WO2016073476A1 - Systems and methods for lesion assessment - Google Patents
Systems and methods for lesion assessment Download PDFInfo
- Publication number
- WO2016073476A1 WO2016073476A1 PCT/US2015/058824 US2015058824W WO2016073476A1 WO 2016073476 A1 WO2016073476 A1 WO 2016073476A1 US 2015058824 W US2015058824 W US 2015058824W WO 2016073476 A1 WO2016073476 A1 WO 2016073476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tissue
- energy
- catheter
- ablation
- light
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/0036—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room including treatment, e.g., using an implantable medical device, ablating, ventilating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6843—Monitoring or controlling sensor contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00029—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00351—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
- A61B2018/00708—Power or energy switching the power on or off
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00898—Alarms or notifications created in response to an abnormal condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00904—Automatic detection of target tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00982—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
- A61B2218/002—Irrigation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
Definitions
- the present disclosure generally relates to ablation visualization and monitoring systems and methods.
- Atrial fibrillation is the most common sustained arrhythmia in the world, which currently affects millions of people. In the United States, AF is projected to affect 10 million people by the year 20S0. AF is associated with increased mortality, morbidity, and an impaired quality of life, and is an independent risk factor for stroke. The substantial lifetime risk of developing AF underscores the public heath burden of the disease, which in the U.S. alone amounts to an annual treatment cost exceeding $7 billion.
- Atrial fibrillation may also be triggered by focal activity within the superior vena cava or other atrial structures, i.e. other cardiac tissue within the heart's conduction system.
- These focal triggers can also cause atrial tachycardia that is driven by reentrant electrical activity (or rotors), which may then fragment into a multitude of electrical wavelets that are characteristic of atrial fibrillation.
- prolonged AF can cause functional alterations in cardiac cell membranes and these changes further perpetuate atrial fibrillation.
- Radiofrequency ablation (RFA), laser ablation and cryo ablation are the most common technologies of catheter-based mapping and ablation systems used by physicians to treat atrial fibrillation.
- Physicians use a catheter to direct energy to either destroy focal triggers or to form electrical isolation lines isolating the triggers from the heart's remaining conduction system.
- PYI pulmonary vein isolation
- the success rate of the AF ablation procedure has remained relatively stagnant with estimates of recurrence to be as high as 30% to 50% one-year post procedure.
- the most common reason for recurrence after catheter ablation is one or more gaps in the PVI lines. The gaps are usually the result of ineffective or incomplete lesions that may temporarily block electrical signals during the procedure but heal over time and facilitate the recurrence of atrial fibrillation.
- PV isolation can be accomplished in most patients using irrigated ablation catheters, however recurrence of AF may occur over time. Recurrences are thought to be due to PV reconnections from sites that either recovered, gaps in the ablation lines, or ablated sites that did not achieve transmurality during the initial procedure. Therefore, lesion assessment is very important in catheter ablation procedures so that the operator can deliver the best possible lesions during pulmonary vein isolation procedures. The improved quality of the lesions can reduce atrial fibrillation recurrences.
- Real-time optical tissue characterization can provide excellent and previously impossible assessment of electrode-tissue contact and lesion progression during ablation. It can also provide highly valuable information regarding the myocardium, collagen, elastin tissue composition at the site of catheter tip and represents a new frontier in the understanding of the complex nature of the biophysics of cardiac ablation. Lesion depth directly correlates to a decrease in fNADH signal intensity. This information should be used to optimize the selection of ablation power and ablation energy application time to maximize lesion formation and improve the success of ablation procedures. Therefore, there is a need for systems and methods for real-time optical tissue characterization.
- a method that includes applying ablation energy to a tissue to form a lesion in the tissue, iUuminating the tissue with light energy (such as, for example, UV light) to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
- light energy such as, for example, UV light
- a system for monitoring tissue ablation that includes a catheter comprising a catheter body and a distal tip positioned at a distal end of the catheter body, the distal tip defining an illumination cavity having one or more openings for exchange of light energy between the illumination cavity and tissue, an ablation system in communication with the distal tip to deliver ablation energy to distal tip, a visualization system comprising a light source, a light measuring instrument, and one or more optical fibers in communication with the light source and the light measuring instrument and extending through the catheter body into the illumination cavity of the distal tip, wherein the one or more optical fibers are configured to pass light energy in and out of the illumination chamber, and a processor in communication with the ablation energy source, light source and the light measuring instrument, the processor being programmed to collect light reflected from a tissue illuminated with light energy (such as, for example, UV light) to excite NADH in the tissue, while ablation energy is being applied to the tissue to form a lesion in the tissue
- light energy such as, for example, UV light
- FIG. 1 A illustrates an embodiment of an ablation visualization and monitoring system of the present disclosure.
- FIG. IB is a diagram of an embodiment of a visualization system for use in connection with an ablation visualization and monitoring system of the present disclosure.
- FIG. 1C illustrates an exemplary computer system suitable for use in connection with the systems and methods of the present disclosure.
- FIGS. 2A-2E illustrate various embodiments of catheters of the present disclosure.
- FIG. 3 illustrates exemplary fluorescence spectral plots for monitoring contact between a catheter and tissue according to the present disclosure.
- FIG. 4 illustrates exemplary spectral plots of various tissue compositions.
- FIG. 5 and FIG. 6 illustrate plots of fNADH over time during formation of endocardial lesions and epicardial lesions, respectively.
- FIG. 7A, FIG. 7B and FIG. 7C illustrate exemplary fluorescence spectral plots for monitoring stability of a catheter according to the present disclosure.
- FIG. 8A and FIG. 8B illustrate exemplary fNADH signal as the catheter traverses from healthy tissue to the margin of a lesion and then to the center of a lesion.
- FIG. 9 is a graph comparing fNADH and Impedance over time during an application of ablation energy.
- the system of the present disclosure includes a catheter configured to serve two functions: a therapeutic function of delivering ablation therapy to a target tissue and a diagnostic function of gathering a signature spectrum from a point of contact of the catheter and tissue to access lesions.
- the systems and methods of the present disclosure may be employed for imaging tissue using nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence (fNADH).
- NADH nicotinamide adenine dinucleotide hydrogen
- fNADH nicotinamide adenine dinucleotide hydrogen
- the system may include a catheter with an optical system for exchanging light between tissue and the catheter.
- the instant systems allow for direct visualization of the tissue's NADH fluorescence, or lack thereof, induced by ultraviolet (UV) excitation.
- UV ultraviolet
- the catheter includes an ablation therapy system at its distal end and is coupled to a diagnostic unit comprising a light source, such as a laser, and a spectrometer.
- the catheter may include one or more fibers extending from the light source and the spectrometer to a distal tip of the catheter to provide illuminating light to the point of contact between the catheter and tissue and to receive and deliver a signature NADH spectrum from the point of contact to the spectrometer.
- the signature NADH spectrum may be used to assess a lesion in the target tissue.
- the methods of the present disclosure include illuminating a tissue having a lesion, receiving a signature spectrum of the tissue, and performing a qualitative assessment of the lesion based on the signature spectrum from the tissue.
- the analysis can occur in real-time before, during and after ablation lesion formation. It should be noted that while the systems and methods of the present disclosure are described in connection with cardiac tissue and NADH spectrum, the systems and methods of the present disclosure may be used in connection with other types of tissue and other types of fluorescence.
- the system for providing ablation therapy 100 may include an ablation therapy system 110, a visualization system 120, and a catheter 140.
- the system 100 may also include one or more of an irrigation system 170, ultrasound system 190 and a navigation system 200.
- the system may also include a display 180, which can be a separate display or a part of the visualization system 120, as described below.
- the system includes an RF generator, an irrigation pump 170, an irrigated-tip ablation catheter 140, and the visualization system 120.
- the ablation therapy system 110 is designed to supply ablation energy to the catheter 140.
- the ablation therapy system 110 may include one or more energy sources that can generate radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryoenergy, laser energy, ultrasound energy, acoustic energy, chemical energy, thermal energy or any other type of energy that can be used to ablate tissue.
- RF radiofrequency
- the catheter 140 is adapted for an ablation energy, the ablation energy being one or more of RF energy, cryo energy, laser, chemical, electroporation, high intensity focused ultrasound or ultrasound, and microwave.
- the visualization system 120 may include a light source 122, a light measuring instrument 124, and a computer system 126.
- the light source 122 may have an output wavelength within the target fluorophore (NADH, in some embodiments) absorption range in order to induce fluorescence in healthy myocardial cells.
- the light source 122 is a solid-state laser that can generate UV light to excite NADH fluorescence.
- the wavelength may be about 355nm or 355 nm +/- 30 ran.
- the light source 122 can be a UV laser. Laser-generated UV light may provide much more power for illumination and may be more efficiently coupled into a fiber-based Ulumination system, as is used in some embodiments of the catheter 140.
- the instant system can use a laser with adjustable power up to ISO mW.
- the wavelength range on the light source 122 may be bounded by the anatomy of interest, or a user specifically choosing a wavelength that causes maximum NADH fluorescence without exciting excessive fluorescence of collagen, which exhibits an absorption peak at only slightly shorter wavelengths.
- the light source 122 has a wavelength from 300nm to 400nm.
- the light source 122 has a wavelength from 330nm to 370nm.
- the light source 122 has a wavelength from 330nm to 355nm.
- a narrow-band 355 nm source may be used.
- the output power of the light source 122 may be high enough to produce a recoverable tissue fluorescence signature, yet not so high as to induce cellular damage.
- the light source 122 may be coupled to an optical fiber to deliver light to the catheter 140, as will be described below.
- the systems of the present disclosure may utilize a spectrometer as the light measuring instrument 124.
- the light measuring instrument 124 may comprise a camera connected to the computer system 126 for analysis and viewing of tissue fluorescence.
- the camera may have high quantum efficiency for wavelengths corresponding to NADH fluorescence.
- One such camera is an Andor iXon DV860.
- the spectrometer 124 may be coupled to an imaging bundle that can be extended into the catheter 140 for visualization of tissue.
- the imaging bundle for spectroscopy and the optical fiber for illumination may be combined.
- An optical bandpass filter of between 435nm and 485nm, in some embodiments, of 460nm, may be inserted between the imaging bundle and the camera to block light outside of the NADH fluorescence emission band.
- a Miter having a center wavelength of 460 nm with a 50 nm bandwith may be utilized.
- other optical bandpass filters may be inserted between the imaging bundle and the camera to block light outside of the NADH fluorescence emission band selected according to the peak fluorescence of the tissue being imaged.
- the light measuring instrument 124 may be a CCD (charge- coupled device) camera.
- the spectrometer 124 may be selected so it is capable of collecting as many photons as possible and that contributes minimal noise to the image.
- CCD cameras should have a quantum efficiency at about 460 urn of at least between 50-70%, indicating that 30-50% of photons will be disregarded.
- the camera has quantum efficiency at 460 nm of about 90%.
- the camera may have a sample rate of 80 KHz.
- the spectrometer 124 may have a readout noise of 8 e- (electrons) or less.
- the spectrometer 124 has a minimum readout noise of 3e-.
- Other light measuring instruments may be used in the systems and methods of the present disclosure.
- the optical fiber can deliver the gathered light to a long pass filter that blocks the reflected excitation wavelength of 355nm, but passes the fluoresced light that is emitted from the tissue at wavelengths above the cutoff of the filter.
- the filtered light from the tissue can then be captured and analyzed by the light measuring instrument 124.
- the computer system 126 acquires the information from the light measuring instrument 124 and displays it to the physician.
- the digital image that is produced by analyzing the light data may be used to do the 2D and 3D reconstruction of the lesion, showing size, shape and any other characteristics necessary for analysis.
- the image bundle may be connected to the light measuring instrument 124, which may generate a digital image of the lesion being examined from NADH fluorescence (fNADH), which can be displayed on the display 180.
- fNADH NADH fluorescence
- these images can be displayed to the user in real time.
- the images can be analyzed by using software to obtain real-time details (e.g. intensity or radiated energy in a specific site of the image) to help the user to determine whether further intervention is necessary or desirable.
- the NADH fluorescence may be conveyed directly to the computer system 126.
- the optical data acquired by the light measuring instrument 124 can be analyzed to provide information about lesions during and after ablation including, but not limited to lesion depth and lesion size.
- data from the light measuring instrument can be analyzed to determine if the catheter 140 is in contact with the myocardial surface and how much pressure is applied to the myocardial surface by the tip of the catheter.
- data from the light measuring instrument 124 is analyzed to determine the presence of collagen or elastin in the tissue.
- data from the light measuring instrument is analyzed and presented visually to the user via a graphical user interface in a way that provides the user with real-time feedback regarding lesion progression, lesion quality, myocardial contact, tissue collagen content, and tissue elastin content.
- the system 100 of the present disclosure may further include an ultrasound system 190.
- the catheter 140 may be equipped with ultrasound transducers in communication with the ultrasound system 190.
- the ultrasound may show tissue depths, which in combination with the metabolic activity or the depth of lesion may be used to determine if a lesion is transmural or not.
- the ultrasound transducers may be located in the distal section of the catheter 140, and optionally in the tip of the distal electrode.
- the ultrasonic transducers may be configured to assess a tissue thickness either below or adjacent to the catheter tip.
- the catheter 140 may comprise multiple transducers adapted to provide depth information covering a situation where the catheter tip is relatively perpendicular to a myocardium or relatively parallel to a myocardium.
- the system 100 may also include an irrigation system 170.
- the irrigation system 170 pumps saline into the catheter 140 to cool the tip electrode during ablation therapy. This may help to prevent steam pops and char (i.e. clot that adheres to the tip that may eventually dislodge and cause a thrombolytic event) formation.
- the irrigation fluid is maintained at a positive pressure relative to pressure outside of the catheter 140 for continuous flushing of the one or more openings 154.
- the system 100 may also include a navigation system 200 for locating and navigating the catheter 140.
- the catheter 140 may include one or more electromagnetic location sensors in communication with the navigation system 200.
- the electromagnetic location sensors may be used to locate the tip of the catheter in the navigation system 200. The sensor picks up electromagnetic energy from a source location and computes location through triangulation or other means.
- the catheter 140 comprises more than one transducer adapted to render a position of the catheter body 142 and a curvature of the catheter body on a navigation system display.
- the navigation system 200 may include one or more magnets and alterations in the magnetic field produced by the magnets on the electromagnetic sensors can deflect the tip of catheters to the desired direction. Other navigation systems may also be employed, including manual navigation.
- the computer system 126 can be programed to control various modules of the system 100, including, for example, control over the light source 122, control over the light measuring instrument 124, execution of application specific software, control over ultrasound, navigation and irrigation systems and similar operations.
- FIG. 1C shows, by way of example, a diagram of a typical processing architecture 308, which may be used in connection with the methods and systems of the present disclosure.
- a computer processing device 340 can be coupled to display 340AA for graphical output.
- Processor 342 can be a computer processor 342 capable of executing software. Typical examples can be computer processors (such as Intel® or AMD® processors), ASICs, microprocessors, and the like.
- Processor 342 can be coupled to memory 346, which can be typically a volatile RAM memory for storing instructions and data while processor 342 executes.
- Processor 342 may also be coupled to storage device 348, which can be a non-volatile storage medium, such as a hard drive, FLASH drive, tape drive, DVDROM, or similar device.
- storage device 348 can be a non-volatile storage medium, such as a hard drive, FLASH drive, tape drive, DVDROM, or similar device.
- computer processing device 340 typically includes various forms of input and output
- the I/O may include network adapters, USB adapters, Bluetooth radios, mice, keyboards, touchpads, displays, touch screens, LEDs, vibration devices, speakers, microphones, sensors, or any other input or output device for use with computer processing device 340.
- Processor 342 may also be coupled to other type of computer-readable media, including, but are not limited to, an electronic, optical, magnetic, or other storage or transmission device capable of providing a processor, such as the processor 342, with computer-readable instructions.
- Various other forms of computer- readable media can transmit or carry instructions to a computer, including a router, private or public network, or other transmission device or channel, both wired and wireless.
- the instructions may comprise code from any computer-programming language, including, for example, C, C++, C#, Visual Basic, Java, Python, Perl, and JavaScript
- Program 349 can be a computer program or computer readable code containing instructions and/or data, and can be stored on storage device 348.
- the instructions may comprise code from any computer-programming language, including, for example, C, C++, C#, Visual Basic, Java, Python, Perl, and JavaScript.
- processor 204 may load some or all of the instructions and/or data of program 349 into memory 346 for execution.
- Program 349 can be any computer program or process including, but not limited to web browser, browser application, address registration process, application, or any other computer application or process.
- Program 349 may include various instructions and subroutines, which, when loaded into memory 346 and executed by processor 342 cause processor 342 to perform various operations, some or all of which may effectuate the methods for managing medical care disclosed herein.
- Program 349 may be stored on any type of non-transitory computer readable medium, such as, without limitation, hard drive, removable drive, CD, DVD or any other type of computer-readable media.
- the computer system may be programmed to perform the steps of the methods of the present disclosure and control various parts of the instant systems to perform necessary operation to achieve the methods of the present disclosure.
- the processor may be programmed to collect light reflected from a tissue illuminated with a UV light to excite NADH in the tissue, while ablation energy is being applied to the tissue to form a lesion in the tissue; monitor a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level; and cause (either automatically or by prompting the user) ablation of the tissue to stop when the level of NADH fluorescence reaches the predetermined lower level.
- a spectrum of fluorescence light (including, but not limited to, the NADH fluorescence) reflected from the illuminated tissue may be collected to distinguish tissue type.
- the tissue is iUuminated with light having a wavelength between about 300 nm and about 400 nm.
- a level of the reflected light having a wavelength between about 450 nm and 470 nm is monitored.
- the monitored spectrum may be between 410 nm and 520 nm. Additionally or alternatively, a wider spectrum may be monitored, such as, by way of a non-limiting example, between 375 nm and 575 nm.
- the NADH fluorescence spectrum and a wider spectrum may be displayed to user simultaneously.
- the lesion may be created by ablation energy selected from the group consisting of radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryoenergy, laser energy, ultrasound energy, acoustic energy, chemical energy, thermal energy and combinations thereof.
- RF radiofrequency
- the processor may start (either automatically or by prompting the user) the procedure when a NADH fluorescence peak is detected so it can be monitored throughout the procedure. As noted above, these methods may be used in combination with other diagnostic methods, such as ultrasound monitoring.
- the catheter 140 may be based on a standard ablation catheter with accommodations for the optical fibers for illumination and spectroscopy, as discussed above.
- the catheter 140 is a steerable, irrigated RF ablation catheter that can be delivered through a sheath to the endocardial space via a standard transseptal procedure and common access tools.
- On the handle of the catheter 147 there may be connections for the standard RF generator and irrigation system 170 for therapy.
- the catheter handle 147 also passes the optical fibers that are then connected to the diagnostic unit to obtain the tissue measurements.
- the catheter 140 includes a catheter body 142 having a proximal end 144 and a distal end 146.
- the catheter body 142 may be made of a biocompatible material, and may be sufficiently flexible to enable steering and advancement of the catheter 140 to a site of ablation.
- the catheter body 142 may have zones of variable stiffness. For example, the stiffness of the catheter 140 may increase from the proximal end 144 toward the distal end 146. In some embodiments, the stiffness of the catheter body 142 is selected to enable delivery of the catheter 140 to a desired cardiac location.
- the catheter 140 can be a steerable, irrigated radiofrequency (RF) ablation catheter that can be delivered through a sheath to the endocardial space, and in the case of the heart's left side, via a standard transseptal procedure using common access tools.
- the catheter 140 may include a handle 147 at the proximal end 144.
- the handle 147 may be in communication with one or more lumens of the catheter to allow passage of instruments or materials through the catheter 140.
- the handle 147 may include connections for the standard RF generator and irrigation system 170 for therapy.
- the catheter 140 may also include one more adaptors configured to accommodate the optical fiber for illumination and spectroscopy.
- the catheter 140 may include a distal tip 148, having a side wall 156 and a front wall 158.
- the front wall 158 may be, for example, flat, conical or dome shaped.
- the distal tip 148 may be configured to act as an electrode for diagnostic purposes, such as for electrogram sensing, for therapeutic purposes, such as for emitting ablation energy, or both.
- the distal tip 148 of the catheter 140 could serve as an ablation electrode or ablation element.
- the wiring to couple the distal tip 148 to the RF energy source can be passed through a lumen of the catheter.
- the distal tip 148 may include a port in communication with the one or more lumens of the catheter.
- the distal tip 148 can be made of any biocompatible material.
- the distal tip 148 can be made of metal, including, but not limited to, platinum, pktinum-iridium, stainless steel, titanium or similar materials.
- an optical fiber or an imaging bundle ISO may be passed from the visualization system 120, through the catheter body 142, and into an illumination cavity or compartment 152, defined by the distal tip 148.
- the distal tip 148 may be provided with one or more openings 154 for exchange of light energy between the illumination cavity 152 and tissue. In some embodiments, even with multiple openings 154, the function of the distal tip 148 as an ablation electrode is not compromised.
- the openings may be disposed on the front wall 156, on the side wall 158 or both.
- the openings 154 may also be used as irrigation ports.
- the light is delivered by the fiber 150 to the distal tip 148, where it Uluminates the tissue in the proximity of the distal tip 148.
- This illumination light is either reflected or causes the tissue to fluoresce.
- the light reflected by and fluoresced from the tissue may be gathered by the optical fiber 150 within the distal tip 148 and carried back to the visualization system 120.
- the same optical fiber or bundle of fibers 150 may be used to both direct light outside the distal tip to illuminate tissue outside the catheter 140 and to collect light from the tissue.
- the catheter 140 may have a visualization lumen 161 through which the optical fiber 150 may be advanced through the catheter body 142.
- the optical fiber 150 may be advanced through the visualization lumen 161 into the illumination cavity 152 to iUuminate the tissue and receive reflected light through the opening 154. As necessary, the optical fiber 150 may be advanced beyond the illumination cavity 152 through the opening 154.
- the catheter 140 may further include an irrigation lumen 163 for passing irrigation fluid from the irrigation system 170 to the openings 154 (irrigation ports) in the distal tip 148 and an ablation lumen 164 for passing ablation energy from the ablation therapy system 110 to the distal tip 148, such as, for example, by passing a wire through the ablation lumen 164 for RF ablation energy.
- an irrigation lumen 163 for passing irrigation fluid from the irrigation system 170 to the openings 154 (irrigation ports) in the distal tip 148
- an ablation lumen 164 for passing ablation energy from the ablation therapy system 110 to the distal tip 148, such as, for example, by passing a wire through the ablation lumen 164 for RF ablation energy.
- the lumens of the catheter may be used for multiple purposes and more than one lumen may be used for the same purpose.
- FIG. 2A and FIG. 2B show the lumens being concentric other configurations of lumens may be employed.
- a central lumen of the catheter may be utilized as the visualization lumen 161.
- the visualization lumen 161 may be off set in relation to the central access of the catheter 140.
- the light may also be directed radially out of the openings 154 in the side wall 156, alternatively or additionally to being directed through the opening in the front wall 158.
- the light energy exchange between the illumination cavity 152 and tissue may occur over multiple paths, axially, radially or both with respect to the longitudinal central axis of the catheter, as shown in FIG. 2E. This is useful when the anatomy will not allow the catheter tip to be orthogonal to the target site. It may also be useful when increased illumination is required.
- additional optical fibers 150 may be used and may be deflected in the radial direction with respect to the catheter 140 to allow the illumination and returned light to exit and enter along the length of the catheter.
- a light directing member 160 may be provided in the illumination cavity 152.
- the light directing member 160 may direct the iUumination light to the tissue and direct the light returned through the one or more openings 154 within the distal tip 148 to the optical fiber 150.
- the light directing member 160 may also be made from any biocompatible material with a surface that reflects light or can be modified to reflect light, such as for example, stainless steel, platinum, platinum alloys, quartz, sapphire, fused silica, metallized plastic, or other similar materials.
- the light directing member 160 may be conical (i.e. smooth) or faceted with any number of sides.
- the light directing member 160 may be shaped to bend the light at any desired angle.
- the light directing member 160 may be shaped to reflect the light only through the one or more openings.
- the material for the light directing member 160 is chosen from materials that do not fluoresce when exposed to illumination between 310 nm to 370 ran.
- the light directing member 160 may include one or more holes 162 through the center line of the mirror, which allow illumination and reflected light to pass in both directions axially, directly in line with the catheter 140.
- Such an axial path may be useful when the distal-most surface of the distal tip 148 is in contact with the anatomy.
- the alternate radial paths, as shown in FIG. 2E, may be useful when the anatomy will not allow the distal-most surface of the distal tip 148 to be in contact with the target site as is sometimes the case in the left atrium of the patient during pulmonary vein isolation procedures, common in treating atrial fibrillation.
- lensing may not be required and the optical system is compatible with the irrigation system 170 as the light passes through the cooling fluid, which is often saline.
- the irrigation system 170 may also serve to flush the blood from the holes 162, thus keeping the optical components clean.
- methods for monitoring tissue ablation are provided. Such methods may provide a real time visual feedback on various factors that can impact lesion formation by displaying the level of NADH fluorescence, as is described below.
- the methods include applying ablation energy to a tissue to form a lesion in the tissue, illuminating the tissue with UV light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both, monitoring a level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a base level in the beginning of the ablating to a predetermined lower level, and stopping ablation of the tissue when the level of NADH fluorescence reaches the predetermined lower level.
- a spectrum of fluorescence light including, but not limited to, the NADH fluorescence
- reflected from the illuminated tissue may be collected to distinguish tissue type.
- the tissue is iUuminated with light having a wavelength between about 300 nm and about 400 nm. In some embodiments, a level of the reflected light having a wavelength between about 450 nm and 470 nm is monitored. In some embodiments, the monitored spectrum may be between 410 nm and 520 nm. Additionally or alternatively, a wider spectrum may be monitored, such as, by way of a non-limiting example, between 375 nm and 575 nm. In some embodiments, the lesion may be created by ablation energy selected from the group consisting of radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryoenergy, laser energy, ultrasound energy, acoustic energy, chemical energy, thermal energy and combinations thereof. In some embodiments, the methods may be started when a NADH fluorescence peak is detected so it can be monitored throughout the procedure. As noted above, these methods may be used in combination with other diagnostic methods, such as ultrasound monitoring.
- RF radiofrequency
- Illumination of cardiac tissue at wavelengths of about 350 to about 360 nm can elicit an auto-fluorescence response from NADH present in the mitochondria of myocardial cells. Variability of myocardial fNADH response can indicate that the catheter is positioned against tissue.
- the entire spectral signature can be captured from 350 nm to 850 nm range, or as shown in FIG. 3 from 400 to 700 nm, with the peak fluorescence of NADH occurring around 460 nm.
- the blood in the circulatory systems is capable of absorbing the light and therefore no fluorescence can be detected while the catheter is in the blood pool, which would indicate no contact between the catheter and the tissue.
- the information content of the returned spectrum may be obtained in real-time during lesion formation.
- the analysis and display of the spectrum can add qualitative assessment of the lesion, as it forms in real-time.
- FIG. 4 shows the returned spectrum from an illumination source of 355nm during lesion formation.
- the fNADH peak is between about 450nm and 550nm.
- the magnitude of the returned spectrum between approximately 450nm and 550nm drops significantly over time as the successful lesion forms. This effect is due to the reduction of metabolic activity and hence reduction of fNADH as the cells are ablated. This drop may be used as an indication when to stop ablation.
- the ablation may be stopped upon reduction in the fNADH signal by 80% or more.
- reduction in fNADH signal by over 50% and resultant achievement of steady state fNADH signal tor more than a specific period of time such as 5 or 10 seconds may be used as a stopping point
- 60% or more reduction in fNADH signal over a specific period of time such as up to 10 seconds and resultant steady state fNADH signal for more than S seconds may be used.
- the spectral signature may be collected over a broader spectrum.
- the spectral pattern of collagenous tissue is different than the one seen on healthy myocardium.
- the peak of the spectrum shifts to the left when imaging over collagenous tissue. This may be used by the user to identify the area that is being treated as being mostly myocardium or being covered by collagen, which is harder to ablate.
- FIG. 5 and FIG. 6 also illustrate this phenomenon during successful RF lesion formation on endocardial and epicardial surfaces respectively.
- the peak magnitude of the wavelengths that correlate to fNADH (450nm to 470nm) are normalized and plotted versus ablation time.
- FIG. 5 there is a precipitous drop in the peak magnitude within the first 10 seconds and a continued low level through the duration of the application of energy to the endocardium.
- FIG. 6 shows the same plot but with the RF energy applied to the epicardium. Again the effect is similar in both figures showing that the present systems and methods can be beneficial to technologies that ablate arrhythmias from either surface of the heart.
- the spectral signature may be monitored to determine catheter stability during lesion formation.
- a smooth response corresponds to a stable catheter, as the gradual reduction in fNADH intensity indicates the formation of the ablation lesion over time.
- FIG. 7B shows a sharper, more noisy response, which corresponds to intermittent or shifting tip of the catheter in relation to tissue.
- FIG. 7C shows that catheter movement can also be picked up during ablation based on the fNADH, a transient shift in fNADH is seen when the catheter jumps to a different location.
- FIG. 8A and FIG. 8B show how the systems and methods of the present disclosure can be used to evaluate previously formed lesions, whether they are chronic or freshly made.
- FIG. 8A shows a sequential schematic representation of a catheter tip as it moves from healthy myocardium to the margin of an existing lesion and then over the center of the existing lesion.
- FIG. 8B shows a composite of the normalized peak magnitude of the optical spectrum returned under 355nm illumination. The wavelengths central to fNADH has a significant difference in signal amplitude correlating perfectly to the state of the myocardium in contact with the tip of the catheter.
- FIG. 9 contrasts the fNADH response and therapy impedance over the duration of lesion formation.
- Impedance is a standard indicator used during ablation procedures throughout the world. It is typically measured from the tip of the catheter to the ablation ground pad adhered to the patient's torso. Physicians expect to see a drop of approximately 10 to 15 ohms in the first 2 or 3 seconds after the onset of ablation energy. If the impedance does not drop, the physician knows that this is likely due to poor catheter contact with the myocardium and the lesion attempt is aborted and the catheter repositioned. The methods described above may be used to ensure better contact between the catheter and the tissue.
- the physician continues applying lesion-forming energy typically for a fixed time (30 to 60 seconds or more). If the impedance rises over time, it is an indicator of potential overheating at the tip of the catheter and if unabated can result in dangerous situations of steam formation resulting in cardiac wall rupture or char buildup on the tip of the catheter that could dislodge and become an embolic body.
- the signal-to-noise ratio (SNR) of the fNADH optical response as compared to therapy impedance SNR would suggest that fNADH is a good indicator of lesion-formation quality.
- the change in amplitude of the fNADH magnitude is approximately 80% where the same drop in normalized impedance is less than 10%.
- This comparison of optical signature to impedance also indicates a more direct reflection of the activity in the tissue relative to impedance since the impedance often is a much larger reflection of the electrical path from the electrode to the ground pad through the blood pool.
- all of the light signature is from the tissue and none originates from the blood pool if good contact is maintained. As such, the optical signature is much more highly reflective of the activity in the tissue than the impedance signature.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Radiology & Medical Imaging (AREA)
- Cardiology (AREA)
- Gynecology & Obstetrics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Human Computer Interaction (AREA)
- Surgical Instruments (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Endoscopes (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Laser Surgery Devices (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177014725A KR102499045B1 (en) | 2014-11-03 | 2015-11-03 | Systems and methods for lesion assessment |
CN201580067812.0A CN107613849B (en) | 2014-11-03 | 2015-11-03 | Systems and methods for injury assessment |
JP2017523965A JP2017537681A (en) | 2014-11-03 | 2015-11-03 | Damage evaluation system and method |
EP15857544.9A EP3215002B1 (en) | 2014-11-03 | 2015-11-03 | Systems for lesion assessment |
CN202110395116.XA CN113143440B (en) | 2014-11-03 | 2015-11-03 | Systems and methods for injury assessment |
AU2015343258A AU2015343258B2 (en) | 2014-11-03 | 2015-11-03 | Systems and methods for lesion assessment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462074619P | 2014-11-03 | 2014-11-03 | |
US62/074,619 | 2014-11-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016073476A1 true WO2016073476A1 (en) | 2016-05-12 |
Family
ID=55851383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/058824 WO2016073476A1 (en) | 2014-11-03 | 2015-11-03 | Systems and methods for lesion assessment |
Country Status (7)
Country | Link |
---|---|
US (2) | US10722301B2 (en) |
EP (1) | EP3215002B1 (en) |
JP (2) | JP2017537681A (en) |
KR (1) | KR102499045B1 (en) |
CN (2) | CN107613849B (en) |
AU (1) | AU2015343258B2 (en) |
WO (1) | WO2016073476A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10076238B2 (en) | 2011-09-22 | 2018-09-18 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
JP2019524168A (en) * | 2016-06-11 | 2019-09-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | System and method for monitoring tissue ablation using tissue autofluorescence |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10736512B2 (en) | 2011-09-22 | 2020-08-11 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US11457817B2 (en) | 2013-11-20 | 2022-10-04 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
RU2822118C2 (en) * | 2022-06-24 | 2024-07-01 | федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени В.А. Алмазова" Министерства здравоохранения Российской Федерации | Method and device for determining sufficiency of ablation effect on biological tissues |
US12076071B2 (en) | 2020-08-14 | 2024-09-03 | Kardium Inc. | Systems and methods for treating tissue with pulsed field ablation |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015073871A2 (en) | 2013-11-14 | 2015-05-21 | The George Washington University | Systems and methods for determining lesion depth using fluorescence imaging |
WO2018044919A1 (en) * | 2016-09-01 | 2018-03-08 | The George Washington University | Enzyme-dependent fluorescence recovery of nadh after photobleaching to assess dehydrogenase activity of living tissues |
JP7300999B2 (en) * | 2017-04-28 | 2023-06-30 | アリネックス, インコーポレイテッド | Systems and methods for locating blood vessels in the treatment of rhinitis |
US11090082B2 (en) * | 2017-05-12 | 2021-08-17 | Covidien Lp | Colpotomy systems, devices, and methods with rotational cutting |
DE102019102839A1 (en) | 2019-02-05 | 2020-08-06 | Olympus Winter & Ibe Gmbh | Irrigation fluid for resection |
DE102019102841A1 (en) | 2019-02-05 | 2020-08-06 | Olympus Winter & Ibe Gmbh | Detachable insulating insert for use in a resectoscope |
JP7212756B2 (en) * | 2019-02-28 | 2023-01-25 | オリンパス株式会社 | Medical system, energy control method, and processor |
CN114727813A (en) | 2019-11-18 | 2022-07-08 | 瑟卡科学有限公司 | System with instrument port for epicardial ablation |
US20220031377A1 (en) * | 2020-07-28 | 2022-02-03 | 460Medical, Inc. | Systems and Methods for Lesion Formation and Assessment |
CN113180820A (en) * | 2021-04-30 | 2021-07-30 | 广州迪光医学科技有限公司 | Radial laser ablation catheter |
US20230096406A1 (en) * | 2021-09-29 | 2023-03-30 | Cilag Gmbh International | Surgical devices, systems, and methods using multi-source imaging |
US20230191222A1 (en) * | 2021-12-21 | 2023-06-22 | Shuhari Group, LLC | Impact And Movement Sensing To Measure Performance |
WO2024166328A1 (en) * | 2023-02-09 | 2024-08-15 | オリンパスメディカルシステムズ株式会社 | Medical device, medical system, learning device, method for operating medical device, and program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421337A (en) * | 1989-04-14 | 1995-06-06 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
WO1997037622A1 (en) * | 1996-04-08 | 1997-10-16 | The University Of Southern California | Method and apparatus for using laser-induced fluorescence during photoretractive keratectomy |
US20130079645A1 (en) * | 2011-09-22 | 2013-03-28 | LuxCath, LLC | Systems and Methods for Visualizing Ablated Tissue |
Family Cites Families (359)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3387305A (en) | 1966-02-09 | 1968-06-11 | Rocky Mountain Sports | Knee protector |
US3831467A (en) | 1973-03-16 | 1974-08-27 | R Moore | Knee brace |
US4024873A (en) | 1976-05-24 | 1977-05-24 | Becton, Dickinson And Company | Balloon catheter assembly |
US4619247A (en) | 1983-03-31 | 1986-10-28 | Sumitomo Electric Industries, Ltd. | Catheter |
JPS60182928A (en) | 1984-03-01 | 1985-09-18 | オリンパス光学工業株式会社 | Endoscope having solid image pick-up element mounted therein |
JPS63262613A (en) | 1987-04-20 | 1988-10-28 | Olympus Optical Co Ltd | Stereoscopic vision endoscope device |
WO1990006718A1 (en) | 1988-12-21 | 1990-06-28 | Massachusetts Institute Of Technology | A method for laser induced fluorescence of tissue |
US5584799A (en) | 1989-09-11 | 1996-12-17 | Gray; James C. | Splint/therapeutic device |
US5074306A (en) | 1990-02-22 | 1991-12-24 | The General Hospital Corporation | Measurement of burn depth in skin |
JP3164609B2 (en) | 1990-10-31 | 2001-05-08 | オリンパス光学工業株式会社 | Endoscope device |
CA2042075C (en) | 1991-05-08 | 2001-01-23 | Branko Palcic | Endoscopic imaging system |
US5540681A (en) * | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5350375A (en) | 1993-03-15 | 1994-09-27 | Yale University | Methods for laser induced fluorescence intensity feedback control during laser angioplasty |
AU7404994A (en) | 1993-07-30 | 1995-02-28 | Regents Of The University Of California, The | Endocardial infusion catheter |
US5749830A (en) | 1993-12-03 | 1998-05-12 | Olympus Optical Co., Ltd. | Fluorescent endoscope apparatus |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
WO1995029737A1 (en) | 1994-05-03 | 1995-11-09 | Board Of Regents, The University Of Texas System | Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy |
US20080154257A1 (en) | 2006-12-22 | 2008-06-26 | Shiva Sharareh | Real-time optoacoustic monitoring with electophysiologic catheters |
US5810802A (en) | 1994-08-08 | 1998-09-22 | E.P. Technologies, Inc. | Systems and methods for controlling tissue ablation using multiple temperature sensing elements |
US8025661B2 (en) | 1994-09-09 | 2011-09-27 | Cardiofocus, Inc. | Coaxial catheter instruments for ablation with radiant energy |
US6572609B1 (en) | 1999-07-14 | 2003-06-03 | Cardiofocus, Inc. | Phototherapeutic waveguide apparatus |
US6423055B1 (en) | 1999-07-14 | 2002-07-23 | Cardiofocus, Inc. | Phototherapeutic wave guide apparatus |
US5954665A (en) | 1995-06-07 | 1999-09-21 | Biosense, Inc. | Cardiac ablation catheter using correlation measure |
US5713364A (en) | 1995-08-01 | 1998-02-03 | Medispectra, Inc. | Spectral volume microprobe analysis of materials |
AU1130797A (en) * | 1995-08-24 | 1997-03-19 | Purdue Research Foundation | Fluorescence lifetime-based imaging and spectroscopy in tissues and other random media |
US6309352B1 (en) | 1996-01-31 | 2001-10-30 | Board Of Regents, The University Of Texas System | Real time optoacoustic monitoring of changes in tissue properties |
US5885258A (en) | 1996-02-23 | 1999-03-23 | Memory Medical Systems, Inc. | Medical instrument with slotted memory metal tube |
US5904651A (en) | 1996-10-28 | 1999-05-18 | Ep Technologies, Inc. | Systems and methods for visualizing tissue during diagnostic or therapeutic procedures |
JP3003597B2 (en) | 1996-11-18 | 2000-01-31 | 日本電気株式会社 | Solid-state imaging device |
US5833688A (en) | 1997-02-24 | 1998-11-10 | Boston Scientific Corporation | Sensing temperature with plurality of catheter sensors |
US6208886B1 (en) | 1997-04-04 | 2001-03-27 | The Research Foundation Of City College Of New York | Non-linear optical tomography of turbid media |
US6124597A (en) | 1997-07-07 | 2000-09-26 | Cedars-Sinai Medical Center | Method and devices for laser induced fluorescence attenuation spectroscopy |
DE69828181T2 (en) | 1997-09-12 | 2005-12-08 | Nippon Zeon Co., Ltd. | BALLOON CATHETER |
US6238389B1 (en) | 1997-09-30 | 2001-05-29 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6289236B1 (en) | 1997-10-10 | 2001-09-11 | The General Hospital Corporation | Methods and apparatus for distinguishing inflamed and tumorous bladder tissue |
US6937885B1 (en) | 1997-10-30 | 2005-08-30 | Hypermed, Inc. | Multispectral/hyperspectral medical instrument |
KR20010040418A (en) | 1998-01-26 | 2001-05-15 | 자밀라 제트. 허벡 | Fluorescence imaging endoscope |
US6174291B1 (en) | 1998-03-09 | 2001-01-16 | Spectrascience, Inc. | Optical biopsy system and methods for tissue diagnosis |
US6251107B1 (en) | 1998-06-25 | 2001-06-26 | Cardima, Inc. | Ep catheter |
US6112123A (en) | 1998-07-28 | 2000-08-29 | Endonetics, Inc. | Device and method for ablation of tissue |
US8024027B2 (en) | 1998-09-03 | 2011-09-20 | Hyperspectral Imaging, Inc. | Infrared endoscopic balloon probes |
CA2343401C (en) | 1998-09-11 | 2009-01-27 | Spectrx, Inc. | Multi-modal optical tissue diagnostic system |
US6178346B1 (en) | 1998-10-23 | 2001-01-23 | David C. Amundson | Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus |
US6701176B1 (en) | 1998-11-04 | 2004-03-02 | Johns Hopkins University School Of Medicine | Magnetic-resonance-guided imaging, electrophysiology, and ablation |
US6210406B1 (en) | 1998-12-03 | 2001-04-03 | Cordis Webster, Inc. | Split tip electrode catheter and signal processing RF ablation system |
US6423057B1 (en) | 1999-01-25 | 2002-07-23 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures |
JP4849755B2 (en) | 1999-07-02 | 2012-01-11 | ハイパースペクトラル・イメージング・インコーポレイテツド | Imaging apparatus and sample analysis method |
JP2001017379A (en) | 1999-07-09 | 2001-01-23 | Fuji Photo Film Co Ltd | Fluorescent diagnostic device |
US6219566B1 (en) | 1999-07-13 | 2001-04-17 | Photonics Research Ontario | Method of measuring concentration of luminescent materials in turbid media |
US9033961B2 (en) | 1999-07-14 | 2015-05-19 | Cardiofocus, Inc. | Cardiac ablation catheters for forming overlapping lesions |
US8540704B2 (en) | 1999-07-14 | 2013-09-24 | Cardiofocus, Inc. | Guided cardiac ablation catheters |
US8900219B2 (en) | 1999-07-14 | 2014-12-02 | Cardiofocus, Inc. | System and method for visualizing tissue during ablation procedures |
CA2377583A1 (en) | 1999-07-19 | 2001-01-25 | Epicor, Inc. | Apparatus and method for ablating tissue |
US6343228B1 (en) | 1999-10-19 | 2002-01-29 | The Hong Kong University Of Science And Technology | Method and apparatus for fluorescence imaging of tissue |
US6542767B1 (en) | 1999-11-09 | 2003-04-01 | Biotex, Inc. | Method and system for controlling heat delivery to a target |
US8221402B2 (en) | 2000-01-19 | 2012-07-17 | Medtronic, Inc. | Method for guiding a medical device |
US6663622B1 (en) | 2000-02-11 | 2003-12-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
GR1004180B (en) | 2000-03-28 | 2003-03-11 | ����������� ����� ��������� (����) | Method and system for characterization and mapping of tissue lesions |
AU2001249874A1 (en) | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
US20020107514A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
US7252664B2 (en) | 2000-05-12 | 2007-08-07 | Cardima, Inc. | System and method for multi-channel RF energy delivery with coagulum reduction |
AU2001261486A1 (en) | 2000-05-12 | 2001-11-26 | Cardima, Inc. | Multi-channel rf energy delivery with coagulum reduction |
US6975898B2 (en) | 2000-06-19 | 2005-12-13 | University Of Washington | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
IL138683A0 (en) | 2000-09-25 | 2001-10-31 | Vital Medical Ltd | Apparatus and method for monitoring tissue vitality parameters |
US6663561B2 (en) | 2000-10-05 | 2003-12-16 | Pentax Corporation | Video endoscope system |
US6450971B1 (en) | 2000-10-05 | 2002-09-17 | Scimed Life Systems, Inc. | Temperature measuring balloon |
US7047068B2 (en) | 2000-12-11 | 2006-05-16 | C.R. Bard, Inc. | Microelectrode catheter for mapping and ablation |
JP2002253500A (en) | 2001-03-05 | 2002-09-10 | Olympus Optical Co Ltd | Light source device for endoscope |
US6743225B2 (en) | 2001-03-27 | 2004-06-01 | Uab Research Foundation | Electrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates |
US6648883B2 (en) | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US7959626B2 (en) | 2001-04-26 | 2011-06-14 | Medtronic, Inc. | Transmural ablation systems and methods |
US6663627B2 (en) | 2001-04-26 | 2003-12-16 | Medtronic, Inc. | Ablation system and method of use |
US7250048B2 (en) | 2001-04-26 | 2007-07-31 | Medtronic, Inc. | Ablation system and method of use |
US6989010B2 (en) | 2001-04-26 | 2006-01-24 | Medtronic, Inc. | Ablation system and method of use |
US7255695B2 (en) | 2001-04-27 | 2007-08-14 | C.R. Bard, Inc. | Systems and methods for three-dimensional mapping of electrical activity |
US20040187875A1 (en) | 2001-05-01 | 2004-09-30 | He Sheng Ding | Method and apparatus for altering conduction properties along pathways in the heart and in vessels in conductive communication with the heart. |
US7727229B2 (en) | 2001-05-01 | 2010-06-01 | C.R. Bard, Inc. | Method and apparatus for altering conduction properties in the heart and in adjacent vessels |
US20030208252A1 (en) | 2001-05-14 | 2003-11-06 | O' Boyle Gary S. | Mri ablation catheter |
US7992573B2 (en) | 2001-06-19 | 2011-08-09 | The Trustees Of The University Of Pennsylvania | Optically guided system for precise placement of a medical catheter in a patient |
US8078268B2 (en) | 2001-06-28 | 2011-12-13 | Chemimage Corporation | System and method of chemical imaging using pulsed laser excitation and time-gated detection to determine tissue margins during surgery |
US7596404B2 (en) | 2001-06-28 | 2009-09-29 | Chemimage Corporation | Method of chemical imaging to determine tissue margins during surgery |
US6761716B2 (en) | 2001-09-18 | 2004-07-13 | Cardiac Pacemakers, Inc. | System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time |
CA2460501A1 (en) | 2001-09-28 | 2003-04-10 | Institut De Cardiologie De Montreal | Method for identification and visualization of atrial tissue |
EP1453430A4 (en) | 2001-11-09 | 2009-02-18 | Cardio Optics Inc | Direct, real-time imaging guidance of cardiac catheterization |
US20030120144A1 (en) | 2001-11-16 | 2003-06-26 | Grabek James R. | Intrapericardial temperature measurement device and method |
US7749157B2 (en) | 2001-12-04 | 2010-07-06 | Estech, Inc. (Endoscopic Technologies, Inc.) | Methods and devices for minimally invasive cardiac surgery for atrial fibrillation |
US20040092806A1 (en) | 2001-12-11 | 2004-05-13 | Sagon Stephen W | Microelectrode catheter for mapping and ablation |
US6825928B2 (en) | 2001-12-19 | 2004-11-30 | Wisconsin Alumni Research Foundation | Depth-resolved fluorescence instrument |
US20040215310A1 (en) | 2002-01-17 | 2004-10-28 | Omar Amirana | Stent and delivery method for applying RF energy to a pulmonary vein and the atrial wall around its ostium to eliminate atrial fibrillation while preventing stenosis of the pulmonary vein thereafter |
US7967816B2 (en) | 2002-01-25 | 2011-06-28 | Medtronic, Inc. | Fluid-assisted electrosurgical instrument with shapeable electrode |
US20050075629A1 (en) | 2002-02-19 | 2005-04-07 | Afx, Inc. | Apparatus and method for assessing tissue ablation transmurality |
US7192427B2 (en) | 2002-02-19 | 2007-03-20 | Afx, Inc. | Apparatus and method for assessing transmurality of a tissue ablation |
DE60315427T2 (en) | 2002-03-15 | 2008-04-30 | C.R. Bard, Inc. | APPARATUS FOR CONTROLLING ABLATION ENERGY AND ELECTROGRAMMING BY MEANS OF A VARIETY OF COMMON ELECTRODES IN AN ELECTROPHYSIOLOGY CATHETER |
US6746401B2 (en) | 2002-05-06 | 2004-06-08 | Scimed Life Systems, Inc. | Tissue ablation visualization |
EP1501435B1 (en) | 2002-05-06 | 2007-08-29 | Covidien AG | Blood detector for controlling an esu |
EP1870018A3 (en) | 2002-05-30 | 2008-08-06 | The Board of Trustees of The Leland Stanford Junior University | Apparatus and methods for coronary sinus access |
US8956280B2 (en) | 2002-05-30 | 2015-02-17 | Intuitive Surgical Operations, Inc. | Apparatus and methods for placing leads using direct visualization |
US20060122583A1 (en) | 2002-06-25 | 2006-06-08 | Glucon Inc | Method and apparatus for performing myocardial revascularization |
AU2003279097A1 (en) * | 2002-09-30 | 2004-04-19 | Vanderbilt University | Optical apparatus for guided liver tumor treatment and methods |
US7306593B2 (en) | 2002-10-21 | 2007-12-11 | Biosense, Inc. | Prediction and assessment of ablation of cardiac tissue |
US7001383B2 (en) | 2002-10-21 | 2006-02-21 | Biosense, Inc. | Real-time monitoring and mapping of ablation lesion formation in the heart |
EP1596746B1 (en) | 2003-02-20 | 2016-10-19 | ReCor Medical, Inc. | Ultrasonic ablation devices |
ATE476908T1 (en) | 2003-04-18 | 2010-08-15 | Medispectra Inc | SYSTEM AND DIAGNOSTIC METHOD FOR OPTICAL DETECTION OF SUSPICIOUS AREAS IN A TISSUE SAMPLE |
US7539530B2 (en) | 2003-08-22 | 2009-05-26 | Infraredx, Inc. | Method and system for spectral examination of vascular walls through blood during cardiac motion |
US7534204B2 (en) | 2003-09-03 | 2009-05-19 | Guided Delivery Systems, Inc. | Cardiac visualization devices and methods |
US20060009755A1 (en) | 2003-09-04 | 2006-01-12 | Sra Jasbir S | Method and system for ablation of atrial fibrillation and other cardiac arrhythmias |
EP1670347A4 (en) | 2003-09-19 | 2011-05-18 | Gen Hospital Corp | Fluorescence polarization imaging devices and methods |
US8172747B2 (en) | 2003-09-25 | 2012-05-08 | Hansen Medical, Inc. | Balloon visualization for traversing a tissue wall |
US7395118B2 (en) | 2003-09-25 | 2008-07-01 | Advanced Neuromodulation Systems, Inc. | System and method for implantable stimulation lead employing optical fibers |
WO2005032342A2 (en) | 2003-09-30 | 2005-04-14 | Vanderbilt University | Methods and apparatus for optical spectroscopic detection of cell and tissue death |
AU2004284941B2 (en) | 2003-10-20 | 2011-09-22 | Johns Hopkins University | Catheter and method for ablation of atrial tissue |
EP1680039A1 (en) | 2003-10-30 | 2006-07-19 | Medical Cv, Inc. | Apparatus and method for laser treatment |
US7232437B2 (en) | 2003-10-30 | 2007-06-19 | Medical Cv, Inc. | Assessment of lesion transmurality |
US20050137459A1 (en) | 2003-12-17 | 2005-06-23 | Scimed Life Systems, Inc. | Medical device with OLED illumination light source |
US7587236B2 (en) | 2004-01-08 | 2009-09-08 | Lawrence Livermore National Security, Llc | Optical spectroscopy for the detection of ischemic tissue injury |
US20050215899A1 (en) | 2004-01-15 | 2005-09-29 | Trahey Gregg E | Methods, systems, and computer program products for acoustic radiation force impulse (ARFI) imaging of ablated tissue |
US20050228452A1 (en) | 2004-02-11 | 2005-10-13 | Mourlas Nicholas J | Steerable catheters and methods for using them |
US20050197623A1 (en) | 2004-02-17 | 2005-09-08 | Leeflang Stephen A. | Variable steerable catheters and methods for using them |
US20060009756A1 (en) | 2004-05-14 | 2006-01-12 | Francischelli David E | Method and devices for treating atrial fibrillation by mass ablation |
US7640046B2 (en) | 2004-06-18 | 2009-12-29 | Cardiac Pacemakers, Inc. | Methods and apparatuses for localizing myocardial infarction during catheterization |
US7527625B2 (en) | 2004-08-04 | 2009-05-05 | Olympus Corporation | Transparent electrode for the radiofrequency ablation of tissue |
US20060089637A1 (en) | 2004-10-14 | 2006-04-27 | Werneth Randell L | Ablation catheter |
US20060089636A1 (en) | 2004-10-27 | 2006-04-27 | Christopherson Mark A | Ultrasound visualization for transurethral needle ablation |
US20060229515A1 (en) | 2004-11-17 | 2006-10-12 | The Regents Of The University Of California | Fiber optic evaluation of tissue modification |
US10413188B2 (en) | 2004-11-17 | 2019-09-17 | Lawrence Livermore National Security, Llc | Assessment of tissue or lesion depth using temporally resolved light scattering spectroscopy |
CA2588390C (en) | 2004-11-17 | 2016-06-07 | Biosense Webster, Inc. | Apparatus for real time evaluation of tissue ablation |
US8374682B2 (en) | 2005-04-04 | 2013-02-12 | Hypermed Imaging, Inc. | Hyperspectral imaging in diabetes and peripheral vascular disease |
US8548570B2 (en) | 2004-11-29 | 2013-10-01 | Hypermed Imaging, Inc. | Hyperspectral imaging of angiogenesis |
JP4656924B2 (en) | 2004-12-03 | 2011-03-23 | 株式会社トプコン | Spectral fundus image data measurement device |
US7367944B2 (en) | 2004-12-13 | 2008-05-06 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Method and system for monitoring ablation of tissues |
US8858495B2 (en) | 2004-12-28 | 2014-10-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Five degree of freedom ultrasound catheter and catheter control handle |
US7727231B2 (en) | 2005-01-08 | 2010-06-01 | Boston Scientific Scimed, Inc. | Apparatus and methods for forming lesions in tissue and applying stimulation energy to tissue in which lesions are formed |
US7862561B2 (en) | 2005-01-08 | 2011-01-04 | Boston Scientific Scimed, Inc. | Clamp based lesion formation apparatus with variable spacing structures |
US7776033B2 (en) | 2005-01-08 | 2010-08-17 | Boston Scientific Scimed, Inc. | Wettable structures including conductive fibers and apparatus including the same |
US7729750B2 (en) | 2005-01-20 | 2010-06-01 | The Regents Of The University Of California | Method and apparatus for high resolution spatially modulated fluorescence imaging and tomography |
US7860556B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue imaging and extraction systems |
US8137333B2 (en) | 2005-10-25 | 2012-03-20 | Voyage Medical, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US8078266B2 (en) | 2005-10-25 | 2011-12-13 | Voyage Medical, Inc. | Flow reduction hood systems |
US20080015569A1 (en) | 2005-02-02 | 2008-01-17 | Voyage Medical, Inc. | Methods and apparatus for treatment of atrial fibrillation |
US10064540B2 (en) | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
US8050746B2 (en) | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US20080009747A1 (en) | 2005-02-02 | 2008-01-10 | Voyage Medical, Inc. | Transmural subsurface interrogation and ablation |
US7930016B1 (en) | 2005-02-02 | 2011-04-19 | Voyage Medical, Inc. | Tissue closure system |
US7860555B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue visualization and manipulation system |
US7918787B2 (en) | 2005-02-02 | 2011-04-05 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
WO2006122061A1 (en) | 2005-05-06 | 2006-11-16 | Acumen Medical, Inc. | Complexly shaped steerable catheters and methods for making and using them |
DE102005021205B4 (en) | 2005-05-07 | 2007-08-16 | Mfd Diagnostics Gmbh | Method and device for the local detection of the vitality of living cells in cell cultures or in tissue |
WO2007002323A2 (en) | 2005-06-23 | 2007-01-04 | Epoc, Inc. | System and method for monitoring of end organ oxygenation by measurement of in vivo cellular energy status |
US8556851B2 (en) | 2005-07-05 | 2013-10-15 | Angioslide Ltd. | Balloon catheter |
DE102005032755B4 (en) | 2005-07-13 | 2014-09-04 | Siemens Aktiengesellschaft | System for performing and monitoring minimally invasive procedures |
EP3028645B1 (en) | 2005-08-01 | 2019-09-18 | St. Jude Medical International Holding S.à r.l. | Medical apparatus system having optical fiber load sensing capability |
US7681579B2 (en) | 2005-08-02 | 2010-03-23 | Biosense Webster, Inc. | Guided procedures for treating atrial fibrillation |
US7877128B2 (en) | 2005-08-02 | 2011-01-25 | Biosense Webster, Inc. | Simulation of invasive procedures |
US8583220B2 (en) | 2005-08-02 | 2013-11-12 | Biosense Webster, Inc. | Standardization of catheter-based treatment for atrial fibrillation |
US7740584B2 (en) | 2005-08-16 | 2010-06-22 | The General Electric Company | Method and system for mapping physiology information onto ultrasound-based anatomic structure |
JP4681981B2 (en) | 2005-08-18 | 2011-05-11 | Hoya株式会社 | Electronic endoscope device |
US7824397B2 (en) | 2005-08-19 | 2010-11-02 | Boston Scientific Scimed, Inc. | Occlusion apparatus |
EP1922005B1 (en) | 2005-08-25 | 2011-12-21 | Koninklijke Philips Electronics N.V. | System for electrophysiology regaining support to continue line and ring ablations |
JP5129749B2 (en) | 2005-09-30 | 2013-01-30 | コルノヴァ インク | System for probe inspection and treatment of body cavities |
US20070270717A1 (en) | 2005-09-30 | 2007-11-22 | Cornova, Inc. | Multi-faceted optical reflector |
US8929973B1 (en) | 2005-10-24 | 2015-01-06 | Lockheed Martin Corporation | Apparatus and method for characterizing optical sources used with human and animal tissues |
US8221310B2 (en) | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
WO2007067940A2 (en) | 2005-12-06 | 2007-06-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US8728077B2 (en) | 2005-12-06 | 2014-05-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Handle set for ablation catheter with indicators of catheter and tissue parameters |
US8406866B2 (en) | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
WO2007070361A2 (en) | 2005-12-06 | 2007-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
PT1981459E (en) | 2006-01-13 | 2011-12-21 | Convatec Technologies Inc | Device and system for compression treatment of a body part |
US20070185479A1 (en) | 2006-02-06 | 2007-08-09 | Liming Lau | Methods and devices for performing ablation and assessing efficacy thereof |
US7918850B2 (en) | 2006-02-17 | 2011-04-05 | Biosense Wabster, Inc. | Lesion assessment by pacing |
WO2007109554A2 (en) | 2006-03-17 | 2007-09-27 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
US20070225697A1 (en) | 2006-03-23 | 2007-09-27 | Ketan Shroff | Apparatus and methods for cardiac ablation |
US20080058785A1 (en) | 2006-04-12 | 2008-03-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Autofluorescent imaging and target ablation |
US20080058786A1 (en) | 2006-04-12 | 2008-03-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Autofluorescent imaging and target ablation |
US8129105B2 (en) | 2006-04-13 | 2012-03-06 | Ralph Zuckerman | Method and apparatus for the non-invasive measurement of tissue function and metabolism by determination of steady-state fluorescence anisotropy |
US8628520B2 (en) | 2006-05-02 | 2014-01-14 | Biosense Webster, Inc. | Catheter with omni-directional optical lesion evaluation |
WO2007134039A2 (en) | 2006-05-08 | 2007-11-22 | Medeikon Corporation | Interferometric characterization of ablated tissue |
EP2540246B8 (en) | 2006-05-12 | 2020-10-07 | Vytronus, Inc. | Device for ablating body tissue |
US20100198065A1 (en) | 2009-01-30 | 2010-08-05 | VyntronUS, Inc. | System and method for ultrasonically sensing and ablating tissue |
JP2007313169A (en) | 2006-05-29 | 2007-12-06 | Olympus Corp | Lesion extractor and lesion extraction method |
US8417323B2 (en) | 2006-05-30 | 2013-04-09 | Koninklijke Philips Electronics N.V. | Apparatus for depth-resolved measurements of properties of tissue |
WO2007143141A2 (en) | 2006-06-01 | 2007-12-13 | The General Hospital Corporation | In-vivo optical imaging method including analysis of dynamic images |
US9220402B2 (en) | 2006-06-07 | 2015-12-29 | Intuitive Surgical Operations, Inc. | Visualization and treatment via percutaneous methods and devices |
US8048063B2 (en) | 2006-06-09 | 2011-11-01 | Endosense Sa | Catheter having tri-axial force sensor |
US8567265B2 (en) | 2006-06-09 | 2013-10-29 | Endosense, SA | Triaxial fiber optic force sensing catheter |
US7662152B2 (en) | 2006-06-13 | 2010-02-16 | Biosense Webster, Inc. | Catheter with multi port tip for optical lesion evaluation |
EP2038002A4 (en) | 2006-06-28 | 2010-12-29 | Bard Inc C R | Methods and apparatus for assessing and improving electrode contact with cardiac tissue |
US20080033241A1 (en) | 2006-08-01 | 2008-02-07 | Ruey-Feng Peh | Left atrial appendage closure |
US20080097476A1 (en) | 2006-09-01 | 2008-04-24 | Voyage Medical, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
WO2008028149A2 (en) | 2006-09-01 | 2008-03-06 | Voyage Medical, Inc. | Electrophysiology mapping and visualization system |
US10004388B2 (en) | 2006-09-01 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
US20110042580A1 (en) | 2006-09-06 | 2011-02-24 | University Health Network | Fluorescence quantification and image acquisition in highly turbid media |
US10335131B2 (en) | 2006-10-23 | 2019-07-02 | Intuitive Surgical Operations, Inc. | Methods for preventing tissue migration |
US8147484B2 (en) | 2006-10-23 | 2012-04-03 | Biosense Webster, Inc. | Apparatus and method for monitoring early formation of steam pop during ablation |
DE102006050885B4 (en) | 2006-10-27 | 2016-11-03 | Siemens Healthcare Gmbh | Device for generating tissue section images |
US8882697B2 (en) | 2006-11-07 | 2014-11-11 | Dc Devices, Inc. | Apparatus and methods to create and maintain an intra-atrial pressure relief opening |
US8986298B2 (en) | 2006-11-17 | 2015-03-24 | Biosense Webster, Inc. | Catheter with omni-directional optical tip having isolated optical paths |
US20080183036A1 (en) | 2006-12-18 | 2008-07-31 | Voyage Medical, Inc. | Systems and methods for unobstructed visualization and ablation |
US9226648B2 (en) | 2006-12-21 | 2016-01-05 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US8131350B2 (en) | 2006-12-21 | 2012-03-06 | Voyage Medical, Inc. | Stabilization of visualization catheters |
US7766907B2 (en) | 2006-12-28 | 2010-08-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter with sensor array and discrimination circuit to minimize variation in power density |
US7591816B2 (en) | 2006-12-28 | 2009-09-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation catheter having a pressure sensor to detect tissue contact |
US8460285B2 (en) | 2006-12-29 | 2013-06-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter electrode having multiple thermal sensors and method of use |
US8144966B2 (en) | 2007-03-02 | 2012-03-27 | Wisconsin Alumni Research Foundation | Use of endogenous fluorescence to identify invading metastatic breast tumor cells |
US20080221448A1 (en) | 2007-03-07 | 2008-09-11 | Khuri-Yakub Butrus T | Image-guided delivery of therapeutic tools duing minimally invasive surgeries and interventions |
US20080228079A1 (en) | 2007-03-16 | 2008-09-18 | Donaldson Brenda L | Clinical utilization of contrast agents to define specific areas within the myocardial wall to provide guidance and localization for ablation, cyroablation, or other techniques in patients with post myocardial infarction |
JP2008229024A (en) | 2007-03-20 | 2008-10-02 | Olympus Corp | Fluorescence observation device |
WO2008118992A1 (en) | 2007-03-26 | 2008-10-02 | Boston Scientific Scimed, Inc. | High resolution electrophysiology catheter |
EP2148608A4 (en) | 2007-04-27 | 2010-04-28 | Voyage Medical Inc | Complex shape steerable tissue visualization and manipulation catheter |
US8657805B2 (en) | 2007-05-08 | 2014-02-25 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
WO2008141238A1 (en) | 2007-05-11 | 2008-11-20 | Voyage Medical, Inc. | Visual electrode ablation systems |
US10220187B2 (en) | 2010-06-16 | 2019-03-05 | St. Jude Medical, Llc | Ablation catheter having flexible tip with multiple flexible electrode segments |
US20080306337A1 (en) | 2007-06-11 | 2008-12-11 | Board Of Regents, The University Of Texas System | Characterization of a Near-Infrared Laparoscopic Hyperspectral Imaging System for Minimally Invasive Surgery |
US7976537B2 (en) | 2007-06-28 | 2011-07-12 | Biosense Webster, Inc. | Optical pyrometric catheter for tissue temperature monitoring during cardiac ablation |
US8123745B2 (en) | 2007-06-29 | 2012-02-28 | Biosense Webster, Inc. | Ablation catheter with optically transparent, electrically conductive tip |
US20090030276A1 (en) | 2007-07-27 | 2009-01-29 | Voyage Medical, Inc. | Tissue visualization catheter with imaging systems integration |
US8131379B2 (en) | 2007-08-27 | 2012-03-06 | St. Jude Medical Atrial Fibrillation Division, Inc. | Cardiac tissue elasticity sensing |
US20090062790A1 (en) | 2007-08-31 | 2009-03-05 | Voyage Medical, Inc. | Direct visualization bipolar ablation systems |
US8235985B2 (en) | 2007-08-31 | 2012-08-07 | Voyage Medical, Inc. | Visualization and ablation system variations |
DE102007043731A1 (en) | 2007-09-13 | 2009-04-02 | Siemens Ag | Medical image recording device, in particular for the production of image recordings in the context of a treatment of cardiac arrhythmias, and associated method |
DE102007043732A1 (en) | 2007-09-13 | 2009-04-02 | Siemens Ag | A myocardial tissue ablation device for the treatment of cardiac arrhythmias by ablation of myocardial tissue in a patient, and associated catheter and associated method |
US20090082660A1 (en) | 2007-09-20 | 2009-03-26 | Norbert Rahn | Clinical workflow for treatment of atrial fibrulation by ablation using 3d visualization of pulmonary vein antrum in 2d fluoroscopic images |
NL2002010C2 (en) | 2007-09-28 | 2009-10-06 | Gen Electric | Imaging and navigation system for atrial fibrillation treatment, displays graphical representation of catheter position acquired using tracking system and real time three-dimensional image obtained from imaging devices, on display |
US8535308B2 (en) | 2007-10-08 | 2013-09-17 | Biosense Webster (Israel), Ltd. | High-sensitivity pressure-sensing probe |
JP5372356B2 (en) | 2007-10-18 | 2013-12-18 | オリンパスメディカルシステムズ株式会社 | Endoscope apparatus and method for operating endoscope apparatus |
US8322335B2 (en) * | 2007-10-22 | 2012-12-04 | Uptake Medical Corp. | Determining patient-specific vapor treatment and delivery parameters |
US8195271B2 (en) | 2007-11-06 | 2012-06-05 | Siemens Aktiengesellschaft | Method and system for performing ablation to treat ventricular tachycardia |
US20090125022A1 (en) | 2007-11-12 | 2009-05-14 | Voyage Medical, Inc. | Tissue visualization and ablation systems |
US8906011B2 (en) | 2007-11-16 | 2014-12-09 | Kardium Inc. | Medical device for use in bodily lumens, for example an atrium |
US8500730B2 (en) | 2007-11-16 | 2013-08-06 | Biosense Webster, Inc. | Catheter with omni-directional optical tip having isolated optical paths |
EP2197377B1 (en) | 2007-11-16 | 2017-11-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device for real-time lesion estimation during ablation |
US8849380B2 (en) | 2007-11-26 | 2014-09-30 | Canfield Scientific Inc. | Multi-spectral tissue imaging |
US20090143640A1 (en) | 2007-11-26 | 2009-06-04 | Voyage Medical, Inc. | Combination imaging and treatment assemblies |
US8998892B2 (en) | 2007-12-21 | 2015-04-07 | Atricure, Inc. | Ablation device with cooled electrodes and methods of use |
US8353907B2 (en) | 2007-12-21 | 2013-01-15 | Atricure, Inc. | Ablation device with internally cooled electrodes |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US7996078B2 (en) | 2007-12-31 | 2011-08-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods of photodynamic-based cardiac ablation via the esophagus |
CN101502442B (en) * | 2008-02-05 | 2011-06-01 | 北京迈迪顶峰医疗科技有限公司 | Radio frequency ablation system, ablation controller and radio frequency ablation device |
US8858609B2 (en) | 2008-02-07 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US20090306643A1 (en) * | 2008-02-25 | 2009-12-10 | Carlo Pappone | Method and apparatus for delivery and detection of transmural cardiac ablation lesions |
US10219742B2 (en) | 2008-04-14 | 2019-03-05 | Novadaq Technologies ULC | Locating and analyzing perforator flaps for plastic and reconstructive surgery |
US8298227B2 (en) | 2008-05-14 | 2012-10-30 | Endosense Sa | Temperature compensated strain sensing catheter |
CA2724973C (en) | 2008-05-20 | 2015-08-11 | University Health Network | Device and method for fluorescence-based imaging and monitoring |
US10568535B2 (en) | 2008-05-22 | 2020-02-25 | The Trustees Of Dartmouth College | Surgical navigation with stereovision and associated methods |
US8357149B2 (en) | 2008-06-05 | 2013-01-22 | Biosense Webster, Inc. | Filter for simultaneous pacing and ablation |
WO2010011820A2 (en) | 2008-07-23 | 2010-01-28 | St. Jude Medical, Inc. | Ablation and monitoring system including a fiber optic imaging catheter and an optical coherence tomography system |
JP2010029382A (en) | 2008-07-28 | 2010-02-12 | Olympus Medical Systems Corp | Endoscope insertion aid and endoscope apparatus |
US8203709B2 (en) | 2008-09-17 | 2012-06-19 | Fujifilm Corporation | Image obtaining method and image obtaining apparatus |
US9545216B2 (en) | 2011-08-05 | 2017-01-17 | Mc10, Inc. | Catheter balloon methods and apparatus employing sensing elements |
US8333012B2 (en) | 2008-10-10 | 2012-12-18 | Voyage Medical, Inc. | Method of forming electrode placement and connection systems |
EP2349452B1 (en) | 2008-10-21 | 2016-05-11 | Microcube, LLC | Microwave treatment devices |
US9192789B2 (en) | 2008-10-30 | 2015-11-24 | Vytronus, Inc. | System and method for anatomical mapping of tissue and planning ablation paths therein |
US8414508B2 (en) | 2008-10-30 | 2013-04-09 | Vytronus, Inc. | System and method for delivery of energy to tissue while compensating for collateral tissue |
US9033885B2 (en) | 2008-10-30 | 2015-05-19 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US9220924B2 (en) | 2008-10-30 | 2015-12-29 | Vytronus, Inc. | System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion |
US9468364B2 (en) | 2008-11-14 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Intravascular catheter with hood and image processing systems |
CA2742787C (en) | 2008-11-17 | 2018-05-15 | Vytronus, Inc. | Systems and methods for ablating body tissue |
CA2745690A1 (en) * | 2008-12-04 | 2010-06-10 | Evgeny Zlotinikov | Novel polymorphic forms of an azabicyclo-trifluoromethyl benzamide derivative |
US20100152728A1 (en) | 2008-12-11 | 2010-06-17 | Park Christopher J | Method and apparatus for determining the efficacy of a lesion |
US20100160768A1 (en) | 2008-12-24 | 2010-06-24 | Marrouche Nassir F | Therapeutic outcome assessment for atrial fibrillation |
US8864757B2 (en) | 2008-12-31 | 2014-10-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measuring force and torque applied to a catheter electrode tip |
WO2010090673A1 (en) | 2009-01-20 | 2010-08-12 | The Trustees Of Dartmouth College | Method and apparatus for depth-resolved fluorescence, chromophore, and oximetry imaging for lesion identification during surgery |
US20100204561A1 (en) | 2009-02-11 | 2010-08-12 | Voyage Medical, Inc. | Imaging catheters having irrigation |
GB0903534D0 (en) | 2009-03-03 | 2009-04-08 | Leicester Gordon C | Safety harness |
EP2429458A4 (en) | 2009-04-28 | 2015-03-25 | Cadence Biomedical Inc | Adjustable prosthesis |
JP5786108B2 (en) | 2009-05-08 | 2015-09-30 | セント・ジュード・メディカル・ルクセンブルク・ホールディング・エスエーアールエル | Method and apparatus for controlling lesion size in catheter ablation therapy |
WO2010131178A1 (en) | 2009-05-15 | 2010-11-18 | Koninklijke Philips Electronics N.V. | Apparatus, method and computer program for determining a property of a heart |
JP5859431B2 (en) | 2009-06-08 | 2016-02-10 | エムアールアイ・インターヴェンションズ,インコーポレイテッド | MRI guided intervention system capable of tracking flexible internal devices and generating dynamic visualization in near real time |
US8597222B2 (en) | 2009-06-12 | 2013-12-03 | Under Armour, Inc. | Garment with adjustable compression |
US20120109031A1 (en) | 2009-06-16 | 2012-05-03 | Otto Bock Healthcare Gmbh | Support bandage |
US20100331838A1 (en) | 2009-06-25 | 2010-12-30 | Estech, Inc. (Endoscopic Technologies, Inc.) | Transmurality clamp systems and methods |
DE102009034249A1 (en) | 2009-07-22 | 2011-03-24 | Siemens Aktiengesellschaft | A method and apparatus for controlling ablation energy to perform an electrophysiology catheter application |
US8874230B2 (en) | 2009-08-27 | 2014-10-28 | New Jersey Institute Of Technology | Integrated fiber optic raman spectroscopy and radio frequency ablation |
US9326814B2 (en) | 2009-09-15 | 2016-05-03 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | System and method for predicting lesion size shortly after onset of RF energy delivery |
WO2011035253A1 (en) | 2009-09-18 | 2011-03-24 | Mahon Joseph A | Adjustable prosthetic interfaces and related systems and methods |
WO2011041638A2 (en) | 2009-10-02 | 2011-04-07 | Cardiofocus, Inc. | Cardiac ablation system with automatic safety shut-off feature |
EP2482744A4 (en) | 2009-10-02 | 2017-01-04 | Cardiofocus, Inc. | Cardiac ablation system with inflatable member having multiple inflation settings |
US8702688B2 (en) | 2009-10-06 | 2014-04-22 | Cardiofocus, Inc. | Cardiac ablation image analysis system and process |
US20110257563A1 (en) | 2009-10-26 | 2011-10-20 | Vytronus, Inc. | Methods and systems for ablating tissue |
US8568401B2 (en) | 2009-10-27 | 2013-10-29 | Covidien Lp | System for monitoring ablation size |
US8382750B2 (en) | 2009-10-28 | 2013-02-26 | Vivant Medical, Inc. | System and method for monitoring ablation size |
EP3656437B1 (en) | 2009-12-16 | 2023-03-15 | Boston Scientific Scimed Inc. | Endoscopic system |
CA2784856C (en) | 2009-12-18 | 2019-05-07 | University Health Network | System and method for sub-surface fluorescence imaging |
US8926604B2 (en) | 2009-12-23 | 2015-01-06 | Biosense Webster (Israel) Ltd. | Estimation and mapping of ablation volume |
US10561318B2 (en) | 2010-01-25 | 2020-02-18 | University Health Network | Device, system and method for quantifying fluorescence and optical properties |
JP5719159B2 (en) * | 2010-03-15 | 2015-05-13 | ソニー株式会社 | Evaluation device |
BR112012023287A2 (en) | 2010-03-17 | 2017-03-21 | Zeng Haishan | apparatus and method for multispectral imaging, and method for quantifying physiological and morphological information of tissue |
JP5432793B2 (en) | 2010-03-29 | 2014-03-05 | オリンパス株式会社 | Fluorescence endoscope device |
EP2558007A4 (en) | 2010-04-13 | 2017-11-29 | Sentreheart, Inc. | Methods and devices for accessing and delivering devices to a heart |
US9918787B2 (en) | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US20140171806A1 (en) | 2012-12-17 | 2014-06-19 | Biosense Webster (Israel), Ltd. | Optical lesion assessment |
DE102010032755B4 (en) | 2010-07-29 | 2019-05-23 | Siemens Healthcare Gmbh | Method of visualizing an atrium of the heart of a patient |
RU2577760C2 (en) | 2010-08-23 | 2016-03-20 | Конинклейке Филипс Электроникс Н.В. | Mapping system and method for medical procedures |
BR112013008821A2 (en) * | 2010-10-14 | 2016-06-28 | Koninkl Philips Electronics Nv | property determination apparatus for determining object properties, property determination method for determining object properties and computer property determination program for determining object property |
US9254090B2 (en) | 2010-10-22 | 2016-02-09 | Intuitive Surgical Operations, Inc. | Tissue contrast imaging systems |
US20120123276A1 (en) * | 2010-11-16 | 2012-05-17 | Assaf Govari | Catheter with optical contact sensing |
WO2012066430A1 (en) | 2010-11-18 | 2012-05-24 | Koninklijke Philips Electronics N.V. | Medical device with ultrasound transducers embedded in flexible foil |
US11246653B2 (en) | 2010-12-07 | 2022-02-15 | Boaz Avitall | Catheter systems for cardiac arrhythmia ablation |
US8998893B2 (en) | 2010-12-07 | 2015-04-07 | Boaz Avitall | Catheter systems for cardiac arrhythmia ablation |
JP5485190B2 (en) | 2011-01-19 | 2014-05-07 | 富士フイルム株式会社 | Endoscope device |
JP2012147937A (en) | 2011-01-19 | 2012-08-09 | Sony Corp | Laser therapy apparatus, laser therapy system and assessment method |
JP5485191B2 (en) | 2011-01-19 | 2014-05-07 | 富士フイルム株式会社 | Endoscope device |
US9265557B2 (en) | 2011-01-31 | 2016-02-23 | Medtronic Ablation Frontiers Llc | Multi frequency and multi polarity complex impedance measurements to assess ablation lesions |
US9233241B2 (en) * | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
WO2012131577A2 (en) | 2011-03-29 | 2012-10-04 | Koninklijke Philips Electronics N.V. | Functional-imaging-based ablation monitoring |
US8986292B2 (en) | 2011-04-13 | 2015-03-24 | St. Jude Medical, Inc. | Optical feedback RF ablator and ablator tip |
US9387031B2 (en) | 2011-07-29 | 2016-07-12 | Medtronic Ablation Frontiers Llc | Mesh-overlayed ablation and mapping device |
US8900228B2 (en) | 2011-09-01 | 2014-12-02 | Biosense Webster (Israel) Ltd. | Catheter adapted for direct tissue contact and pressure sensing |
ES2727868T3 (en) | 2011-09-22 | 2019-10-21 | Univ George Washington | Systems for visualizing ablated tissue |
DE102011083522B4 (en) | 2011-09-27 | 2015-06-18 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method and device for visualizing the quality of an ablation procedure |
US10791950B2 (en) | 2011-09-30 | 2020-10-06 | Biosense Webster (Israel) Ltd. | In-vivo calibration of contact force-sensing catheters using auto zero zones |
JP5830348B2 (en) | 2011-10-26 | 2015-12-09 | オリンパス株式会社 | Imaging device |
MX2014005382A (en) | 2011-11-07 | 2014-07-30 | Koninkl Philips Nv | Detection apparatus for determining a state of tissue. |
US10456196B2 (en) | 2011-12-15 | 2019-10-29 | Biosense Webster (Israel) Ltd. | Monitoring and tracking bipolar ablation |
EP2797536B1 (en) | 2011-12-28 | 2016-04-13 | Boston Scientific Scimed, Inc. | Ablation probe with ultrasonic imaging capability |
US9687289B2 (en) | 2012-01-04 | 2017-06-27 | Biosense Webster (Israel) Ltd. | Contact assessment based on phase measurement |
CN104039257A (en) | 2012-01-10 | 2014-09-10 | 波士顿科学医学有限公司 | Electrophysiology system |
WO2013116316A1 (en) | 2012-01-30 | 2013-08-08 | Scanadu Incorporated | Hyperspectral imaging systems, units, and methods |
EP2814397B1 (en) | 2012-02-14 | 2020-01-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for assessing effects of ablation therapy on cardiac tissue using photoacoustics |
EP2817061B1 (en) | 2012-02-24 | 2018-02-07 | Isolase, Ltd. | Improvements in ablation techniques for the treatment of atrial fibrillation |
US20130281920A1 (en) * | 2012-04-20 | 2013-10-24 | Elwha LLC, a limited liability company of the State of Delaware | Endometrial Ablation |
US20130282005A1 (en) | 2012-04-24 | 2013-10-24 | Siemens Corporation | Catheter navigation system |
US20130296840A1 (en) | 2012-05-01 | 2013-11-07 | Medtronic Ablation Frontiers Llc | Systems and methods for detecting tissue contact during ablation |
US8900225B2 (en) | 2012-05-07 | 2014-12-02 | Biosense Webster (Israel) Ltd. | Automatic ablation tracking |
CN107157576B (en) | 2012-05-11 | 2019-11-26 | 美敦力Af卢森堡有限责任公司 | The renal nerve conditioning system of processing for human patients |
US20130310680A1 (en) | 2012-05-21 | 2013-11-21 | The Regents Of The University Of Colorado, A Body Corporate | Three-dimensional optical imaging and therapy of prostate cancer |
US9226767B2 (en) * | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
WO2014028770A1 (en) | 2012-08-15 | 2014-02-20 | Burdette Everette C | Mri compatible ablation catheter system incorporating directional high-intensity ultrasound for treatment |
US20140058244A1 (en) | 2012-08-21 | 2014-02-27 | Regents Of The University Of Minnesota | Photoacoustic monitoring |
US20140073907A1 (en) | 2012-09-12 | 2014-03-13 | Convergent Life Sciences, Inc. | System and method for image guided medical procedures |
US8923959B2 (en) | 2012-08-27 | 2014-12-30 | Birinder Robert Boveja | Methods and system for real-time cardiac mapping |
US20140058246A1 (en) | 2012-08-27 | 2014-02-27 | Birinder Robert Boveja | System and methods for real-time cardiac mapping |
US10098692B2 (en) * | 2012-11-30 | 2018-10-16 | Intuitive Surgical Operations, Inc. | Apparatus and method for delivery and monitoring of ablation therapy |
US20140163360A1 (en) | 2012-12-07 | 2014-06-12 | Boston Scientific Scimed, Inc. | Irrigated catheter |
US20140171936A1 (en) | 2012-12-17 | 2014-06-19 | Biosense Webster (Israel) Ltd. | Irrigated catheter tip with temperature sensor and optic fiber arrays |
US9615878B2 (en) | 2012-12-21 | 2017-04-11 | Volcano Corporation | Device, system, and method for imaging and tissue characterization of ablated tissue |
CN105008900A (en) | 2013-01-08 | 2015-10-28 | 布里格姆及妇女医院股份有限公司 | Metabolic imaging methods for assessment of oocytes and embryos |
US20140276687A1 (en) | 2013-03-15 | 2014-09-18 | Volcano Corporation | Assessment of varicose vein ablation via imaging or functional measurement analysis |
US10194830B2 (en) | 2013-03-15 | 2019-02-05 | University Of Utah Research Foundation | High temporal resolution monitoring of contact between catheter tip and target tissue during a real-time-MRI-guided ablation |
US20140276771A1 (en) | 2013-03-15 | 2014-09-18 | Volcano Corporation | Systems and methods for controlled tissue ablation |
KR20150140760A (en) | 2013-04-08 | 2015-12-16 | 아파마 메디칼, 인크. | Cardiac ablation catheters and methods of use thereof |
US10098694B2 (en) | 2013-04-08 | 2018-10-16 | Apama Medical, Inc. | Tissue ablation and monitoring thereof |
US9907471B2 (en) | 2013-10-08 | 2018-03-06 | The Board Of Trustees Of The Leland Stanford Junior University | Visualization of heart wall tissue |
CN203525125U (en) | 2013-10-30 | 2014-04-09 | 山西医科大学 | Visual special device for bladder water sac expansion |
CN106028914B (en) | 2013-11-14 | 2020-09-15 | 乔治华盛顿大学 | System and method for determining lesion depth using fluorescence imaging |
WO2015073871A2 (en) | 2013-11-14 | 2015-05-21 | The George Washington University | Systems and methods for determining lesion depth using fluorescence imaging |
CN105744883B (en) | 2013-11-20 | 2022-03-01 | 乔治华盛顿大学 | System and method for hyperspectral analysis of cardiac tissue |
US10278775B2 (en) | 2013-12-31 | 2019-05-07 | Biosense Webster (Israel) Ltd. | Catheter utilizing optical spectroscopy for measuring tissue contact area |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
CN113208723B (en) | 2014-11-03 | 2024-09-20 | 460医学股份有限公司 | System and method for assessment of contact quality |
KR102513664B1 (en) | 2014-11-25 | 2023-03-23 | 460메디컬, 인크. | Visualization catheters |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
CN108472475A (en) | 2015-11-13 | 2018-08-31 | 波士顿科学国际有限公司 | Direct visualizztion devices, systems, and methods for being passed through across interventricular septum |
JP2023510326A (en) | 2020-01-08 | 2023-03-13 | 460メディカル・インコーポレイテッド | Systems and methods for optical search of ablation lesions |
US20210369118A1 (en) | 2020-05-27 | 2021-12-02 | The George Washington University | Lesion visualization using dual wavelength approach |
US20220031377A1 (en) | 2020-07-28 | 2022-02-03 | 460Medical, Inc. | Systems and Methods for Lesion Formation and Assessment |
-
2015
- 2015-11-03 US US14/931,262 patent/US10722301B2/en active Active
- 2015-11-03 CN CN201580067812.0A patent/CN107613849B/en active Active
- 2015-11-03 JP JP2017523965A patent/JP2017537681A/en not_active Withdrawn
- 2015-11-03 CN CN202110395116.XA patent/CN113143440B/en active Active
- 2015-11-03 WO PCT/US2015/058824 patent/WO2016073476A1/en active Application Filing
- 2015-11-03 EP EP15857544.9A patent/EP3215002B1/en active Active
- 2015-11-03 AU AU2015343258A patent/AU2015343258B2/en active Active
- 2015-11-03 KR KR1020177014725A patent/KR102499045B1/en active IP Right Grant
-
2020
- 2020-05-21 US US16/879,956 patent/US11559352B2/en active Active
- 2020-12-21 JP JP2020211677A patent/JP7178053B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421337A (en) * | 1989-04-14 | 1995-06-06 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
WO1997037622A1 (en) * | 1996-04-08 | 1997-10-16 | The University Of Southern California | Method and apparatus for using laser-induced fluorescence during photoretractive keratectomy |
US20130079645A1 (en) * | 2011-09-22 | 2013-03-28 | LuxCath, LLC | Systems and Methods for Visualizing Ablated Tissue |
Non-Patent Citations (1)
Title |
---|
See also references of EP3215002A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10736512B2 (en) | 2011-09-22 | 2020-08-11 | The George Washington University | Systems and methods for visualizing ablated tissue |
US12075980B2 (en) | 2011-09-22 | 2024-09-03 | The George Washington University | Systems and methods for visualizing ablated tissue |
US11559192B2 (en) | 2011-09-22 | 2023-01-24 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10076238B2 (en) | 2011-09-22 | 2018-09-18 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10716462B2 (en) | 2011-09-22 | 2020-07-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US11457817B2 (en) | 2013-11-20 | 2022-10-04 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10682179B2 (en) | 2014-11-03 | 2020-06-16 | 460Medical, Inc. | Systems and methods for determining tissue type |
US11559352B2 (en) | 2014-11-03 | 2023-01-24 | The George Washington University | Systems and methods for lesion assessment |
US11596472B2 (en) | 2014-11-03 | 2023-03-07 | 460Medical, Inc. | Systems and methods for assessment of contact quality |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
JP2019524168A (en) * | 2016-06-11 | 2019-09-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | System and method for monitoring tissue ablation using tissue autofluorescence |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
US12076071B2 (en) | 2020-08-14 | 2024-09-03 | Kardium Inc. | Systems and methods for treating tissue with pulsed field ablation |
RU2822118C2 (en) * | 2022-06-24 | 2024-07-01 | федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени В.А. Алмазова" Министерства здравоохранения Российской Федерации | Method and device for determining sufficiency of ablation effect on biological tissues |
Also Published As
Publication number | Publication date |
---|---|
KR20170116005A (en) | 2017-10-18 |
CN113143440A (en) | 2021-07-23 |
US10722301B2 (en) | 2020-07-28 |
EP3215002A1 (en) | 2017-09-13 |
EP3215002B1 (en) | 2024-03-20 |
CN113143440B (en) | 2024-07-30 |
JP2017537681A (en) | 2017-12-21 |
US20200352645A1 (en) | 2020-11-12 |
KR102499045B1 (en) | 2023-02-10 |
EP3215002A4 (en) | 2018-08-01 |
AU2015343258B2 (en) | 2020-07-16 |
AU2015343258A1 (en) | 2017-05-18 |
US11559352B2 (en) | 2023-01-24 |
CN107613849A (en) | 2018-01-19 |
JP2021104333A (en) | 2021-07-26 |
JP7178053B2 (en) | 2022-11-25 |
US20160120599A1 (en) | 2016-05-05 |
CN107613849B (en) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11559352B2 (en) | Systems and methods for lesion assessment | |
AU2020257151B2 (en) | Systems and methods for assessment of contact quality | |
JP7116151B2 (en) | Systems for lesion formation and assessment | |
CN115103647A (en) | System and method for optical interrogation of ablation lesions | |
WO2022026625A1 (en) | Systems and methods for lesion formation and assessment | |
US20220133172A1 (en) | Systems and methods for optimizing tissue ablation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857544 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017523965 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015343258 Country of ref document: AU Date of ref document: 20151103 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177014725 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015857544 Country of ref document: EP |