US20050054936A1 - Method and system for characterization and mapping of tissue lesions - Google Patents
Method and system for characterization and mapping of tissue lesions Download PDFInfo
- Publication number
- US20050054936A1 US20050054936A1 US10/850,955 US85095504A US2005054936A1 US 20050054936 A1 US20050054936 A1 US 20050054936A1 US 85095504 A US85095504 A US 85095504A US 2005054936 A1 US2005054936 A1 US 2005054936A1
- Authority
- US
- United States
- Prior art keywords
- images
- tissue
- tissue sample
- misalignment
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 107
- 238000013507 mapping Methods 0.000 title abstract description 22
- 230000003902 lesion Effects 0.000 title abstract description 18
- 238000012512 characterization method Methods 0.000 title abstract description 4
- 210000001519 tissue Anatomy 0.000 claims abstract description 213
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 4
- 239000013043 chemical agent Substances 0.000 claims abstract 5
- 230000003287 optical effect Effects 0.000 claims description 93
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- 238000001914 filtration Methods 0.000 claims description 11
- 229950003937 tolonium Drugs 0.000 claims description 2
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 claims description 2
- 238000010200 validation analysis Methods 0.000 claims 12
- 210000004027 cell Anatomy 0.000 claims 11
- 238000006073 displacement reaction Methods 0.000 claims 6
- 238000011065 in-situ storage Methods 0.000 claims 5
- 239000002872 contrast media Substances 0.000 claims 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 claims 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 claims 1
- 235000011054 acetic acid Nutrition 0.000 claims 1
- 230000003318 acetowhitening effect Effects 0.000 claims 1
- 210000002919 epithelial cell Anatomy 0.000 claims 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims 1
- 229960002143 fluorescein Drugs 0.000 claims 1
- 235000019253 formic acid Nutrition 0.000 claims 1
- KHLVKKOJDHCJMG-QDBORUFSSA-L indigo carmine Chemical compound [Na+].[Na+].N/1C2=CC=C(S([O-])(=O)=O)C=C2C(=O)C\1=C1/NC2=CC=C(S(=O)(=O)[O-])C=C2C1=O KHLVKKOJDHCJMG-QDBORUFSSA-L 0.000 claims 1
- 229960003988 indigo carmine Drugs 0.000 claims 1
- 235000012738 indigotine Nutrition 0.000 claims 1
- 239000004179 indigotine Substances 0.000 claims 1
- 229960004657 indocyanine green Drugs 0.000 claims 1
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 claims 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims 1
- 210000004072 lung Anatomy 0.000 claims 1
- 229960000907 methylthioninium chloride Drugs 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 claims 1
- 235000019260 propionic acid Nutrition 0.000 claims 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims 1
- 210000003932 urinary bladder Anatomy 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 abstract description 58
- 239000003795 chemical substances by application Substances 0.000 abstract description 46
- 238000003384 imaging method Methods 0.000 abstract description 46
- 230000004075 alteration Effects 0.000 abstract description 41
- 238000001727 in vivo Methods 0.000 abstract description 19
- 206010028980 Neoplasm Diseases 0.000 abstract description 11
- 230000003993 interaction Effects 0.000 abstract description 8
- 238000011161 development Methods 0.000 abstract description 7
- 230000005284 excitation Effects 0.000 abstract description 7
- 230000002159 abnormal effect Effects 0.000 abstract description 5
- 210000000981 epithelium Anatomy 0.000 abstract description 5
- 230000009826 neoplastic cell growth Effects 0.000 abstract description 5
- 206010058314 Dysplasia Diseases 0.000 abstract description 4
- 230000002123 temporal effect Effects 0.000 abstract description 3
- 230000009897 systematic effect Effects 0.000 abstract 1
- 230000000699 topical effect Effects 0.000 abstract 1
- 230000001575 pathological effect Effects 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 20
- 238000005286 illumination Methods 0.000 description 19
- 230000010287 polarization Effects 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 12
- 230000007170 pathology Effects 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 10
- 238000001574 biopsy Methods 0.000 description 8
- 210000003679 cervix uteri Anatomy 0.000 description 8
- 238000012634 optical imaging Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000002708 enhancing effect Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000010186 staining Methods 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 238000002405 diagnostic procedure Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000008030 elimination Effects 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000001506 fluorescence spectroscopy Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 210000001215 vagina Anatomy 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 3
- 238000002573 colposcopy Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000010183 spectrum analysis Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000000701 chemical imaging Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- -1 e.g. Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009841 epithelial lesion Effects 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 238000012014 optical coherence tomography Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000009543 pathological alteration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012306 spectroscopic technique Methods 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010008263 Cervical dysplasia Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 208000007951 cervical intraepithelial neoplasia Diseases 0.000 description 1
- 201000003565 cervix uteri carcinoma in situ Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002962 histologic effect Effects 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000004066 metabolic change Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 238000007432 optical imaging diagnostic Methods 0.000 description 1
- 238000011422 pharmacological therapy Methods 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000009834 selective interaction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 208000022159 squamous carcinoma in situ Diseases 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 208000022625 uterine cervix carcinoma in situ Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/303—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the vagina, i.e. vaginoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00186—Optical arrangements with imaging filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0646—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/043—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0088—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6423—Spectral mapping, video display
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
Definitions
- the present invention is directed to a method and apparatus for the in vivo, non invasive detection and mapping of the biochemical and/or functional pathologic alterations of human tissues.
- Cancer precursors signs are the so called pre-cancerous states, which are curable if they are detected at an early stage.
- the lesion can progress in depth, resulting in the development of invasive cancer and metastases.
- the possibilities of successful therapy are dramatically diminished. Consequently, the early detection and the objective identification of the severity (stage) of the precancerous lesion are of crucial importance.
- biopsy samples are obtained from suspicious areas, which are submitted for histological examination.
- biopsy sampling poses several problems, such as: a) risk for sampling errors associated with the visual limitations in detecting and localizing suspicious areas; b) biopsy can alter the natural history of the intraepithelial lesion; c) mapping and monitoring of the lesion require multiple tissue sampling, which is subjected to several risks and limitations; d) the diagnostic procedure performed with biopsy sampling and histologic evaluation is qualitative, subjective, time consuming, costly and labor intensive.
- the latter is expressed as low sensitivity and specificity in the detection and classification of tissue lesions.
- Ramanujan et al in the patent No. WO 98/24369 have presented a method based on the use of neural networks for the analysis of the spectral data. This method is based on the training of a computing system with a large number of spectral patterns, which have been taken from normal and from pathologic tissues. The spectrum that is captured each time is compared with the stored spectral data, facilitating this way, the identification of the tissue pathology.
- Dombrowski in U.S. Pat. No. 5,424,543 describes a multi-wavelength, imaging system, capable of capturing tissue images in several spectral bands. With the aid of such a system it is possible in general to map characteristics of diagnostic importance based on their particular spectral characteristics. However, due to the insignificance of the spectral differences between normal and pathologic tissue, which is in general the case, inspection in narrow spectral bands does not allow the highlighting of these characteristics and even more so, the identification and staging of the pathologic area.
- D. R. Sandison et al in U.S. Pat. No. 5,920,399 describe an imaging system, developed for the in vivo investigation of cells, which combines multi-band imaging and light excitation of the tissue.
- the system also employs a dual fiber optic bundle for the transferring of the emitted from the source light onto the tissue and the remitted light from the tissue to the optical detector. These bundles are placed in contact with the tissue, and various wavelengths of excitation and imaging are combined in attempt to enhance the spectral differentiation between normal and pathologic tissue.
- J. R. Delfyett et al have presented a method for the diagnosis of diseases of the cervix, which is based on the combination of Spectral Interferometry and Optical Coherence Tomography (OCT). This system combines three-dimensional imaging and spectral analysis of the tissue.
- OCT Optical Coherence Tomography
- the optics used for the imaging of the area of interest are of general purpose and are not comply with the special technical requirements for the clinical implementation of the method.
- Clinical implementation of the presented system is also hindered by the fact that it does not integrate appropriate means for ensuring the stability of the relative position between the tissue surface and image capturing module, during the snapshot imaging procedure. This is very important since small movements of the patient (i.e. breathing) are always present during the examination procedure. If micro-movements are taking place during successive capturing of images, after application of the agent, then the spatial features of the captured images are not coincide. This reduces substantially the precision in the calculation of the curves in any spatial point, that express the kinetics of marker-tissue interaction.
- the present invention provides, at least in part, a method for monitoring the effects of a pathology differentiating agent on a tissue sample by applying a pathology differentiating agent, e.g., acetic acid, on a tissue sample and monitoring the rate of change of light reflection from the tissue sample over time, thereby monitoring the effects of a pathology differentiating agent on a tissue sample.
- a pathology differentiating agent e.g., acetic acid
- the tissue may be a cervical, ear, oral, skin, esophagus, or stomach tissue.
- the pathology differentiating agent provokes transient alterations in the light scattering properties of the tissue, e.g., the abnormal epithelium.
- the present invention features a method for the in vivo diagnosis of a tissue abnormality, e.g., a tissue atypia, a tissue dysplasia, a tissue neoplasia (such as a cervical intraepithelial neoplasia, CINI, CINII, CINIII) or cancer, in a subject.
- the method includes contacting a tissue in a subject with a pathology differentiating agent, e.g., an acetic acid solution or a combination of solutions selected from a plurality of acidic and basic solutions, exposing the tissue in the subject to optical radiation; and monitoring the intensity of light emitted from the tissue over time, thereby diagnosing a tissue abnormality in a subject.
- the optical radiation may be broad band optical radiation, preferably polarized optical radiation.
- the non-invasive methods of the present invention are useful for the in vivo early detection of tissue abnormalities/alterations and mapping of the grade of tissue characteristics of epithelial tissues, during the development of tissue atypias, dysplasias neoplasias and cancers.
- the tissue area of interest is illuminated with a broad band optical radiation and contacted with a pathology differentiating agent, e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue.
- a pathology differentiating agent e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue.
- the light that is re-emitted from the tissue may be in the form of reflection, diffuse scattering, fluorescence or combinations or subcombinations thereof.
- the intensity of the light emitted from the tissue may be measured, e.g., simultaneously, in every spatial point of the tissue area of interest, at a given time point or over time (e.g., for the duration of agent-t
- a diagnosis may be made based on the quantitative assessment of the spatial distribution of alterations in the characteristics of the light re-emitted from the tissue at given time points, before and after the optical and chemical excitation of the tissue and/or based on the quantitative assessment of the spatial distribution of parameters, calculated from the characteristic curves that express the kinetics of the provoked alterations in the characteristics of the light re-emitted from the tissue, which characteristic curves are simultaneously measured in every spatial point of the area under examination during the optical and chemical excitation of the tissue.
- the step of tissue illumination comprises exposing the tissue area under analysis to optical radiation of narrower spectral width than the spectral width of the light emitted by the illumination source.
- the step of measuring the intensity of light comprises measuring the intensity of the re-emitted light in a spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
- the step of measuring the intensity of light comprises measuring simultaneously the intensity of the re-emitted light in a plurality of spectral bands, the spectral widths of which are narrower than the spectral width of the detector's sensitivity.
- the present invention features an apparatus for the in vivo, non-invasive early detection of tissue abnormalities/alterations and mapping of the grade of these tissue abnormalities/alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues, during the development of tissue atypias, dysplasias, neoplasias and cancers.
- the apparatus includes optics for collecting the light re-emitted by the area under analysis, selecting magnification and focusing the image of the area; optical imaging detector(s); means for the modulation, transfer, display and capturing of the image of the tissue area of interest; a computer which includes data storage, processing and analysis means; a monitor for displaying images, curves and numerical data; optics for the optical multiplication of the image of the tissue area of interest; a light source for illuminating the area of interest; optionally, optical filters for selecting the spectral band of imaging and illumination; means for transmitting light and illuminating the area of interest; control electronics; and optionally, software for the analysis and processing of data, which also enables the tissue image capturing and storing in specific time points and for a plurality of time points, before and after administration of the pathology differentiating agent.
- an image or a series of images may be created which express the spatial distribution of the characteristics of the kinetics of the provoked changes in the tissue's optical characteristics, before and after the administration of the agent, with pixel values corresponding with the spatial distribution of the alterations in the intensity of the light emitted from the tissue, in given time instances, before and after the optical and chemical excitation of tissue and/or with the spatial distribution of parameters derived from the function: pixel gray value versus time.
- the foregoing function may be calculated from the captured and stored images and for each row of pixels with the same spatial coordinates.
- the step of optical filtering the imaging detector comprises an optical filter that is placed in the optical path of the rays that form the image of the tissue, for the recording of temporally successive images in a selected spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
- the image multiplication optics comprise light beam splitting optics that create two identical images of the area of interest, which are recorded by two imaging detectors, in front of which optical filters are placed, with in general different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that two groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
- the image multiplication optics comprise more than one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed, with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
- the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
- the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded in different sub-areas of the same detector, and in front these areas optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously in the different areas of the detector, each one corresponding to a different spectral band.
- the step of filtering the light source comprises an optical filter, which is placed in the optical path of an illumination light beam, and transmits light of spectral width shorter than the spectral width of sensitivity of the detector used.
- the step of filtering the light source comprises a plurality of optical filters and a mechanism for selecting the filter that is interposed to the tissue illumination optical path, thus enabling the tuning of the center wavelength and the spectral width of the light illuminating the tissue.
- the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on the pixel values of one image, from the group of the recorded temporally successive images of the tissue area of interest.
- the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on the pixel values belonging to plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
- the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest is based on numerical data derived from mathematical operations and calculations between the pixel values belonging a plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
- a pseudo-color scale which represents with different colors the different pixel values of the image or of the images used for the mapping of abnormal tissue areas, is used for the visualization of the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area under examination.
- the image or images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue are used for the in vivo detection, mapping, as-well as for the determination of the borders of epithelial lesions.
- the pixel values of the image or of the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used as diagnostic indices for the in vivo identification and staging of epithelial lesions.
- the image or the images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue can be overimposed onto the color or black and white image of the same area of tissue under examination displayed on the monitor, so that abnormal tissue areas are highlighted and their borders are demarcated, facilitating the selection of a representative area for taking a biopsy sample, the selective surgical removal of the abnormal area and the evaluation of the accuracy in selecting and removing the appropriate section of the tissue.
- the image or the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used for the evaluation of the effectiveness of various therapeutic modalities such as radiotherapy, nuclear medicine treatments, pharmacological therapy, and chemotherapy.
- the optics for collecting the light re-emitted by the area under analysis comprises the optomechanical components employed in microscopes used in clinical diagnostic examinations, surgical microscopes, colposcopes and endoscopes.
- the apparatus may comprise a speculum, an articulated arm onto which the optical head is attached, which optical head comprises a refractive objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, and an illuminator, where the speculum is attached in a fixed location onto the system articulated arm-optical head, in such a way such that the central longitudinal axis of the speculum is perpendicular to the central area of the objective lens, so that when the speculum is inserted into the vagina and fixed in it, the relative position of the image-capturing optics and of the tissue area of interest remains unaltered, regardless of micro-movements of the cervix, which are taking place during the examination of the female subject.
- the apparatus may further comprise an atomizer for delivering the agent, where the atomizer is attached in a fixed point onto the system articulated arm-optical head of the apparatus and in front of the vaginal opening, where the spraying of the tissue may be-controlled and synchronized with a temporally successive image capturing procedure, with the aid of electronic control means.
- the image capturing detector means and image display means comprise a camera system with detector spatial resolution greater than 1000 ⁇ 1000 pixels and a monitor of at least 17 inches (diagonal), so that high magnification is ensured together with a large field of view, while the image quality is maintained.
- surgical microscopes and colposcopes comprise an articulated arm onto which the optical head is attached, which optical head comprises an objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, an illuminator and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed image is eliminated.
- the endoscope may comprise optical means for transferring light from the light source onto the tissue surface and for collecting and transferring along almost the same axis and focusing the rays that form the image of the tissue, and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed by the endoscope image is eliminated.
- surgical microscopes and colposcopes may additionally comprise a reflective objective lens, where the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its optical front aperture the second reflection mirror is located, and in the rear part (non-reflective) of this mirror, illumination means are attached from which light is emitted toward the object, so that with or without illumination beam zooming and focusing optics the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging lens, and with the aid of zooming and focusing optics of illumination beam that may be adjusted simultaneously and automatically with the mechanism for varying the magnification of the optical imaging system, the illuminated area and the field-of-view of the imaging system, are varying simultaneously and proportionally, so that any decrease in image brightness caused by increasing the magnification, is compensated with the simultaneous zooming; and focusing of the illumination beam.
- the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its
- FIG. 1 is a schematic representation of the present method's basic principle.
- FIG. 2 illustrates an embodiment of the invention comprising a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
- FIG. 3 illustrates another embodiment of the invention comprising a method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
- FIG. 4 illustrates a schematic diagram of a medical microscope comprising a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
- LS light source
- MS magnification selection mechanism
- EP eyepiece
- CA image capturing module
- CA image capturing module
- FIG. 5 illustrates an endoscope comprising an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
- EP eyepiece
- optical fibers or crystals for the transmission of both illumination and image rays
- optics for the linear polarization of light one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
- FIG. 6 depicts a colposcopic apparatus comprising an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
- AA articulated arm
- OH optical head
- LS light source
- OBJ objective lens
- EP eye-piece
- MS magnification
- FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
- the present invention is directed to a method and system for the in-vivo, non-invasive detection and mapping of the biochemical and or functional alterations of tissue, e.g., tissue within a subject.
- tissue e.g., tissue within a subject.
- this agent is administered, e.g., topically to the tissue.
- the tissue (T) is sprayed using an atomizer (A), which contains the agent, e.g., acetic acid.
- the tissue is illuminated with a source that emits light at a specific spectral band, depending on the optical characteristics of both the agent and the tissue.
- Illumination and selection of the spectral characteristics of the incident to the tissue light can be performed with the aid of a light source (LS) and a mechanism for selecting optical filters (OFS).
- LS light source
- OFS optical filters
- tissue (T) and detector (D) For the imaging of the area of interest, light collection optics (L) are used, which focus the image onto a two-dimensional optical detector (D). The output signal of the latter is amplified, modulated and digitized with the aid of appropriate electronics (EIS) and finally the image is displayed on a monitor (M) and stored in the data-storing means of a personal computer (PC). Between tissue (T) and detector (D), optical filters (OFI) can be interposed. The interposition of the filter can be performed for tissue (T) imaging in selected spectral bands, at which the maximum contrast is obtained between areas that are subjected to different grade of alterations in their optical characteristics, provoked after administering the appropriate agent.
- OFI optical filters
- the detector (D) captures images of the tissue, in successive time instances, which are then stored in the computer's data-storage means.
- the capturing rate is proportional to the rate at which the tissue's optical characteristics are altered, following the administration of the agent.
- FIG. 1 images of the same tissue area are schematically illustrated, which have been stored successively before and after administering the agent (STI).
- the black areas represent tissue areas that do not alter their optical characteristics (NAT), while the gray-white tones represent areas which alter their optical characteristics (AT), following the administration of the agent.
- NAT tissue areas that do not alter their optical characteristics
- AT optical characteristics
- FIG. 1 two curves are illustrated: pixel value in position xy (Pvxy), versus time t.
- the curve ATC corresponds to an area where agent administration provoked alterations (AT) in the tissue's optical characteristics.
- the curve (NATC) corresponds to an area where no alteration took place (NAT).
- the pseudocolor image of the phenomenon's kinetics (KI), which expresses the spatial distribution of one or more parameters, can be overimposed (after being calculated) on the tissue image, which is displayed in real-time on the monitor.
- the using the overimposed image as a guide facilitates substantially the determination of the lesion's boundaries, for successful surgical removal of the entire lesion, or for locating suspicious areas in order to obtain a biopsy sample(s).
- the measured quantitative data and the parameters that derive from them can constitute quantitative clinical indices for the in vivo staging of the lesion or of sub-areas of the latter.
- the simultaneous imaging in more than one spectral bands can assist in minimizing the contribution of the unwanted endogenous scattering, fluorescence and reflection of the tissue, to the optical signal captured by the detector.
- the captured optical signal comprise the optical signal generated by the marker-tissue interaction and the light emitted from the endogenous components of the tissue.
- the recorded response of the components of the tissue constitute noise, since it occludes the generated optical signal, which caries the diagnostic information. Therefore, separation of these signals, based on their particular spectral characteristics, will result in the maximization of the signal-to-noise ratio and consequently in the improvement of the obtained diagnostic information.
- FIG. 2 illustrates a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
- the remitted from the tissue light is collected and focused by the optical imaging module (L) and passes through a beam splitting (BSP) optical element.
- BSP beam splitting
- two identical images of the tissue (T) are generated, which can be captured by two detectors (D 1 , D 2 ).
- appropriate optical filters (Of ⁇ 1 ), (Of ⁇ 2 ) can be placed, so that images with different spectral characteristics are captured.
- the detectors (D 1 ), (D 2 ) are synchronized so that they capture simultaneously the corresponding spectral images of the tissue (Ti ⁇ 1 ), (Ti ⁇ 2 ) and in successive time-intervals, which are stored in the computer's data storage means.
- multiple spectral images can be captured simultaneously by combining multiple splitting elements, filters and sources.
- FIG. 3 illustrates another method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent.
- MP prism
- imaging optics it is possible to form multiple copies of the same image onto the surface of the same detector (D).
- Various optical filters (OF ⁇ 1 ),(OF ⁇ 2 ),(OF ⁇ 3 ),(OF ⁇ 4 ), can be interposed along the length of the optical path of the rays that form the copies of the object's image, so that the captured multiple images correspond to different spectral areas.
- the different implementations of image capturing module described above can be integrated to conventional optical imaging diagnostic devises.
- Such devises are the various medical microscopes, colposcopes and endoscopes, which are routinely used for the in vivo diagnostic inspection of tissues. Imaging of internal tissues of the human body requires in most cases the illumination and imaging rays to travel along the same optical path, through the cavities of the body. Due to this fact, in the common optical diagnostic devises the tissue's surface reflection contributes substantially in the formed image. This limits the imaging information for the subsurface characteristics, which are in general of great diagnostic importance.
- FIG. 4 illustrates a schematic diagram of a medical microscope consisted from a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc).
- LS light source
- MS magnification selection mechanism
- EP eyepiece
- CA image capturing module
- CA image capturing module
- TS surface reflected light
- the other linear polarizer By interposing the other linear polarizer to the optical path of the rays that are remitted from the tissue and form the optical image of the object, with its polarization plane perpendicular to the polarization level of the incident to the tissue light (IPO), the contribution of the surface reflection to the image of the object is eliminated.
- the light which is not surface-reflected enters the tissue, where due to multiple scattering, light polarization is randomized.
- a portion of the re-emitted light passes through the imaging polarization optics, carrying improved information for the subsurface features.
- FIG. 5 illustrates an endoscope consisted of an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II).
- the polarization plane of the polarizing optics which are adapted to the exit of light from the endoscope (LPO), is perpendicular to the polarization plane of the polarizer, which is adapted to the point where the light enters the endoscope (IL).
- the polarization optics of the incident to the tissue light could also be adapted at the point where the light enters the endoscope (IL) but in this case, the endoscope has to be constructed using polarization preserving crystals or fiber optics for transferring the light. If polarization preserving light transmission media are used, then the polarizing optics of the imaging rays can be interposed in their path and before or after the eyepiece (EP).
- a problem for the effective clinical implementation of the described method herein is the micro-movements of the patient, which are always present during the snapshot imaging of the same tissue area. Obviously this problem is eliminated in case that the patient is under anesthesia (open surgery). In most cases however the movements of the tissue relative to the image capturing module, occurring during the successive image capturing time-course, have the consequence that the image pixels, with the same image coordinates, do not correspond to exactly the same spatial point x,y of the tissue area under examination.
- a method to eliminate the influence to the measured temporal data of the relative movements between tissue and image capturing module is presented below.
- a colposcopic apparatus is illustrated in FIG. 6 , consisted of an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS).
- the image capturing module is attached to the optical head (OH), through an opto-mechanical adapter.
- the speculum enters the vagina and its blades are opened up compressing the side walls of the vagina.
- the Speculum (KD) been mechanically connected with the optical head (OH), transfer any micromovement of the patient to the optical head (OH), which been mounted on an articulated arm (AA), follows these movements.
- the relative position between tissue and optical head remains almost constant.
- FIG. 6 illustrates an atomizer (A) attached to the optical head of the microscope.
- the unit (MIC) is comprised of electronics for controlling the agent sprayer and it can incorporate also the container for storing the agent.
- the unit (MIC) receives the proper command from the computer it sprays a predetermined amount of the agent onto the tissue surface, while the same or another command initiates the snapshot image capturing procedure.
- the diagnostic examination of non-directly accessible tissues located in cavities of the human body (ear, cervix, oral cavity, esophagus, colon, stomach), is performed with the aid of common clinical microscopes.
- the illumination-imaging rays are near co-axial. More specifically, the line perpendicular to the exit point of light into the air, and the line perpendicular to the objective lens, form an angle of a few degrees. Due to this fact, these microscopes operate at a specific distance from the subject (working distance), in which the illuminated tissue area, coincides with the field-of-view of the imaging system. These microscopes are found to be inappropriate in cases where tissue imaging through human body cavities of small diameter and at short working distances, is required.
- the illuminator of the imaging apparatus emits linearly polarized light
- the multiple reflections are randomizing the polarization plane of the incident light.
- the incident to the tissue under analysis light is not linearly polarized, then the elimination of the contribution of the surface reflection to the captured image can not be effective.
- FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture.
- the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging apparatus.
- a reflective-objective lens is used, consisted at least of a first reflection (1RM) and a second reflection (2RM) mirror, where at the rear part of the first reflection mirror (2RM), a light source (LS) is attached together (if required) with optics for light beam manipulation such as zooming and focusing (SO).
- the reflective objective lens by replacing the common refractive-objective, which is used in conventional microscopes, provides imaging capability in cavities of small diameter, with freedom in choosing the working distance.
- the zooming and focusing optics of the light beam can be adjusted simultaneously with the mechanism for varying the magnification of the optical imaging system, so that the illumination area and the field-of-view of the imaging system, are varying simultaneously and proportionally. This has as a result, the preservation of image brightness regardless of the magnification level of the lens.
- the imaging-illumination geometry embodied in this optical imaging apparatus among with the light beam manipulation options, enable the efficient elimination of the contribution of the surface reflection to the captured image and consequently the efficient clinical implementation of the method described herein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Gynecology & Obstetrics (AREA)
- Reproductive Health (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Credit Cards Or The Like (AREA)
- Dot-Matrix Printers And Others (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Microscoopes, Condenser (AREA)
- Endoscopes (AREA)
Abstract
The present invention provides a method and an apparatus for the in vivo, non-invasive, early detection of alterations and mapping of the grade of these alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues during the development of tissue atypias, dysplasias, neoplasias and cancers. The method is based, at least in part, on the simultaneous measurement of the spatial, temporal and spectral alterations in the characteristics of the light that is re-emitted from the tissue under examination, as a result of a combined tissue excitation with light and special chemical agents. The topical or systematic administration of these agents result in an evanescent contrast enhancement between normal and abnormal areas of tissue. The apparatus enables the capturing of temporally successive imaging in one or more spectral bands simultaneously. Based on the measured data, the characteristic curves that express the agent-tissue interaction kinetics, as well as numerical parameters derived from these data, are determined in any spatial point of the examined area. Mapping and characterization of the lesion, are based on these parameters.
Description
- This application is a continuation application of application Ser. No. 10/346,338, filed on Jan. 16, 2003, pending, which is a continuation of 09/739,089, filed on Dec. 15, 2000, pending, which in turn claims priority to Greek National Application Serial No. 20000/00102 filed on Mar. 28, 2000 and U.S. provisional Application No. ______, entitled “Method And Apparatus For Amplifying Pathological Features In Tissues”, filed on Dec. 15, 1999. The contents of all of the aforementioned application(s) are hereby incorporated by reference.
- The present invention is directed to a method and apparatus for the in vivo, non invasive detection and mapping of the biochemical and/or functional pathologic alterations of human tissues.
- Cancer precursors signs are the so called pre-cancerous states, which are curable if they are detected at an early stage. In the opposite case the lesion can progress in depth, resulting in the development of invasive cancer and metastases. At this stage, the possibilities of successful therapy are dramatically diminished. Consequently, the early detection and the objective identification of the severity (stage) of the precancerous lesion are of crucial importance.
- The conventional clinical process of optical examination have very limited capabilities in detecting cancerous and pre-cancerous tissue lesions. This is due to the fact that the structural and metabolic changes, which take place during the development of the decease, do not significantly and with specificity alter the color characteristics of the pathological tissue.
- In order to obtain more accurate diagnosis, biopsy samples are obtained from suspicious areas, which are submitted for histological examination. However, biopsy sampling poses several problems, such as: a) risk for sampling errors associated with the visual limitations in detecting and localizing suspicious areas; b) biopsy can alter the natural history of the intraepithelial lesion; c) mapping and monitoring of the lesion require multiple tissue sampling, which is subjected to several risks and limitations; d) the diagnostic procedure performed with biopsy sampling and histologic evaluation is qualitative, subjective, time consuming, costly and labor intensive.
- In recent years there have been developed and presented quite a few new methods and systems in an effort to overcome the disadvantages of the conventional diagnostic procedures. These methods can be classified in two categories: a) Methods which are based on the spectral analysis of tissues in vivo, in an attempt to improve the diagnostic information b) Methods which are based on the chemical excitation of tissues with the aid of special agents, which have the property to interact with pathologic tissue and to alter its optical characteristics selectively, thus enhancing the contrast between lesion and healthy tissue.
- In the first case, the experimental use of spectroscopic techniques as a potential solutions to existing diagnostic problems, is motivated by their capability to detect alterations in the biochemical and/or the structural characteristics, which take place in the tissue during the development of the disease. In particular, fluorescence spectroscopy has been extensively used in various tissues, where the later are optically excited with the aid of a light source (usually laser), of short wave length (blue—ultraviolet range) and their response is measured as fluorescence intensity vs. wavelength.
- Garfield and Glassman in U.S. Pat. No. 5,450,857 and Ramanajum et al in U.S. Pat. No. 5,421,339 have presented a method based on the use of fluorescence spectroscopy for the diagnosis of cancerous and pre-cancerous lesions of cervix. The main disadvantage of fluorescence spectroscopy is that the existing biochemical modifications associated with the progress of the disease are not manifested in a direct way as modifications in the measured fluorescence spectra. The fluorescence spectra contain limited diagnostic information of two basic reasons: a) Tissues contain non-fluorescent chromophores, such as hemoglobin. Absorption by such chromophores of the emitted light from fluorophores can result in artificial dips and peaks in the fluorescence spectra. In other words the spectra carry convoluted information for several components and therefore it is difficult assess alterations in tissue features of diagnostic importance; and b) The spectra are broad due to the fact that a large number of tissue components are optically excited and contribute to the captured optical signal. As a result the spectra do not carry specific information for the pathologic alterations and thus they are of limited diagnostic value.
- The latter is expressed as low sensitivity and specificity in the detection and classification of tissue lesions.
- Aiming to enhance the sensitivity and specificity of the captured information, Ramanujan et al in the patent No. WO 98/24369 have presented a method based on the use of neural networks for the analysis of the spectral data. This method is based on the training of a computing system with a large number of spectral patterns, which have been taken from normal and from pathologic tissues. The spectrum that is captured each time is compared with the stored spectral data, facilitating this way, the identification of the tissue pathology.
- R. R. Kortun et al, in U.S. Pat. No. 5,697,373, seeking to improve the captured diagnostic information, have presented a method based on the combination of fluorescence spectroscopy and Raman scattering. The last has the capability of providing more analytical information, it requires however complex instrumentation and ideal experimental conditions, which substantially hinder their clinical use. It is generally known that tissues are characterized by the lack of spatial homogeneity and consequently the spectral analysis of distributed spatial points is insufficient for the characterization of their status.
- Dombrowski in U.S. Pat. No. 5,424,543, describes a multi-wavelength, imaging system, capable of capturing tissue images in several spectral bands. With the aid of such a system it is possible in general to map characteristics of diagnostic importance based on their particular spectral characteristics. However, due to the insignificance of the spectral differences between normal and pathologic tissue, which is in general the case, inspection in narrow spectral bands does not allow the highlighting of these characteristics and even more so, the identification and staging of the pathologic area.
- D. R. Sandison et al, in U.S. Pat. No. 5,920,399 describe an imaging system, developed for the in vivo investigation of cells, which combines multi-band imaging and light excitation of the tissue. The system also employs a dual fiber optic bundle for the transferring of the emitted from the source light onto the tissue and the remitted light from the tissue to the optical detector. These bundles are placed in contact with the tissue, and various wavelengths of excitation and imaging are combined in attempt to enhance the spectral differentiation between normal and pathologic tissue.
- In U.S. Pat. No. 5,921,926, J. R. Delfyett et al have presented a method for the diagnosis of diseases of the cervix, which is based on the combination of Spectral Interferometry and Optical Coherence Tomography (OCT). This system combines three-dimensional imaging and spectral analysis of the tissue.
- Moreover, several improved versions of colposcopes have been presented, (D. R. Craine et al, U.S. Pat. No. 5,791,346 and K. L. Blaiz U.S. Pat. No. 5,989,184) in most of which, electronic imaging systems have been integrated for image capturing, analysis of tissue images, including the quantitative assessment of lesion's size. For the enhancement of the optical differentiation between normal and pathologic tissue, special agents are used in various fields of biomedical diagnostics, which are administered topically or systematically. Such agents are acetic acid solution, toluidine blue, various photosensitizers (porphyrines) (S., Anderson Engels, C. Klinteberg, K. Svanberg, S. Svanberg, In vivo fluorescence imagitgi for tissue diagnostics, Phys Med. Biol. 42 (1997) 815-24). The provoked selective staining of the pathologic tissue is owed to the property of these agents to interact with the, altered metabolic and structural characteristics of the pathologic area. This interaction enhances progressively and reversibly the differences in the spectral characteristics of reflection and/or fluorescence between normal and pathologic tissue. Despite the fact that the provoked selective staining of the pathologic tissue is a dynamic phenomenon, in clinical practice the intensity and the extent of the staining are assessed qualitatively and statically. Furthermore, in several cases of early pathologic conditions, the phenomenon of temporary staining after administering the agent, is short-lasting and thus the examiner is not able to detect the provoked alterations and even more so, to assess their intensity and extent. In other cases, the staining of the tissue progresses very slowly, with the consequence of patient discomfort and creation of problems for the examiner in assessing the intensity and extent of the alterations, since they are continuously changing. The above have as direct consequence, the downgrading of the diagnostic value of these diagnostic procedures and thus its usefulness is limited to facilitate the localization of suspected areas for obtaining biopsy samples.
- Summarizing the above mentioned, the following conclusions are drawn:
- a) Various conventional light dispersion spectroscopic techniques (fluorescence, elastic, non elastic scattering, etc) have been proposed and experimentally used for the in vivo detection of alterations in the structural characteristics of pathologic tissue. The main disadvantage of these techniques is that they provide point information, which is inadequate for the analysis of the spatially non-homogenous tissue. Multi-band imaging has the potential to solve this problem, by providing spectral information (of lesser resolution as a rule) but in any spatial point of the area under examination. These techniques (imaging and non-imaging) however, provide information of limited diagnostic value, due to the fact that the structural tissue alterations, which are accompanying the development of the disease, are not manifested as significant and characteristic alterations on the measured spectra. Consequently, the captured spectral information cannot be directly correlated with the tissue pathology, a fact which limits the clinical usefulness of these techniques.
- b) The conventional (non-spectral) imaging techniques provide the capability of mapping characteristics of diagnostic importance in two or three dimensions. They are basically used for measuring morphological characteristics and as clinical documentation tools.
- c) The diagnostic methods which are based on the selective staining of pathologic tissue with special agents allows the enhancement of the optical contrast between normal and pathologic tissue. Nevertheless they provide limited information for the in vivo identification and staging of the disease.
- Given the fact that the selective interaction of pathologic tissue with the agents, which enhance its optical contrast with healthy tissue is a dynamic phenomenon, it is reasonable to suggest that the capture and analysis of the characteristics of this phenomenon's kinetics, could provide important information for the in vivo detection, identification and staging of tissue lesions. In a previous publication by the inventors (C. Balas, A. Dimoka, E. Orfanoudaki, E. koumandakis, “In vivo assessment of acetic acid-cervical tissue interaction using quantitative imaging of back-scattered light: Its potential use for the in vivo cervical cancer detection grading and mapping”, SPIE-Optical Biopsies and Microscopic Techniques, Vol. 3568 pp. 31-37, (1998)), measurements of the alterations in the characteristics of the back-scattered light as a function of wave-length and time are presented. These alterations are provoked in the cervix by the topical administration of acetic acid solution. In this particular case, there was used as an experimental apparatus, a general-purpose multi-spectral imaging system built around a tunable liquid crystal monochromator for measuring the variations in intensity of the back-scattered light as a function of time and wavelength in selected spatial points. It was found that the lineshapes of curves of intensity of back-scattered light versus time, provide advanced information for the direct identification and staging of tissue neoplasias. Unpublished results of the same research team support that similar results can also be obtained with other agents, which have the property of enhancing the optical contrast between normal and pathologic tissue. Nevertheless, the experimental method employed in the published paper is characterized by quite a few disadvantages, such as: The imaging monochromator requires time for changing the imaging wavelength and as a consequence it is inappropriate for multispectral imaging and analysis of dynamic phenomena. It does not constitute a method for the mapping of the grade of the tissue lesions, as the presented curves illustrate the temporal alterations of intensity of the back-scattered light in selected points. The lack of data modeling and parametric analysis of the characteristics of the phenomenon kinetics in any spatial point of the area of interest restrict the usefulness of the method in experimental studies and hinder its clinical implementation. The optics used for the imaging of the area of interest are of general purpose and are not comply with the special technical requirements for the clinical implementation of the method. Clinical implementation of the presented system is also hindered by the fact that it does not integrate appropriate means for ensuring the stability of the relative position between the tissue surface and image capturing module, during the snapshot imaging procedure. This is very important since small movements of the patient (i.e. breathing) are always present during the examination procedure. If micro-movements are taking place during successive capturing of images, after application of the agent, then the spatial features of the captured images are not coincide. This reduces substantially the precision in the calculation of the curves in any spatial point, that express the kinetics of marker-tissue interaction.
- The present invention provides, at least in part, a method for monitoring the effects of a pathology differentiating agent on a tissue sample by applying a pathology differentiating agent, e.g., acetic acid, on a tissue sample and monitoring the rate of change of light reflection from the tissue sample over time, thereby monitoring the effects of a pathology differentiating agent on a tissue sample. The tissue may be a cervical, ear, oral, skin, esophagus, or stomach tissue. Without intending to be limited by theory, it is believed that the pathology differentiating agent provokes transient alterations in the light scattering properties of the tissue, e.g., the abnormal epithelium.
- In another aspect, the present invention features a method for the in vivo diagnosis of a tissue abnormality, e.g., a tissue atypia, a tissue dysplasia, a tissue neoplasia (such as a cervical intraepithelial neoplasia, CINI, CINII, CINIII) or cancer, in a subject. The method includes contacting a tissue in a subject with a pathology differentiating agent, e.g., an acetic acid solution or a combination of solutions selected from a plurality of acidic and basic solutions, exposing the tissue in the subject to optical radiation; and monitoring the intensity of light emitted from the tissue over time, thereby diagnosing a tissue abnormality in a subject. The optical radiation may be broad band optical radiation, preferably polarized optical radiation.
- The non-invasive methods of the present invention are useful for the in vivo early detection of tissue abnormalities/alterations and mapping of the grade of tissue characteristics of epithelial tissues, during the development of tissue atypias, dysplasias neoplasias and cancers.
- In one embodiment, the tissue area of interest is illuminated with a broad band optical radiation and contacted with a pathology differentiating agent, e.g., an agent or a combination of agents which interact with pathologic tissue areas characterized by an altered biochemical composition and/or cellular functionality and provoke a transient alteration in the characteristics of the light that is re-emitted from the tissue. The light that is re-emitted from the tissue may be in the form of reflection, diffuse scattering, fluorescence or combinations or subcombinations thereof. The intensity of the light emitted from the tissue may be measured, e.g., simultaneously, in every spatial point of the tissue area of interest, at a given time point or over time (e.g., for the duration of agent-tissue interaction). A diagnosis may be made based on the quantitative assessment of the spatial distribution of alterations in the characteristics of the light re-emitted from the tissue at given time points, before and after the optical and chemical excitation of the tissue and/or based on the quantitative assessment of the spatial distribution of parameters, calculated from the characteristic curves that express the kinetics of the provoked alterations in the characteristics of the light re-emitted from the tissue, which characteristic curves are simultaneously measured in every spatial point of the area under examination during the optical and chemical excitation of the tissue.
- In one embodiment of the invention, the step of tissue illumination comprises exposing the tissue area under analysis to optical radiation of narrower spectral width than the spectral width of the light emitted by the illumination source. In another embodiment, the step of measuring the intensity of light comprises measuring the intensity of the re-emitted light in a spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity. In yet another embodiment, the step of measuring the intensity of light comprises measuring simultaneously the intensity of the re-emitted light in a plurality of spectral bands, the spectral widths of which are narrower than the spectral width of the detector's sensitivity.
- In yet another aspect, the present invention features an apparatus for the in vivo, non-invasive early detection of tissue abnormalities/alterations and mapping of the grade of these tissue abnormalities/alterations, caused in the biochemical and/or in the functional characteristics of epithelial tissues, during the development of tissue atypias, dysplasias, neoplasias and cancers. The apparatus includes optics for collecting the light re-emitted by the area under analysis, selecting magnification and focusing the image of the area; optical imaging detector(s); means for the modulation, transfer, display and capturing of the image of the tissue area of interest; a computer which includes data storage, processing and analysis means; a monitor for displaying images, curves and numerical data; optics for the optical multiplication of the image of the tissue area of interest; a light source for illuminating the area of interest; optionally, optical filters for selecting the spectral band of imaging and illumination; means for transmitting light and illuminating the area of interest; control electronics; and optionally, software for the analysis and processing of data, which also enables the tissue image capturing and storing in specific time points and for a plurality of time points, before and after administration of the pathology differentiating agent.
- Using the foregoing apparatus an image or a series of images may be created which express the spatial distribution of the characteristics of the kinetics of the provoked changes in the tissue's optical characteristics, before and after the administration of the agent, with pixel values corresponding with the spatial distribution of the alterations in the intensity of the light emitted from the tissue, in given time instances, before and after the optical and chemical excitation of tissue and/or with the spatial distribution of parameters derived from the function: pixel gray value versus time. The foregoing function may be calculated from the captured and stored images and for each row of pixels with the same spatial coordinates.
- In one embodiment, the step of optical filtering the imaging detector comprises an optical filter that is placed in the optical path of the rays that form the image of the tissue, for the recording of temporally successive images in a selected spectral band, the spectral width of which is narrower than the spectral width of the detector's sensitivity.
- In yet another embodiment, the image multiplication optics comprise light beam splitting optics that create two identical images of the area of interest, which are recorded by two imaging detectors, in front of which optical filters are placed, with in general different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that two groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
- In another embodiment, the image multiplication optics comprise more than one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed, with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
- In a further embodiment, the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded by multiple imaging detectors, in front of which optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously, each one corresponding to a different spectral band.
- In yet a further embodiment, the image multiplication optics comprise one beam splitter for the creation of multiple identical images of the area of interest, which are recorded in different sub-areas of the same detector, and in front these areas optical filters are placed with, preferably, different transmission characteristics and capable of transmitting light of spectral width shorter than the spectral width of the detector's sensitivity, so that multiple groups of temporally successive images of the same tissue area are recorded simultaneously in the different areas of the detector, each one corresponding to a different spectral band.
- In another embodiment, the step of filtering the light source comprises an optical filter, which is placed in the optical path of an illumination light beam, and transmits light of spectral width shorter than the spectral width of sensitivity of the detector used.
- In a further embodiment, the step of filtering the light source comprises a plurality of optical filters and a mechanism for selecting the filter that is interposed to the tissue illumination optical path, thus enabling the tuning of the center wavelength and the spectral width of the light illuminating the tissue.
- In another embodiment, the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest, is based on the pixel values of one image, from the group of the recorded temporally successive images of the tissue area of interest.
- In a further embodiment, the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest, is based on the pixel values belonging to plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
- In another embodiment, the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area of interest, is based on numerical data derived from mathematical operations and calculations between the pixel values belonging a plurality of images, which are members of the group of the recorded temporally successive images of the tissue area of interest.
- In a further embodiment, a pseudo-color scale, which represents with different colors the different pixel values of the image or of the images used for the mapping of abnormal tissue areas, is used for the visualization of the mapping of the grade of the alterations to the biochemical and/or functional characteristics of the tissue area under examination.
- In one embodiment, the image or images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue, are used for the in vivo detection, mapping, as-well as for the determination of the borders of epithelial lesions.
- In another embodiment, the pixel values of the image or of the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue, are used as diagnostic indices for the in vivo identification and staging of epithelial lesions.
- In yet another embodiment, the image or the images which are determined for the mapping of the grade of the alterations in biochemical and/or functional characteristics of tissue can be overimposed onto the color or black and white image of the same area of tissue under examination displayed on the monitor, so that abnormal tissue areas are highlighted and their borders are demarcated, facilitating the selection of a representative area for taking a biopsy sample, the selective surgical removal of the abnormal area and the evaluation of the accuracy in selecting and removing the appropriate section of the tissue.
- In a further embodiment, the image or the images which are determined for the mapping of the grade of alterations in biochemical and/or functional characteristics of tissue are used for the evaluation of the effectiveness of various therapeutic modalities such as radiotherapy, nuclear medicine treatments, pharmacological therapy, and chemotherapy.
- In another embodiment, the optics for collecting the light re-emitted by the area under analysis, comprises the optomechanical components employed in microscopes used in clinical diagnostic examinations, surgical microscopes, colposcopes and endoscopes.
- In one embodiment of the invention, for colposcopy applications, the apparatus may comprise a speculum, an articulated arm onto which the optical head is attached, which optical head comprises a refractive objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, and an illuminator, where the speculum is attached in a fixed location onto the system articulated arm-optical head, in such a way such that the central longitudinal axis of the speculum is perpendicular to the central area of the objective lens, so that when the speculum is inserted into the vagina and fixed in it, the relative position of the image-capturing optics and of the tissue area of interest remains unaltered, regardless of micro-movements of the cervix, which are taking place during the examination of the female subject.
- In a further embodiment, the apparatus may further comprise an atomizer for delivering the agent, where the atomizer is attached in a fixed point onto the system articulated arm-optical head of the apparatus and in front of the vaginal opening, where the spraying of the tissue may be-controlled and synchronized with a temporally successive image capturing procedure, with the aid of electronic control means.
- In another embodiment of the apparatus of the invention, the image capturing detector means and image display means comprise a camera system with detector spatial resolution greater than 1000×1000 pixels and a monitor of at least 17 inches (diagonal), so that high magnification is ensured together with a large field of view, while the image quality is maintained.
- In a further embodiment, in the case of microscopes used in clinical diagnostic examinations, surgical microscopes and colposcopes, comprise an articulated arm onto which the optical head is attached, which optical head comprises an objective lens, focusing optics, a mechanism for selecting the magnification, an eyepiece, a mount for attaching a camera, an illuminator and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed image is eliminated.
- In another embodiment, in the case of endoscopy, the endoscope may comprise optical means for transferring light from the light source onto the tissue surface and for collecting and transferring along almost the same axis and focusing the rays that form the image of the tissue, and two linear polarizers, where the two linear polarizers are attached, one at a point along the optical path of the illuminating light beam and the other at a point along the optical path of the rays that form the image of the tissue, with the capability of rotating the polarization planes of these light polarizing optical elements, so that when these planes are perpendicular to each other, the contribution of the tissue's surface reflection to the formed by the endoscope image is eliminated.
- In another embodiment, in the case of microscopes used in clinical diagnostic examinations, surgical microscopes and colposcopes, may additionally comprise a reflective objective lens, where the reflective objective replaces the refractive one, which reflective objective is devised so that in the central part of its optical front aperture the second reflection mirror is located, and in the rear part (non-reflective) of this mirror, illumination means are attached from which light is emitted toward the object, so that with or without illumination beam zooming and focusing optics the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging lens, and with the aid of zooming and focusing optics of illumination beam that may be adjusted simultaneously and automatically with the mechanism for varying the magnification of the optical imaging system, the illuminated area and the field-of-view of the imaging system, are varying simultaneously and proportionally, so that any decrease in image brightness caused by increasing the magnification, is compensated with the simultaneous zooming; and focusing of the illumination beam.
- Other features and advantages of the invention will be apparent from the following detailed description and claims.
-
FIG. 1 is a schematic representation of the present method's basic principle. -
FIG. 2 , illustrates an embodiment of the invention comprising a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent. -
FIG. 3 illustrates another embodiment of the invention comprising a method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent. -
FIG. 4 illustrates a schematic diagram of a medical microscope comprising a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc). -
FIG. 5 illustrates an endoscope comprising an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II). -
FIG. 6 depicts a colposcopic apparatus comprising an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS). -
FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture. - The present invention is directed to a method and system for the in-vivo, non-invasive detection and mapping of the biochemical and or functional alterations of tissue, e.g., tissue within a subject. Upon selection of the appropriate agent which enhances the optical contrast between normal and pathologic tissue (depending on the tissue's pathology), this agent is administered, e.g., topically to the tissue. In
FIG. 1 , the tissue (T), is sprayed using an atomizer (A), which contains the agent, e.g., acetic acid. At the same time, the tissue is illuminated with a source that emits light at a specific spectral band, depending on the optical characteristics of both the agent and the tissue. Illumination and selection of the spectral characteristics of the incident to the tissue light can be performed with the aid of a light source (LS) and a mechanism for selecting optical filters (OFS). Of course there are several other methods for illuminating the tissue and for selecting the spectral characteristics of the incident light (e.g., Light emission diodes, LASERS and the like). - For the imaging of the area of interest, light collection optics (L) are used, which focus the image onto a two-dimensional optical detector (D). The output signal of the latter is amplified, modulated and digitized with the aid of appropriate electronics (EIS) and finally the image is displayed on a monitor (M) and stored in the data-storing means of a personal computer (PC). Between tissue (T) and detector (D), optical filters (OFI) can be interposed. The interposition of the filter can be performed for tissue (T) imaging in selected spectral bands, at which the maximum contrast is obtained between areas that are subjected to different grade of alterations in their optical characteristics, provoked after administering the appropriate agent.
- Before administration of the latter, images can be captured and used as reference. After the agent has been administered, the detector (D), captures images of the tissue, in successive time instances, which are then stored in the computer's data-storage means. The capturing rate is proportional to the rate at which the tissue's optical characteristics are altered, following the administration of the agent.
- In
FIG. 1 , images of the same tissue area are schematically illustrated, which have been stored successively before and after administering the agent (STI). In these images, the black areas represent tissue areas that do not alter their optical characteristics (NAT), while the gray-white tones represent areas which alter their optical characteristics (AT), following the administration of the agent. The simultaneous capture of the intensity of the light re-emitted from every spatial point of the tissue area under analysis and in predetermined time instances, allows the calculation of the kinetics of the provoked alterations. - In
FIG. 1 , two curves are illustrated: pixel value in position xy (Pvxy), versus time t. The curve ATC corresponds to an area where agent administration provoked alterations (AT) in the tissue's optical characteristics. The curve (NATC) corresponds to an area where no alteration took place (NAT). - The mathematical analysis of these curves, leads to the calculation of quantitative parameters for every pixel such as: The value PVxy that corresponds to the time ti, the relaxation time trel which corresponds to the value Pvxy=A/e (where e is the base of Neper logarithms), etc.
- The calculation of these parameters (P) in every spatial point of the area under analysis, allows the calculation of the image or images of the kinetics of the phenomenon (KI), with pixel values that are correlated with these parameters. These values can be represented with a scale of pseudocolors (Pmin, Pmax), the spatial distribution of which allows for immediate optical evaluation of the intensity and extent of the provoked alterations. Depending on the correlation degree between the intensity and the extent of the provoked alterations with the pathology and the stage of the tissue lesion, the measured quantitative data and the derived parameters would allow the mapping, the characterization and the border-lining of the lesion. The pseudocolor image of the phenomenon's kinetics (KI), which expresses the spatial distribution of one or more parameters, can be overimposed (after being calculated) on the tissue image, which is displayed in real-time on the monitor. The using the overimposed image as a guide, facilitates substantially the determination of the lesion's boundaries, for successful surgical removal of the entire lesion, or for locating suspicious areas in order to obtain a biopsy sample(s). Furthermore, based on the correlation of the phenomenon's kinetics with the pathology of the tissue, the measured quantitative data and the parameters that derive from them, can constitute quantitative clinical indices for the in vivo staging of the lesion or of sub-areas of the latter.
- In some cases it is necessary to capture the kinetics of the phenomenon in more than one spectral band. This can serve in the in vivo determination of illumination and/or imaging spectral bands at which the maximum diagnostic signal is obtained. Furthermore, the simultaneous imaging in more than one spectral bands can assist in minimizing the contribution of the unwanted endogenous scattering, fluorescence and reflection of the tissue, to the optical signal captured by the detector. The captured optical signal comprise the optical signal generated by the marker-tissue interaction and the light emitted from the endogenous components of the tissue. In many cases the recorded response of the components of the tissue constitute noise, since it occludes the generated optical signal, which caries the diagnostic information. Therefore, separation of these signals, based on their particular spectral characteristics, will result in the maximization of the signal-to-noise ratio and consequently in the improvement of the obtained diagnostic information.
-
FIG. 2 , illustrates a method for capturing in two spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent. The remitted from the tissue light, is collected and focused by the optical imaging module (L) and passes through a beam splitting (BSP) optical element. Thus, two identical images of the tissue (T) are generated, which can be captured by two detectors (D1, D2). In front of the detector, appropriate optical filters (Ofλ1), (Ofλ2) can be placed, so that images with different spectral characteristics are captured. Besides beam splitters, optical filters, dichroic mirrors etc, can also be used for splitting the image of the object. The detectors (D1), (D2) are synchronized so that they capture simultaneously the corresponding spectral images of the tissue (Tiλ1), (Tiλ2) and in successive time-intervals, which are stored in the computer's data storage means. Generalizing, multiple spectral images can be captured simultaneously by combining multiple splitting elements, filters and sources. -
FIG. 3 illustrates another method for capturing in different spectral bands simultaneously and in any spatial point of the area under analysis, the kinetics of the alterations in the characteristics of the remitted from the tissue light, before and the after the administration of the contrast enhancing agent. With the aid of a special prism (MP) and imaging optics, it is possible to form multiple copies of the same image onto the surface of the same detector (D). Various optical filters (OFλ1),(OFλ2),(OFλ3),(OFλ4), can be interposed along the length of the optical path of the rays that form the copies of the object's image, so that the captured multiple images correspond to different spectral areas. - For the clinical use of the methods of the invention, the different implementations of image capturing module described above can be integrated to conventional optical imaging diagnostic devises. Such devises are the various medical microscopes, colposcopes and endoscopes, which are routinely used for the in vivo diagnostic inspection of tissues. Imaging of internal tissues of the human body requires in most cases the illumination and imaging rays to travel along the same optical path, through the cavities of the body. Due to this fact, in the common optical diagnostic devises the tissue's surface reflection contributes substantially in the formed image. This limits the imaging information for the subsurface characteristics, which are in general of great diagnostic importance. This problem becomes more serious especially in epithelial tissues such as the cervix, larynx, oral cavity etc, which are covered by fluids such as mucus and saliva. Surface reflection also obstructs the detection and the measurement of the alterations in the tissue's optical properties, provoked after the administration of agents which enhance the optical contrast between normal and pathologic tissue. More specifically, when a special agent alters selectively the scattering characteristics of the pathologic tissue, the strong surface reflection that takes place in both pathologic (agent responsive) and normal (agent non responsive) tissue areas, occludes the diagnostic signal that originates from the interaction of the agent with the subsurface features of the tissue. In other words, surface reflection constitutes optical noise in the diagnostic signal degrading substantially the perceived contrast between agent responsive and agent non responsive tissue areas.
- Based on the above, the effective integration of the method to imaging diagnostic devises, requires embodiments of appropriate optics that ensure the elimination of the contribution of surface reflection to the captured image.
FIG. 4 illustrates a schematic diagram of a medical microscope consisted from a light source (LS), a magnification selection mechanism (MS), an eyepiece (EP) and a mount for attaching the image capturing module (CA), (detector(s), readout electronics etc). For the elimination of the surface reflection a pair of linear polarizers is employed. The incident to the tissue light (LS), is linearly polarized by passing though a linear polarizer (LPO). The surface reflected light (TS), has the same polarization plane with the incident to the tissue light (Fresnel reflection). By interposing the other linear polarizer to the optical path of the rays that are remitted from the tissue and form the optical image of the object, with its polarization plane perpendicular to the polarization level of the incident to the tissue light (IPO), the contribution of the surface reflection to the image of the object is eliminated. The light which is not surface-reflected enters the tissue, where due to multiple scattering, light polarization is randomized. Thus, a portion of the re-emitted light passes through the imaging polarization optics, carrying improved information for the subsurface features. -
FIG. 5 illustrates an endoscope consisted of an eyepiece (EP), which can be adapted to an electronic imaging system, optical fibers or crystals for the transmission of both illumination and image rays, optics for the linear polarization of light, one interposed to the optical path of the illumination rays (LE) and one to the path of the ray that form the optical image of the tissue (II). The polarization plane of the polarizing optics, which are adapted to the exit of light from the endoscope (LPO), is perpendicular to the polarization plane of the polarizer, which is adapted to the point where the light enters the endoscope (IL). The polarization optics of the incident to the tissue light could also be adapted at the point where the light enters the endoscope (IL) but in this case, the endoscope has to be constructed using polarization preserving crystals or fiber optics for transferring the light. If polarization preserving light transmission media are used, then the polarizing optics of the imaging rays can be interposed in their path and before or after the eyepiece (EP). - A problem for the effective clinical implementation of the described method herein is the micro-movements of the patient, which are always present during the snapshot imaging of the same tissue area. Obviously this problem is eliminated in case that the patient is under anesthesia (open surgery). In most cases however the movements of the tissue relative to the image capturing module, occurring during the successive image capturing time-course, have the consequence that the image pixels, with the same image coordinates, do not correspond to exactly the same spatial point x,y of the tissue area under examination.
- This problem is typically encountered in colposcopy. A method to eliminate the influence to the measured temporal data of the relative movements between tissue and image capturing module is presented below. A colposcopic apparatus is illustrated in
FIG. 6 , consisted of an articulated arm (AA), onto which the optical head (OH) is affixed, which includes a light source (LS), an objective lens (OBJ), an eye-piece (EP) and optics for selecting the magnification (MS). The image capturing module is attached to the optical head (OH), through an opto-mechanical adapter. A speculum (KD), which is used to open-up the vaginal canal for the visualization of the cervix, is connected mechanically with the optical head (OH), so that the its longitudinal symmetry axis (LA), to be perpendicular to the central area of the objective lens (OBJ). The speculum enters the vagina and its blades are opened up compressing the side walls of the vagina. The Speculum (KD), been mechanically connected with the optical head (OH), transfer any micromovement of the patient to the optical head (OH), which been mounted on an articulated arm (AA), follows these movements. Thus the relative position between tissue and optical head remains almost constant. - An important issue that must also be addressed for the successful clinical implementation of the diagnostic method described herein, is the synchronization of the application of the contrast enhancing agent with the initiation of the snapshot imaging procedure.
FIG. 6 , illustrates an atomizer (A) attached to the optical head of the microscope. The unit (MIC) is comprised of electronics for controlling the agent sprayer and it can incorporate also the container for storing the agent. When the unit (MIC) receives the proper command from the computer it sprays a predetermined amount of the agent onto the tissue surface, while the same or another command initiates the snapshot image capturing procedure. - The diagnostic examination of non-directly accessible tissues, located in cavities of the human body (ear, cervix, oral cavity, esophagus, colon, stomach), is performed with the aid of common clinical microscopes. In these devises the illumination-imaging rays are near co-axial. More specifically, the line perpendicular to the exit point of light into the air, and the line perpendicular to the objective lens, form an angle of a few degrees. Due to this fact, these microscopes operate at a specific distance from the subject (working distance), in which the illuminated tissue area, coincides with the field-of-view of the imaging system. These microscopes are found to be inappropriate in cases where tissue imaging through human body cavities of small diameter and at short working distances, is required. These technical limitations are also constituting serious restricting factors for the successful clinical implementation of the method described herein. As it has been discussed above, elimination of surface reflection results in a substantial improvement of the diagnostic information, obtained from the quantitative assessment of marker-tissue interaction kinetics. If a common clinical microscope is employed as the optical imaging module, then due the above mentioned Illumination-imaging geometry, multiple reflections are occurring in the walls of the cavity, before the light reaches the tissue under analysis. In the case of colposcopy, multiple reflections are much more intense, since they are mainly taking place onto highly reflective blades of the speculum. Recall that the latter is inserted into the vagina to facilitate the inspection of cervix.
- If the illuminator of the imaging apparatus emits linearly polarized light, the multiple reflections are randomizing the polarization plane of the incident light. And as it has been discussed above, if the incident to the tissue under analysis light is not linearly polarized, then the elimination of the contribution of the surface reflection to the captured image can not be effective.
-
FIG. 7 illustrates an optical imaging apparatus which comprises a light source located at the central part of its front-aperture. With this arrangement, the central ray of the emitted light cone is coaxial, with the central ray of the light beam that enters the imaging apparatus. This enables illumination rays to reach directly the tissue surface under examination and not after multiple reflections in the wall of the cavity. A reflective-objective lens is used, consisted at least of a first reflection (1RM) and a second reflection (2RM) mirror, where at the rear part of the first reflection mirror (2RM), a light source (LS) is attached together (if required) with optics for light beam manipulation such as zooming and focusing (SO). The reflective objective lens (RO), by replacing the common refractive-objective, which is used in conventional microscopes, provides imaging capability in cavities of small diameter, with freedom in choosing the working distance. The zooming and focusing optics of the light beam can be adjusted simultaneously with the mechanism for varying the magnification of the optical imaging system, so that the illumination area and the field-of-view of the imaging system, are varying simultaneously and proportionally. This has as a result, the preservation of image brightness regardless of the magnification level of the lens. The imaging-illumination geometry embodied in this optical imaging apparatus among with the light beam manipulation options, enable the efficient elimination of the contribution of the surface reflection to the captured image and consequently the efficient clinical implementation of the method described herein. - Equivalents
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims (57)
1-16. (Cancelled)
17. A method of compensating for image misalignment, the method comprising the steps of: obtaining a sequence of images of a tissue sample; and correcting for misalignment between at least two of the images, said misalignment being due at least in part to movement of the tissue sample.
18. The method of claim 17 , wherein the correcting step is performed in real time.
19. The method of claim 17 , wherein the correcting step comprises adjusting an optical signal detection device used to obtain the sequence of images.
20. The method of claim 19 , wherein the correcting step comprises adjusting a position of a component of the optical signal detection device.
21. The method of claim 20 , wherein the component comprises a mirror.
22. The method of claim 17 , wherein the tissue sample is an in-situ tissue sample and wherein the misalignment is due at least in part to patient motion.
23. The method of claim 17 , further comprising the step of applying a contrast agent to the tissue sample.
24. The method of claim 17 , wherein the correcting step comprises electronically adjusting at least one of the images.
25. The method of claim 17 , wherein the at least two images are consecutive images.
26. The method of claim 17 , wherein the correcting step comprises the step of filtering a subset of data from a first image of the sequence of images.
27. The method of claim 26 , wherein the correcting step comprises the step of preprocessing the subset of data prior to the filtering.
28. The method of claim 26 , wherein the filtering step comprises at least one of frequency domain filtering and discrete convolution in the space domain.
29. The method of claim 26 , wherein the filtering step comprises Laplacian of Gaussian filtering.
30. The method of claim 26 , wherein the filtering step comprises using a feathering technique.
31. The method of claim 26 , wherein the filtering step comprises using a Hamming window.
32. The method of claim 17 , wherein the correcting step comprises computing a cross correlation using data from two of the images.
33. The method of claim 32 , wherein the computing of the cross correlation comprises computing a product represented by Fi(u,v)F*j(u,v), where F*j(u,v) is a Fourier transform of data derived from a subset of data from a first image, i, of the sequence of images, F*j(u,v) is a complex conjugate of a Fourier transform of data derived from a subset of data from a second image, j, of the sequence of images, and u and v are frequency domain variables.
34. The method of claim 33 , wherein the computing of the cross correlation comprises computing an inverse Fourier transform of the product.
35. The method of claim 17 , wherein the tissue sample comprises cervical tissue.
36. The method of claim 17 , wherein the tissue sample comprises at least one member of the group consisting of colorectal tissue, gastroesophageal tissue, urinary bladder tissue, lung tissue, and skin tissue.
37. The method of claim 17 , wherein the tissue sample comprises epithelial cells.
38. The method of claim 17 , wherein the obtaining step comprises obtaining the sequence of images of the tissue sample during application of a chemical agent to the tissue sample.
39. The method of claim 17 , wherein the obtaining step comprises obtaining the sequence of images of the tissue sample after application of a chemical agent to the tissue sample.
40. The method of claim 39 , wherein the chemical agent is selected from the group consisting of acetic acid, formic acid, propionic acid, and butyric acid.
41. The method of claim 39 , wherein the chemical agent is selected from the group consisting of Lugol's iodine, Shiller's iodine, methylene blue, toluidine blue, indigo carmine, indocyanine green, and fluorescein.
42. The method of claim 17 , wherein the obtaining step comprises obtaining the sequence of images of the tissue sample during an acetowhitening test.
43. The method of claim 17 , wherein the movement of the tissue sample is relative to an optical signal detection device and comprises at least one member of the group consisting of translational motion, rotational motion, warping, and local deformation.
44. The method of claim 17 , wherein one or more images of the sequence of images comprise measurements of an optical signal from the tissue sample.
45. The method of claim 44 , wherein the optical signal comprises visible light.
46. The method of claim 44 , wherein the optical signal comprises fluorescent light.
47. The method of claim 44 , wherein the optical signal is emitted by the tissue sample.
48. The method of claim 44 , wherein the optical signal is reflected by the tissue sample.
49. The method of claim 44 , wherein the optical signal is transmitted through the, tissue sample.
50. A method of validating a correction for an image misalignment, the method comprising the steps of: adjusting at least one of two or more images using a correction for an image misalignment between the two or more images; defining one or more validation cells, each of which includes a common area of the two or more adjusted images; computing for each of the one or more validation cells a measure of displacement between the two or more adjusted images using data from the two or more adjusted images corresponding to each of the one or more validation cells; and validating the correction for the image misalignment by comparing at least one of the measures of displacement with a threshold value.
51. A method of validating a correction for an image misalignment, the method comprising the steps of: defining one or more validation cells within a bounded image plane; computing for each of the one or more validation cells a measure of displacement between two or more images bound by the image plane using data from the two or more images corresponding to each of the one or more validation cells; validating a correction for an image misalignment between the two or more images by comparing at least one of the measures of displacement with the correction.
52. The method of claim 50 , wherein the images are images of an in-situ tissue sample, and wherein the image misalignment is due at least in part to patient motion.
53. The method of claim 50 , wherein the images are images of an in-situ tissue sample that has been treated with a contrast agent.
54. The method of claim 50 , wherein the one or more validation cells comprise a subset of a bounded image plane common to the two or more images.
55. The method of claim 50 , wherein the two or more images are consecutive images.
56. The method of claim 54 , wherein the one or more validation cells comprise a central portion of the bounded image plane.
57. The method of claim 54 , wherein the bounded image plane has an area about four times larger than the total area of the one or more validation cells.
58. The method of claim 50 , wherein the validating step comprises eliminating from consideration one or more of the measures of displacement for one or more of the one or more validation cells.
59. The method of claim 58 , wherein the eliminating of the one or more measures of displacement comprises calculating a sum squared gradient for at least one of the one or more validation cells.
60. A method of compensating for an image misalignment, the method comprising the steps of: obtaining a set of sequential images of a tissue sample; and correcting for a misalignment between each of a plurality of pairs of the sequential images, the misalignment due at least in part to movement of the tissue sample.
61. The method of claim 60 , wherein the tissue sample is an in-situ tissue sample and wherein the misalignment is due at least in part to patient motion.
62. The method of claim 60 , further comprising the step of applying to the sample a contrast agent.
63. The method of claim 60 , wherein the obtaining step and the correcting step are performed alternately.
64. The method of claim 60 , wherein the obtaining step and the correcting step are performed substantially concurrently.
65. The method of claim 60 , wherein the correcting step comprises determining a correction for a misalignment between a pair of the sequential images less than about 2 seconds after the obtaining of the latter of the pair of the sequential images.
66. The method of claim 60 , wherein the correcting step comprises determining a correction for a misalignment between a pair of the sequential images less than about one second after the obtaining of the latter of the pair of the sequential images.
67. A method of validating a correction for an image misalignment, the method comprising the steps of: obtaining a plurality of sequential images of a sample using an optical signal detection device; determining a correction for a misalignment between at least two of the sequential images, the misalignment due at least in part to a movement of the sample; and validating the correction between at least a first image and a second image of the plurality of sequential images.
68. The method of claim 67 , wherein the sample is an in-situ tissue sample and wherein the misalignment is due at least in part to patient motion.
69. The method of claim 67 , further comprising the step of applying a contrast agent to the sample.
70. The method of claim 67 , wherein the determination of a correction for a misalignment between a first and a second image and the validation of said correction are performed in less than about one second.
71. The method of claim 67 , further comprising the step of: adjusting the optical signal detection device using the correction.
72. A method of dynamically compensating for image misalignment, the method comprising the steps of: obtaining a sequence of images of a tissue sample; and correcting in real time for misalignment between at least two of the images, the misalignment due at least in part to movement of the tissue sample.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/850,955 US20050054936A1 (en) | 2000-03-28 | 2004-05-21 | Method and system for characterization and mapping of tissue lesions |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GR20000100102 | 2000-03-28 | ||
GR20000/00102 | 2000-03-28 | ||
US09/739,089 US20020007123A1 (en) | 2000-03-28 | 2000-12-15 | Method and system for characterization and mapping of tissue lesions |
US10/346,338 US20030163049A1 (en) | 2000-03-28 | 2003-01-16 | Method and system for characterization and mapping of tissue lesions |
US10/850,955 US20050054936A1 (en) | 2000-03-28 | 2004-05-21 | Method and system for characterization and mapping of tissue lesions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/346,338 Continuation US20030163049A1 (en) | 2000-03-28 | 2003-01-16 | Method and system for characterization and mapping of tissue lesions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050054936A1 true US20050054936A1 (en) | 2005-03-10 |
Family
ID=40328199
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/739,089 Abandoned US20020007123A1 (en) | 2000-03-28 | 2000-12-15 | Method and system for characterization and mapping of tissue lesions |
US10/240,367 Expired - Lifetime US7515952B2 (en) | 2000-03-28 | 2001-03-28 | System for characterization and mapping of tissue lesions |
US10/346,338 Abandoned US20030163049A1 (en) | 2000-03-28 | 2003-01-16 | Method and system for characterization and mapping of tissue lesions |
US10/850,955 Abandoned US20050054936A1 (en) | 2000-03-28 | 2004-05-21 | Method and system for characterization and mapping of tissue lesions |
US10/978,101 Expired - Fee Related US8173432B2 (en) | 2000-03-28 | 2004-10-29 | Method and system for characterization and mapping of tissue lesions |
US11/266,021 Expired - Fee Related US7598088B2 (en) | 2000-03-28 | 2005-11-03 | Optical imaging method and system for characterization and mapping of tissue lesions |
US12/368,647 Expired - Fee Related US7974683B2 (en) | 2000-03-28 | 2009-02-10 | Method and system for characterization and mapping of tissue lesions via light and special chemical agents |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/739,089 Abandoned US20020007123A1 (en) | 2000-03-28 | 2000-12-15 | Method and system for characterization and mapping of tissue lesions |
US10/240,367 Expired - Lifetime US7515952B2 (en) | 2000-03-28 | 2001-03-28 | System for characterization and mapping of tissue lesions |
US10/346,338 Abandoned US20030163049A1 (en) | 2000-03-28 | 2003-01-16 | Method and system for characterization and mapping of tissue lesions |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/978,101 Expired - Fee Related US8173432B2 (en) | 2000-03-28 | 2004-10-29 | Method and system for characterization and mapping of tissue lesions |
US11/266,021 Expired - Fee Related US7598088B2 (en) | 2000-03-28 | 2005-11-03 | Optical imaging method and system for characterization and mapping of tissue lesions |
US12/368,647 Expired - Fee Related US7974683B2 (en) | 2000-03-28 | 2009-02-10 | Method and system for characterization and mapping of tissue lesions via light and special chemical agents |
Country Status (18)
Country | Link |
---|---|
US (7) | US20020007123A1 (en) |
EP (2) | EP1267707B1 (en) |
JP (2) | JP4217403B2 (en) |
CN (1) | CN100413460C (en) |
AT (1) | ATE424757T1 (en) |
AU (1) | AU4442301A (en) |
BR (1) | BRPI0108944B8 (en) |
CA (1) | CA2400702C (en) |
CY (1) | CY1109134T1 (en) |
DE (1) | DE60137914D1 (en) |
DK (1) | DK1267707T3 (en) |
ES (2) | ES2464718T3 (en) |
FI (1) | FI20021477A (en) |
GR (1) | GR1004180B (en) |
HK (1) | HK1056108A1 (en) |
PT (2) | PT2057936E (en) |
RU (1) | RU2288636C2 (en) |
WO (1) | WO2001072214A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010041843A1 (en) * | 1999-02-02 | 2001-11-15 | Mark Modell | Spectral volume microprobe arrays |
US20020127735A1 (en) * | 1999-12-15 | 2002-09-12 | Howard Kaufman | Methods of monitoring effects of chemical agents on a sample |
US20020133073A1 (en) * | 1998-12-23 | 2002-09-19 | Nordstrom Robert J. | Spectroscopic system employing a plurality of data types |
US20020177777A1 (en) * | 1998-12-23 | 2002-11-28 | Medispectra, Inc. | Optical methods and systems for rapid screening of the cervix |
US20030095721A1 (en) * | 1999-12-15 | 2003-05-22 | Thomas Clune | Methods and systems for correcting image misalignment |
US20030144585A1 (en) * | 1999-12-15 | 2003-07-31 | Howard Kaufman | Image processing using measures of similarity |
US20040010375A1 (en) * | 2002-07-09 | 2004-01-15 | Medispectra, Inc. | Methods and apparatus for processing spectral data for use in tissue characterization |
US20040024321A1 (en) * | 2002-08-05 | 2004-02-05 | Marshik-Geurts Barbara J. | Near-infrared spectroscopic analysis of blood vessel walls |
US20040077950A1 (en) * | 2002-08-05 | 2004-04-22 | Marshik-Geurts Barbara J. | Near-infrared spectroscopic analysis of blood vessel walls |
US20040206913A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for characterization of tissue samples |
US20040209237A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for characterization of tissue samples |
US20040206914A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for calibrating spectral data |
US20040208390A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for processing image data for use in tissue characterization |
US20040207625A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for displaying diagnostic data |
US20040206882A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for evaluating image focus |
US20040214156A1 (en) * | 2002-07-09 | 2004-10-28 | Medispectra, Inc. | Method and apparatus for identifying spectral artifacts |
US20050043929A1 (en) * | 2000-12-15 | 2005-02-24 | Medispectra, Inc. | System for normalizing spectra |
US20050131284A1 (en) * | 2002-04-02 | 2005-06-16 | Yeda Research And Development Co. Ltd. | Characterization of moving objects in a stationary background |
US20050159646A1 (en) * | 1997-01-13 | 2005-07-21 | Medispectra, Inc. | Optical probe accessory device for use in in vivo diagnostic procedures |
US20080091110A1 (en) * | 2002-07-10 | 2008-04-17 | Zelenchuk Alex R | Fluorescent Fiberoptic Probe for Tissue Health Discrimination and Method of Use Thereof |
EP2034890A2 (en) * | 2006-06-01 | 2009-03-18 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
US20090221912A1 (en) * | 2005-05-06 | 2009-09-03 | Darin Nelson | Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle |
US20110110567A1 (en) * | 2003-04-18 | 2011-05-12 | Chunsheng Jiang | Methods and Apparatus for Visually Enhancing Images |
US20110184272A1 (en) * | 2008-06-13 | 2011-07-28 | Kun Zeng | Portable Diagnostic Device for Precancerous Lesion of Cervical Cancer |
US8403862B2 (en) | 2007-12-20 | 2013-03-26 | Yeda Research And Development Co. Ltd. | Time-based imaging |
CN103750810A (en) * | 2013-12-30 | 2014-04-30 | 深圳市理邦精密仪器股份有限公司 | Method and device for performing characteristic analysis for images acquired by electronic colposcope |
US20190065884A1 (en) * | 2017-08-22 | 2019-02-28 | Boe Technology Group Co., Ltd. | Training method and device of neural network for medical image processing, and medical image processing method and device |
FR3143316A1 (en) * | 2022-12-20 | 2024-06-21 | Ecole Polytechnique | Real-time imaging process |
Families Citing this family (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6826422B1 (en) * | 1997-01-13 | 2004-11-30 | Medispectra, Inc. | Spectral volume microprobe arrays |
CA2404600A1 (en) | 2000-03-28 | 2001-10-04 | Board Of Regents, The University Of Texas System | Methods and apparatus for diagnostic multispectral digital imaging |
GR1004180B (en) | 2000-03-28 | 2003-03-11 | ����������� ����� ��������� (����) | Method and system for characterization and mapping of tissue lesions |
CN1374855A (en) * | 2000-07-20 | 2002-10-16 | 日拉公司 | Improved diagnostic method for detecting dysplastic epithelial tissue |
US20040006274A1 (en) * | 2000-10-16 | 2004-01-08 | Cole Giller | Method and apparatus for probe localization in brain matter |
US6965793B2 (en) * | 2001-06-28 | 2005-11-15 | Chemimage Corporation | Method for Raman chemical imaging of endogenous chemicals to reveal tissue lesion boundaries in tissue |
US7596404B2 (en) * | 2001-06-28 | 2009-09-29 | Chemimage Corporation | Method of chemical imaging to determine tissue margins during surgery |
WO2006091853A2 (en) * | 2001-06-28 | 2006-08-31 | Chemimage Corporation | Method of chemical imaging to determine tissue margins during surgery |
US8078268B2 (en) * | 2001-06-28 | 2011-12-13 | Chemimage Corporation | System and method of chemical imaging using pulsed laser excitation and time-gated detection to determine tissue margins during surgery |
GB0130862D0 (en) * | 2001-12-22 | 2002-02-06 | P W Allen & Company Ltd | Method of examining potential cellular abnormalities |
US7404929B2 (en) * | 2002-01-18 | 2008-07-29 | Newton Laboratories, Inc. | Spectroscopic diagnostic methods and system based on scattering of polarized light |
WO2003068064A1 (en) * | 2002-02-12 | 2003-08-21 | Science & Engineering Associates, Inc. | Cancer detection and adaptive dose optimization treatment system |
AU2003218158A1 (en) * | 2002-03-14 | 2003-09-29 | Science And Engineering Associates, Inc. | Multiple imaging system and method for designing same |
US6933154B2 (en) * | 2002-07-09 | 2005-08-23 | Medispectra, Inc. | Optimal windows for obtaining optical data for characterization of tissue samples |
US7103401B2 (en) * | 2002-07-10 | 2006-09-05 | Medispectra, Inc. | Colonic polyp discrimination by tissue fluorescence and fiberoptic probe |
DE10252313B9 (en) * | 2002-11-11 | 2006-10-19 | Carl Zeiss | Investigation system for the simultaneous direct visualization of a fluorescent label and a tissue region surrounding the fluorescent label and method of investigation therefor |
EP1644867B1 (en) * | 2003-04-18 | 2010-08-11 | Medispectra, Inc. | A system and diagnostic method for optical detection of suspect portions of a tissue sample |
CA2539184A1 (en) * | 2003-09-19 | 2005-03-31 | The General Hospital Corporation | Fluorescence polarization imaging devices and methods |
CN1890557A (en) * | 2003-11-28 | 2007-01-03 | Bc肿瘤研究所 | Multimodal detection of tissue abnormalities based on raman and background fluorescence spectroscopy |
DE102004002918B4 (en) * | 2004-01-20 | 2016-11-10 | Siemens Healthcare Gmbh | Device for the examination of the skin |
US20060155178A1 (en) * | 2004-03-26 | 2006-07-13 | Vadim Backman | Multi-dimensional elastic light scattering |
US20050234526A1 (en) * | 2004-04-14 | 2005-10-20 | Gilhuly Terence J | Systems and methods for detection of disease including oral scopes and ambient light management systems (ALMS) |
US7697576B2 (en) * | 2004-05-05 | 2010-04-13 | Chem Image Corporation | Cytological analysis by raman spectroscopic imaging |
US20060281068A1 (en) * | 2005-06-09 | 2006-12-14 | Chemimage Corp. | Cytological methods for detecting a disease condition such as malignancy by Raman spectroscopic imaging |
CA2571765A1 (en) * | 2004-06-30 | 2006-01-12 | Chemimage Corporation | Dynamic chemical imaging of biological cells and other subjects |
CA2549726A1 (en) * | 2004-09-28 | 2006-04-06 | Zila Pharmaceuticals, Inc. | Methods for detecting abnormal epithelial tissue |
CN1823682A (en) * | 2004-10-12 | 2006-08-30 | Led医学诊断有限公司 | Systems and methods relating to colposcopic viewing tubes for enhanced viewing andexamination |
US8795195B2 (en) * | 2004-11-29 | 2014-08-05 | Senorx, Inc. | Graphical user interface for tissue biopsy system |
JP4602825B2 (en) * | 2005-04-18 | 2010-12-22 | オリンパスメディカルシステムズ株式会社 | Image display device |
US7783337B2 (en) * | 2005-06-06 | 2010-08-24 | Board Of Regents, The University Of Texas System | OCT using spectrally resolved bandwidth |
US8253936B2 (en) * | 2008-08-08 | 2012-08-28 | Chemimage Corporation | Raman characterization of transplant tissue |
EP1738682B1 (en) * | 2005-07-01 | 2008-02-13 | Ecole Polytechnique | Electronic polarimetric imaging system for colposcopy device |
EP1924192A2 (en) * | 2005-08-15 | 2008-05-28 | The Board of Regents of The University of Texas System | Needle biopsy imaging system |
US7749162B2 (en) * | 2005-09-29 | 2010-07-06 | Forth Photonics Ltd. | Vaginal speculum arrangement |
EP1769731B1 (en) * | 2005-09-29 | 2009-03-11 | Forth-Photonics Ltd | Vaginal speculum arrangement |
US8956396B1 (en) | 2005-10-24 | 2015-02-17 | Lockheed Martin Corporation | Eye-tracking visual prosthetic and method |
US8945197B1 (en) | 2005-10-24 | 2015-02-03 | Lockheed Martin Corporation | Sight-restoring visual prosthetic and method using infrared nerve-stimulation light |
US7988688B2 (en) * | 2006-09-21 | 2011-08-02 | Lockheed Martin Corporation | Miniature apparatus and method for optical stimulation of nerves and other animal tissue |
US8012189B1 (en) | 2007-01-11 | 2011-09-06 | Lockheed Martin Corporation | Method and vestibular implant using optical stimulation of nerves |
US20070129615A1 (en) * | 2005-10-27 | 2007-06-07 | Northwestern University | Apparatus for recognizing abnormal tissue using the detection of early increase in microvascular blood content |
US9314164B2 (en) | 2005-10-27 | 2016-04-19 | Northwestern University | Method of using the detection of early increase in microvascular blood content to distinguish between adenomatous and hyperplastic polyps |
US20070179368A1 (en) * | 2005-10-27 | 2007-08-02 | Northwestern University | Method of recognizing abnormal tissue using the detection of early increase in microvascular blood content |
US20090203977A1 (en) * | 2005-10-27 | 2009-08-13 | Vadim Backman | Method of screening for cancer using parameters obtained by the detection of early increase in microvascular blood content |
US20070129630A1 (en) * | 2005-12-07 | 2007-06-07 | Shimko Daniel A | Imaging method, device and system |
WO2007077672A1 (en) * | 2005-12-28 | 2007-07-12 | Olympus Medical Systems Corp. | Image processing device and image processing method in the image processing device |
CA2683657A1 (en) * | 2006-04-10 | 2007-10-18 | Led Medical Diagnostics, Inc. | Multipurpose diseased tissue detection devices, systems and methods |
DE102006022878B3 (en) * | 2006-05-15 | 2007-09-06 | Sartorius Biotech Gmbh | Acquiring an image of a sample in a transparent longitudinal sample vessel comprises illuminating the sample and/or vessel using a first illuminating arrangement, recording a first image of the sample and further processing |
JP5410274B2 (en) * | 2006-06-05 | 2014-02-05 | フォース フォトニクス リミテッド | How to characterize an organization |
US8125648B2 (en) | 2006-06-05 | 2012-02-28 | Board Of Regents, The University Of Texas System | Polarization-sensitive spectral interferometry |
US8065802B2 (en) * | 2006-07-14 | 2011-11-29 | The Gillette Company | Shaving razor |
RU2457776C2 (en) * | 2006-11-21 | 2012-08-10 | Конинклейке Филипс Электроникс Н.В. | System, device, method, machine-readable carrier and application for visualisation of tissue in vivo in anatomic structure |
RU2462986C2 (en) * | 2006-11-21 | 2012-10-10 | Конинклейке Филипс Электроникс Н.В. | System, method, machine-readable carrier and their application for visualisation of tissue in anatomical structure |
US20080118886A1 (en) * | 2006-11-21 | 2008-05-22 | Rongguang Liang | Apparatus for dental oct imaging |
US9561017B2 (en) * | 2006-12-19 | 2017-02-07 | Koninklijke Philips N.V. | Combined photoacoustic and ultrasound imaging system |
US20090245603A1 (en) * | 2007-01-05 | 2009-10-01 | Djuro Koruga | System and method for analysis of light-matter interaction based on spectral convolution |
US20100185064A1 (en) * | 2007-01-05 | 2010-07-22 | Jadran Bandic | Skin analysis methods |
JP2010515489A (en) * | 2007-01-05 | 2010-05-13 | マイスキン インコーポレイテッド | System, apparatus and method for imaging skin |
US7883536B1 (en) | 2007-01-19 | 2011-02-08 | Lockheed Martin Corporation | Hybrid optical-electrical probes |
EP2111165B8 (en) * | 2007-01-19 | 2017-10-04 | Sunnybrook Health Sciences Centre | Imaging probe with combined ultrasound and optical means of imaging |
JP5133268B2 (en) * | 2007-02-14 | 2013-01-30 | ポーラ化成工業株式会社 | Method for supporting differentiation of stratum corneum cells |
CA2682940A1 (en) * | 2007-04-11 | 2008-10-23 | Forth Photonics Limited | A supporting structure and a workstation incorporating the supporting structure for improving, objectifying and documenting in vivo examinations of the uterus |
US7951075B2 (en) * | 2007-04-23 | 2011-05-31 | Olympus Medical Systems Corp. | Inspection method with endoscope |
EP2237190A2 (en) * | 2007-08-03 | 2010-10-06 | STI Medical Systems, LLC | Computerized image analysis for a acetic acid induced cervical intraepithelial neoplasia |
US8998914B2 (en) | 2007-11-30 | 2015-04-07 | Lockheed Martin Corporation | Optimized stimulation rate of an optically stimulating cochlear implant |
US8406860B2 (en) | 2008-01-25 | 2013-03-26 | Novadaq Technologies Inc. | Method for evaluating blush in myocardial tissue |
TR201901658T4 (en) | 2008-05-20 | 2019-02-21 | Univ Health Network | EQUIPMENT AND METHOD FOR FLUORESCENT-BASED IMAGING AND MONITORING |
US8416405B2 (en) * | 2008-08-08 | 2013-04-09 | Chemimage Corporation | Raman chemical imaging of implantable drug delivery devices |
CN102282569A (en) * | 2008-10-10 | 2011-12-14 | 国际科学技术医疗系统有限责任公司 | Methods for tissue classification in cervical imagery |
JP4697289B2 (en) * | 2008-11-05 | 2011-06-08 | ソニー株式会社 | Imaging apparatus and display control method for imaging apparatus |
US20100130969A1 (en) * | 2008-11-25 | 2010-05-27 | Apogen Technologies, Inc. | System and method for dermatological treatment |
US9232889B2 (en) * | 2009-02-12 | 2016-01-12 | Alcon Research, Ltd. | Method and apparatus for ocular surface imaging |
US9241622B2 (en) * | 2009-02-12 | 2016-01-26 | Alcon Research, Ltd. | Method for ocular surface imaging |
EP2419712A4 (en) * | 2009-04-14 | 2012-12-19 | Gen Hospital Corp | Method and apparatus for multimodal imaging of biological tissue |
US8063385B2 (en) * | 2009-05-29 | 2011-11-22 | General Electric Company | Method and apparatus for ultraviolet scan planning |
FR2955763B1 (en) * | 2010-02-02 | 2012-03-09 | Commissariat Energie Atomique | BI-SPECTRAL PEROPERATIVE OPTIC PROBE |
US8484922B2 (en) | 2010-02-17 | 2013-07-16 | Sealed Air Corporation (Us) | Alkaline and heat resistant foam composite and floor underlayment |
EP2538841A2 (en) | 2010-02-26 | 2013-01-02 | Myskin, Inc. | Analytic methods of tissue evaluation |
DE102010021534A1 (en) * | 2010-05-19 | 2011-11-24 | Eberhard-Karls-Universität Tübingen Universitätsklinikum | Direct investigation of biological material ex vivo |
JP4879374B2 (en) * | 2010-05-19 | 2012-02-22 | オリンパスメディカルシステムズ株式会社 | Endoscope and endoscope apparatus |
JP5884195B2 (en) * | 2010-07-21 | 2016-03-15 | ディオプシス、インコーポレーテッド | Method for analyzing OCT image and method for analyzing optic nerve |
GB201014783D0 (en) * | 2010-09-06 | 2010-10-20 | St George S Hospital Medical School | Apparatus and method for positioning a probe for observing microcirculation vessels |
US9208556B2 (en) * | 2010-11-26 | 2015-12-08 | Quantitative Insights, Inc. | Method, system, software and medium for advanced intelligent image analysis and display of medical images and information |
US20120165681A1 (en) * | 2010-12-23 | 2012-06-28 | Tyco Healthcare Group Lp | Delineating Skin or Surface Lesions |
TWI554243B (en) * | 2011-01-21 | 2016-10-21 | 愛爾康研究有限公司 | Combined surgical endoprobe for optical coherence tomography, illumination or photocoagulation |
US8816814B2 (en) * | 2011-08-16 | 2014-08-26 | Elwha Llc | Systematic distillation of status data responsive to whether or not a wireless signal has been received and relating to regimen compliance |
AU2012312066C1 (en) | 2011-09-22 | 2016-06-16 | 460Medical, Inc. | Systems and methods for visualizing ablated tissue |
ES2727868T3 (en) | 2011-09-22 | 2019-10-21 | Univ George Washington | Systems for visualizing ablated tissue |
JP6211534B2 (en) | 2011-12-21 | 2017-10-11 | シャハーフ,キャサリン,エム. | System for imaging lesions that align tissue surfaces |
WO2013109130A1 (en) * | 2012-01-18 | 2013-07-25 | Joel Gerardo Diaz Sanchez | Colpostereoscope for photodynamic diagnosis (pdd) of diseases of the female genital tract and early detection of neoplastic lesions |
JP6144915B2 (en) * | 2012-01-30 | 2017-06-07 | キヤノン株式会社 | Biological tissue image reconstruction method, acquisition method and apparatus |
US11452464B2 (en) | 2012-04-19 | 2022-09-27 | Koninklijke Philips N.V. | Guidance tools to manually steer endoscope using pre-operative and intra-operative 3D images |
US9739663B2 (en) | 2012-04-30 | 2017-08-22 | Mayo Foundation For Medical Education And Research | Spectrometric systems and methods for improved focus localization of time- and space-varying measurements |
JP2017000838A (en) * | 2012-06-01 | 2017-01-05 | ソニー株式会社 | Medical device and control method |
US10278585B2 (en) | 2012-06-21 | 2019-05-07 | Novadaq Technologies ULC | Quantification and analysis of angiography and perfusion |
US20140066756A1 (en) * | 2012-09-04 | 2014-03-06 | Ninepoint Medical, Inc. | Low cost molded optical probe with astigmatic correction, fiber port, low back reflection, and highly reproducible in manufacturing quantities |
US10231782B2 (en) | 2012-09-06 | 2019-03-19 | Covidien Lp | Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy |
US10226297B2 (en) | 2012-09-06 | 2019-03-12 | Covidien Lp | Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy |
BR112015006004A2 (en) * | 2012-09-21 | 2017-07-04 | Koninklijke Philips Nv | system and method for labeling a cervical image obtained during a colposcopy of a patient, workstation or imaging device, colposcope, and computer program product |
EP2909607A1 (en) * | 2012-10-18 | 2015-08-26 | Koninklijke Philips N.V. | Arrangement for an analysis system, analysis system having the arrangement and method for use of the arrangement |
US9471892B2 (en) * | 2013-03-14 | 2016-10-18 | Profiles International, Inc. | System and method for embedding report descriptors into an XML string to assure report consistency |
WO2014168734A1 (en) | 2013-03-15 | 2014-10-16 | Cedars-Sinai Medical Center | Time-resolved laser-induced fluorescence spectroscopy systems and uses thereof |
US9844318B2 (en) | 2013-03-26 | 2017-12-19 | Novartis Ag | Devices, systems, and methods for calibrating an OCT imaging system in a laser surgical system |
US10426361B2 (en) | 2013-06-14 | 2019-10-01 | Novadaq Technologies ULC | Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography |
EP3007618B1 (en) | 2013-06-14 | 2019-09-04 | Novadaq Technologies ULC | Quantification of absolute blood flow in tissue using fluorescence mediated photoplethysmography |
WO2015073871A2 (en) | 2013-11-14 | 2015-05-21 | The George Washington University | Systems and methods for determining lesion depth using fluorescence imaging |
US20150141847A1 (en) | 2013-11-20 | 2015-05-21 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
US10028649B2 (en) | 2013-12-02 | 2018-07-24 | Welch Allyn, Inc. | Digital colposcope system |
DE202014102353U1 (en) | 2014-05-20 | 2014-05-27 | Borcad Cz S.R.O. | colposcope |
US9757182B2 (en) * | 2014-06-02 | 2017-09-12 | Biosense Webster (Israel) Ltd. | Identification and visualization of gaps between cardiac ablation sites |
CN106714670A (en) | 2014-07-24 | 2017-05-24 | 大学健康网络 | Collection and analysis of data for diagnostic purposes |
USD788786S1 (en) * | 2014-07-31 | 2017-06-06 | The Mathworks, Inc. | Display screen or portion thereof with color graphical user interface |
GB201414631D0 (en) * | 2014-08-18 | 2014-10-01 | Univ Singapore | Apparatus and methods for simultaneous multimodal nonlinear optical microscopy for label-free bio-imaging |
EP3915467A1 (en) * | 2014-10-09 | 2021-12-01 | Novadaq Technologies ULC | Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography |
US10231667B2 (en) | 2014-10-31 | 2019-03-19 | Koninklijke Philips N.V. | Non-invasive dehydration monitoring |
JP6771731B2 (en) | 2014-11-03 | 2020-10-21 | 460メディカル・インコーポレイテッド460Medical, Inc. | Contact evaluation system and method |
CN113143440B (en) | 2014-11-03 | 2024-07-30 | 乔治华盛顿大学 | Systems and methods for injury assessment |
CN107072552A (en) * | 2014-11-06 | 2017-08-18 | 皇家飞利浦有限公司 | Skin treatment system |
CN107205735B (en) | 2014-11-26 | 2022-02-22 | Devicor医疗产业收购公司 | Graphical user interface for biopsy device |
EP3253420A4 (en) | 2015-02-02 | 2018-10-10 | Novadaq Technologies ULC | Methods and systems for characterizing tissue of a subject |
US11206987B2 (en) | 2015-04-03 | 2021-12-28 | Suzhou Caring Medical Co., Ltd. | Method and apparatus for concurrent imaging at visible and infrared wavelengths |
EP3323108B1 (en) * | 2015-07-16 | 2022-07-13 | Koninklijke Philips N.V. | Digital pathology system |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
CN108882896B (en) * | 2015-09-23 | 2022-05-27 | 史赛克欧洲运营有限公司 | Methods and systems for assessing healing of tissue |
WO2017139881A1 (en) | 2016-02-16 | 2017-08-24 | Novadaq Technologies Inc. | Facilitating assessment of blood flow and tissue perfusion using fluorescence-mediated photoplethysmography |
JP7266519B2 (en) | 2016-04-01 | 2023-04-28 | ブラック ライト サージカル, インコーポレイテッド | Systems, devices and methods for time-resolved fluorescence spectroscopy |
US9895112B2 (en) * | 2016-05-04 | 2018-02-20 | National Chung Cheng University | Cancerous lesion identifying method via hyper-spectral imaging technique |
RU169745U1 (en) * | 2016-06-21 | 2017-03-30 | Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) | Optoacoustic Bioimaging Microscope |
CN106974611B (en) * | 2016-06-29 | 2020-08-28 | 郑洪� | Oral health examination device, hand-held component and endoscope |
CN109843176A (en) | 2016-07-29 | 2019-06-04 | 诺瓦达克技术有限公司 | For characterizing the method and system of the tissue of subject using machine learning |
FR3059885B1 (en) * | 2016-12-08 | 2020-05-08 | Koelis | DEVICE FOR VISUALIZING AN INTERNAL ORGAN OF A PATIENT AS WELL AS A RELATED VISUALIZATION METHOD |
US11071459B2 (en) * | 2016-12-08 | 2021-07-27 | Koninklijke Philips N.V. | Surface tissue tracking |
RU2639790C1 (en) * | 2016-12-26 | 2017-12-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | System for address control of brain neurons of living free-moving animals based on frozen fiber-optical probe with multi-channel fibers |
JP6931705B2 (en) | 2017-02-10 | 2021-09-08 | ノバダック テクノロジーズ ユーエルシー | Open Field Handheld Fluorescence Imaging Systems and Methods |
US10952799B2 (en) * | 2017-05-31 | 2021-03-23 | Covidien Lp | Systems and methods for navigational bronchoscopy and selective drug delivery |
WO2019094514A1 (en) * | 2017-11-07 | 2019-05-16 | Canfield Scientific, Incorporated | Enhancing pigmentation in dermoscopy images |
RU2671418C1 (en) * | 2017-12-26 | 2018-10-31 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" | Device for wireless transcutaneous transmission of optical energy for power supply of implantable medical devices |
US11672425B2 (en) | 2018-02-15 | 2023-06-13 | Speclipse, Inc. | Stand-alone apparatus and methods for in vivo detection of tissue malignancy using laser spectroscopy |
GB201812050D0 (en) * | 2018-07-24 | 2018-09-05 | Dysis Medical Ltd | Computer classification of biological tissue |
US20220125280A1 (en) * | 2019-03-01 | 2022-04-28 | Sri International | Apparatuses and methods involving multi-modal imaging of a sample |
CN112292065A (en) * | 2019-03-22 | 2021-01-29 | 斯佩克里普斯公司 | Diagnostic method using laser induced breakdown spectroscopy and diagnostic apparatus for performing the same |
CN109977955B (en) * | 2019-04-03 | 2021-11-30 | 南昌航空大学 | Cervical carcinoma pre-lesion identification method based on deep learning |
EP3779408A1 (en) * | 2019-08-15 | 2021-02-17 | optek-Danulat GmbH | Measuring device and method for detecting material concentration |
TWI691936B (en) * | 2019-09-02 | 2020-04-21 | 臺中榮民總醫院 | Method for detecting, classifying and quantifying multiple targets in medical images |
RU2752711C2 (en) * | 2019-11-18 | 2021-07-30 | Общество с ограниченной ответственностью «Лаборатория межклеточных технологий «Интерсел Рэнд» (ООО «Интерсел Рэнд») | Method and device for spectroscopy of living tissue |
WO2021142368A1 (en) | 2020-01-08 | 2021-07-15 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
CN116249477A (en) | 2020-07-24 | 2023-06-09 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | Image reconstruction and endoscope tracking |
KR102369740B1 (en) * | 2020-09-21 | 2022-03-02 | 부경대학교 산학협력단 | Mobile Colposcopy as a Primary Screening Tool |
RU208537U1 (en) * | 2021-08-16 | 2021-12-23 | Общество с ограниченной ответственностью "Промышленные технологии" | MULTI-CHANNEL VIDEOANDOSCOPE |
JP7472874B2 (en) | 2021-08-30 | 2024-04-23 | カシオ計算機株式会社 | Equipment Stand |
JP7484849B2 (en) * | 2021-08-30 | 2024-05-16 | カシオ計算機株式会社 | Equipment Stand |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5771317A (en) * | 1994-08-24 | 1998-06-23 | International Business Machines Corporation | Image resize using sinc filter in linear lumen space |
US6159445A (en) * | 1994-07-20 | 2000-12-12 | Nycomed Imaging As | Light imaging contrast agents |
US6292683B1 (en) * | 1999-05-18 | 2001-09-18 | General Electric Company | Method and apparatus for tracking motion in MR images |
US6370422B1 (en) * | 1998-03-19 | 2002-04-09 | Board Of Regents, The University Of Texas System | Fiber-optic confocal imaging apparatus and methods of use |
US6902935B2 (en) * | 1999-12-15 | 2005-06-07 | Medispectra, Inc. | Methods of monitoring effects of chemical agents on a sample |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US127735A (en) * | 1872-06-11 | Improvement in pruning-shears | ||
US7122A (en) * | 1850-02-26 | Dotjgall | ||
US4071020A (en) * | 1976-06-03 | 1978-01-31 | Xienta, Inc. | Apparatus and methods for performing in-vivo measurements of enzyme activity |
FR2430754A1 (en) * | 1978-07-13 | 1980-02-08 | Groux Jean | ULTRAVIOLET ENDOSCOPE |
JPS57211109A (en) * | 1981-06-22 | 1982-12-24 | Konan Camera Kenkyusho:Kk | Microscope |
US5143054A (en) * | 1988-12-28 | 1992-09-01 | Adair Edwin Lloyd | Cervical videoscope with detachable camera unit |
US5699798A (en) * | 1990-08-10 | 1997-12-23 | University Of Washington | Method for optically imaging solid tumor tissue |
US5235984A (en) * | 1992-03-30 | 1993-08-17 | Hewlett-Packard Company | On-line acoustic densitometry tool for use with an ultrasonic imaging system |
US5956144A (en) | 1992-09-03 | 1999-09-21 | Micro Research, Inc. | Method and apparatus for use of polarized light vectors in identifying and evaluating constituent compounds in a specimen |
US5424543A (en) | 1993-04-19 | 1995-06-13 | Surface Optics Corporation | Imaging spectroradiometer |
US5421339A (en) | 1993-05-12 | 1995-06-06 | Board Of Regents, The University Of Texas System | Diagnosis of dysplasia using laser induced fluoroescence |
US5450857A (en) | 1994-05-19 | 1995-09-19 | Board Of Regents, The University Of Texas System | Method for the diagnosis of cervical changes |
US5697373A (en) | 1995-03-14 | 1997-12-16 | Board Of Regents, The University Of Texas System | Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies |
US6411835B1 (en) | 1997-01-13 | 2002-06-25 | Medispectra, Inc. | Spectral volume microprobe arrays |
US5995856A (en) * | 1995-11-22 | 1999-11-30 | Nellcor, Incorporated | Non-contact optical monitoring of physiological parameters |
US5646368A (en) * | 1995-11-30 | 1997-07-08 | International Business Machines Corporation | Printed circuit board with an integrated twisted pair conductor |
US5647368A (en) * | 1996-02-28 | 1997-07-15 | Xillix Technologies Corp. | Imaging system for detecting diseased tissue using native fluorsecence in the gastrointestinal and respiratory tract |
JP3796635B2 (en) * | 1996-03-06 | 2006-07-12 | 富士写真フイルム株式会社 | Fluorescence detection device |
US5842995A (en) * | 1996-06-28 | 1998-12-01 | Board Of Regents, The Univerisity Of Texas System | Spectroscopic probe for in vivo measurement of raman signals |
US5791346A (en) | 1996-08-22 | 1998-08-11 | Western Research Company, Inc. | Colposcope device and method for measuring areas of cervical lesions |
US6101408A (en) * | 1996-08-22 | 2000-08-08 | Western Research Company, Inc. | Probe and method to obtain accurate area measurements from cervical lesions |
US6135965A (en) | 1996-12-02 | 2000-10-24 | Board Of Regents, The University Of Texas System | Spectroscopic detection of cervical pre-cancer using radial basis function networks |
US5920399A (en) | 1997-03-18 | 1999-07-06 | Sandia Corporation | Multispectral imaging method and apparatus |
US5989184A (en) | 1997-04-04 | 1999-11-23 | Medtech Research Corporation | Apparatus and method for digital photography useful in cervical cancer detection |
US6081740A (en) * | 1997-04-23 | 2000-06-27 | Accumed International, Inc. | Method and apparatus for imaging and sampling diseased tissue |
US5921926A (en) | 1997-07-28 | 1999-07-13 | University Of Central Florida | Three dimensional optical imaging colposcopy |
WO1999020314A1 (en) | 1997-10-20 | 1999-04-29 | Board Of Regents, The University Of Texas System | Acetic acid as a signal enhancing contrast agent in fluorescence spectroscopy |
US6134010A (en) | 1997-11-07 | 2000-10-17 | Lucid, Inc. | Imaging system using polarization effects to enhance image quality |
JP4383533B2 (en) * | 1998-02-23 | 2009-12-16 | フィロニクス ファーマシューティカルズ, インコーポレイテッド | Methods for screening drugs for activity using pearl fish |
US6332092B1 (en) | 1998-07-08 | 2001-12-18 | Lifespex, Incorporated | Optical probe having and methods for uniform light irradiation and/or light collection over a volume |
JP3717675B2 (en) * | 1998-08-21 | 2005-11-16 | フジノン株式会社 | Endoscope light source device |
US6299860B1 (en) | 1998-10-15 | 2001-10-09 | Fluoro Probe, Inc. | Method for viewing diseased tissue located within a body cavity |
US20040111031A1 (en) * | 1999-07-22 | 2004-06-10 | Alfano Robert R. | Spectral polarizing tomographic dermatoscope |
GR1004180B (en) * | 2000-03-28 | 2003-03-11 | ����������� ����� ��������� (����) | Method and system for characterization and mapping of tissue lesions |
-
2000
- 2000-03-28 GR GR20000100102A patent/GR1004180B/en not_active IP Right Cessation
- 2000-12-15 US US09/739,089 patent/US20020007123A1/en not_active Abandoned
-
2001
- 2001-03-28 CN CNB018073522A patent/CN100413460C/en not_active Expired - Lifetime
- 2001-03-28 WO PCT/GR2001/000017 patent/WO2001072214A1/en active IP Right Grant
- 2001-03-28 AU AU4442301A patent/AU4442301A/en active Pending
- 2001-03-28 PT PT90019944T patent/PT2057936E/en unknown
- 2001-03-28 BR BRPI0108944A patent/BRPI0108944B8/en not_active IP Right Cessation
- 2001-03-28 RU RU2002128728/14A patent/RU2288636C2/en active
- 2001-03-28 DE DE60137914T patent/DE60137914D1/en not_active Expired - Lifetime
- 2001-03-28 US US10/240,367 patent/US7515952B2/en not_active Expired - Lifetime
- 2001-03-28 DK DK01917343T patent/DK1267707T3/en active
- 2001-03-28 JP JP2001570178A patent/JP4217403B2/en not_active Expired - Lifetime
- 2001-03-28 EP EP01917343A patent/EP1267707B1/en not_active Expired - Lifetime
- 2001-03-28 ES ES09001994.4T patent/ES2464718T3/en not_active Expired - Lifetime
- 2001-03-28 EP EP09001994.4A patent/EP2057936B1/en not_active Expired - Lifetime
- 2001-03-28 CA CA2400702A patent/CA2400702C/en not_active Expired - Lifetime
- 2001-03-28 AT AT01917343T patent/ATE424757T1/en active
- 2001-03-28 PT PT01917343T patent/PT1267707E/en unknown
- 2001-03-28 ES ES01917343T patent/ES2322235T3/en not_active Expired - Lifetime
-
2002
- 2002-08-14 FI FI20021477A patent/FI20021477A/en unknown
-
2003
- 2003-01-16 US US10/346,338 patent/US20030163049A1/en not_active Abandoned
- 2003-11-19 HK HK03108410.2A patent/HK1056108A1/en not_active IP Right Cessation
-
2004
- 2004-05-21 US US10/850,955 patent/US20050054936A1/en not_active Abandoned
- 2004-10-29 US US10/978,101 patent/US8173432B2/en not_active Expired - Fee Related
-
2005
- 2005-11-03 US US11/266,021 patent/US7598088B2/en not_active Expired - Fee Related
-
2008
- 2008-04-25 JP JP2008115094A patent/JP2008220977A/en active Pending
-
2009
- 2009-02-10 US US12/368,647 patent/US7974683B2/en not_active Expired - Fee Related
- 2009-06-01 CY CY20091100583T patent/CY1109134T1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159445A (en) * | 1994-07-20 | 2000-12-12 | Nycomed Imaging As | Light imaging contrast agents |
US5771317A (en) * | 1994-08-24 | 1998-06-23 | International Business Machines Corporation | Image resize using sinc filter in linear lumen space |
US6370422B1 (en) * | 1998-03-19 | 2002-04-09 | Board Of Regents, The University Of Texas System | Fiber-optic confocal imaging apparatus and methods of use |
US6292683B1 (en) * | 1999-05-18 | 2001-09-18 | General Electric Company | Method and apparatus for tracking motion in MR images |
US6902935B2 (en) * | 1999-12-15 | 2005-06-07 | Medispectra, Inc. | Methods of monitoring effects of chemical agents on a sample |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050159646A1 (en) * | 1997-01-13 | 2005-07-21 | Medispectra, Inc. | Optical probe accessory device for use in in vivo diagnostic procedures |
US20020133073A1 (en) * | 1998-12-23 | 2002-09-19 | Nordstrom Robert J. | Spectroscopic system employing a plurality of data types |
US20020177777A1 (en) * | 1998-12-23 | 2002-11-28 | Medispectra, Inc. | Optical methods and systems for rapid screening of the cervix |
US20050033186A1 (en) * | 1998-12-23 | 2005-02-10 | Medispectra, Inc. | Substantially monostatic, substantially confocal optical systems for examination of samples |
US20010041843A1 (en) * | 1999-02-02 | 2001-11-15 | Mark Modell | Spectral volume microprobe arrays |
US20030144585A1 (en) * | 1999-12-15 | 2003-07-31 | Howard Kaufman | Image processing using measures of similarity |
US20020127735A1 (en) * | 1999-12-15 | 2002-09-12 | Howard Kaufman | Methods of monitoring effects of chemical agents on a sample |
US20050064602A1 (en) * | 1999-12-15 | 2005-03-24 | Medispectra, Inc. | Methods of monitoring effects of chemical agents on a sample |
US20030095721A1 (en) * | 1999-12-15 | 2003-05-22 | Thomas Clune | Methods and systems for correcting image misalignment |
US20050043929A1 (en) * | 2000-12-15 | 2005-02-24 | Medispectra, Inc. | System for normalizing spectra |
US7912534B2 (en) * | 2002-04-02 | 2011-03-22 | Yeda Research And Development Co. Ltd. | Characterization of moving objects in a stationary background |
US20050131284A1 (en) * | 2002-04-02 | 2005-06-16 | Yeda Research And Development Co. Ltd. | Characterization of moving objects in a stationary background |
US20040214156A1 (en) * | 2002-07-09 | 2004-10-28 | Medispectra, Inc. | Method and apparatus for identifying spectral artifacts |
US20040010375A1 (en) * | 2002-07-09 | 2004-01-15 | Medispectra, Inc. | Methods and apparatus for processing spectral data for use in tissue characterization |
US8005527B2 (en) | 2002-07-10 | 2011-08-23 | Luma Imaging Corporation | Method of determining a condition of a tissue |
US20080091110A1 (en) * | 2002-07-10 | 2008-04-17 | Zelenchuk Alex R | Fluorescent Fiberoptic Probe for Tissue Health Discrimination and Method of Use Thereof |
US7486985B2 (en) * | 2002-08-05 | 2009-02-03 | Infraredx, Inc. | Near-infrared spectroscopic analysis of blood vessel walls |
US20080221455A1 (en) * | 2002-08-05 | 2008-09-11 | Infraredx, Inc. | Near-infrared spectroscopic analysis of blood vessel walls |
US8060187B2 (en) | 2002-08-05 | 2011-11-15 | Infraredx, Inc. | Near-infrared spectroscopic analysis of blood vessel walls |
US20040077950A1 (en) * | 2002-08-05 | 2004-04-22 | Marshik-Geurts Barbara J. | Near-infrared spectroscopic analysis of blood vessel walls |
US20040024321A1 (en) * | 2002-08-05 | 2004-02-05 | Marshik-Geurts Barbara J. | Near-infrared spectroscopic analysis of blood vessel walls |
US20040209237A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for characterization of tissue samples |
US20040208390A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for processing image data for use in tissue characterization |
US7469160B2 (en) * | 2003-04-18 | 2008-12-23 | Banks Perry S | Methods and apparatus for evaluating image focus |
US20040207625A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for displaying diagnostic data |
US20040206913A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for characterization of tissue samples |
US20040206882A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for evaluating image focus |
US20040206914A1 (en) * | 2003-04-18 | 2004-10-21 | Medispectra, Inc. | Methods and apparatus for calibrating spectral data |
US20110110567A1 (en) * | 2003-04-18 | 2011-05-12 | Chunsheng Jiang | Methods and Apparatus for Visually Enhancing Images |
US20090221912A1 (en) * | 2005-05-06 | 2009-09-03 | Darin Nelson | Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle |
US8172763B2 (en) | 2005-05-06 | 2012-05-08 | Yeda Research And Development Co., Ltd. | Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle |
EP2034890A4 (en) * | 2006-06-01 | 2011-02-16 | Gen Hospital Corp | In-vivo optical imaging method including analysis of dynamic images |
US20090252682A1 (en) * | 2006-06-01 | 2009-10-08 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
EP2034890A2 (en) * | 2006-06-01 | 2009-03-18 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
US9220411B2 (en) * | 2006-06-01 | 2015-12-29 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
US8403862B2 (en) | 2007-12-20 | 2013-03-26 | Yeda Research And Development Co. Ltd. | Time-based imaging |
US20110184272A1 (en) * | 2008-06-13 | 2011-07-28 | Kun Zeng | Portable Diagnostic Device for Precancerous Lesion of Cervical Cancer |
CN103750810A (en) * | 2013-12-30 | 2014-04-30 | 深圳市理邦精密仪器股份有限公司 | Method and device for performing characteristic analysis for images acquired by electronic colposcope |
US20190065884A1 (en) * | 2017-08-22 | 2019-02-28 | Boe Technology Group Co., Ltd. | Training method and device of neural network for medical image processing, and medical image processing method and device |
US11636664B2 (en) * | 2017-08-22 | 2023-04-25 | Boe Technology Group Co., Ltd. | Training method and device of neural network for medical image processing, and medical image processing method and device |
FR3143316A1 (en) * | 2022-12-20 | 2024-06-21 | Ecole Polytechnique | Real-time imaging process |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7598088B2 (en) | Optical imaging method and system for characterization and mapping of tissue lesions | |
US10314490B2 (en) | Method and device for multi-spectral photonic imaging | |
US6766184B2 (en) | Methods and apparatus for diagnostic multispectral digital imaging | |
US6507747B1 (en) | Method and apparatus for concomitant structural and biochemical characterization of tissue | |
US20060184040A1 (en) | Apparatus, system and method for optically analyzing a substrate | |
JP3923080B2 (en) | Optical fine probe and spectral analysis method of material | |
AU2001251164A1 (en) | Methods and apparatus for diagnostic multispectral digital imaging | |
Kang et al. | System for fluorescence diagnosis and photodynamic therapy of cervical disease | |
EP3861917A1 (en) | System for polarimetric characterization of a target | |
AU2001244423B2 (en) | Method and system for characterization and mapping of tissue lesions | |
Nadeau et al. | Endoscopic fluorescence imaging and point spectroscopy system for the detection of gastro-intestinal cancers | |
AU2001244423A1 (en) | Method and system for characterization and mapping of tissue lesions | |
RU104836U1 (en) | LASER SPECTRAL-FLUORESCENT COLOSCOPE | |
Houlne et al. | Characterization of microendoscopic imaging systems for tissue spectroscopy | |
Richards-Kortum et al. | Methods and apparatus for diagnostic multispectral digital imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |