral widths of which are narrower than the spectral width of the detector's sensitivity.
  • the present invention features an apparatus for the in vivo, non-invasive early detection of tissue abnormalities/alterations and mapping of the grade of these tissue abnormalities/alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues, during the development of tissue atypias, dysplasias, neoplasias and cancers.
  • the apparatus includes optics for collecting the light re-emitted by the area under analysis, selecting magnification and focusing the image of the area; optical imaging detector(s); means for the modulation, transfer, display and capturing of the image of the tissue area of interest; a computer which includes data storage, processing and analysis means; a monitor for displaying images, curves and numerical data; optics for the optical multiplication of the image of the tissue area of interest; a light source for illuminating the area of interest; optionally, optical filters for selecting the spectral band of imaging and illumination; means for transmitting light and illuminating the area of interest; control electronics; and optionally, software for the analysis and processing of data, which also enables the tissue image capturing and storing in specific time points and for a plurality of time points, before and after administration of the pathology differentiating agent.
  • an image or a series of images may be created which express the spatial distribution of the characteristics of the kinetics of the provoked changes in the tissue's optical characteristics, before and after the administration of the agent, with pixel values corresponding with the spatial distribution of the alterations in the intensity of the light emitted from the tissue, in given time instances, before and after the optical and chemical excitation of tissue and/or with the spatial distribution of parameters derived from the function: pixel gray value versus time.
  • the foregoing function may be calculated from the captured and stored images and for each row of pixels with the same spatial coordinates.
  • the step of optical filtering the imaging detector comprises an optical filter that is placed in the optical path of the rays that form the image of the tissue, for the recording of temporally successive images in a selected spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
  • the image multiplication optics comprise light beam splitting optics that create two identical images of the area of interest, which are recorded by two imaging detectors, in front of which optical filters are placed, with in general different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that two groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • the image multiplication optics comprise more than one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed, with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded in different sub-areas of the same detector, and in front these areas optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously in the different areas of the detector, each one corresponding to a different spectral band.
  • the step of filtering the light source comprises an optical filter, which is placed in the optical path of an illumination light beam, and transmits light of spectral width shorter than the spectral width of sensitivity of the detector used.
  • the step of filtering the light source comprises a plurality of optical filters and a mechanism for selecting the filter that is interposed to the tissue illumination optical path, thus enabling the tuning of the center wavelength and the spectral width of the light illuminating the tissue.
  • the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on the pixel values of one image, from the group of the recorded temporally successive images of the tissue area of interest.
  • the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on the pixel values belonging to plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
  • the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on numerical data derived from mathematical operations and calculations between the pixel values belonging a plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
  • a pseudo-color scale which represents with different colors the different pixel values of the image or of the images used for the mapping of abnormal tissue areas, is used for the visualization of the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area under examination.
  • the image or images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue are used for the in vivo detection, mapping, as-well as for the determination of the borders of epithelial lesions.
  • the pixel values of the image or of the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used as diagnostic indices for the in vivo identification and staging of epithelial lesions.
  • the image or the images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue can be overimposed onto the color or black and white image of the same area of tissue under examination displayed on the monitor, so that abnormal tissue areas are highlighted and their borders are demarcated, facilitating the selection of a representative area for taking a biopsy sample, the selective surgical removal of the abnormal area and the evaluation of the accuracy in selecting and removing the appropriate section of the tissue.
  • the image or the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used for the evaluation of the effectiveness of various therapeutic modalities such as radiotherapy, nuclear medicine treatments, pharmacological therapy, and chemotherapy.
  • the optics for collecting the light re-emitted by the area under analysis comprises the optomechanical components employed in microscopes used in clinical diagnostic examinations, surgical microscopes, colposcopes and endoscopes.
  • the apparatus may comprise a speculum, an articulated arm onto which the optical head is attached, which optical head comprises a refractive objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, and an illuminator, where the speculum is attached in a fixed location onto the system articulated arm-optical head, in such a way such that the central longitudinal axis of the speculum is perpendicular to the central area of the objective lens, so that when the speculum is inserted into the vagina and fixed in it, the relative position of the image-capturing optics and of the tissue area of interest remains unaltered, regardless of micro-movements of the cervix, which are taking place during the examination of the female subject.
  • the apparatus may further comprise an atomizer for delivering the agent, where the atomizer is attached in a fixed point onto the system articulated arm-optical head of the apparatus and in front of the vaginal opening, where the spraying of the tissue may be-controlled and synchronized with a temporally successive image capturing procedure, with the aid of electronic control means.
  • the image capturing detector means and image display means comprise a camera system with detector spatial resolution greater than 1000 ⁇ 1000 pixels and a monitor of at least 17 inches (diagonal), so that high magnification is ensured together with a large field of view, while the image quality is maintained.
  • surgical microscopes and colposcopes comprise an articulated arm onto which the optical head is attached, which optical head comprises an objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, an illuminator and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed image is eliminated.
  • the endoscope may comprise optical means for transferring light from the light source onto the tissue surface and for collecting and transferring along almost the same axis and focusing the rays that form the image of the tissue, and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed by the endoscope image is eliminated.
  • surgical microscopes and colposcopes may additionally comprise a reflective objective lens, where the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its optical front aperture the second reflection mirror is located, and in the rear part (non-reflective) of this mirror, illumination means are attached from which light is emitted toward the object, so that with or without illumination beam zooming and focusing optics the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging lens, and with the aid of zooming and focusing optics of illumination beam that may be adjusted simultaneously and automatically with the mechanism for varying the magnification of the optical imaging system, the illuminated area and the field-of-view of the imaging system, are varying simultaneously and proportionally, so that any decrease in image brightness caused by increasing the magnification, is compensated with the simultaneous zooming; and focusing of the illumination beam.
  • the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its
  • FIG. 1 is a schematic representation of the present method's basic principle.
  • FIG. 2 illustrates an embodiment of the invention comprising a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • FIG. 3 illustrates another embodiment of the invention comprising a method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • FIG. 4 illustrates a schematic diagram of a medical microscope comprising a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
  • LS light source
  • MS magnification selection mechanism
  • EP eyepiece
  • CA image capturing module
  • CA image capturing module
  • FIG. 5 illustrates an endoscope comprising an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • EP eyepiece
  • optical fibers or crystals for the transmission of both illumination and image rays
  • optics for the linear polarization of light one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • FIG. 6 depicts a colposcopic apparatus comprising an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
  • AA articulated arm
  • OH optical head
  • LS light source
  • OBJ objective lens
  • EP eye-piece
  • MS magnification
  • FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
  • the present invention is directed to a method and system for the in-vivo, non-invasive detection and mapping of the biochemical and or functional alterations of tissue, e.g., tissue within a subject.
  • tissue e.g., tissue within a subject.
  • this agent is administered, e.g., topically to the tissue.
  • the tissue (T) is sprayed using an atomizer (A), which contains the agent, e.g., acetic acid.
  • the tissue is illuminated with a source that emits light at a specific spectral band, depending on the optical characteristics of both the agent and the tissue.
  • Illumination and selection of the spectral characteristics of the incident to the tissue light can be performed with the aid of a light source (LS) and a mechanism for selecting optical filters (OFS).
  • LS light source
  • OFS optical filters
  • tissue (T) and detector (D) For the imaging of the area of interest, light collection optics (L) are used, which focus the image onto a two-dimensional optical detector (D). The output signal of the latter is amplified, modulated and digitized with the aid of appropriate electronics (EIS) and finally the image is displayed on a monitor (M) and stored in the data-storing means of a personal computer (PC). Between tissue (T) and detector (D), optical filters (OFI) can be interposed. The interposition of the filter can be performed for tissue (T) imaging in selected spectral bands, at which the maximum contrast is obtained between areas that are subjected to different grade of alterations in their optical characteristics, provoked after administering the appropriate agent.
  • OFI optical filters
  • the detector (D) captures images of the tissue, in successive time instances, which are then stored in the computer's data-storage means.
  • the capturing rate is proportional to the rate at which the tissue's optical characteristics are altered, following the administration of the agent.
  • FIG. 1 images of the same tissue area are schematically illustrated, which have been stored successively before and after administering the agent (STI).
  • the black areas represent tissue areas that do not alter their optical characteristics (NAT), while the gray-white tones represent areas which alter their optical characteristics (AT), following the administration of the agent.
  • NAT tissue areas that do not alter their optical characteristics
  • AT optical characteristics
  • FIG. 1 two curves are illustrated: pixel value in position xy (Pvxy), versus time t.
  • the curve ATC corresponds to an area where agent administration provoked alterations (AT) in the tissue's optical characteristics.
  • the curve (NATC) corresponds to an area where no alteration took place (NAT).
  • the pseudocolor image of the phenomenon's kinetics (KI), which expresses the spatial distribution of one or more parameters, can be overimposed (after being calculated) on the tissue image, which is displayed in real-time on the monitor.
  • the using the overimposed image as a guide facilitates substantially the determination of the lesion's boundaries, for successful surgical removal of the entire lesion, or for locating suspicious areas in order to obtain a biopsy sample(s).
  • the measured quantitative data and the parameters that derive from them can constitute quantitative clinical indices for the in vivo staging of the lesion or of sub-areas of the latter.
  • the simultaneous imaging in more than one spectral bands can assist in minimizing the contribution of the unwanted endogenous scattering, fluorescence and reflection of the tissue, to the optical signal captured by the detector.
  • the captured optical signal comprise the optical signal generated by the marker-tissue interaction and the light emitted from the endogenous components of the tissue.
  • the recorded response of the components of the tissue constitute noise, since it occludes the generated optical signal, which caries the diagnostic information. Therefore, separation of these signals, based on their particular spectral characteristics, will result in the maximization of the signal-to-noise ratio and consequently in the improvement of the obtained diagnostic information.
  • FIG. 2 illustrates a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • the remitted from the tissue light is collected and focused by the optical imaging module (L) and passes through a beam splitting (BSP) optical element.
  • BSP beam splitting
  • two identical images of the tissue (T) are generated, which can be captured by two detectors (D 1 , D 2 ).
  • appropriate optical filters (Of ⁇ 1 ), (Of ⁇ 2 ) can be placed, so that images with different spectral characteristics are captured.
  • the detectors (D 1 ), (D 2 ) are synchronized so that they capture simultaneously the corresponding spectral images of the tissue (Ti ⁇ 1 ), (Ti ⁇ 2 ) and in successive time-intervals, which are stored in the computer's data storage means.
  • multiple spectral images can be captured simultaneously by combining multiple splitting elements, filters and sources.
  • FIG. 3 illustrates another method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • MP prism
  • imaging optics it is possible to form multiple copies of the same image onto the surface of the same detector (D).
  • Various optical filters (OF ⁇ 1 ),(OF ⁇ 2 ),(OF ⁇ 3 ),(OF ⁇ 4 ), can be interposed along the length of the optical path of the rays that form the copies of the object's image, so that the captured multiple images correspond to different spectral areas.
  • the different implementations of image capturing module described above can be integrated to conventional optical imaging diagnostic devises.
  • Such devises are the various medical microscopes, colposcopes and endoscopes, which are routinely used for the in vivo diagnostic inspection of tissues. Imaging of internal tissues of the human body requires in most cases the illumination and imaging rays to travel along the same optical path, through the cavities of the body. Due to this fact, in the common optical diagnostic devises the tissue's surface reflection contributes substantially in the formed image. This limits the imaging information for the subsurface characteristics, which are in general of great diagnostic importance.
  • FIG. 4 illustrates a schematic diagram of a medical microscope consisted from a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
  • LS light source
  • MS magnification selection mechanism
  • EP eyepiece
  • CA image capturing module
  • CA image capturing module
  • TS surface reflected light
  • the other linear polarizer By interposing the other linear polarizer to the optical path of the rays that are remitted from the tissue and form the optical image of the object, with its polarization plane perpendicular to the polarization level of the incident to the tissue light (IPO), the contribution of the surface reflection to the image of the object is eliminated.
  • the light which is not surface-reflected enters the tissue, where due to multiple scattering, light polarization is randomized.
  • a portion of the re-emitted light passes through the imaging polarization optics, carrying improved information for the subsurface features.
  • FIG. 5 illustrates an endoscope consisted of an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • the polarization plane of the polarizing optics which are adapted to the exit of light from the endoscope (LPO), is perpendicular to the polarization plane of the polarizer, which is adapted to the point where the light enters the endoscope (IL).
  • the polarization optics of the incident to the tissue light could also be adapted at the point where the light enters the endoscope (IL) but in this case, the endoscope has to be constructed using polarization preserving crystals or fiber optics for transferring the light. If polarization preserving light transmission media are used, then the polarizing optics of the imaging rays can be interposed in their path and before or after the eyepiece (EP).
  • a problem for the effective clinical implementation of the described method herein is the micro-movements of the patient, which are always present during the snapshot imaging of the same tissue area. Obviously this problem is eliminated in case that the patient is under anesthesia (open surgery). In most cases however the movements of the tissue relative to the image capturing module, occurring during the successive image capturing time-course, have the consequence that the image pixels, with the same image coordinates, do not correspond to exactly the same spatial point x,y of the tissue area under examination.
  • a method to eliminate the influence to the measured temporal data of the relative movements between tissue and image capturing module is presented below.
  • a colposcopic apparatus is illustrated in FIG. 6 , consisted of an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
  • the image capturing module is attached to the optical head (OH), through an opto-mechanical adapter.
  • the speculum enters the vagina and its blades are opened up compressing the side walls of the vagina.
  • the Speculum (KD) been mechanically connected with the optical head (OH), transfer any micromovement of the patient to the optical head (OH), which been mounted on an articulated arm (AA), follows these movements.
  • the relative position between tissue and optical head remains almost constant.
  • FIG. 6 illustrates an atomizer (A) attached to the optical head of the microscope.
  • the unit (MIC) is comprised of electronics for controlling the agent sprayer and it can incorporate also the container for storing the agent.
  • the unit (MIC) receives the proper command from the computer it sprays a predetermined amount of the agent onto the tissue surface, while the same or another command initiates the snapshot image capturing procedure.
  • the diagnostic examination of non-directly accessible tissues located in cavities of the human body (ear, cervix, oral cavity, esophagus, colon, stomach), is performed with the aid of common clinical microscopes.
  • the illumination-imaging rays are near co-axial. More specifically, the line perpendicular to the exit point of light into the air, and the line perpendicular to the objective lens, form an angle of a few degrees. Due to this fact, these microscopes operate at a specific distance from the subject (working distance), in which the illuminated tissue area, coincides with the field-of-view of the imaging system. These microscopes are found to be inappropriate in cases where tissue imaging through human body cavities of small diameter and at short working distances, is required.
  • the illuminator of the imaging apparatus emits linearly polarized light
  • the multiple reflections are randomizing the polarization plane of the incident light.
  • the incident to the tissue under analysis light is not linearly polarized, then the elimination of the contribution of the surface reflection to the captured image can not be effective.
  • FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
  • the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging apparatus.
  • a reflective-objective lens is used, consisted at least of a first reflection (1RM) and a second reflection (2RM) mirror, where at the rear part of the first reflection mirror (2RM), a light source (LS) is attached together (if required) with optics for light beam manipulation such as zooming and focusing (SO).
  • the reflective objective lens by replacing the common refractive-objective, which is used in conventional microscopes, provides imaging capability in cavities of small diameter, with freedom in choosing the working distance.
  • the zooming and focusing optics of the light beam can be adjusted simultaneously with the mechanism for varying the magnification of the optical imaging system, so that the illumination area and the field-of-view of the imaging system, are varying simultaneously and proportionally. This has as a result, the preservation of image brightness regardless of the magnification level of the lens.
  • the imaging-illumination geometry embodied in this optical imaging apparatus among with the light beam manipulation options, enable the efficient elimination of the contribution of the surface reflection to the captured image and consequently the efficient clinical implementation of the method described herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Credit Cards Or The Like (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Microscoopes, Condenser (AREA)
  • Endoscopes (AREA)

Abstract

The present invention provides a method and an apparatus for the in vivo, non-invasive, early detection of alterations and mapping of the grade of these alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues during the development of tissue atypias, dysplasias, neoplasias and cancers. The method is based, at least in part, on the simultaneous measurement of the spatial, temporal and spectral alterations in the characteristics of the light that is re-emitted from the tissue under examination, as a result of a combined tissue excitation with light and special chemical agents. The topical or systematic administration of these agents result in an evanescent contrast enhancement between normal and abnormal areas of tissue. The apparatus enables the capturing of temporally successive imaging in one or more spectral bands simultaneously. Based on the measured data, the characteristic curves that express the agent-tissue interaction kinetics, as well as numerical parameters derived from these data, are determined in any spatial point of the examined area. Mapping and characterization of the lesion, are based on these parameters.

Description

    RELATED APPLICATIONS
  • This application is a continuation application of application Ser. No. 10/346,338, filed on Jan. 16, 2003, pending, which is a continuation of 09/739,089, filed on Dec. 15, 2000, pending, which in turn claims priority to Greek National Application Serial No. 20000/00102 filed on Mar. 28, 2000 and U.S. provisional Application No. ______, entitled “Method And Apparatus For Amplifying Pathological Features In Tissues”, filed on Dec. 15, 1999. The contents of all of the aforementioned application(s) are hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention is directed to a method and apparatus for the in vivo, non invasive detection and mapping of the biochemical and/or functional pathologic alterations of human tissues.
  • BACKGROUND OF THE INVENTION
  • Cancer precursors signs are the so called pre-cancerous states, which are curable if they are detected at an early stage. In the opposite case the lesion can progress in depth, resulting in the development of invasive cancer and metastases. At this stage, the possibilities of successful therapy are dramatically diminished. Consequently, the early detection and the objective identification of the severity (stage) of the precancerous lesion are of crucial importance.
  • The conventional clinical process of optical examination have very limited capabilities in detecting cancerous and pre-cancerous tissue lesions. This is due to the fact that the structural and metabolic changes, which take place during the development of the decease, do not significantly and with specificity alter the color characteristics of the pathological tissue.
  • In order to obtain more accurate diagnosis, biopsy samples are obtained from suspicious areas, which are submitted for histological examination. However, biopsy sampling poses several problems, such as: a) risk for sampling errors associated with the visual limitations in detecting and localizing suspicious areas; b) biopsy can alter the natural history of the intraepithelial lesion; c) mapping and monitoring of the lesion require multiple tissue sampling, which is subjected to several risks and limitations; d) the diagnostic procedure performed with biopsy sampling and histologic evaluation is qualitative, subjective, time consuming, costly and labor intensive.
  • In recent years there have been developed and presented quite a few new methods and systems in an effort to overcome the disadvantages of the conventional diagnostic procedures. These methods can be classified in two categories: a) Methods which are based on the spectral analysis of tissues in vivo, in an attempt to improve the diagnostic information b) Methods which are based on the chemical excitation of tissues with the aid of special agents, which have the property to interact with pathologic tissue and to alter its optical characteristics selectively, thus enhancing the contrast between lesion and healthy tissue.
  • In the first case, the experimental use of spectroscopic techniques as a potential solutions to existing diagnostic problems, is motivated by their capability to detect alterations in the biochemical and/or the structural characteristics, which take place in the tissue during the development of the disease. In particular, fluorescence spectroscopy has been extensively used in various tissues, where the later are optically excited with the aid of a light source (usually laser), of short wave length (blue—ultraviolet range) and their response is measured as fluorescence intensity vs. wavelength.
  • Garfield and Glassman in U.S. Pat. No. 5,450,857 and Ramanajum et al in U.S. Pat. No. 5,421,339 have presented a method based on the use of fluorescence spectroscopy for the diagnosis of cancerous and pre-cancerous lesions of cervix. The main disadvantage of fluorescence spectroscopy is that the existing biochemical modifications associated with the progress of the disease are not manifested in a direct way as modifications in the measured fluorescence spectra. The fluorescence spectra contain limited diagnostic information of two basic reasons: a) Tissues contain non-fluorescent chromophores, such as hemoglobin. Absorption by such chromophores of the emitted light from fluorophores can result in artificial dips and peaks in the fluorescence spectra. In other words the spectra carry convoluted information for several components and therefore it is difficult assess alterations in tissue features of diagnostic importance; and b) The spectra are broad due to the fact that a large number of tissue components are optically excited and contribute to the captured optical signal. As a result the spectra do not carry specific information for the pathologic alterations and thus they are of limited diagnostic value.
  • The latter is expressed as low sensitivity and specificity in the detection and classification of tissue lesions.
  • Aiming to enhance the sensitivity and specificity of the captured information, Ramanujan et al in the patent No. WO 98/24369 have presented a method based on the use of neural networks for the analysis of the spectral data. This method is based on the training of a computing system with a large number of spectral patterns, which have been taken from normal and from pathologic tissues. The spectrum that is captured each time is compared with the stored spectral data, facilitating this way, the identification of the tissue pathology.
  • R. R. Kortun et al, in U.S. Pat. No. 5,697,373, seeking to improve the captured diagnostic information, have presented a method based on the combination of fluorescence spectroscopy and Raman scattering. The last has the capability of providing more analytical information, it requires however complex instrumentation and ideal experimental conditions, which substantially hinder their clinical use. It is generally known that tissues are characterized by the lack of spatial homogeneity and consequently the spectral analysis of distributed spatial points is insufficient for the characterization of their status.
  • Dombrowski in U.S. Pat. No. 5,424,543, describes a multi-wavelength, imaging system, capable of capturing tissue images in several spectral bands. With the aid of such a system it is possible in general to map characteristics of diagnostic importance based on their particular spectral characteristics. However, due to the insignificance of the spectral differences between normal and pathologic tissue, which is in general the case, inspection in narrow spectral bands does not allow the highlighting of these characteristics and even more so, the identification and staging of the pathologic area.
  • D. R. Sandison et al, in U.S. Pat. No. 5,920,399 describe an imaging system, developed for the in vivo investigation of cells, which combines multi-band imaging and light excitation of the tissue. The system also employs a dual fiber optic bundle for the transferring of the emitted from the source light onto the tissue and the remitted light from the tissue to the optical detector. These bundles are placed in contact with the tissue, and various wavelengths of excitation and imaging are combined in attempt to enhance the spectral differentiation between normal and pathologic tissue.
  • In U.S. Pat. No. 5,921,926, J. R. Delfyett et al have presented a method for the diagnosis of diseases of the cervix, which is based on the combination of Spectral Interferometry and Optical Coherence Tomography (OCT). This system combines three-dimensional imaging and spectral analysis of the tissue.
  • Moreover, several improved versions of colposcopes have been presented, (D. R. Craine et al, U.S. Pat. No. 5,791,346 and K. L. Blaiz U.S. Pat. No. 5,989,184) in most of which, electronic imaging systems have been integrated for image capturing, analysis of tissue images, including the quantitative assessment of lesion's size. For the enhancement of the optical differentiation between normal and pathologic tissue, special agents are used in various fields of biomedical diagnostics, which are administered topically or systematically. Such agents are acetic acid solution, toluidine blue, various photosensitizers (porphyrines) (S., Anderson Engels, C. Klinteberg, K. Svanberg, S. Svanberg, In vivo fluorescence imagitgi for tissue diagnostics, Phys Med. Biol. 42 (1997) 815-24). The provoked selective staining of the pathologic tissue is owed to the property of these agents to interact with the, altered metabolic and structural characteristics of the pathologic area. This interaction enhances progressively and reversibly the differences in the spectral characteristics of reflection and/or fluorescence between normal and pathologic tissue. Despite the fact that the provoked selective staining of the pathologic tissue is a dynamic phenomenon, in clinical practice the intensity and the extent of the staining are assessed qualitatively and statically. Furthermore, in several cases of early pathologic conditions, the phenomenon of temporary staining after administering the agent, is short-lasting and thus the examiner is not able to detect the provoked alterations and even more so, to assess their intensity and extent. In other cases, the staining of the tissue progresses very slowly, with the consequence of patient discomfort and creation of problems for the examiner in assessing the intensity and extent of the alterations, since they are continuously changing. The above have as direct consequence, the downgrading of the diagnostic value of these diagnostic procedures and thus its usefulness is limited to facilitate the localization of suspected areas for obtaining biopsy samples.
  • Summarizing the above mentioned, the following conclusions are drawn:
    • a) Various conventional light dispersion spectroscopic techniques (fluorescence, elastic, non elastic scattering, etc) have been proposed and experimentally used for the in vivo detection of alterations in the structural characteristics of pathologic tissue. The main disadvantage of these techniques is that they provide point information, which is inadequate for the analysis of the spatially non-homogenous tissue. Multi-band imaging has the potential to solve this problem, by providing spectral information (of lesser resolution as a rule) but in any spatial point of the area under examination. These techniques (imaging and non-imaging) however, provide information of limited diagnostic value, due to the fact that the structural tissue alterations, which are accompanying the development of the disease, are not manifested as significant and characteristic alterations on the measured spectra. Consequently, the captured spectral information cannot be directly correlated with the tissue pathology, a fact which limits the clinical usefulness of these techniques.
    • b) The conventional (non-spectral) imaging techniques provide the capability of mapping characteristics of diagnostic importance in two or three dimensions. They are basically used for measuring morphological characteristics and as clinical documentation tools.
    • c) The diagnostic methods which are based on the selective staining of pathologic tissue with special agents allows the enhancement of the optical contrast between normal and pathologic tissue. Nevertheless they provide limited information for the in vivo identification and staging of the disease.
  • Given the fact that the selective interaction of pathologic tissue with the agents, which enhance its optical contrast with healthy tissue is a dynamic phenomenon, it is reasonable to suggest that the capture and analysis of the characteristics of this phenomenon's kinetics, could provide important information for the in vivo detection, identification and staging of tissue lesions. In a previous publication by the inventors (C. Balas, A. Dimoka, E. Orfanoudaki, E. koumandakis, “In vivo assessment of acetic acid-cervical tissue interaction using quantitative imaging of back-scattered light: Its potential use for the in vivo cervical cancer detection grading and mapping”, SPIE-Optical Biopsies and Microscopic Techniques, Vol. 3568 pp. 31-37, (1998)), measurements of the alterations in the characteristics of the back-scattered light as a function of wave-length and time are presented. These alterations are provoked in the cervix by the topical administration of acetic acid solution. In this particular case, there was used as an experimental apparatus, a general-purpose multi-spectral imaging system built around a tunable liquid crystal monochromator for measuring the variations in intensity of the back-scattered light as a function of time and wavelength in selected spatial points. It was found that the lineshapes of curves of intensity of back-scattered light versus time, provide advanced information for the direct identification and staging of tissue neoplasias. Unpublished results of the same research team support that similar results can also be obtained with other agents, which have the property of enhancing the optical contrast between normal and pathologic tissue. Nevertheless, the experimental method employed in the published paper is characterized by quite a few disadvantages, such as: The imaging monochromator requires time for changing the imaging wavelength and as a consequence it is inappropriate for multispectral imaging and analysis of dynamic phenomena. It does not constitute a method for the mapping of the grade of the tissue lesions, as the presented curves illustrate the temporal alterations of intensity of the back-scattered light in selected points. The lack of data modeling and parametric analysis of the characteristics of the phenomenon kinetics in any spatial point of the area of interest restrict the usefulness of the method in experimental studies and hinder its clinical implementation. The optics used for the imaging of the area of interest are of general purpose and are not comply with the special technical requirements for the clinical implementation of the method. Clinical implementation of the presented system is also hindered by the fact that it does not integrate appropriate means for ensuring the stability of the relative position between the tissue surface and image capturing module, during the snapshot imaging procedure. This is very important since small movements of the patient (i.e. breathing) are always present during the examination procedure. If micro-movements are taking place during successive capturing of images, after application of the agent, then the spatial features of the captured images are not coincide. This reduces substantially the precision in the calculation of the curves in any spatial point, that express the kinetics of marker-tissue interaction.
  • SUMMARY OF THE INVENTION
  • The present invention provides, at least in part, a method for monitoring the effects of a pathology differentiating agent on a tissue sample by applying a pathology differentiating agent, e.g., acetic acid, on a tissue sample and monitoring the rate of change of light reflection from the tissue sample over time, thereby monitoring the effects of a pathology differentiating agent on a tissue sample. The tissue may be a cervical, ear, oral, skin, esophagus, or stomach tissue. Without intending to be limited by theory, it is believed that the pathology differentiating agent provokes transient alterations in the light scattering properties of the tissue, e.g., the abnormal epithelium.
  • In another aspect, the present invention features a method for the in vivo diagnosis of a tissue abnormality, e.g., a tissue atypia, a tissue dysplasia, a tissue neoplasia (such as a cervical intraepithelial neoplasia, CINI, CINII, CINIII) or cancer, in a subject. The method includes contacting a tissue in a subject with a pathology differentiating agent, e.g., an acetic acid solution or a combination of solutions selected from a plurality of acidic and basic solutions, exposing the tissue in the subject to optical radiation; and monitoring the intensity of light emitted from the tissue over time, thereby diagnosing a tissue abnormality in a subject. The optical radiation may be broad band optical radiation, preferably polarized optical radiation.
  • The non-invasive methods of the present invention are useful for the in vivo early detection of tissue abnormalities/alterations and mapping of the grade of tissue characteristics of epithelial tissues, during the development of tissue atypias, dysplasias neoplasias and cancers.
  • In one embodiment, the tissue area of interest is illuminated with a broad band optical radiation and contacted with a pathology differentiating agent, e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue. The light that is re-emitted from the tissue may be in the form of reflection, diffuse scattering, fluorescence or combinations or subcombinations thereof. The intensity of the light emitted from the tissue may be measured, e.g., simultaneously, in every spatial point of the tissue area of interest, at a given time point or over time (e.g., for the duration of agent-tissue interaction). A diagnosis may be made based on the quantitative assessment of the spatial distribution of alterations in the characteristics of the light re-emitted from the tissue at given time points, before and after the optical and chemical excitation of the tissue and/or based on the quantitative assessment of the spatial distribution of parameters, calculated from the characteristic curves that express the kinetics of the provoked alterations in the characteristics of the light re-emitted from the tissue, which characteristic curves are simultaneously measured in every spatial point of the area under examination during the optical and chemical excitation of the tissue.
  • In one embodiment of the invention, the step of tissue illumination comprises exposing the tissue area under analysis to optical radiation of narrower spectral width than the spectral width of the light emitted by the illumination source. In another embodiment, the step of measuring the intensity of light comprises measuring the intensity of the re-emitted light in a spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity. In yet another embodiment, the step of measuring the intensity of light comprises measuring simultaneously the intensity of the re-emitted light in a plurality of spectral bands, the spectral widths of which are narrower than the spectral width of the detector's sensitivity.
  • In yet another aspect, the present invention features an apparatus for the in vivo, non-invasive early detection of tissue abnormalities/alterations and mapping of the grade of these tissue abnormalities/alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues, during the development of tissue atypias, dysplasias, neoplasias and cancers. The apparatus includes optics for collecting the light re-emitted by the area under analysis, selecting magnification and focusing the image of the area; optical imaging detector(s); means for the modulation, transfer, display and capturing of the image of the tissue area of interest; a computer which includes data storage, processing and analysis means; a monitor for displaying images, curves and numerical data; optics for the optical multiplication of the image of the tissue area of interest; a light source for illuminating the area of interest; optionally, optical filters for selecting the spectral band of imaging and illumination; means for transmitting light and illuminating the area of interest; control electronics; and optionally, software for the analysis and processing of data, which also enables the tissue image capturing and storing in specific time points and for a plurality of time points, before and after administration of the pathology differentiating agent.
  • Using the foregoing apparatus an image or a series of images may be created which express the spatial distribution of the characteristics of the kinetics of the provoked changes in the tissue's optical characteristics, before and after the administration of the agent, with pixel values corresponding with the spatial distribution of the alterations in the intensity of the light emitted from the tissue, in given time instances, before and after the optical and chemical excitation of tissue and/or with the spatial distribution of parameters derived from the function: pixel gray value versus time. The foregoing function may be calculated from the captured and stored images and for each row of pixels with the same spatial coordinates.
  • In one embodiment, the step of optical filtering the imaging detector comprises an optical filter that is placed in the optical path of the rays that form the image of the tissue, for the recording of temporally successive images in a selected spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
  • In yet another embodiment, the image multiplication optics comprise light beam splitting optics that create two identical images of the area of interest, which are recorded by two imaging detectors, in front of which optical filters are placed, with in general different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that two groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • In another embodiment, the image multiplication optics comprise more than one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed, with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • In a further embodiment, the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
  • In yet a further embodiment, the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded in different sub-areas of the same detector, and in front these areas optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously in the different areas of the detector, each one corresponding to a different spectral band.
  • In another embodiment, the step of filtering the light source comprises an optical filter, which is placed in the optical path of an illumination light beam, and transmits light of spectral width shorter than the spectral width of sensitivity of the detector used.
  • In a further embodiment, the step of filtering the light source comprises a plurality of optical filters and a mechanism for selecting the filter that is interposed to the tissue illumination optical path, thus enabling the tuning of the center wavelength and the spectral width of the light illuminating the tissue.
  • In another embodiment, the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest, is based on the pixel values of one image, from the group of the recorded temporally successive images of the tissue area of interest.
  • In a further embodiment, the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest, is based on the pixel values belonging to plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
  • In another embodiment, the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest, is based on numerical data derived from mathematical operations and calculations between the pixel values belonging a plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
  • In a further embodiment, a pseudo-color scale, which represents with different colors the different pixel values of the image or of the images used for the mapping of abnormal tissue areas, is used for the visualization of the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area under examination.
  • In one embodiment, the image or images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue, are used for the in vivo detection, mapping, as-well as for the determination of the borders of epithelial lesions.
  • In another embodiment, the pixel values of the image or of the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue, are used as diagnostic indices for the in vivo identification and staging of epithelial lesions.
  • In yet another embodiment, the image or the images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue can be overimposed onto the color or black and white image of the same area of tissue under examination displayed on the monitor, so that abnormal tissue areas are highlighted and their borders are demarcated, facilitating the selection of a representative area for taking a biopsy sample, the selective surgical removal of the abnormal area and the evaluation of the accuracy in selecting and removing the appropriate section of the tissue.
  • In a further embodiment, the image or the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used for the evaluation of the effectiveness of various therapeutic modalities such as radiotherapy, nuclear medicine treatments, pharmacological therapy, and chemotherapy.
  • In another embodiment, the optics for collecting the light re-emitted by the area under analysis, comprises the optomechanical components employed in microscopes used in clinical diagnostic examinations, surgical microscopes, colposcopes and endoscopes.
  • In one embodiment of the invention, for colposcopy applications, the apparatus may comprise a speculum, an articulated arm onto which the optical head is attached, which optical head comprises a refractive objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, and an illuminator, where the speculum is attached in a fixed location onto the system articulated arm-optical head, in such a way such that the central longitudinal axis of the speculum is perpendicular to the central area of the objective lens, so that when the speculum is inserted into the vagina and fixed in it, the relative position of the image-capturing optics and of the tissue area of interest remains unaltered, regardless of micro-movements of the cervix, which are taking place during the examination of the female subject.
  • In a further embodiment, the apparatus may further comprise an atomizer for delivering the agent, where the atomizer is attached in a fixed point onto the system articulated arm-optical head of the apparatus and in front of the vaginal opening, where the spraying of the tissue may be-controlled and synchronized with a temporally successive image capturing procedure, with the aid of electronic control means.
  • In another embodiment of the apparatus of the invention, the image capturing detector means and image display means comprise a camera system with detector spatial resolution greater than 1000×1000 pixels and a monitor of at least 17 inches (diagonal), so that high magnification is ensured together with a large field of view, while the image quality is maintained.
  • In a further embodiment, in the case of microscopes used in clinical diagnostic examinations, surgical microscopes and colposcopes, comprise an articulated arm onto which the optical head is attached, which optical head comprises an objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, an illuminator and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed image is eliminated.
  • In another embodiment, in the case of endoscopy, the endoscope may comprise optical means for transferring light from the light source onto the tissue surface and for collecting and transferring along almost the same axis and focusing the rays that form the image of the tissue, and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed by the endoscope image is eliminated.
  • In another embodiment, in the case of microscopes used in clinical diagnostic examinations, surgical microscopes and colposcopes, may additionally comprise a reflective objective lens, where the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its optical front aperture the second reflection mirror is located, and in the rear part (non-reflective) of this mirror, illumination means are attached from which light is emitted toward the object, so that with or without illumination beam zooming and focusing optics the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging lens, and with the aid of zooming and focusing optics of illumination beam that may be adjusted simultaneously and automatically with the mechanism for varying the magnification of the optical imaging system, the illuminated area and the field-of-view of the imaging system, are varying simultaneously and proportionally, so that any decrease in image brightness caused by increasing the magnification, is compensated with the simultaneous zooming; and focusing of the illumination beam.
  • Other features and advantages of the invention will be apparent from the following detailed description and claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of the present method's basic principle.
  • FIG. 2, illustrates an embodiment of the invention comprising a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • FIG. 3 illustrates another embodiment of the invention comprising a method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
  • FIG. 4 illustrates a schematic diagram of a medical microscope comprising a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
  • FIG. 5 illustrates an endoscope comprising an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
  • FIG. 6 depicts a colposcopic apparatus comprising an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
  • FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to a method and system for the in-vivo, non-invasive detection and mapping of the biochemical and or functional alterations of tissue, e.g., tissue within a subject. Upon selection of the appropriate agent which enhances the optical contrast between normal and pathologic tissue (depending on the tissue's pathology), this agent is administered, e.g., topically to the tissue. In FIG. 1, the tissue (T), is sprayed using an atomizer (A), which contains the agent, e.g., acetic acid. At the same time, the tissue is illuminated with a source that emits light at a specific spectral band, depending on the optical characteristics of both the agent and the tissue. Illumination and selection of the spectral characteristics of the incident to the tissue light can be performed with the aid of a light source (LS) and a mechanism for selecting optical filters (OFS). Of course there are several other methods for illuminating the tissue and for selecting the spectral characteristics of the incident light (e.g., Light emission diodes, LASERS and the like).
  • For the imaging of the area of interest, light collection optics (L) are used, which focus the image onto a two-dimensional optical detector (D). The output signal of the latter is amplified, modulated and digitized with the aid of appropriate electronics (EIS) and finally the image is displayed on a monitor (M) and stored in the data-storing means of a personal computer (PC). Between tissue (T) and detector (D), optical filters (OFI) can be interposed. The interposition of the filter can be performed for tissue (T) imaging in selected spectral bands, at which the maximum contrast is obtained between areas that are subjected to different grade of alterations in their optical characteristics, provoked after administering the appropriate agent.
  • Before administration of the latter, images can be captured and used as reference. After the agent has been administered, the detector (D), captures images of the tissue, in successive time instances, which are then stored in the computer's data-storage means. The capturing rate is proportional to the rate at which the tissue's optical characteristics are altered, following the administration of the agent.
  • In FIG. 1, images of the same tissue area are schematically illustrated, which have been stored successively before and after administering the agent (STI). In these images, the black areas represent tissue areas that do not alter their optical characteristics (NAT), while the gray-white tones represent areas which alter their optical characteristics (AT), following the administration of the agent. The simultaneous capture of the intensity of the light re-emitted from every spatial point of the tissue area under analysis and in predetermined time instances, allows the calculation of the kinetics of the provoked alterations.
  • In FIG. 1, two curves are illustrated: pixel value in position xy (Pvxy), versus time t. The curve ATC corresponds to an area where agent administration provoked alterations (AT) in the tissue's optical characteristics. The curve (NATC) corresponds to an area where no alteration took place (NAT).
  • The mathematical analysis of these curves, leads to the calculation of quantitative parameters for every pixel such as: The value PVxy that corresponds to the time ti, the relaxation time trel which corresponds to the value Pvxy=A/e (where e is the base of Neper logarithms), etc.
  • The calculation of these parameters (P) in every spatial point of the area under analysis, allows the calculation of the image or images of the kinetics of the phenomenon (KI), with pixel values that are correlated with these parameters. These values can be represented with a scale of pseudocolors (Pmin, Pmax), the spatial distribution of which allows for immediate optical evaluation of the intensity and extent of the provoked alterations. Depending on the correlation degree between the intensity and the extent of the provoked alterations with the pathology and the stage of the tissue lesion, the measured quantitative data and the derived parameters would allow the mapping, the characterization and the border-lining of the lesion. The pseudocolor image of the phenomenon's kinetics (KI), which expresses the spatial distribution of one or more parameters, can be overimposed (after being calculated) on the tissue image, which is displayed in real-time on the monitor. The using the overimposed image as a guide, facilitates substantially the determination of the lesion's boundaries, for successful surgical removal of the entire lesion, or for locating suspicious areas in order to obtain a biopsy sample(s). Furthermore, based on the correlation of the phenomenon's kinetics with the pathology of the tissue, the measured quantitative data and the parameters that derive from them, can constitute quantitative clinical indices for the in vivo staging of the lesion or of sub-areas of the latter.
  • In some cases it is necessary to capture the kinetics of the phenomenon in more than one spectral band. This can serve in the in vivo determination of illumination and/or imaging spectral bands at which the maximum diagnostic signal is obtained. Furthermore, the simultaneous imaging in more than one spectral bands can assist in minimizing the contribution of the unwanted endogenous scattering, fluorescence and reflection of the tissue, to the optical signal captured by the detector. The captured optical signal comprise the optical signal generated by the marker-tissue interaction and the light emitted from the endogenous components of the tissue. In many cases the recorded response of the components of the tissue constitute noise, since it occludes the generated optical signal, which caries the diagnostic information. Therefore, separation of these signals, based on their particular spectral characteristics, will result in the maximization of the signal-to-noise ratio and consequently in the improvement of the obtained diagnostic information.
  • FIG. 2, illustrates a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent. The remitted from the tissue light, is collected and focused by the optical imaging module (L) and passes through a beam splitting (BSP) optical element. Thus, two identical images of the tissue (T) are generated, which can be captured by two detectors (D1, D2). In front of the detector, appropriate optical filters (Ofλ1), (Ofλ2) can be placed, so that images with different spectral characteristics are captured. Besides beam splitters, optical filters, dichroic mirrors etc, can also be used for splitting the image of the object. The detectors (D1), (D2) are synchronized so that they capture simultaneously the corresponding spectral images of the tissue (Tiλ1), (Tiλ2) and in successive time-intervals, which are stored in the computer's data storage means. Generalizing, multiple spectral images can be captured simultaneously by combining multiple splitting elements, filters and sources.
  • FIG. 3 illustrates another method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent. With the aid of a special prism (MP) and imaging optics, it is possible to form multiple copies of the same image onto the surface of the same detector (D). Various optical filters (OFλ1),(OFλ2),(OFλ3),(OFλ4), can be interposed along the length of the optical path of the rays that form the copies of the object's image, so that the captured multiple images correspond to different spectral areas.
  • For the clinical use of the methods of the invention, the different implementations of image capturing module described above can be integrated to conventional optical imaging diagnostic devises. Such devises are the various medical microscopes, colposcopes and endoscopes, which are routinely used for the in vivo diagnostic inspection of tissues. Imaging of internal tissues of the human body requires in most cases the illumination and imaging rays to travel along the same optical path, through the cavities of the body. Due to this fact, in the common optical diagnostic devises the tissue's surface reflection contributes substantially in the formed image. This limits the imaging information for the subsurface characteristics, which are in general of great diagnostic importance. This problem becomes more serious especially in epithelial tissues such as the cervix, larynx, oral cavity etc, which are covered by fluids such as mucus and saliva. Surface reflection also obstructs the detection and the measurement of the alterations in the tissue's optical properties, provoked after the administration of agents which enhance the optical contrast between normal and pathologic tissue. More specifically, when a special agent alters selectively the scattering characteristics of the pathologic tissue, the strong surface reflection that takes place in both pathologic (agent responsive) and normal (agent non responsive) tissue areas, occludes the diagnostic signal that originates from the interaction of the agent with the subsurface features of the tissue. In other words, surface reflection constitutes optical noise in the diagnostic signal degrading substantially the perceived contrast between agent responsive and agent non responsive tissue areas.
  • Based on the above, the effective integration of the method to imaging diagnostic devises, requires embodiments of appropriate optics that ensure the elimination of the contribution of surface reflection to the captured image. FIG. 4 illustrates a schematic diagram of a medical microscope consisted from a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc). For the elimination of the surface reflection a pair of linear polarizers is employed. The incident to the tissue light (LS), is linearly polarized by passing though a linear polarizer (LPO). The surface reflected light (TS), has the same polarization plane with the incident to the tissue light (Fresnel reflection). By interposing the other linear polarizer to the optical path of the rays that are remitted from the tissue and form the optical image of the object, with its polarization plane perpendicular to the polarization level of the incident to the tissue light (IPO), the contribution of the surface reflection to the image of the object is eliminated. The light which is not surface-reflected enters the tissue, where due to multiple scattering, light polarization is randomized. Thus, a portion of the re-emitted light passes through the imaging polarization optics, carrying improved information for the subsurface features.
  • FIG. 5 illustrates an endoscope consisted of an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II). The polarization plane of the polarizing optics, which are adapted to the exit of light from the endoscope (LPO), is perpendicular to the polarization plane of the polarizer, which is adapted to the point where the light enters the endoscope (IL). The polarization optics of the incident to the tissue light could also be adapted at the point where the light enters the endoscope (IL) but in this case, the endoscope has to be constructed using polarization preserving crystals or fiber optics for transferring the light. If polarization preserving light transmission media are used, then the polarizing optics of the imaging rays can be interposed in their path and before or after the eyepiece (EP).
  • A problem for the effective clinical implementation of the described method herein is the micro-movements of the patient, which are always present during the snapshot imaging of the same tissue area. Obviously this problem is eliminated in case that the patient is under anesthesia (open surgery). In most cases however the movements of the tissue relative to the image capturing module, occurring during the successive image capturing time-course, have the consequence that the image pixels, with the same image coordinates, do not correspond to exactly the same spatial point x,y of the tissue area under examination.
  • This problem is typically encountered in colposcopy. A method to eliminate the influence to the measured temporal data of the relative movements between tissue and image capturing module is presented below. A colposcopic apparatus is illustrated in FIG. 6, consisted of an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS). The image capturing module is attached to the optical head (OH), through an opto-mechanical adapter. A speculum (KD), which is used to open-up the vaginal canal for the visualization of the cervix, is connected mechanically with the optical head (OH), so that the its longitudinal symmetry axis (LA), to be perpendicular to the central area of the objective lens (OBJ). The speculum enters the vagina and its blades are opened up compressing the side walls of the vagina. The Speculum (KD), been mechanically connected with the optical head (OH), transfer any micromovement of the patient to the optical head (OH), which been mounted on an articulated arm (AA), follows these movements. Thus the relative position between tissue and optical head remains almost constant.
  • An important issue that must also be addressed for the successful clinical implementation of the diagnostic method described herein, is the synchronization of the application of the contrast enhancing agent with the initiation of the snapshot imaging procedure. FIG. 6, illustrates an atomizer (A) attached to the optical head of the microscope. The unit (MIC) is comprised of electronics for controlling the agent sprayer and it can incorporate also the container for storing the agent. When the unit (MIC) receives the proper command from the computer it sprays a predetermined amount of the agent onto the tissue surface, while the same or another command initiates the snapshot image capturing procedure.
  • The diagnostic examination of non-directly accessible tissues, located in cavities of the human body (ear, cervix, oral cavity, esophagus, colon, stomach), is performed with the aid of common clinical microscopes. In these devises the illumination-imaging rays are near co-axial. More specifically, the line perpendicular to the exit point of light into the air, and the line perpendicular to the objective lens, form an angle of a few degrees. Due to this fact, these microscopes operate at a specific distance from the subject (working distance), in which the illuminated tissue area, coincides with the field-of-view of the imaging system. These microscopes are found to be inappropriate in cases where tissue imaging through human body cavities of small diameter and at short working distances, is required. These technical limitations are also constituting serious restricting factors for the successful clinical implementation of the method described herein. As it has been discussed above, elimination of surface reflection results in a substantial improvement of the diagnostic information, obtained from the quantitative assessment of marker-tissue interaction kinetics. If a common clinical microscope is employed as the optical imaging module, then due the above mentioned Illumination-imaging geometry, multiple reflections are occurring in the walls of the cavity, before the light reaches the tissue under analysis. In the case of colposcopy, multiple reflections are much more intense, since they are mainly taking place onto highly reflective blades of the speculum. Recall that the latter is inserted into the vagina to facilitate the inspection of cervix.
  • If the illuminator of the imaging apparatus emits linearly polarized light, the multiple reflections are randomizing the polarization plane of the incident light. And as it has been discussed above, if the incident to the tissue under analysis light is not linearly polarized, then the elimination of the contribution of the surface reflection to the captured image can not be effective.
  • FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture. With this arrangement, the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging apparatus. This enables illumination rays to reach directly the tissue surface under examination and not after multiple reflections in the wall of the cavity. A reflective-objective lens is used, consisted at least of a first reflection (1RM) and a second reflection (2RM) mirror, where at the rear part of the first reflection mirror (2RM), a light source (LS) is attached together (if required) with optics for light beam manipulation such as zooming and focusing (SO). The reflective objective lens (RO), by replacing the common refractive-objective, which is used in conventional microscopes, provides imaging capability in cavities of small diameter, with freedom in choosing the working distance. The zooming and focusing optics of the light beam can be adjusted simultaneously with the mechanism for varying the magnification of the optical imaging system, so that the illumination area and the field-of-view of the imaging system, are varying simultaneously and proportionally. This has as a result, the preservation of image brightness regardless of the magnification level of the lens. The imaging-illumination geometry embodied in this optical imaging apparatus among with the light beam manipulation options, enable the efficient elimination of the contribution of the surface reflection to the captured image and consequently the efficient clinical implementation of the method described herein.
  • Equivalents
  • Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims (57)

1-16. (Cancelled)
17. A method of compensating for image misalignment, the method comprising the steps of: obtaining a sequence of images of a tissue sample; and correcting for misalignment between at least two of the images, said misalignment being due at least in part to movement of the tissue sample.
18. The method of claim 17, wherein the correcting step is performed in real time.
19. The method of claim 17, wherein the correcting step comprises adjusting an optical signal detection device used to obtain the sequence of images.
20. The method of claim 19, wherein the correcting step comprises adjusting a position of a component of the optical signal detection device.
21. The method of claim 20, wherein the component comprises a mirror.
22. The method of claim 17, wherein the tissue sample is an in-situ tissue sample and wherein the misalignment is due at least in part to patient motion.
23. The method of claim 17, further comprising the step of applying a contrast agent to the tissue sample.
24. The method of claim 17, wherein the correcting step comprises electronically adjusting at least one of the images.
25. The method of claim 17, wherein the at least two images are consecutive images.
26. The method of claim 17, wherein the correcting step comprises the step of filtering a subset of data from a first image of the sequence of images.
27. The method of claim 26, wherein the correcting step comprises the step of preprocessing the subset of data prior to the filtering.
28. The method of claim 26, wherein the filtering step comprises at least one of frequency domain filtering and discrete convolution in the space domain.
29. The method of claim 26, wherein the filtering step comprises Laplacian of Gaussian filtering.
30. The method of claim 26, wherein the filtering step comprises using a feathering technique.
31. The method of claim 26, wherein the filtering step comprises using a Hamming window.
32. The method of claim 17, wherein the correcting step comprises computing a cross correlation using data from two of the images.
33. The method of claim 32, wherein the computing of the cross correlation comprises computing a product represented by Fi(u,v)F*j(u,v), where F*j(u,v) is a Fourier transform of data derived from a subset of data from a first image, i, of the sequence of images, F*j(u,v) is a complex conjugate of a Fourier transform of data derived from a subset of data from a second image, j, of the sequence of images, and u and v are frequency domain variables.
34. The method of claim 33, wherein the computing of the cross correlation comprises computing an inverse Fourier transform of the product.
35. The method of claim 17, wherein the tissue sample comprises cervical tissue.
36. The method of claim 17, wherein the tissue sample comprises at least one member of the group consisting of colorectal tissue, gastroesophageal tissue, urinary bladder tissue, lung tissue, and skin tissue.
37. The method of claim 17, wherein the tissue sample comprises epithelial cells.
38. The method of claim 17, wherein the obtaining step comprises obtaining the sequence of images of the tissue sample during application of a chemical agent to the tissue sample.
39. The method of claim 17, wherein the obtaining step comprises obtaining the sequence of images of the tissue sample after application of a chemical agent to the tissue sample.
40. The method of claim 39, wherein the chemical agent is selected from the group consisting of acetic acid, formic acid, propionic acid, and butyric acid.
41. The method of claim 39, wherein the chemical agent is selected from the group consisting of Lugol's iodine, Shiller's iodine, methylene blue, toluidine blue, indigo carmine, indocyanine green, and fluorescein.
42. The method of claim 17, wherein the obtaining step comprises obtaining the sequence of images of the tissue sample during an acetowhitening test.
43. The method of claim 17, wherein the movement of the tissue sample is relative to an optical signal detection device and comprises at least one member of the group consisting of translational motion, rotational motion, warping, and local deformation.
44. The method of claim 17, wherein one or more images of the sequence of images comprise measurements of an optical signal from the tissue sample.
45. The method of claim 44, wherein the optical signal comprises visible light.
46. The method of claim 44, wherein the optical signal comprises fluorescent light.
47. The method of claim 44, wherein the optical signal is emitted by the tissue sample.
48. The method of claim 44, wherein the optical signal is reflected by the tissue sample.
49. The method of claim 44, wherein the optical signal is transmitted through the, tissue sample.
50. A method of validating a correction for an image misalignment, the method comprising the steps of: adjusting at least one of two or more images using a correction for an image misalignment between the two or more images; defining one or more validation cells, each of which includes a common area of the two or more adjusted images; computing for each of the one or more validation cells a measure of displacement between the two or more adjusted images using data from the two or more adjusted images corresponding to each of the one or more validation cells; and validating the correction for the image misalignment by comparing at least one of the measures of displacement with a threshold value.
51. A method of validating a correction for an image misalignment, the method comprising the steps of: defining one or more validation cells within a bounded image plane; computing for each of the one or more validation cells a measure of displacement between two or more images bound by the image plane using data from the two or more images corresponding to each of the one or more validation cells; validating a correction for an image misalignment between the two or more images by comparing at least one of the measures of displacement with the correction.
52. The method of claim 50, wherein the images are images of an in-situ tissue sample, and wherein the image misalignment is due at least in part to patient motion.
53. The method of claim 50, wherein the images are images of an in-situ tissue sample that has been treated with a contrast agent.
54. The method of claim 50, wherein the one or more validation cells comprise a subset of a bounded image plane common to the two or more images.
55. The method of claim 50, wherein the two or more images are consecutive images.
56. The method of claim 54, wherein the one or more validation cells comprise a central portion of the bounded image plane.
57. The method of claim 54, wherein the bounded image plane has an area about four times larger than the total area of the one or more validation cells.
58. The method of claim 50, wherein the validating step comprises eliminating from consideration one or more of the measures of displacement for one or more of the one or more validation cells.
59. The method of claim 58, wherein the eliminating of the one or more measures of displacement comprises calculating a sum squared gradient for at least one of the one or more validation cells.
60. A method of compensating for an image misalignment, the method comprising the steps of: obtaining a set of sequential images of a tissue sample; and correcting for a misalignment between each of a plurality of pairs of the sequential images, the misalignment due at least in part to movement of the tissue sample.
61. The method of claim 60, wherein the tissue sample is an in-situ tissue sample and wherein the misalignment is due at least in part to patient motion.
62. The method of claim 60, further comprising the step of applying to the sample a contrast agent.
63. The method of claim 60, wherein the obtaining step and the correcting step are performed alternately.
64. The method of claim 60, wherein the obtaining step and the correcting step are performed substantially concurrently.
65. The method of claim 60, wherein the correcting step comprises determining a correction for a misalignment between a pair of the sequential images less than about 2 seconds after the obtaining of the latter of the pair of the sequential images.
66. The method of claim 60, wherein the correcting step comprises determining a correction for a misalignment between a pair of the sequential images less than about one second after the obtaining of the latter of the pair of the sequential images.
67. A method of validating a correction for an image misalignment, the method comprising the steps of: obtaining a plurality of sequential images of a sample using an optical signal detection device; determining a correction for a misalignment between at least two of the sequential images, the misalignment due at least in part to a movement of the sample; and validating the correction between at least a first image and a second image of the plurality of sequential images.
68. The method of claim 67, wherein the sample is an in-situ tissue sample and wherein the misalignment is due at least in part to patient motion.
69. The method of claim 67, further comprising the step of applying a contrast agent to the sample.
70. The method of claim 67, wherein the determination of a correction for a misalignment between a first and a second image and the validation of said correction are performed in less than about one second.
71. The method of claim 67, further comprising the step of: adjusting the optical signal detection device using the correction.
72. A method of dynamically compensating for image misalignment, the method comprising the steps of: obtaining a sequence of images of a tissue sample; and correcting in real time for misalignment between at least two of the images, the misalignment due at least in part to movement of the tissue sample.
US10/850,955 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions Abandoned US20050054936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/850,955 US20050054936A1 (en) 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GR20000100102 2000-03-28
GR20000/00102 2000-03-28
US09/739,089 US20020007123A1 (en) 2000-03-28 2000-12-15 Method and system for characterization and mapping of tissue lesions
US10/346,338 US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions
US10/850,955 US20050054936A1 (en) 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/346,338 Continuation US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions

Publications (1)

Publication Number Publication Date
US20050054936A1 true US20050054936A1 (en) 2005-03-10

Family

ID=40328199

Family Applications (7)

Application Number Title Priority Date Filing Date
US09/739,089 Abandoned US20020007123A1 (en) 2000-03-28 2000-12-15 Method and system for characterization and mapping of tissue lesions
US10/240,367 Expired - Lifetime US7515952B2 (en) 2000-03-28 2001-03-28 System for characterization and mapping of tissue lesions
US10/346,338 Abandoned US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions
US10/850,955 Abandoned US20050054936A1 (en) 2000-03-28 2004-05-21 Method and system for characterization and mapping of tissue lesions
US10/978,101 Expired - Fee Related US8173432B2 (en) 2000-03-28 2004-10-29 Method and system for characterization and mapping of tissue lesions
US11/266,021 Expired - Fee Related US7598088B2 (en) 2000-03-28 2005-11-03 Optical imaging method and system for characterization and mapping of tissue lesions
US12/368,647 Expired - Fee Related US7974683B2 (en) 2000-03-28 2009-02-10 Method and system for characterization and mapping of tissue lesions via light and special chemical agents

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/739,089 Abandoned US20020007123A1 (en) 2000-03-28 2000-12-15 Method and system for characterization and mapping of tissue lesions
US10/240,367 Expired - Lifetime US7515952B2 (en) 2000-03-28 2001-03-28 System for characterization and mapping of tissue lesions
US10/346,338 Abandoned US20030163049A1 (en) 2000-03-28 2003-01-16 Method and system for characterization and mapping of tissue lesions

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/978,101 Expired - Fee Related US8173432B2 (en) 2000-03-28 2004-10-29 Method and system for characterization and mapping of tissue lesions
US11/266,021 Expired - Fee Related US7598088B2 (en) 2000-03-28 2005-11-03 Optical imaging method and system for characterization and mapping of tissue lesions
US12/368,647 Expired - Fee Related US7974683B2 (en) 2000-03-28 2009-02-10 Method and system for characterization and mapping of tissue lesions via light and special chemical agents

Country Status (18)

Country Link
US (7) US20020007123A1 (en)
EP (2) EP1267707B1 (en)
JP (2) JP4217403B2 (en)
CN (1) CN100413460C (en)
AT (1) ATE424757T1 (en)
AU (1) AU4442301A (en)
BR (1) BRPI0108944B8 (en)
CA (1) CA2400702C (en)
CY (1) CY1109134T1 (en)
DE (1) DE60137914D1 (en)
DK (1) DK1267707T3 (en)
ES (2) ES2464718T3 (en)
FI (1) FI20021477A (en)
GR (1) GR1004180B (en)
HK (1) HK1056108A1 (en)
PT (2) PT2057936E (en)
RU (1) RU2288636C2 (en)
WO (1) WO2001072214A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041843A1 (en) * 1999-02-02 2001-11-15 Mark Modell Spectral volume microprobe arrays
US20020127735A1 (en) * 1999-12-15 2002-09-12 Howard Kaufman Methods of monitoring effects of chemical agents on a sample
US20020133073A1 (en) * 1998-12-23 2002-09-19 Nordstrom Robert J. Spectroscopic system employing a plurality of data types
US20020177777A1 (en) * 1998-12-23 2002-11-28 Medispectra, Inc. Optical methods and systems for rapid screening of the cervix
US20030095721A1 (en) * 1999-12-15 2003-05-22 Thomas Clune Methods and systems for correcting image misalignment
US20030144585A1 (en) * 1999-12-15 2003-07-31 Howard Kaufman Image processing using measures of similarity
US20040010375A1 (en) * 2002-07-09 2004-01-15 Medispectra, Inc. Methods and apparatus for processing spectral data for use in tissue characterization
US20040024321A1 (en) * 2002-08-05 2004-02-05 Marshik-Geurts Barbara J. Near-infrared spectroscopic analysis of blood vessel walls
US20040077950A1 (en) * 2002-08-05 2004-04-22 Marshik-Geurts Barbara J. Near-infrared spectroscopic analysis of blood vessel walls
US20040206913A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US20040209237A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US20040206914A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for calibrating spectral data
US20040208390A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for processing image data for use in tissue characterization
US20040207625A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
US20040206882A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for evaluating image focus
US20040214156A1 (en) * 2002-07-09 2004-10-28 Medispectra, Inc. Method and apparatus for identifying spectral artifacts
US20050043929A1 (en) * 2000-12-15 2005-02-24 Medispectra, Inc. System for normalizing spectra
US20050131284A1 (en) * 2002-04-02 2005-06-16 Yeda Research And Development Co. Ltd. Characterization of moving objects in a stationary background
US20050159646A1 (en) * 1997-01-13 2005-07-21 Medispectra, Inc. Optical probe accessory device for use in in vivo diagnostic procedures
US20080091110A1 (en) * 2002-07-10 2008-04-17 Zelenchuk Alex R Fluorescent Fiberoptic Probe for Tissue Health Discrimination and Method of Use Thereof
EP2034890A2 (en) * 2006-06-01 2009-03-18 The General Hospital Corporation In-vivo optical imaging method including analysis of dynamic images
US20090221912A1 (en) * 2005-05-06 2009-09-03 Darin Nelson Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle
US20110110567A1 (en) * 2003-04-18 2011-05-12 Chunsheng Jiang Methods and Apparatus for Visually Enhancing Images
US20110184272A1 (en) * 2008-06-13 2011-07-28 Kun Zeng Portable Diagnostic Device for Precancerous Lesion of Cervical Cancer
US8403862B2 (en) 2007-12-20 2013-03-26 Yeda Research And Development Co. Ltd. Time-based imaging
CN103750810A (en) * 2013-12-30 2014-04-30 深圳市理邦精密仪器股份有限公司 Method and device for performing characteristic analysis for images acquired by electronic colposcope
US20190065884A1 (en) * 2017-08-22 2019-02-28 Boe Technology Group Co., Ltd. Training method and device of neural network for medical image processing, and medical image processing method and device
FR3143316A1 (en) * 2022-12-20 2024-06-21 Ecole Polytechnique Real-time imaging process

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826422B1 (en) * 1997-01-13 2004-11-30 Medispectra, Inc. Spectral volume microprobe arrays
CA2404600A1 (en) 2000-03-28 2001-10-04 Board Of Regents, The University Of Texas System Methods and apparatus for diagnostic multispectral digital imaging
GR1004180B (en) 2000-03-28 2003-03-11 ����������� ����� ��������� (����) Method and system for characterization and mapping of tissue lesions
CN1374855A (en) * 2000-07-20 2002-10-16 日拉公司 Improved diagnostic method for detecting dysplastic epithelial tissue
US20040006274A1 (en) * 2000-10-16 2004-01-08 Cole Giller Method and apparatus for probe localization in brain matter
US6965793B2 (en) * 2001-06-28 2005-11-15 Chemimage Corporation Method for Raman chemical imaging of endogenous chemicals to reveal tissue lesion boundaries in tissue
US7596404B2 (en) * 2001-06-28 2009-09-29 Chemimage Corporation Method of chemical imaging to determine tissue margins during surgery
WO2006091853A2 (en) * 2001-06-28 2006-08-31 Chemimage Corporation Method of chemical imaging to determine tissue margins during surgery
US8078268B2 (en) * 2001-06-28 2011-12-13 Chemimage Corporation System and method of chemical imaging using pulsed laser excitation and time-gated detection to determine tissue margins during surgery
GB0130862D0 (en) * 2001-12-22 2002-02-06 P W Allen & Company Ltd Method of examining potential cellular abnormalities
US7404929B2 (en) * 2002-01-18 2008-07-29 Newton Laboratories, Inc. Spectroscopic diagnostic methods and system based on scattering of polarized light
WO2003068064A1 (en) * 2002-02-12 2003-08-21 Science & Engineering Associates, Inc. Cancer detection and adaptive dose optimization treatment system
AU2003218158A1 (en) * 2002-03-14 2003-09-29 Science And Engineering Associates, Inc. Multiple imaging system and method for designing same
US6933154B2 (en) * 2002-07-09 2005-08-23 Medispectra, Inc. Optimal windows for obtaining optical data for characterization of tissue samples
US7103401B2 (en) * 2002-07-10 2006-09-05 Medispectra, Inc. Colonic polyp discrimination by tissue fluorescence and fiberoptic probe
DE10252313B9 (en) * 2002-11-11 2006-10-19 Carl Zeiss Investigation system for the simultaneous direct visualization of a fluorescent label and a tissue region surrounding the fluorescent label and method of investigation therefor
EP1644867B1 (en) * 2003-04-18 2010-08-11 Medispectra, Inc. A system and diagnostic method for optical detection of suspect portions of a tissue sample
CA2539184A1 (en) * 2003-09-19 2005-03-31 The General Hospital Corporation Fluorescence polarization imaging devices and methods
CN1890557A (en) * 2003-11-28 2007-01-03 Bc肿瘤研究所 Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy
DE102004002918B4 (en) * 2004-01-20 2016-11-10 Siemens Healthcare Gmbh Device for the examination of the skin
US20060155178A1 (en) * 2004-03-26 2006-07-13 Vadim Backman Multi-dimensional elastic light scattering
US20050234526A1 (en) * 2004-04-14 2005-10-20 Gilhuly Terence J Systems and methods for detection of disease including oral scopes and ambient light management systems (ALMS)
US7697576B2 (en) * 2004-05-05 2010-04-13 Chem Image Corporation Cytological analysis by raman spectroscopic imaging
US20060281068A1 (en) * 2005-06-09 2006-12-14 Chemimage Corp. Cytological methods for detecting a disease condition such as malignancy by Raman spectroscopic imaging
CA2571765A1 (en) * 2004-06-30 2006-01-12 Chemimage Corporation Dynamic chemical imaging of biological cells and other subjects
CA2549726A1 (en) * 2004-09-28 2006-04-06 Zila Pharmaceuticals, Inc. Methods for detecting abnormal epithelial tissue
CN1823682A (en) * 2004-10-12 2006-08-30 Led医学诊断有限公司 Systems and methods relating to colposcopic viewing tubes for enhanced viewing andexamination
US8795195B2 (en) * 2004-11-29 2014-08-05 Senorx, Inc. Graphical user interface for tissue biopsy system
JP4602825B2 (en) * 2005-04-18 2010-12-22 オリンパスメディカルシステムズ株式会社 Image display device
US7783337B2 (en) * 2005-06-06 2010-08-24 Board Of Regents, The University Of Texas System OCT using spectrally resolved bandwidth
US8253936B2 (en) * 2008-08-08 2012-08-28 Chemimage Corporation Raman characterization of transplant tissue
EP1738682B1 (en) * 2005-07-01 2008-02-13 Ecole Polytechnique Electronic polarimetric imaging system for colposcopy device
EP1924192A2 (en) * 2005-08-15 2008-05-28 The Board of Regents of The University of Texas System Needle biopsy imaging system
US7749162B2 (en) * 2005-09-29 2010-07-06 Forth Photonics Ltd. Vaginal speculum arrangement
EP1769731B1 (en) * 2005-09-29 2009-03-11 Forth-Photonics Ltd Vaginal speculum arrangement
US8956396B1 (en) 2005-10-24 2015-02-17 Lockheed Martin Corporation Eye-tracking visual prosthetic and method
US8945197B1 (en) 2005-10-24 2015-02-03 Lockheed Martin Corporation Sight-restoring visual prosthetic and method using infrared nerve-stimulation light
US7988688B2 (en) * 2006-09-21 2011-08-02 Lockheed Martin Corporation Miniature apparatus and method for optical stimulation of nerves and other animal tissue
US8012189B1 (en) 2007-01-11 2011-09-06 Lockheed Martin Corporation Method and vestibular implant using optical stimulation of nerves
US20070129615A1 (en) * 2005-10-27 2007-06-07 Northwestern University Apparatus for recognizing abnormal tissue using the detection of early increase in microvascular blood content
US9314164B2 (en) 2005-10-27 2016-04-19 Northwestern University Method of using the detection of early increase in microvascular blood content to distinguish between adenomatous and hyperplastic polyps
US20070179368A1 (en) * 2005-10-27 2007-08-02 Northwestern University Method of recognizing abnormal tissue using the detection of early increase in microvascular blood content
US20090203977A1 (en) * 2005-10-27 2009-08-13 Vadim Backman Method of screening for cancer using parameters obtained by the detection of early increase in microvascular blood content
US20070129630A1 (en) * 2005-12-07 2007-06-07 Shimko Daniel A Imaging method, device and system
WO2007077672A1 (en) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. Image processing device and image processing method in the image processing device
CA2683657A1 (en) * 2006-04-10 2007-10-18 Led Medical Diagnostics, Inc. Multipurpose diseased tissue detection devices, systems and methods
DE102006022878B3 (en) * 2006-05-15 2007-09-06 Sartorius Biotech Gmbh Acquiring an image of a sample in a transparent longitudinal sample vessel comprises illuminating the sample and/or vessel using a first illuminating arrangement, recording a first image of the sample and further processing
JP5410274B2 (en) * 2006-06-05 2014-02-05 フォース フォトニクス リミテッド How to characterize an organization
US8125648B2 (en) 2006-06-05 2012-02-28 Board Of Regents, The University Of Texas System Polarization-sensitive spectral interferometry
US8065802B2 (en) * 2006-07-14 2011-11-29 The Gillette Company Shaving razor
RU2457776C2 (en) * 2006-11-21 2012-08-10 Конинклейке Филипс Электроникс Н.В. System, device, method, machine-readable carrier and application for visualisation of tissue in vivo in anatomic structure
RU2462986C2 (en) * 2006-11-21 2012-10-10 Конинклейке Филипс Электроникс Н.В. System, method, machine-readable carrier and their application for visualisation of tissue in anatomical structure
US20080118886A1 (en) * 2006-11-21 2008-05-22 Rongguang Liang Apparatus for dental oct imaging
US9561017B2 (en) * 2006-12-19 2017-02-07 Koninklijke Philips N.V. Combined photoacoustic and ultrasound imaging system
US20090245603A1 (en) * 2007-01-05 2009-10-01 Djuro Koruga System and method for analysis of light-matter interaction based on spectral convolution
US20100185064A1 (en) * 2007-01-05 2010-07-22 Jadran Bandic Skin analysis methods
JP2010515489A (en) * 2007-01-05 2010-05-13 マイスキン インコーポレイテッド System, apparatus and method for imaging skin
US7883536B1 (en) 2007-01-19 2011-02-08 Lockheed Martin Corporation Hybrid optical-electrical probes
EP2111165B8 (en) * 2007-01-19 2017-10-04 Sunnybrook Health Sciences Centre Imaging probe with combined ultrasound and optical means of imaging
JP5133268B2 (en) * 2007-02-14 2013-01-30 ポーラ化成工業株式会社 Method for supporting differentiation of stratum corneum cells
CA2682940A1 (en) * 2007-04-11 2008-10-23 Forth Photonics Limited A supporting structure and a workstation incorporating the supporting structure for improving, objectifying and documenting in vivo examinations of the uterus
US7951075B2 (en) * 2007-04-23 2011-05-31 Olympus Medical Systems Corp. Inspection method with endoscope
EP2237190A2 (en) * 2007-08-03 2010-10-06 STI Medical Systems, LLC Computerized image analysis for a acetic acid induced cervical intraepithelial neoplasia
US8998914B2 (en) 2007-11-30 2015-04-07 Lockheed Martin Corporation Optimized stimulation rate of an optically stimulating cochlear implant
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
TR201901658T4 (en) 2008-05-20 2019-02-21 Univ Health Network EQUIPMENT AND METHOD FOR FLUORESCENT-BASED IMAGING AND MONITORING
US8416405B2 (en) * 2008-08-08 2013-04-09 Chemimage Corporation Raman chemical imaging of implantable drug delivery devices
CN102282569A (en) * 2008-10-10 2011-12-14 国际科学技术医疗系统有限责任公司 Methods for tissue classification in cervical imagery
JP4697289B2 (en) * 2008-11-05 2011-06-08 ソニー株式会社 Imaging apparatus and display control method for imaging apparatus
US20100130969A1 (en) * 2008-11-25 2010-05-27 Apogen Technologies, Inc. System and method for dermatological treatment
US9232889B2 (en) * 2009-02-12 2016-01-12 Alcon Research, Ltd. Method and apparatus for ocular surface imaging
US9241622B2 (en) * 2009-02-12 2016-01-26 Alcon Research, Ltd. Method for ocular surface imaging
EP2419712A4 (en) * 2009-04-14 2012-12-19 Gen Hospital Corp Method and apparatus for multimodal imaging of biological tissue
US8063385B2 (en) * 2009-05-29 2011-11-22 General Electric Company Method and apparatus for ultraviolet scan planning
FR2955763B1 (en) * 2010-02-02 2012-03-09 Commissariat Energie Atomique BI-SPECTRAL PEROPERATIVE OPTIC PROBE
US8484922B2 (en) 2010-02-17 2013-07-16 Sealed Air Corporation (Us) Alkaline and heat resistant foam composite and floor underlayment
EP2538841A2 (en) 2010-02-26 2013-01-02 Myskin, Inc. Analytic methods of tissue evaluation
DE102010021534A1 (en) * 2010-05-19 2011-11-24 Eberhard-Karls-Universität Tübingen Universitätsklinikum Direct investigation of biological material ex vivo
JP4879374B2 (en) * 2010-05-19 2012-02-22 オリンパスメディカルシステムズ株式会社 Endoscope and endoscope apparatus
JP5884195B2 (en) * 2010-07-21 2016-03-15 ディオプシス、インコーポレーテッド Method for analyzing OCT image and method for analyzing optic nerve
GB201014783D0 (en) * 2010-09-06 2010-10-20 St George S Hospital Medical School Apparatus and method for positioning a probe for observing microcirculation vessels
US9208556B2 (en) * 2010-11-26 2015-12-08 Quantitative Insights, Inc. Method, system, software and medium for advanced intelligent image analysis and display of medical images and information
US20120165681A1 (en) * 2010-12-23 2012-06-28 Tyco Healthcare Group Lp Delineating Skin or Surface Lesions
TWI554243B (en) * 2011-01-21 2016-10-21 愛爾康研究有限公司 Combined surgical endoprobe for optical coherence tomography, illumination or photocoagulation
US8816814B2 (en) * 2011-08-16 2014-08-26 Elwha Llc Systematic distillation of status data responsive to whether or not a wireless signal has been received and relating to regimen compliance
AU2012312066C1 (en) 2011-09-22 2016-06-16 460Medical, Inc. Systems and methods for visualizing ablated tissue
ES2727868T3 (en) 2011-09-22 2019-10-21 Univ George Washington Systems for visualizing ablated tissue
JP6211534B2 (en) 2011-12-21 2017-10-11 シャハーフ,キャサリン,エム. System for imaging lesions that align tissue surfaces
WO2013109130A1 (en) * 2012-01-18 2013-07-25 Joel Gerardo Diaz Sanchez Colpostereoscope for photodynamic diagnosis (pdd) of diseases of the female genital tract and early detection of neoplastic lesions
JP6144915B2 (en) * 2012-01-30 2017-06-07 キヤノン株式会社 Biological tissue image reconstruction method, acquisition method and apparatus
US11452464B2 (en) 2012-04-19 2022-09-27 Koninklijke Philips N.V. Guidance tools to manually steer endoscope using pre-operative and intra-operative 3D images
US9739663B2 (en) 2012-04-30 2017-08-22 Mayo Foundation For Medical Education And Research Spectrometric systems and methods for improved focus localization of time- and space-varying measurements
JP2017000838A (en) * 2012-06-01 2017-01-05 ソニー株式会社 Medical device and control method
US10278585B2 (en) 2012-06-21 2019-05-07 Novadaq Technologies ULC Quantification and analysis of angiography and perfusion
US20140066756A1 (en) * 2012-09-04 2014-03-06 Ninepoint Medical, Inc. Low cost molded optical probe with astigmatic correction, fiber port, low back reflection, and highly reproducible in manufacturing quantities
US10231782B2 (en) 2012-09-06 2019-03-19 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US10226297B2 (en) 2012-09-06 2019-03-12 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
BR112015006004A2 (en) * 2012-09-21 2017-07-04 Koninklijke Philips Nv system and method for labeling a cervical image obtained during a colposcopy of a patient, workstation or imaging device, colposcope, and computer program product
EP2909607A1 (en) * 2012-10-18 2015-08-26 Koninklijke Philips N.V. Arrangement for an analysis system, analysis system having the arrangement and method for use of the arrangement
US9471892B2 (en) * 2013-03-14 2016-10-18 Profiles International, Inc. System and method for embedding report descriptors into an XML string to assure report consistency
WO2014168734A1 (en) 2013-03-15 2014-10-16 Cedars-Sinai Medical Center Time-resolved laser-induced fluorescence spectroscopy systems and uses thereof
US9844318B2 (en) 2013-03-26 2017-12-19 Novartis Ag Devices, systems, and methods for calibrating an OCT imaging system in a laser surgical system
US10426361B2 (en) 2013-06-14 2019-10-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
EP3007618B1 (en) 2013-06-14 2019-09-04 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography
WO2015073871A2 (en) 2013-11-14 2015-05-21 The George Washington University Systems and methods for determining lesion depth using fluorescence imaging
US20150141847A1 (en) 2013-11-20 2015-05-21 The George Washington University Systems and methods for hyperspectral analysis of cardiac tissue
US10028649B2 (en) 2013-12-02 2018-07-24 Welch Allyn, Inc. Digital colposcope system
DE202014102353U1 (en) 2014-05-20 2014-05-27 Borcad Cz S.R.O. colposcope
US9757182B2 (en) * 2014-06-02 2017-09-12 Biosense Webster (Israel) Ltd. Identification and visualization of gaps between cardiac ablation sites
CN106714670A (en) 2014-07-24 2017-05-24 大学健康网络 Collection and analysis of data for diagnostic purposes
USD788786S1 (en) * 2014-07-31 2017-06-06 The Mathworks, Inc. Display screen or portion thereof with color graphical user interface
GB201414631D0 (en) * 2014-08-18 2014-10-01 Univ Singapore Apparatus and methods for simultaneous multimodal nonlinear optical microscopy for label-free bio-imaging
EP3915467A1 (en) * 2014-10-09 2021-12-01 Novadaq Technologies ULC Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
US10231667B2 (en) 2014-10-31 2019-03-19 Koninklijke Philips N.V. Non-invasive dehydration monitoring
JP6771731B2 (en) 2014-11-03 2020-10-21 460メディカル・インコーポレイテッド460Medical, Inc. Contact evaluation system and method
CN113143440B (en) 2014-11-03 2024-07-30 乔治华盛顿大学 Systems and methods for injury assessment
CN107072552A (en) * 2014-11-06 2017-08-18 皇家飞利浦有限公司 Skin treatment system
CN107205735B (en) 2014-11-26 2022-02-22 Devicor医疗产业收购公司 Graphical user interface for biopsy device
EP3253420A4 (en) 2015-02-02 2018-10-10 Novadaq Technologies ULC Methods and systems for characterizing tissue of a subject
US11206987B2 (en) 2015-04-03 2021-12-28 Suzhou Caring Medical Co., Ltd. Method and apparatus for concurrent imaging at visible and infrared wavelengths
EP3323108B1 (en) * 2015-07-16 2022-07-13 Koninklijke Philips N.V. Digital pathology system
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment
CN108882896B (en) * 2015-09-23 2022-05-27 史赛克欧洲运营有限公司 Methods and systems for assessing healing of tissue
WO2017139881A1 (en) 2016-02-16 2017-08-24 Novadaq Technologies Inc. Facilitating assessment of blood flow and tissue perfusion using fluorescence-mediated photoplethysmography
JP7266519B2 (en) 2016-04-01 2023-04-28 ブラック ライト サージカル, インコーポレイテッド Systems, devices and methods for time-resolved fluorescence spectroscopy
US9895112B2 (en) * 2016-05-04 2018-02-20 National Chung Cheng University Cancerous lesion identifying method via hyper-spectral imaging technique
RU169745U1 (en) * 2016-06-21 2017-03-30 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Optoacoustic Bioimaging Microscope
CN106974611B (en) * 2016-06-29 2020-08-28 郑洪� Oral health examination device, hand-held component and endoscope
CN109843176A (en) 2016-07-29 2019-06-04 诺瓦达克技术有限公司 For characterizing the method and system of the tissue of subject using machine learning
FR3059885B1 (en) * 2016-12-08 2020-05-08 Koelis DEVICE FOR VISUALIZING AN INTERNAL ORGAN OF A PATIENT AS WELL AS A RELATED VISUALIZATION METHOD
US11071459B2 (en) * 2016-12-08 2021-07-27 Koninklijke Philips N.V. Surface tissue tracking
RU2639790C1 (en) * 2016-12-26 2017-12-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) System for address control of brain neurons of living free-moving animals based on frozen fiber-optical probe with multi-channel fibers
JP6931705B2 (en) 2017-02-10 2021-09-08 ノバダック テクノロジーズ ユーエルシー Open Field Handheld Fluorescence Imaging Systems and Methods
US10952799B2 (en) * 2017-05-31 2021-03-23 Covidien Lp Systems and methods for navigational bronchoscopy and selective drug delivery
WO2019094514A1 (en) * 2017-11-07 2019-05-16 Canfield Scientific, Incorporated Enhancing pigmentation in dermoscopy images
RU2671418C1 (en) * 2017-12-26 2018-10-31 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Device for wireless transcutaneous transmission of optical energy for power supply of implantable medical devices
US11672425B2 (en) 2018-02-15 2023-06-13 Speclipse, Inc. Stand-alone apparatus and methods for in vivo detection of tissue malignancy using laser spectroscopy
GB201812050D0 (en) * 2018-07-24 2018-09-05 Dysis Medical Ltd Computer classification of biological tissue
US20220125280A1 (en) * 2019-03-01 2022-04-28 Sri International Apparatuses and methods involving multi-modal imaging of a sample
CN112292065A (en) * 2019-03-22 2021-01-29 斯佩克里普斯公司 Diagnostic method using laser induced breakdown spectroscopy and diagnostic apparatus for performing the same
CN109977955B (en) * 2019-04-03 2021-11-30 南昌航空大学 Cervical carcinoma pre-lesion identification method based on deep learning
EP3779408A1 (en) * 2019-08-15 2021-02-17 optek-Danulat GmbH Measuring device and method for detecting material concentration
TWI691936B (en) * 2019-09-02 2020-04-21 臺中榮民總醫院 Method for detecting, classifying and quantifying multiple targets in medical images
RU2752711C2 (en) * 2019-11-18 2021-07-30 Общество с ограниченной ответственностью «Лаборатория межклеточных технологий «Интерсел Рэнд» (ООО «Интерсел Рэнд») Method and device for spectroscopy of living tissue
WO2021142368A1 (en) 2020-01-08 2021-07-15 460Medical, Inc. Systems and methods for optical interrogation of ablation lesions
CN116249477A (en) 2020-07-24 2023-06-09 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Image reconstruction and endoscope tracking
KR102369740B1 (en) * 2020-09-21 2022-03-02 부경대학교 산학협력단 Mobile Colposcopy as a Primary Screening Tool
RU208537U1 (en) * 2021-08-16 2021-12-23 Общество с ограниченной ответственностью "Промышленные технологии" MULTI-CHANNEL VIDEOANDOSCOPE
JP7472874B2 (en) 2021-08-30 2024-04-23 カシオ計算機株式会社 Equipment Stand
JP7484849B2 (en) * 2021-08-30 2024-05-16 カシオ計算機株式会社 Equipment Stand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771317A (en) * 1994-08-24 1998-06-23 International Business Machines Corporation Image resize using sinc filter in linear lumen space
US6159445A (en) * 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
US6292683B1 (en) * 1999-05-18 2001-09-18 General Electric Company Method and apparatus for tracking motion in MR images
US6370422B1 (en) * 1998-03-19 2002-04-09 Board Of Regents, The University Of Texas System Fiber-optic confocal imaging apparatus and methods of use
US6902935B2 (en) * 1999-12-15 2005-06-07 Medispectra, Inc. Methods of monitoring effects of chemical agents on a sample

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US127735A (en) * 1872-06-11 Improvement in pruning-shears
US7122A (en) * 1850-02-26 Dotjgall
US4071020A (en) * 1976-06-03 1978-01-31 Xienta, Inc. Apparatus and methods for performing in-vivo measurements of enzyme activity
FR2430754A1 (en) * 1978-07-13 1980-02-08 Groux Jean ULTRAVIOLET ENDOSCOPE
JPS57211109A (en) * 1981-06-22 1982-12-24 Konan Camera Kenkyusho:Kk Microscope
US5143054A (en) * 1988-12-28 1992-09-01 Adair Edwin Lloyd Cervical videoscope with detachable camera unit
US5699798A (en) * 1990-08-10 1997-12-23 University Of Washington Method for optically imaging solid tumor tissue
US5235984A (en) * 1992-03-30 1993-08-17 Hewlett-Packard Company On-line acoustic densitometry tool for use with an ultrasonic imaging system
US5956144A (en) 1992-09-03 1999-09-21 Micro Research, Inc. Method and apparatus for use of polarized light vectors in identifying and evaluating constituent compounds in a specimen
US5424543A (en) 1993-04-19 1995-06-13 Surface Optics Corporation Imaging spectroradiometer
US5421339A (en) 1993-05-12 1995-06-06 Board Of Regents, The University Of Texas System Diagnosis of dysplasia using laser induced fluoroescence
US5450857A (en) 1994-05-19 1995-09-19 Board Of Regents, The University Of Texas System Method for the diagnosis of cervical changes
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US6411835B1 (en) 1997-01-13 2002-06-25 Medispectra, Inc. Spectral volume microprobe arrays
US5995856A (en) * 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US5646368A (en) * 1995-11-30 1997-07-08 International Business Machines Corporation Printed circuit board with an integrated twisted pair conductor
US5647368A (en) * 1996-02-28 1997-07-15 Xillix Technologies Corp. Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract
JP3796635B2 (en) * 1996-03-06 2006-07-12 富士写真フイルム株式会社 Fluorescence detection device
US5842995A (en) * 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US5791346A (en) 1996-08-22 1998-08-11 Western Research Company, Inc. Colposcope device and method for measuring areas of cervical lesions
US6101408A (en) * 1996-08-22 2000-08-08 Western Research Company, Inc. Probe and method to obtain accurate area measurements from cervical lesions
US6135965A (en) 1996-12-02 2000-10-24 Board Of Regents, The University Of Texas System Spectroscopic detection of cervical pre-cancer using radial basis function networks
US5920399A (en) 1997-03-18 1999-07-06 Sandia Corporation Multispectral imaging method and apparatus
US5989184A (en) 1997-04-04 1999-11-23 Medtech Research Corporation Apparatus and method for digital photography useful in cervical cancer detection
US6081740A (en) * 1997-04-23 2000-06-27 Accumed International, Inc. Method and apparatus for imaging and sampling diseased tissue
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
WO1999020314A1 (en) 1997-10-20 1999-04-29 Board Of Regents, The University Of Texas System Acetic acid as a signal enhancing contrast agent in fluorescence spectroscopy
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
JP4383533B2 (en) * 1998-02-23 2009-12-16 フィロニクス ファーマシューティカルズ, インコーポレイテッド Methods for screening drugs for activity using pearl fish
US6332092B1 (en) 1998-07-08 2001-12-18 Lifespex, Incorporated Optical probe having and methods for uniform light irradiation and/or light collection over a volume
JP3717675B2 (en) * 1998-08-21 2005-11-16 フジノン株式会社 Endoscope light source device
US6299860B1 (en) 1998-10-15 2001-10-09 Fluoro Probe, Inc. Method for viewing diseased tissue located within a body cavity
US20040111031A1 (en) * 1999-07-22 2004-06-10 Alfano Robert R. Spectral polarizing tomographic dermatoscope
GR1004180B (en) * 2000-03-28 2003-03-11 ����������� ����� ��������� (����) Method and system for characterization and mapping of tissue lesions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159445A (en) * 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
US5771317A (en) * 1994-08-24 1998-06-23 International Business Machines Corporation Image resize using sinc filter in linear lumen space
US6370422B1 (en) * 1998-03-19 2002-04-09 Board Of Regents, The University Of Texas System Fiber-optic confocal imaging apparatus and methods of use
US6292683B1 (en) * 1999-05-18 2001-09-18 General Electric Company Method and apparatus for tracking motion in MR images
US6902935B2 (en) * 1999-12-15 2005-06-07 Medispectra, Inc. Methods of monitoring effects of chemical agents on a sample

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159646A1 (en) * 1997-01-13 2005-07-21 Medispectra, Inc. Optical probe accessory device for use in in vivo diagnostic procedures
US20020133073A1 (en) * 1998-12-23 2002-09-19 Nordstrom Robert J. Spectroscopic system employing a plurality of data types
US20020177777A1 (en) * 1998-12-23 2002-11-28 Medispectra, Inc. Optical methods and systems for rapid screening of the cervix
US20050033186A1 (en) * 1998-12-23 2005-02-10 Medispectra, Inc. Substantially monostatic, substantially confocal optical systems for examination of samples
US20010041843A1 (en) * 1999-02-02 2001-11-15 Mark Modell Spectral volume microprobe arrays
US20030144585A1 (en) * 1999-12-15 2003-07-31 Howard Kaufman Image processing using measures of similarity
US20020127735A1 (en) * 1999-12-15 2002-09-12 Howard Kaufman Methods of monitoring effects of chemical agents on a sample
US20050064602A1 (en) * 1999-12-15 2005-03-24 Medispectra, Inc. Methods of monitoring effects of chemical agents on a sample
US20030095721A1 (en) * 1999-12-15 2003-05-22 Thomas Clune Methods and systems for correcting image misalignment
US20050043929A1 (en) * 2000-12-15 2005-02-24 Medispectra, Inc. System for normalizing spectra
US7912534B2 (en) * 2002-04-02 2011-03-22 Yeda Research And Development Co. Ltd. Characterization of moving objects in a stationary background
US20050131284A1 (en) * 2002-04-02 2005-06-16 Yeda Research And Development Co. Ltd. Characterization of moving objects in a stationary background
US20040214156A1 (en) * 2002-07-09 2004-10-28 Medispectra, Inc. Method and apparatus for identifying spectral artifacts
US20040010375A1 (en) * 2002-07-09 2004-01-15 Medispectra, Inc. Methods and apparatus for processing spectral data for use in tissue characterization
US8005527B2 (en) 2002-07-10 2011-08-23 Luma Imaging Corporation Method of determining a condition of a tissue
US20080091110A1 (en) * 2002-07-10 2008-04-17 Zelenchuk Alex R Fluorescent Fiberoptic Probe for Tissue Health Discrimination and Method of Use Thereof
US7486985B2 (en) * 2002-08-05 2009-02-03 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US20080221455A1 (en) * 2002-08-05 2008-09-11 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US8060187B2 (en) 2002-08-05 2011-11-15 Infraredx, Inc. Near-infrared spectroscopic analysis of blood vessel walls
US20040077950A1 (en) * 2002-08-05 2004-04-22 Marshik-Geurts Barbara J. Near-infrared spectroscopic analysis of blood vessel walls
US20040024321A1 (en) * 2002-08-05 2004-02-05 Marshik-Geurts Barbara J. Near-infrared spectroscopic analysis of blood vessel walls
US20040209237A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US20040208390A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for processing image data for use in tissue characterization
US7469160B2 (en) * 2003-04-18 2008-12-23 Banks Perry S Methods and apparatus for evaluating image focus
US20040207625A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
US20040206913A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US20040206882A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for evaluating image focus
US20040206914A1 (en) * 2003-04-18 2004-10-21 Medispectra, Inc. Methods and apparatus for calibrating spectral data
US20110110567A1 (en) * 2003-04-18 2011-05-12 Chunsheng Jiang Methods and Apparatus for Visually Enhancing Images
US20090221912A1 (en) * 2005-05-06 2009-09-03 Darin Nelson Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle
US8172763B2 (en) 2005-05-06 2012-05-08 Yeda Research And Development Co., Ltd. Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle
EP2034890A4 (en) * 2006-06-01 2011-02-16 Gen Hospital Corp In-vivo optical imaging method including analysis of dynamic images
US20090252682A1 (en) * 2006-06-01 2009-10-08 The General Hospital Corporation In-vivo optical imaging method including analysis of dynamic images
EP2034890A2 (en) * 2006-06-01 2009-03-18 The General Hospital Corporation In-vivo optical imaging method including analysis of dynamic images
US9220411B2 (en) * 2006-06-01 2015-12-29 The General Hospital Corporation In-vivo optical imaging method including analysis of dynamic images
US8403862B2 (en) 2007-12-20 2013-03-26 Yeda Research And Development Co. Ltd. Time-based imaging
US20110184272A1 (en) * 2008-06-13 2011-07-28 Kun Zeng Portable Diagnostic Device for Precancerous Lesion of Cervical Cancer
CN103750810A (en) * 2013-12-30 2014-04-30 深圳市理邦精密仪器股份有限公司 Method and device for performing characteristic analysis for images acquired by electronic colposcope
US20190065884A1 (en) * 2017-08-22 2019-02-28 Boe Technology Group Co., Ltd. Training method and device of neural network for medical image processing, and medical image processing method and device
US11636664B2 (en) * 2017-08-22 2023-04-25 Boe Technology Group Co., Ltd. Training method and device of neural network for medical image processing, and medical image processing method and device
FR3143316A1 (en) * 2022-12-20 2024-06-21 Ecole Polytechnique Real-time imaging process

Also Published As

Publication number Publication date
BR0108944A (en) 2003-06-03
CY1109134T1 (en) 2014-07-02
ES2464718T3 (en) 2014-06-03
HK1056108A1 (en) 2004-02-06
GR1004180B (en) 2003-03-11
EP2057936B1 (en) 2014-05-07
US8173432B2 (en) 2012-05-08
RU2002128728A (en) 2004-03-27
JP4217403B2 (en) 2009-02-04
CN1419428A (en) 2003-05-21
US20030163049A1 (en) 2003-08-28
US20050090751A1 (en) 2005-04-28
US20020007123A1 (en) 2002-01-17
CA2400702A1 (en) 2001-10-04
US7598088B2 (en) 2009-10-06
BR0108944B1 (en) 2012-02-07
CN100413460C (en) 2008-08-27
EP1267707B1 (en) 2009-03-11
CA2400702C (en) 2010-07-20
JP2008220977A (en) 2008-09-25
EP2057936A1 (en) 2009-05-13
AU4442301A (en) 2001-10-08
US7974683B2 (en) 2011-07-05
JP2003527915A (en) 2003-09-24
US20060141633A1 (en) 2006-06-29
FI20021477A (en) 2002-08-14
ES2322235T3 (en) 2009-06-18
US20090253991A1 (en) 2009-10-08
PT1267707E (en) 2009-06-05
EP1267707A1 (en) 2003-01-02
ATE424757T1 (en) 2009-03-15
PT2057936E (en) 2014-07-16
DE60137914D1 (en) 2009-04-23
US20030114762A1 (en) 2003-06-19
GR20000100102A (en) 2001-11-30
US7515952B2 (en) 2009-04-07
WO2001072214A1 (en) 2001-10-04
RU2288636C2 (en) 2006-12-10
DK1267707T3 (en) 2009-07-06
BRPI0108944B8 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
US7598088B2 (en) Optical imaging method and system for characterization and mapping of tissue lesions
US10314490B2 (en) Method and device for multi-spectral photonic imaging
US6766184B2 (en) Methods and apparatus for diagnostic multispectral digital imaging
US6507747B1 (en) Method and apparatus for concomitant structural and biochemical characterization of tissue
US20060184040A1 (en) Apparatus, system and method for optically analyzing a substrate
JP3923080B2 (en) Optical fine probe and spectral analysis method of material
AU2001251164A1 (en) Methods and apparatus for diagnostic multispectral digital imaging
Kang et al. System for fluorescence diagnosis and photodynamic therapy of cervical disease
EP3861917A1 (en) System for polarimetric characterization of a target
AU2001244423B2 (en) Method and system for characterization and mapping of tissue lesions
Nadeau et al. Endoscopic fluorescence imaging and point spectroscopy system for the detection of gastro-intestinal cancers
AU2001244423A1 (en) Method and system for characterization and mapping of tissue lesions
RU104836U1 (en) LASER SPECTRAL-FLUORESCENT COLOSCOPE
Houlne et al. Characterization of microendoscopic imaging systems for tissue spectroscopy
Richards-Kortum et al. Methods and apparatus for diagnostic multispectral digital imaging

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION