US20080183036A1 - Systems and methods for unobstructed visualization and ablation - Google Patents

Systems and methods for unobstructed visualization and ablation Download PDF

Info

Publication number
US20080183036A1
US20080183036A1 US11/959,158 US95915807A US2008183036A1 US 20080183036 A1 US20080183036 A1 US 20080183036A1 US 95915807 A US95915807 A US 95915807A US 2008183036 A1 US2008183036 A1 US 2008183036A1
Authority
US
United States
Prior art keywords
anchor
tissue
barrier
membrane
open area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/959,158
Inventor
Vahid Saadat
Chris A. Rothe
Ruey-Feng Peh
Edmund Tam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Voyage Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US87059806P priority Critical
Application filed by Voyage Medical Inc filed Critical Voyage Medical Inc
Priority to US11/959,158 priority patent/US20080183036A1/en
Assigned to VOYAGE MEDICAL, INC. reassignment VOYAGE MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PEH, RUEY-FENG, ROTHE, CHRIS A., SAADAT, VAHID, TAM, EDMUND A.
Publication of US20080183036A1 publication Critical patent/US20080183036A1/en
Assigned to TRIPLEPOINT CAPITAL LLC reassignment TRIPLEPOINT CAPITAL LLC SECURITY AGREEMENT Assignors: VOYAGE MEDICAL, INC.
Assigned to VOYAGE MEDICAL, INC. reassignment VOYAGE MEDICAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TRIPLEPOINT CAPITAL LLC
Assigned to Intuitive Surgical Operations, Inc. reassignment Intuitive Surgical Operations, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VOYAGE MEDICAL, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00089Hoods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00085Baskets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3137Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for examination of the interior of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/12036Type of occlusion partial occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes

Abstract

Systems and methods for unobstructed, visualization and ablation, particularly of the pulmonary veins, are described herein. Such a system may include a deployment catheter and an attached imaging hood deployable into an expanded configuration as well as one or more expandable anchors which are temporarily securable within a respective pulmonary vein while allowing blood flow to pass through the anchor unimpeded. With the one or more non-impeding anchors secured within a respective pulmonary vein, ablation of the tissue surrounding the ostium or several ostia may be effected with the catheter while the tissue is under direct visualization.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority to U.S. Prov. Patent Application 60/870,598 filed Dec. 18, 2006, which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates generally to medical devices used for accessing, visualizing, and/or treating regions of tissue within a body. More particularly, the present invention relates to methods and apparatus for intravascularly accessing, visualizing, and/or treating tissue regions at or around the ostia of the pulmonary veins of the heart, without obstructing blood flow from the pulmonary vein.
  • BACKGROUND OF THE INVENTION
  • Conventional devices for accessing and visualizing interior regions of a body lumen are known. For example, ultrasound devices have been used to produce images from within a body in vivo. Ultrasound has been used both with and without contrast agents, which typically enhance ultrasound-derived images.
  • Other conventional methods have utilized catheters or probes having position sensors deployed within the body lumen, such as the interior of a cardiac chamber. These types of positional sensors are typically used to determine the movement of a cardiac tissue surface or the electrical activity within the cardiac tissue. When a sufficient number of points have been sampled by the sensors, a “map” of the cardiac tissue may be generated.
  • Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging. Other conventional balloons utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood.
  • However, such imaging balloons have many inherent disadvantages. For instance, such balloons generally require that the balloon be inflated to a relatively large size which may undesirably displace surrounding tissue and interfere with fine positioning of the imaging system against the tissue. Moreover, the working area created by such inflatable balloons are generally cramped and limited in size. Furthermore, inflated balloons may be susceptible to pressure changes in the surrounding fluid. For example, if the environment surrounding the inflated balloon undergoes pressure changes, e.g., during systolic and diastolic pressure cycles in a beating heart, the constant pressure change may affect the inflated balloon volume and its positioning to produce unsteady or undesirable conditions for optimal tissue imaging.
  • Accordingly, these types of imaging modalities are generally unable to provide desirable images useful for sufficient diagnosis and therapy of the endoluminal structure, due in part to factors such as dynamic forces generated by the natural movement of the heart. Moreover, anatomic structures within the body can occlude or obstruct the image acquisition process. Also, the presence and movement of opaque bodily fluids such as blood generally make in vivo imaging of tissue regions within the heart difficult.
  • Other external imaging modalities are also conventionally utilized. For example, computed tomography (CT) and magnetic resonance imaging (MRI) are typical modalities which are widely used to obtain images of body lumens such as the interior chambers of the heart. However, such imaging modalities fail to provide real-time imaging for intra-operative therapeutic procedures. Fluoroscopic imaging, for instance, is widely used to identify anatomic landmarks within the heart and other regions of the body. However, fluoroscopy fails to provide an accurate image of the tissue quality or surface and also fails to provide for instrumentation for performing tissue manipulation or other therapeutic procedures upon the visualized tissue regions. In addition, fluoroscopy provides a shadow of the intervening tissue onto a plate or sensor when it may be desirable to view the intraluminal surface of the tissue to diagnose pathologies or to perform some form of therapy on it.
  • Moreover, many of the conventional imaging systems lack the capability to provide therapeutic treatments or are difficult to manipulate in providing effective therapies. For instance, the treatment in a patient's heart for atrial fibrillation is generally made difficult by a number of factors, such as visualization of the target tissue, access to the target tissue, and instrument articulation and management, amongst others.
  • Conventional catheter techniques and devices, for example such as those described in U.S. Pat. Nos. 5,895,417; 5,941,845; and 6,129,724, used on the epicardial surface of the heart may be difficult in assuring a transmural lesion or complete blockage of electrical signals. In addition, current devices may have difficulty dealing with varying thickness of tissue through which a transmural lesion desired.
  • Conventional accompanying imaging devices, such as fluoroscopy, are unable to detect perpendicular electrode orientation, catheter movement during the cardiac cycle, and image catheter position throughout lesion formation. Without real-time visualization, it is difficult to reposition devices to another area that requires transmural lesion ablation. The absence of real-time visualization also poses the risk of incorrect placement and ablation of critical structures such as sinus node tissue which can lead to fatal consequences.
  • Thus, a tissue imaging system which is able to provide real-time in vivo access to and images of tissue regions within body lumens such as the heart through opaque media such as blood and which also provides instruments for therapeutic procedures such as ablation of the ostia around the pulmonary veins are desirable.
  • SUMMARY OF THE INVENTION
  • A tissue imaging and manipulation apparatus that may be utilized for procedures within a body lumen, such as the heart, in which visualization of the surrounding tissue is made difficult, if not impossible, by medium contained within the lumen such as blood, is described below. Generally, such a tissue imaging and manipulation apparatus comprises an optional delivery catheter or sheath through which a deployment catheter and imaging hood may be advanced for placement against or adjacent to the tissue to be imaged.
  • The deployment catheter may define a fluid delivery lumen therethrough as well as an imaging lumen within which an optical imaging fiber or electronic imaging assembly may be disposed for imaging tissue. When deployed, the imaging hood may be expanded into any number of shapes, e.g., cylindrical, conical, semi-spherical, etc., provided that an open area or field is defined by the imaging hood. The open area is the area within which the tissue region of interest may be imaged and which is also defined in part by the contacted tissue region as well. The imaging hood may also define an atraumatic contact lip or edge for placement or abutment, against the tissue region of interest. Moreover, the distal end of the deployment catheter or separate manipulatable catheters may be articulated through various controlling mechanisms such as push-pull wires manually or via computer control
  • The deployment catheter may also be stabilized relative to the tissue surface through various methods. For instance, inflatable stabilizing balloons positioned along a length of the catheter may be utilized, or tissue engagement anchors may be passed through or along the deployment catheter for temporary engagement of the underlying tissue.
  • In operation, after the imaging hood has been deployed, fluid may be pumped at a positive pressure through the fluid delivery lumen until the fluid fills the open, area completely and displaces any blood from within the open area. The fluid may comprise any biocompatible fluid, e.g., saline, water, plasma, Fluorinert™, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. The fluid may be pumped continuously or intermittently to allow for image capture by an optional processor which may be in communication with the assembly.
  • The imaging hood, may be formed into any number of configurations and the imaging assembly may also be utilized with any number of therapeutic tools, such as tissue ablation instruments, which may be deployed through the deployment catheter. One particular variation may employ an imaging hood having a tissue anchor deployable therethrough and into a portion of a body lumen such as the pulmonary vein. Once the anchor has been temporarily deployed and secured within the pulmonary vein, the hood and ablation instrument may be articulated around a circumference of the vein ostium or several ostia where the tissue may be ablated in a controlled and consistent manner to electrically isolate the tissue such that a conduction block is created.
  • While the imaging hood is moved around the tissue with the anchor deployed and secured distally within the pulmonary vein, the imaging hood may be articulated such that blood flow through the pulmonary vein is unobstructed or uninhibited by the hood.
  • The tissue surrounding the ostium may be visualized via the imaging hood prior to, during, or after the ablation to ensure that the appropriate tissue is suitably ablated for treating conditions such as atrial fibrillation. The distally located anchor which secures a relative position of the imaging hood with respect to the tissue may be maintained until the procedure is completed. After completion, the anchor may be at least partially withdrawn into the imaging hood or reconfigured into a low-profile shape to disengage the tissue and allow the imaging hood to be removed or repositioned in the patient body.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A shows a side view of one variation of a tissue imaging apparatus during deployment from a sheath or delivery catheter.
  • FIG. 1B shows the deployed tissue imaging apparatus of FIG. 1A having an optionally expandable hood or sheath attached to an imaging and/or diagnostic catheter.
  • FIG. 1C shows an end view of a deployed imaging apparatus.
  • FIGS. 1D to 1F show the apparatus of FIGS. 1A to 1C with an additional lumen, e.g., for passage of a guidewire therethrough.
  • FIGS. 2A and 2B show one example of a deployed tissue imager positioned against or adjacent to the tissue to be imaged and a flow of fluid, such as saline, displacing blood from within the expandable hood.
  • FIG. 3A shows an articulatable imaging assembly which may be manipulated via push-pull wires or by computer control.
  • FIGS. 3B and 3C show steerable instruments, respectively, where an articulatable delivery catheter maybe steered within the imaging hood or a distal portion of the deployment catheter itself may be steered.
  • FIGS. 4A to 4C show side and cross-sectional end views, respectively, of another variation having an off-axis imaging capability.
  • FIGS. 4D and 4E show examples of various visualization imagers which may be utilized within or along the imaging hood.
  • FIG. 5 shows an illustrative view of an example of a tissue imager advanced intravascularly within a heart for imaging tissue regions within an atrial chamber.
  • FIGS. 6A to 6C illustrate deployment catheters having one or more optional inflatable balloons or anchors for stabilizing the device during a procedure.
  • FIGS. 7A and 7B illustrate a variation of an anchoring mechanism such as a helical tissue piercing device for temporarily stabilizing the imaging hood relative to a tissue surface.
  • FIG. 7C shows another variation for anchoring the imaging hood having one or more tubular support members integrated with the imaging hood; each support members may define a lumen therethrough for advancing a helical tissue anchor within.
  • FIG. 8A shows an illustrative example of one variation of how a tissue imager may be utilized with an imaging device.
  • FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system.
  • FIGS. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions.
  • FIGS. 10A and 10B show charts illustrating how fluid pressure within the imaging hood may be coordinated with the surrounding blood pressure; the fluid pressure in the imaging hood may be coordinated with the blood pressure or it may be regulated based upon pressure feedback from the blood.
  • FIGS. 11A and 11B show side and end views, respectively, of a hood and catheter engaging and visualizing the pulmonary vein ostium while temporarily tethered via a deployable anchor positioned within the pulmonary vein such that blood flow through the pulmonary vein is unobstructed.
  • FIGS. 12A and 12B show side and end views, respectively, of the hood and catheter articulated around the pulmonary vein ostium while ablating and/or visualizing the underlying tissue.
  • FIGS. 13A to 13C show end views of the device with the pulmonary vein anchor acting as a guide to ensure hood stability while the hood is articulated circumferentially along the pulmonary vein ostium while leaving the blood flow through the ostium unimpeded.
  • FIGS. 14A and 14B show partial cross-sectional side views of a helical anchor constrained in its low-profile configuration within a cylindrical sheath and deployed in its expanded and unconstrained configuration.
  • FIG. 14C shows a partial cross-sectional side view of the helical anchor temporarily secured within the pulmonary vein while allowing for blood flow through the vessel to continue unimpeded or unobstructed.
  • FIGS. 15A and 15B show partial cross-sectional side views of a basket anchor constrained in its low-profile configuration within a cylindrical sheath and deployed in its expanded and unconstrained configuration.
  • FIG. 15C shows a partial cross-sectional side view of the basket anchor temporarily secured within the pulmonary vein while allowing for blood flow through the vessel to continue unimpeded or unobstructed.
  • FIGS. 16A and 16B show partial cross-sectional side views of a mesh anchor constrained in its low-profile configuration within a cylindrical sheath and deployed in its expanded and unconstrained configuration.
  • FIG. 16C shows a partial cross-sectional side view of the mesh anchor temporarily secured within the pulmonary vein while allowing for blood flow through the vessel to continue unimpeded or unobstructed.
  • FIGS. 17A and 17B show side views of an inflatable balloon anchor assembly in its low profile configuration and its inflated configuration, respectively, where the assembly is expandable into a staggered configuration such that blood may still flow unobstructed past the inflated balloons.
  • FIGS. 18A and 18B show a variation of the tissue visualization catheter having a reconfigurable flap which is configured to pivot about the contact lip or edge of the hood from its low profile configuration to its extended configuration, respectively.
  • FIGS. 19A and 19B show perspective views of the device of FIGS. 18A and 18B with the flap shown in its low profile and extended configurations, respectively.
  • FIG. 20 shows a side view of the hood having the flap deployed and engaged along the PV ostium to act as a guide for articulating the hood circumferentially.
  • FIGS. 21A to 21C show end views of the catheter and hood having the deployed flap engaged along the pulmonary vein ostium such that the blood flow through the vessel is unimpeded while circumferentially ablating the underlying tissue under direct visualization.
  • FIG. 22 shows a perspective view of another variation having an anchor extending from a side port for deployment within the vessel lumen.
  • FIGS. 23A and 23B show perspective and end views, respectively, of the anchor engaged within a first pulmonary vein while the tissue around adjacent ostia are ablated in an encircling lesion to electrically isolate the vessels.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A tissue-imaging and manipulation apparatus described below is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions. Such an apparatus may be utilized for many procedures, e.g., facilitating transseptal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures. Further examples of tissue visualization catheters which may be utilized are shown and described in further detail in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005, which has been incorporated hereinabove by reference in its entirety.
  • One variation of a tissue access and imaging apparatus is shown in the detail perspective views of FIGS. 1A to 1C. As shown in FIG. 1A, tissue imaging and manipulation assembly 10 may be delivered intravascularly through the patient's body in a low-profile configuration via a delivery catheter or sheath 14. In the case of treating tissue, such as the mitral valve located at the outflow tract of the left atrium of the heart, it is generally desirable to enter or access the left atrium while minimizing trauma to the patient. To non-operatively effect such access, one conventional approach involves puncturing the intra-atrial septum from the right atrial chamber to the left atrial chamber in a procedure commonly called a transseptal procedure or septostomy. For procedures such as percutaneous valve repair and replacement, transseptal access to the left atrial chamber of the heart may allow for larger devices to be introduced into the venous system than can generally be introduced percutaneously into the arterial system.
  • When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in FIG. 1B. Imaging hood 12 may be fabricated from a variety of pliable or conformable biocompatible material including but not limited to, e.g., polymeric, plastic, or woven materials. One example of a woven material is Kevlar® (E. I. du Pont de Nemours, Wilmington, Del.), which is an aramid and which can be made into thin, e.g., less than 0.001 in., materials which maintain enough integrity for such applications described herein. Moreover, the imaging hood 12 may be fabricated from a translucent or opaque material and in a variety of different colors to optimize or attenuate any reflected lighting from surrounding fluids or structures, i.e., anatomical or mechanical structures or instruments. In either case, imaging hood 12 may be fabricated into a uniform structure or a scaffold-supported structure, in which case a scaffold made of a shape memory alloy, such as Nitinol, or a spring steel, or plastic, etc., may be fabricated and covered with the polymeric, plastic, or woven, material. Hence, imaging hood 12 may comprise any of a wide variety of barriers or membrane structures, as may generally be used to localize displacement of blood or the like from a selected volume of a body lumen or heart chamber. In exemplary embodiments, a volume within an inner surface 13 of imaging hood 12 will be significantly less than a volume of the hood 12 between inner surface 13 and outer surface 11.
  • Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods. Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged. Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest. Moreover, the diameter of imaging hood 12 at its maximum fully deployed diameter, e.g., at contact lip or edge 22, is typically greater relative to a diameter of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16). For instance, the contact edge diameter may range anywhere from 1 to 5 times (or even greater, as practicable) a diameter of deployment catheter 16. FIG. 1C shows an end view of the imaging hood 12 in its deployed configuration. Also shown are the contact lip or edge 22 and fluid delivery lumen 18 and imaging lumen 20.
  • The imaging and manipulation assembly 10 may additionally define a guidewire lumen therethrough, e.g., a concentric or eccentric lumen, as shown in the side and end views, respectively, of FIGS. 1D to 1F. The deployment catheter 16 may define guidewire lumen 19 for facilitating the passage of the system over or along a guidewire 17, which may be advanced intravascularly within a body lumen. The deployment catheter 16 may then be advanced over the guidewire 17, as generally known in the art.
  • In operation, alter imaging hood 12 has been deployed, as in FIG. 1B, and desirably positioned against the tissue region to be imaged along contact edge 22, the displacing fluid may be pumped at positive pressure through fluid delivery lumen 18 until the fluid fills open area 26 completely and displaces any fluid 28 from within open area 26. The displacing fluid flow may be laminarized to improve its clearing effect and to help prevent blood from re-entering the imaging hood 12. Alternatively, fluid flow may be started before the deployment takes place. The displacing fluid, also described herein as imaging fluid, may comprise any biocompatible fluid, e.g., saline, water, plasma, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid. Alternatively or additionally, any number of therapeutic drugs may be suspended within the fluid or may comprise the fluid itself which is pumped into open area 26 and which is subsequently passed into and through the heart and the patient body.
  • As seen in the example of FIGS. 2A and 2B, deployment catheter 16 may be manipulated to position deployed imaging hood 12 against or near the underlying tissue region of interest to be imaged, in this example a portion of annulus A of mitral valve MV within the left atrial chamber. As the surrounding blood 30 flows around imaging hood 12 and within open area 26 defined within imaging hood 12, as seen in FIG. 2A, the underlying annulus A is obstructed by the opaque blood 30 and is difficult to view through the imaging lumen 20. The translucent fluid 28, such as saline, may then be pumped through fluid delivery lumen 18, intermittently or continuously, until the blood 30 is at least partially, and preferably completely, displaced from within open area 26 by fluid 28, as shown in FIG. 2B.
  • Although contact, edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 bade into open area 26. Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface. Once the blood 30 has been displaced from imaging hood 12, an image may then be viewed of the underlying tissue through the clear fluid 30. This image may then be recorded or available for real-time viewing for performing a therapeutic procedure. The positive flow of fluid 28 may be maintained continuously to provide for clear viewing of the underlying tissue. Alternatively, the fluid 28 may be pumped, temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow 28 may cease and blood 30 may be allowed to seep or flow back into imaging hood 12. This process may be repeated a number of times at the same tissue region or at multiple tissue regions.
  • In desirably positioning the assembly at various regions within the patient body, a number of articulation and manipulation controls may be utilized. For example, as shown in the articulatable imaging assembly 40 in FIG. 3A, one or more push-pull wires 42 may be routed through deployment catheter 16 for steering the distal end portion of the device in various directions 46 to desirably position the imaging hood 12 adjacent to a region of tissue to be visualized. Depending upon the positioning and the number of push-pull wires 42 utilized, deployment catheter 16 and imaging hood 12 may be articulated into any number of configurations 44. The push-pull wire or wires 42 may be articulated via their proximal ends from outside the patient body manually utilizing one or more controls. Alternatively, deployment catheter 16 may be articulated by computer control, as further described below.
  • Additionally or alternatively, an articulatable delivery catheter 48, which may be articulated via one or more push-pull wires and having an imaging lumen and one or more working lumens, may be delivered through the deployment catheter 16 and into imaging hood 12. With a distal portion of articulatable delivery catheter 48 within imaging hood 12, the clear displacing fluid may be pumped through delivery catheter 48 or deployment catheter 16 to clear the field within imaging hood 12. As shown in FIG. 3B, the articulatable delivery catheter 48 may be articulated within the imaging hood to obtain a better image of tissue adjacent to the imaging hood 12. Moreover, articulatable delivery catheter 48 may be articulated to direct an instrument or tool passed through the catheter 48, as described in detail below, to specific areas of tissue imaged through imaging hood 12 without having to reposition deployment catheter 16 and re-clear the imaging field within hood 12.
  • Alternatively, rather than passing an articulatable delivery catheter 48 through the deployment catheter 16, a distal portion of the deployment catheter 16 itself may comprise a distal end 49 which is articulatable within imaging hood 12, as shown in FIG. 3C. Directed imaging, instrument delivery, etc., may be accomplished directly through one or more lumens within deployment catheter 16 to specific regions of the underlying tissue imaged within imaging hood 12.
  • Visualization within the imaging hood 12 may be accomplished through an imaging lumen 20 defined through deployment catheter 16, as described above. In such a configuration, visualization is available in a straight-line manner, i.e., images are generated from the field distally along a longitudinal axis defined by the deployment catheter 16. Alternatively or additionally, an articulatable imaging assembly having a pivotable support member 50 may be connected to, mounted to, or otherwise passed through deployment catheter 16 to provide for visualization off-axis relative to the longitudinal axis defined by deployment catheter 16, as shown in FIG. 4A. Support member 50 may have an imaging element 52, e.g., a CCD or CMOS imager or optical fiber, attached at its distal end with its proximal end connected to deployment catheter 16 via a pivoting connection 54.
  • If one or more optical fibers are utilized for imaging, the optical fibers 58 may be passed through deployment catheter 16, as shown in the cross-section of FIG. 4B, and routed through the support member 50. The use of optical fibers 58 may provide for increased diameter sizes of the one or several lumens 56 through deployment catheter 16 for the passage of diagnostic and/or therapeutic tools therethrough. Alternatively, electronic chips, such as a charge coupled device (CCD) or a CMOS imager, which are typically known, may be utilized in place of the optical fibers 58, in which case the electronic imager may be positioned in the distal portion of the deployment catheter 16 with electric wires being routed proximally through the deployment catheter 16. Alternatively, the electronic imagers may be wirelessly coupled to a receiver for the wireless transmission of images. Additional optical fibers or light emitting diodes (LEDs) can be used to provide lighting for the image or operative theater, as described below in further detail. Support member 50 may be pivoted via connection 54 such that the member 50 can be positioned in a low-profile configuration within channel or groove 60 defined in a distal portion of catheter 16, as shown in the cross-section of FIG. 4C. During intravascular delivery of deployment catheter 16 through the patient body, support member 50 can be positioned within channel or groove 60 with imaging hood 12 also in its low-profile configuration. During visualization, imaging hood 12 may be expanded into its deployed configuration and support member 50 may be deployed into its off-axis configuration for imaging the tissue adjacent to hood 12, as in FIG. 4A. Other configurations for support member 50 for off-axis visualization may be utilized, as desired.
  • FIG. 4D shows a partial cross-sectional view of an example where one or more optical fiber bundles 62 may be positioned within the catheter and within imaging hood 12 to provide direct in-line imaging of the open area within hood 12. FIG. 4E shows another example where an imaging element 64 (e.g., CCD or CMOS electronic imager) may be placed along an interior surface of imaging hood 12 to provide imaging of the open area such that the imaging element 64 is off-axis relative to a longitudinal axis of the hood 12. The off-axis position of element 64 may provide for direct visualization and uninhibited access by instruments from the catheter to the underlying tissue during treatment.
  • FIG. 5 shows an illustrative cross-sectional view of a heart H having tissue regions of interest being viewed via an imaging assembly 10. In this example, delivery catheter assembly 70 may be introduced percutaneously into the patient's vasculature and advanced through the superior vena cava SVC and into the right atrium RA. The delivery catheter or sheath 72 may be articulated through the atrial septum AS and into the left atrium LA for viewing or treating the tissue, e.g., the annulus A, surrounding the mitral valve MV. As shown, deployment catheter 16 and imaging hood 12 may be advanced out of delivery catheter 72 and brought into contact or in proximity to the tissue region of interest. In other examples, delivery catheter assembly 70 may be advanced through the inferior vena cava IVC, if so desired. Moreover, other regions of the heart H, e.g., the right ventricle RV or left ventricle LV, may also be accessed and imaged or treated by imaging assembly 10.
  • In accessing regions of the heart H or other parts of the body, the delivery catheter or sheath 14 may comprise a conventional intra-vascular catheter or an endoluminal delivery device. Alternatively, robotically-controlled delivery catheters may also be optionally utilized with the imaging assembly described herein, in which case a computer-controller 74 may be used to control the articulation and positioning of the delivery catheter 14. An example of a robotically-controlled delivery catheter which may be utilized is described in further detail in US Pat. Pub. 2002/0087169 A1 to Brock et al. entitled “Flexible Instrument”, which is incorporated herein by reference in its entirety. Other robotically-controlled delivery catheters manufactured by Hansen Medical, Inc. (Mountain View, Calif.) may also be utilized with the delivery catheter 14.
  • To facilitate stabilization of the deployment catheter 16 during a procedure, one or more inflatable balloons or anchors 76 may be positioned along the length of catheter 16, as shown in FIG. 6A. For example, when utilizing a transseptal approach across the atrial septum AS into the left atrium LA, the inflatable balloons 76 may be inflated from a low-profile into their expanded configuration to temporarily anchor or stabilize the catheter 16 position relative to the heart H. FIG. 6B shows a first balloon 78 inflated while FIG. 6C also shows a second balloon 80 inflated proximal to the first balloon 78. In such a configuration, the septal wall AS may be wedged or sandwiched between the balloons 78, 80 to temporarily stabilize the catheter 16 and imaging hood 12. A single balloon 78 or both balloons 78, 80 may be used. Other alternatives may utilize expandable mesh members, malecots, or any other temporary expandable structure. After a procedure has been accomplished, the balloon assembly 76 may be deflated or re-configured into a low-profile for removal of the deployment catheter 16.
  • To further stabilize a position of the imaging hood 12 relative to a tissue surface to be imaged, various anchoring mechanisms may be optionally employed for temporarily holding the imaging hood 12 against the tissue. Such anchoring mechanisms may be particularly useful for imaging tissue which is subject to movement, e.g., when imaging tissue within the chambers of a beating heart. A tool delivery catheter 82 having at least one instrument lumen and an optional visualization lumen may be delivered through deployment catheter 16 and into an expanded imaging hood 12. As the imaging hood 12 is brought into contact against a tissue surface T to be examined, anchoring mechanisms such as a helical tissue piercing device 84 may be passed through the tool delivery catheter 82, as shown in FIG. 7A, and into imaging hood 12.
  • The helical tissue engaging device 84 may be torqued from its proximal end outside the patient body to temporarily anchor itself into the underlying tissue surface T. Once embedded within the tissue T, the helical tissue engaging device 84 may be pulled proximally relative to deployment catheter 16 while the deployment catheter 16 and imaging hood 12 are pushed distally, as indicated by the arrows in FIG. 7B, to gently force the contact edge or lip 22 of imaging hood against the tissue T. The positioning of the tissue engaging device 84 may be locked temporarily relative to the deployment catheter 16 to ensure secure positioning of the imaging hood 12 during a diagnostic or therapeutic procedure within the imaging hood 12. After a procedure, tissue engaging device 84 may be disengaged from the tissue by torquing its proximal end in the opposite direction to remove the anchor form the tissue T and the deployment catheter 16 may be repositioned to another region of tissue where the anchoring process may be repeated or removed from the patient body. The tissue engaging device 84 may also be constructed from other known tissue engaging devices such as vacuum-assisted engagement or grasper-assisted engagement tools, among others.
  • Although a helical anchor 84 is shown, this is intended to be illustrative and other types of temporary anchors may be utilized, e.g., hooked or barbed anchors, graspers, etc. Moreover, the tool delivery catheter 82 may be omitted entirely and the anchoring device may be delivered directly through a lumen defined through the deployment catheter 16.
  • In another variation where the tool, delivery catheter 82 may be omitted entirely to temporarily anchor imaging hood 12. FIG. 7C shows an imaging hood 12 having one or more tubular support members 86, e.g., four support members 86 as shown, integrated with the imaging hood 12. The tubular support members 86 may define lumens therethrough each having helical tissue engaging devices 88 positioned within. When an expanded imaging hood 12 is to be temporarily anchored to the tissue, the helical tissue engaging devices 88 may be urged distally to extend from imaging hood 12 and each may be torqued from its proximal end to engage the underlying tissue T. Each of the helical tissue engaging devices 88 may be advanced through the length of deployment catheter 16 or they may be positioned within tubular support members 86 during the delivery and deployment of imaging hood 12. Once the procedure within imaging hood 12 is finished, each of the tissue engaging devices 88 may be disengaged from the tissue and the imaging hood 12 may be repositioned to another region of tissue or removed from the patient body.
  • An illustrative example is shown in FIG. 8A of a tissue imaging assembly connected to a fluid delivery system 90 and to an optional processor 98 and image recorder and/or viewer 100. The fluid delivery system 90 may generally comprise a pump 92 and an optional valve 94 for controlling the flow rate of the fluid into the system. A fluid reservoir 96, fluidly connected to pump 92, may hold the fluid to be pumped through imaging hood 12. An optional central processing unit or processor 98 may be in electrical communication with fluid delivery system 90 for controlling flow parameters such as the flow rate and/or velocity of the pumped fluid. The processor 98 may also be in electrical communication with an image recorder and/or viewer 100 for directly viewing the images of tissue received from within imaging hood 12. Imager recorder and/or viewer 100 may also be used not only to record the image but also the location of the viewed tissue region, if so desired.
  • Optionally, processor 98 may also be utilized to coordinate the fluid flow and the image capture. For instance, processor 98 may be programmed to provide for fluid flow from reservoir 96 until the tissue area has been displaced of blood to obtain a clear image. Once the image has been determined to be sufficiently clear, either visually by a practitioner or by computer, an image of the tissue may be captured automatically by recorder 100 and pump 92 may be automatically stopped or slowed by processor 98 to cease the fluid flow into the patient. Other variations for fluid delivery and image capture are, of course, possible and the aforementioned configuration is intended only to be illustrative and not limiting.
  • FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system 110. In this variation, system 110 may have a housing or handle assembly 112 which can be held or manipulated by the physician from outside the patient body. The fluid reservoir 114, shown in this variation as a syringe, can be fluidly coupled to the handle assembly 112 and actuated via a pumping mechanism 116, e.g., lead screw. Fluid reservoir 114 may be a simple reservoir separated from the handle assembly 112 and fluidly coupled to handle assembly 112 via one or more tubes. The fluid flow rate and other mechanisms may be metered by the electronic controller 118.
  • Deployment of imaging hood 12 may be actuated by a hood deployment switch 120 located on the handle assembly 112 while dispensation of the fluid from reservoir 114 may be actuated by a fluid deployment switch 122, which can be electrically coupled to the controller 118. Controller 118 may also be electrically coupled to a wired or wireless antenna 124 optionally integrated with the handle assembly 112, as shown in the figure. The wireless antenna 124 can be used to wirelessly transmit images captured from the imaging hood 12 to a receiver, e.g., via Bluetooth® wireless technology (Bluetooth SIG, Inc., Bellevue, Wash.), RF, etc., for viewing on a monitor 128 or for recording for later viewing.
  • Articulation control of the deployment catheter 16, or a delivery catheter or sheath 14 through which the deployment catheter 16 may be delivered, may be accomplished by computer control as described above, in which case an additional controller may be utilized with handle assembly 112. In the ease of manual articulation, handle assembly 112 may incorporate one or more articulation controls 126 for manual manipulation of the position of deployment catheter 16. Handle assembly 112 may also define one or more instrument ports 130 through which a number of intravascular tools may be passed for tissue manipulation and treatment within imaging hood 12, as described further below. Furthermore, in certain procedures, fluid or debris may be sucked into imaging hood 12 for evacuation from the patient body by optionally fluidly coupling a suction pump 132 to handle assembly 112 or directly to deployment catheter 16.
  • As described above, fluid may be pumped continuously into imaging hood 12 to provide for clear viewing of the underlying tissue. Alternatively, fluid may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow may cease and the blood may be allowed to seep or flow back into imaging hood 12. FIGS. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions. Deployment catheter 16 may be desirably positioned and imaging hood 12 deployed and brought into position against a region of tissue to be imaged, in this example the tissue surrounding a mitral valve MY within the left atrium of a patient's heart. The imaging hood 12 may be optionally anchored to the tissue, as described above, and then cleared by pumping the imaging fluid into the hood 12. Once sufficiently clear, the tissue may be visualized and the image captured by control electronics 118. The first captured image 140 may be stored and/or transmitted wirelessly 124 to a monitor 128 for viewing by the physician, as shown in FIG. 9A.
  • The deployment catheter 16 may be then repositioned to an adjacent portion of mitral valve MV, as shown in FIG. 9B, where the process may be repeated to capture a second image 142 for viewing and/or recording. The deployment catheter 16 may again be repositioned to another region of tissue, as shown in FIG. 9C, where a third image 144 may be captured for viewing and/or recording. This procedure may be repeated as many times as necessary for capturing a comprehensive image of the tissue surrounding mitral valve MV, or any other tissue region. When the deployment catheter 16 and imaging hood 12 is repositioned from tissue region to tissue region, the pump may be stopped during positioning and blood or surrounding fluid may be allowed to enter within imaging hood 12 until the tissue is to be imaged, where the imaging hood 12 may be cleared, as above.
  • As mentioned above, when the imaging hood 12 is cleared by pumping the imaging fluid within for clearing the blood or other bodily fluid, the fluid may be pumped continuously to maintain the imaging fluid within the hood 12 at a positive pressure or it may be pumped under computer control for slowing or stopping the fluid flow into the hood 12 upon detection of various parameters or until a clear image of the underlying tissue is obtained. The control electronics 118 may also be programmed to coordinate the fluid flow into the imaging hood 12 with various physical parameters to maintain a clear image within imaging hood 12.
  • One example is shown in FIG. 10A which shows a chart 150 illustrating how fluid pressure within the imaging hood 12 may be coordinated with the surrounding blood pressure. Chart 150 shows the cyclical blood pressure 156 alternating between diastolic pressure 152 and systolic pressure 154 over time T due to the beating motion of the patient heart. The fluid pressure of the imaging fluid, indicated by plot 160, within imaging hood 12 may be automatically timed to correspond to the blood pressure changes 160 such that an increased pressure is maintained within imaging hood 12 which is consistently above the blood pressure 156 by a slight increase ΔP, as illustrated by the pressure difference at the peak systolic pressure 158. This pressure difference, ΔP, may be maintained within imaging hood 12 over the pressure variance of the surrounding blood pressure to maintain a positive imaging fluid pressure within imaging hood 12 to maintain a clear view of the underlying tissue. One benefit of maintaining a constant ΔP is a constant flow and maintenance of a clear field.
  • FIG. 10B shows a chart 162 illustrating another variation for maintaining a clear view of the underlying tissue where one or more sensors within the imaging hood 12, as described in further detail below, may be configured to sense pressure changes within the imaging hood 12 and to correspondingly increase the imaging fluid pressure within imaging hood 12. This may result in a time delay, ΔT, as illustrated by the shifted fluid pressure 160 relative to the cycling blood pressure 156, although the time delays ΔT may be negligible in maintaining the clear image of the underlying tissue. Predictive software algorithms can also be used to substantially eliminate this time delay by predicting when the next pressure wave peak will arrive and by increasing the pressure ahead of the pressure wave's arrival by an amount of time equal to the aforementioned time delay to essentially cancel the time delay out.
  • The variations in fluid pressure within imaging hood 12 may be accomplished in part due to the nature of imaging hood 12. An inflatable balloon, which is conventionally utilized for imaging tissue, may be affected by the surrounding blood pressure changes. On the other hand, an imaging hood 12 retains a constant volume therewithin and is structurally unaffected by the surrounding blood pressure changes, thus allowing for pressure increases therewithin. The material that hood 12 is made from may also contribute to the manner in which the pressure is modulated within this hood 12. A stiller hood material, such as high durometer poly urethane or Nylon, may facilitate the maintaining of an open hood when deployed. On the other hand, a relatively lower durometer or softer material, such as a low durometer PVC or polyurethane, may collapse from the surrounding fluid pressure and may not adequately maintain a deployed or expanded hood.
  • The imaging hood itself may be formed into any number of configurations and the imaging assembly may also be utilized with any number of therapeutic tools, such as tissue ablation instruments, which may be deployed through the deployment catheter. One particular variation may employ an imaging hood having a tissue anchor deployable therethrough and into a portion of a body lumen such as the pulmonary vein. Once the anchor has been temporarily deployed and secured within the pulmonary vein, the hood and ablation instrument may be articulated around a circumference of the vein ostium or several ostia where the tissue may be ablated in a controlled and consistent manner to electrically isolate the tissue such that a conduction block is created.
  • Generally, while the imaging hood is moved around the tissue with the anchor deployed and secured distally within the pulmonary vein, the imaging hood may be articulated such that blood flow through the pulmonary vein is unobstructed or uninhibited by the hood. The tissue surrounding the ostium may be visualized via the imaging hood prior to, during, or after the ablation to ensure that the appropriate tissue is suitably ablated for treating conditions such as atrial fibrillation. The distally located anchor which secures a relative position of the imaging hood with respect to the tissue may be maintained until the procedure is completed. After completion, the anchor may be at least partially withdrawn into the imaging hood or reconfigured into a low-profile shape to disengage the tissue and allow the imaging hood to be removed or repositioned in the patient body.
  • Turning now to FIGS. 11A and 11B, which show respective side and end views of visualization hood 12 placed against and visualizing a portion of the ostium, e.g., the ostium OSLS of the left superior pulmonary vein PVLS. Placement and movement of hood 12 about ostium OSLS may be facilitated by the deployment and placement of an anchor within the respective pulmonary vein while tethered to hood 12 or catheter 16. Generally, the anchor situated within the pulmonary vein may be sufficiently open such that the anchor does not obstruct blood flow through the pulmonary vein. Although the examples illustrate placement of the anchors within the left, superior pulmonary vein PVLS and ablation or treatment of the respective left superior ostium OSLS, this is intended to be illustrative and anchoring within the other pulmonary veins and other vessels and/or treatment of the respective ostia are included within the scope of this disclosure.
  • In this example, the pulmonary vein anchor may be configured as a helical anchor 170 which is attached to an anchor member 172, e.g., a guidewire, such that helical anchor 170 may be advanced through delivery catheter 16 in a low-profile configuration and then slowly expanded when advanced distally out of catheter 16. As helical anchor 170 expands, anchor member 170 may be advanced distally within the pulmonary vein until anchor 170 is expanded into contact against the wall of the pulmonary vein, as shown in FIG. 11A. Alternatively, a deployment sheath may be advanced through a working channel of deployment catheter 16, through hood 12, and distally into the pulmonary vein. When the deployment sheath is desirably situated within the pulmonary vein, helical anchor 170 may be advanced distally and/or the sheath may be retracted proximally to deploy and expand the anchor 170. Anchor 170 is described in further detail below.
  • With helical anchor 170 secured within the pulmonary vein, hood 12 may be placed into contact against a portion of ostium OSLS by pushing hood 12 along anchor member 172 distally in the direction towards anchor 170 until hood 12 is pressed against the tissue surface. Once pressed against the tissue surface, the transparent purging fluid 28 may be pumped into open area or field 26 to enable direct visualization of the tissue surrounding ostium OSLS while surrounded by blood 30.
  • As previously mentioned unobstructed blood flow 178 may continue through the pulmonary vein PVLS past anchor 170 because of its non-obstructive configuration while the tissue underlying hood 12 is visualized by imaging element 176, e.g., CCD, CMOS, or optical fiber, etc., positioned upon or along hood 12 or within catheter 16. Unlike an anchoring balloon where an entire inflated balloon potentially blocks the pulmonary vein and deprives the heart of oxygenated blood from the pulmonary vein, anchor 170 is able to be secured, against the vessel wall without blocking the vessel lumen. Unobstructed blood flow is further facilitated by positioning the hood 12 laterally relative to the ostium OSLS such that the vessel opening remains minimally obstructed or completely unobstructed, as shown in FIG. 11B.
  • By maintaining contact between hood 12 and the tissue surrounding OSLS, an instrument such as ablation probe 174 may be advanced within hood 12 and placed into contact against or in proximity to the underlying tissue which may be ablated while under direct visualization via imaging element 176. Ablation probe 174 may ablate the tissue immediately underlying hood 12 and hood 12 may then be repositioned over an adjacent region of tissue to be ablated where the process may be repeated. Alternatively, hood 12 may be moved circumferentially about ostium OSLS while ablating the underlying tissue in a continuous manner. In either case, anchor member 172 may act as a guide to ensure that hood 12 stays or tracks circumferentially around ostium OSLS during ablation. As shown in the side and end views of FIGS. 12A and 12B, respectively, an example of how hood 12 may be moved around the ostium OSLS during ablation is illustrated where hood 12 is moved in a counter-clockwise motion relative to ostium OSLS. Alternatively, hood 12 may be moved in a clockwise motion as well. By articulating or translating the hood 12 along the plane of the ostium OSLS at an angle away from the pulmonary vein PVLS, hood 12 may continue to capture a portion of the ostium OSLS as anchor 170 and anchor member 172 may confine the motion of the hood 12 to the circumference of the ostium OSLS.
  • As further illustrated in FIG. 12B, a number of discrete lesions 182 may be formed upon the tissue underlying hood 12. Repositioning of hood 12 adjacent to the ablated tissue may allow for the creation of another discrete lesion 182 which may be overlapped upon one another such that a single continuous lesion 180 is collectively formed. This process may be repeated until the desired circumference of tissue is ablated. Alternatively, the continuous lesion 180 may be formed while simultaneously ablating and moving hood 12 and ablation probe 174 around ostium OSLS such that a single continuous line of tissue is ablated. In either case, the underlying tissue being ablated may be viewed under direct visualization from imaging element 176.
  • FIGS. 13A to 13C illustrate hood 12 and ablation probe 174 being constrained by anchor member 172 coupled to anchor 170 to follow a circumferential path around the ostium OSLS as hood 12 is articulated via catheter 16. As previously mentioned, although hood 12 is illustrated following a counter-clockwise direction about OSLS, hood 12 may be articulated to follow a clockwise direction as well. Moreover, FIGS. 13A and 13B illustrate ablation probe 174 being used to create a series of overlapping discrete lesions 182 to create a continuous lesion 180 such that the entire circumference of tissue surrounding ostium OSLS is ablated to completely electrically isolate the ostium OSLS. FIG. 13C illustrates the resulting lesion 180 formed by the ablated tissue once anchor 170 and anchor member 172 have been withdrawn and hood 12 has been removed from the ostium OSLS. Although lesion 180 is illustrated as encircling the entire circumference of ostium OSLS one or more discrete portions of the surrounding tissue may be ablated instead depending upon the desired results. Moreover, the circumference, or portions, of the circumference, of ostium OSLS may be ablated while under direct visualization within hood 12 while allowing for obstructed blood flow 178 from the respective pulmonary vein.
  • As described above, helical anchor 170 may be advanced through catheter 16.and through hood 12 in a low-profile configuration while constrained either by a delivery lumen of catheter 16 or by an optional anchor sheath 190 advanced through the delivery lumen while constraining anchor 170. FIG. 14A shows an example of an optional anchor sheath 190 having helical anchor 170 extending from anchor member 172 constrained within anchor lumen 192 in its low-profile configuration. When helical anchor 170 is to be deployed from anchor lumen 192, anchor 170 may be advanced relative to sheath 190 and/or sheath 190 may be retracted relative to anchor 170 such that helical anchor 170 may be extended beyond lumen 192 such that anchor 170 is unconstrained and allowed to expand radially, as illustrated in FIG. 14B.
  • Once deployed within the vessel lumen, such as the pulmonary vein PVLS, as shown in the partial cross-sectional view of FIG. 14C, helical anchor 170 may be expanded or reconfigured such that anchor 176 does not obstruct blood flow 178 within the pulmonary vein PVLS. The expanded anchor 170 may provide engagement and orientation for hood 12 relative to the underlying tissue surrounding the ostium to conduct direct visualization and ablation of the tissue surrounding the ostium OSLS, as described above. The anchor 170 may secure itself to the vessel wall by expanding laterally, e.g., perpendicularly relative to a longitudinal axis of the anchor 170, and applying a radial outward force upon the tissue walls of the vessel. Fractional contact between the helical anchor 170 and the tissue surface may provide additional force to secure the anchor 170 in place. The helical anchor 170 can be formed from a wire made from a variety of materials, e.g., shape memory alloys such as Nitinol. When the helical anchor 170 is retracted back into sheath 190, the anchor 170 may return to its original low-profile shape for repositioning or for removal from the patient.
  • FIGS. 15A and 15B show partial cross-sectional views of another variation of the anchor for placement within the pulmonary vein where the anchor is configured as a reconfigurable basket anchor 200 which is deliverable in its low-profile configuration where basket anchor 200 is constrained within lumen 192 of sheath 190, as shown in FIG. 15A, and deployable into an expanded or extended basket configuration, as shown in FIG. 15B.
  • Basket anchor 200 may be formed to have several reconfigurable basket arms or members 206 which are each connected at a distal connection 202 and at a proximal connection 204. Basket anchor 200 may extend distally from anchor member 208 such that distal movement of anchor member 208 (and/or proximal retraction of sheath 190) may urge basket anchor 200 out of lumen 192 where basket arms or members 206 may expand laterally into its basket configuration, e.g., where arms or members 206 reconfigure perpendicularly relative to the axis of the basket 200, and into contact against the vessel walls, as shown in FIG. 15C. Fractional contact between arms or members 206 and the tissue surface in contact provides additional force to secure the anchor 200 in place. Even in its expanded configuration, basket anchor 200 may provide an open pathway for blood flow 178 to continue relatively unobstructed between the arms or members 206 and through the vessel.
  • As above, basket anchor 200 can be fabricated from shape memory alloy tubing such as Nitinol or from metal wires or ribbons such as stainless steel, titanium, etc. When retracted proximally back into sheath 190, the basket anchor 200 may return to its original low-profile shape for repositioning within the same or different vessel or for removal from the patient.
  • In yet another variation, FIGS. 16A and 16B show partial cross-sectional side views of an anchor configured as a mesh anchor 210. This mesh anchor 210 variation may anchor itself to the walls of the pulmonary vein PVLS by expanding laterally into a basket-like frame, e.g., perpendicularly relative to the longitudinal axis of the anchor 210, and applying a radial outward force on the wails of the vessel. The anchor 210 may generally comprise multiple wire or ribbon members 216 which are woven, interwoven, or interlaced with respect to one another to form the mesh which is connected at a distal connection 212 and a proximal connection 214 and attached, coupled, or otherwise extending from anchor member 218. The wire or ribbon members 216 can be formed from shape memory alloy such as Nitinol or from a polymeric of plastic material such as PET. When compressed into a low-profile cylindrical configuration and loaded in the lumen 192 of sheath 190, as shown in FIG. 16A, mesh anchor 210 may return to its expanded configuration by having wire or ribbon members 216 expanded into the basket-like structure when, deployed from sheath 190, as shown in FIG. 16B. Moreover, when deployed and secured against the vessel wall, as shown in FIG. 16C, blood flow 178 may continue relatively unobstructed by flowing between the members 216.
  • In yet another variation, the pulmonary vein anchor may be configured as a balloon anchor assembly 220 having several balloon members which are inflatable into a staggered pattern for securement within the vessel. As shown in FIG. 17A, the staggered balloon assembly 220 may be advanced at least partially within, e.g., the pulmonary vein PVLS, while in a deflated or low-profile configuration. Once desirably positioned, staggered balloon anchor assembly 220 may be infused with a gas (such as nitrogen) or fluid (such as saline) via inflation lumen 228 to expand several balloons positioned in a staggered pattern along the inflation lumen 228. In this example, first offset balloon 222 may be positioned distally along lumen 228 while second offset balloon 224 may be positioned proximally and in an offset position relative to first offset balloon 222. A third offset balloon 226 may be positioned proximally of second balloon 224 such that it is offset with respect to second balloon 224 and/or first balloon 222, as illustrated in FIG. 17B. Although three balloon members are shown in this example, other variations may utilize two balloons or more than three balloons. Moreover, rather than having balloon members offset with respect to one another, balloon members may be configured into other shapes which still allow for blood flow through the vessel, e.g., one or more toroidal shaped balloon members.
  • Once the balloon assembly 220 is inflated and secured within the vessel, blood flow 178 may continue through the pulmonary vein PVLS such that the blood is able to meander in an offset flow pattern 230 past the staggered balloons. The staggered balloons can be made from a variety of materials typically utilized for biocompatible inflatable balloons, e.g., medical grade elastomers such as C-flex, chronoprene, silicone or polyurethane, etc.
  • In yet another variation, rather than utilizing a separately deployable anchor for placement within the vessel lumen. FIGS. 18A and 18B show a variation of the tissue visualization catheter having a reconfigurable flap 240 which is configured to pivot about the contact lip or edge 22 of the hood 12. In its low-profile configuration, flap 240 may remain folded inwardly along the inner wall of the hood 12. An inflation lumen 246 may extend from the catheter 16 along or within the wall of the hood 12 and terminate proximal to the flap 240 at an inflatable member or balloon 242 positioned between flap 240 and hood 12. Balloon 242 may be fabricated from a variety of materials, such as C-flex, chronoprene, polyurethane, etc. and it may be separately attached to hood 12 or it may optionally be integrated with the material of hood 12. Upon injecting a fluid or gas through lumen 246, balloon 242 may be inflated such that flap 240 is lifted or rotated in the direction 244 from its low-profile position along the inner wall of hood 12, as shown in FIG. 18A, into its extended position, as shown in FIG. 18B. When the flap 240 is lifted passed an angle of approximately 25° or more relative to the lining of hood 12, the flap 240 may be configured to flip open into its extended configuration. FIGS. 19A and 19B illustrate perspective views of flap 240 in its low-profile configuration and its extended configuration, respectively, corresponding to FIGS. 18A and 18B above.
  • In use, flap 240 in its extended position may act as a guide for the hood 12 to trace the ostium OSLS to ensure that hood 12 moves along the circumference of the ostium OSLS. As illustrated in the side view of FIG. 20, hood 12 may be positioned in proximity to the vessel and ostium to be treated. In this example, flap 240 may be extended and hood 12 may be placed laterally relative to the vessel such that flap 240 is positioned at least partially along the opening of the pulmonary vein PVLS and only a small portion of the vessel opening is covered such that blood flow 178 through the vessel may continue unobstructed by the hood 12. In this position, hood 12 is desirably positioned upon the ostium OSLS to allow the hood 12 and ablation probe 174 positioned therewithin to treat the underlying tissue while under direct visualization through the hood 12.
  • As illustrated in FIGS. 21A to 21C, with extended flap 240 positioned at least partially within the vessel and acting as a guide, hood 12 may be moved circumferentially via catheter 16, or at least partially, around the ostium OSLS to create one or more discrete lesions 182 or a continuous lesion 180. FIG. 21C illustrates the resulting lesion 180 created circumferentially about the ostium OSLS to electrically isolate the tissue region.
  • In other variations for creating lesions about the ostium of a vessel, FIG. 22 shows a perspective view of an example of a device utilizing a side port 250 defined along the catheter 16 proximal to the hood 12 for intravascularly creating lesions around multiple ostia. Although the anchor configuration is illustrated with helical anchor 170 attached to anchor member 172 extending through port 250, other anchors which are non-obstructing to the blood flow through the vessel may be utilized, such as basket anchors, mesh anchors, staggered, balloons, etc. An anchor deployed from the side port 250 of the catheter 16 may provide hood 12 additional degrees-of-freedom of controlled motion within the chamber (such as the left atrium LA) of the heart.
  • In use, anchor 170 may be deployed through port 250 proximal to the hood 12 and advanced into, e.g., pulmonary vein PVLS, by advancing anchor member 172 (indicated by the direction of advancement 252) where it may be secured within the vessel without obstructing blood flow therethrough, as shown in the perspective view of FIG. 23A. Hood 12 may then be articulated via catheter 16 (indicated by the direction of articulation 254) while tethered and guided by anchor member 172 to facilitate the ablation process by allowing hood 12 to be maneuvered especially when isolating two or more ostia, e.g., left superior ostium OSLS and left inferior ostium OSLS, within one continuous circumferential lesion, as shown in FIG. 23B. Other tissue regions may be ablated in the same manner to create lesion patterns around the various ostia or around all four ostia within the left atrium LA. Moreover, the side ported anchor may also provide additional apposition strength for the hood 12 to engage the ablated tissue surface when the anchor 170 is pulled from the side port 250.
  • Another variation may include having two or more side ports near or at the distal end of the catheter 16 proximal to hood 12, with each side port deploying a respective anchor. When one anchor secures itself to the right superior/inferior pulmonary vein while the other pulmonary vein anchor secures itself within the left superior/inferior PV, navigation around all four pulmonary vein ostia and apposition to target tissue surface in the vicinity of the four pulmonary vein ostia can be achieved. This can be made so by pulling on each of the two anchor members with varying tension and by rotating the hood 12 about the axis of the anchor members. Both linear lesions connecting the pulmonary veins and circumferential lesions around the respective ostia can be formed by maneuvering the hood 12 accordingly.
  • The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other treatments and areas of the body. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.

Claims (36)

1. An apparatus for treating tissue surrounding a vessel opening, comprising:
a deployment catheter defining at least one lumen therethrough;
a barrier or membrane projecting distally from the deployment catheter and defining an open area therein, wherein the open area is in fluid communication with the at least one lumen;
an anchor having a low-profile shape and an expanded shape, wherein the anchor is sized to be secured at least partially within a vessel lumen in the expanded shape such that blood flows unobstructed through or past the expanded shape; and
an anchor member extending from the anchor and through the catheter wherein a distance of the member between the anchor and the barrier or membrane is adjustable such that the barrier or membrane is positionable directly upon the tissue surrounding the vessel opening.
2. The apparatus of claim 1 further comprising a visualization element disposed within or along the barrier or membrane for visualizing tissue adjacent to the open area when the open area is purged of blood via a transparent fluid.
3. The apparatus of claim 1 further comprising an ablation probe positionable within the open area of the barrier or membrane.
4. The apparatus of claim 1 further comprising an anchor sheath for constraining the anchor in its low-profile shape.
5. The apparatus of claim 1 wherein the anchor has a helical configuration.
6. The apparatus of claim 1 wherein the anchor has a basket configuration.
7. The apparatus of claim 1 wherein the anchor has a meshed configuration.
8. The apparatus of claim 1 wherein the anchor comprises a plurality of balloon members which are offset relative to one another along an inflation lumen.
9. The apparatus of claim 1 wherein the anchor member extends through the open area within the barrier or membrane.
10. The apparatus of claim 1 wherein the anchor member extends through a port defined along the catheter proximal to the barrier or membrane.
11. An apparatus for treating tissue surrounding a vessel opening, comprising:
a deployment catheter defining at least one lumen therethrough;
a barrier or membrane projecting distally from the deployment catheter and defining an open area therein, wherein the open area is in fluid communication with the at least one lumen;
a flap member having a low-profile shape and an extended shape, wherein the flap is positioned along an inner surface of the barrier or membrane in its low-profile shape and wherein the flap is projected distally relative to the barrier or membrane in its extended shape, and
wherein the flap member is sized to be positioned at least partially within a vessel lumen in the extended shape such that blood flows unobstructed past the extended flap with the open area positioned upon a portion of the tissue surrounding the vessel opening.
12. The apparatus of claim 11 further comprising an inflatable member positioned between the flap and the barrier or membrane.
13. The apparatus of claim 11 further comprising a visualization element disposed within or along the barrier or membrane for visualizing tissue adjacent to the open area when the open area is purged of blood via a transparent fluid.
14. The apparatus of claim 11 further comprising an ablation probe positionable within the open area of the barrier or membrane.
15. A method of treating tissue surrounding a vessel opening, comprising:
intravascularly securing an anchor extending from an anchor member at least partially within a vessel lumen such that blood flows unobstructed through or past the anchor;
adjusting a distance of the anchor member between the anchor and a barrier or membrane projecting distally from a deployment catheter such that an open area defined by the barrier or membrane is placed against or adjacent to a portion of the tissue surrounding the vessel opening;
displacing blood with a transparent fluid from the open area; and
treating the tissue while visualizing through the transparent fluid.
16. The method of claim 15 wherein intravascularly securing comprises advancing the anchor within a lumen of a pulmonary vein.
17. The method of claim 15 wherein intravascularly securing comprises expanding the anchor from a low-profile shape to an expanded shape.
18. The method of claim 15 wherein intravascularly securing comprises expanding the anchor having a helical shape.
19. The method of claim 15 wherein intravascularly securing comprises expanding the anchor having a basket shape.
20. The method of claim 15 wherein intravascularly securing comprises expanding the anchor having a mesh shape.
21. The method of claim 15 wherein adjusting comprises tensioning the anchor member extending through the open area of the barrier or membrane.
22. The method of claim 15 wherein adjusting comprises tensioning the anchor member extending through an opening defined along the catheter proximal to the barrier or membrane.
23. The method of claim 15 wherein treating comprises ablating the tissue with an ablation probe advanced into the open area.
24. The method of claim 15 wherein treating comprises circumferentially ablating the tissue surrounding the vessel opening.
25. The method of claim 24 wherein circumferentially ablating comprises ablating the tissue in a continuous line while visualizing through the transparent fluid.
26. The method of claim 24 wherein circumferentially ablating comprises ablating the tissue along discrete lesions which overlap one another surrounding the vessel opening.
27. A method of ablating tissue surrounding a vessel opening, comprising:
positioning an anchor at least partially within a vessel lumen, wherein the anchor comprises an open structure which allows unobstructed blood flow through or past the anchor;
positioning a barrier or membrane projecting distally from a deployment catheter such that an open area defined by the barrier or membrane is placed against or adjacent to a portion of the tissue surrounding the vessel opening;
purging blood with a transparent fluid from the open area such that the portion of tissue is visualized through the transparent fluid; and
adjusting a position of the barrier or membrane relative to the vessel opening such that the catheter remains tethered to the anchor.
28. The method of claim 27 wherein positioning an anchor comprises advancing the anchor within a lumen of a pulmonary vein.
29. The method of claim 27 wherein positioning a barrier or membrane comprises tensioning an anchor member connected to the anchor and extending through the open area of the barrier or membrane.
30. The method of claim 27 wherein adjusting a position comprises circumscribing tissue surrounding the vessel opening while tethered to the anchor.
31. The method of claim 30 wherein circumscribing tissue further comprises visualizing the tissue through the transparent fluid while adjusting the position of the barrier or membrane.
32. The method of claim 27 further comprising treating the tissue visualized within the open area.
33. The method of claim 32 wherein treating comprises ablating the tissue visualized within the open area.
34. The method of claim 33 wherein treating comprises circumferentially ablating the tissue surrounding the vessel opening.
35. The method of claim 33 wherein treating comprises circumferentially ablating the tissue in a continuous line while visualizing through the transparent fluid.
36. The method of claim 33 wherein circumferentially ablating comprises ablating the tissue along discrete lesions which overlap one another surrounding the vessel opening.
US11/959,158 2006-12-18 2007-12-18 Systems and methods for unobstructed visualization and ablation Abandoned US20080183036A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US87059806P true 2006-12-18 2006-12-18
US11/959,158 US20080183036A1 (en) 2006-12-18 2007-12-18 Systems and methods for unobstructed visualization and ablation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/959,158 US20080183036A1 (en) 2006-12-18 2007-12-18 Systems and methods for unobstructed visualization and ablation
US15/044,667 US10441136B2 (en) 2006-12-18 2016-02-16 Systems and methods for unobstructed visualization and ablation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/044,667 Division US10441136B2 (en) 2006-12-18 2016-02-16 Systems and methods for unobstructed visualization and ablation

Publications (1)

Publication Number Publication Date
US20080183036A1 true US20080183036A1 (en) 2008-07-31

Family

ID=39668755

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/959,158 Abandoned US20080183036A1 (en) 2006-12-18 2007-12-18 Systems and methods for unobstructed visualization and ablation
US15/044,667 Active US10441136B2 (en) 2006-12-18 2016-02-16 Systems and methods for unobstructed visualization and ablation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/044,667 Active US10441136B2 (en) 2006-12-18 2016-02-16 Systems and methods for unobstructed visualization and ablation

Country Status (1)

Country Link
US (2) US20080183036A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100191232A1 (en) * 2009-01-27 2010-07-29 Boveda Marco Medical Llc Catheters and methods for performing electrophysiological interventions
US8728011B2 (en) 2011-07-22 2014-05-20 Michael D. Khoury Multi wire sheath
US20140200568A1 (en) * 2008-10-06 2014-07-17 Virender K. Sharma Method and Apparatus for Tissue Ablation
US9014789B2 (en) 2011-09-22 2015-04-21 The George Washington University Systems and methods for visualizing ablated tissue
US20150190616A1 (en) * 2014-01-07 2015-07-09 Aldo Antonio Salvestro Medical device including manipulable portion with connected elongate members
US9084611B2 (en) 2011-09-22 2015-07-21 The George Washington University Systems and methods for visualizing ablated tissue
US20160089172A1 (en) * 2014-09-30 2016-03-31 Boston Scientific Scimed, Inc. Devices and methods for applying suction
US20160256216A1 (en) * 2013-03-11 2016-09-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses for pulmonary artery neuromodulation
US10058380B2 (en) 2007-10-05 2018-08-28 Maquet Cordiovascular Llc Devices and methods for minimally-invasive surgical procedures
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10143517B2 (en) 2014-11-03 2018-12-04 LuxCath, LLC Systems and methods for assessment of contact quality
US10342608B2 (en) 2012-10-18 2019-07-09 The Board Of Trustees Of The Leland Stanford Junior University Ablation catheter system and method for deploying same
US10441136B2 (en) 2006-12-18 2019-10-15 Intuitive Surgical Operations, Inc. Systems and methods for unobstructed visualization and ablation
EP3328293A4 (en) * 2015-07-31 2019-11-27 University of Utah Research Foundation Devices, systems, and methods for imaging and treating a selected tissue
US10695126B2 (en) 2017-05-19 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559651A (en) * 1968-10-14 1971-02-02 David H Moss Body-worn all disposable urinal
US4569335A (en) * 1983-04-12 1986-02-11 Sumitomo Electric Industries, Ltd. Fiberscope
US4576146A (en) * 1983-03-22 1986-03-18 Sumitomo Electric Industries, Ltd. Fiberscope
US4611594A (en) * 1984-04-11 1986-09-16 Northwestern University Medical instrument for containment and removal of calculi
US4727418A (en) * 1985-07-02 1988-02-23 Olympus Optical Co., Ltd. Image processing apparatus
US4911148A (en) * 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US4991578A (en) * 1989-04-04 1991-02-12 Siemens-Pacesetter, Inc. Method and system for implanting self-anchoring epicardial defibrillation electrodes
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4998916A (en) * 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US4998972A (en) * 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5090959A (en) * 1987-04-30 1992-02-25 Advanced Cardiovascular Systems, Inc. Imaging balloon dilatation catheter
US5281238A (en) * 1991-11-22 1994-01-25 Chin Albert K Endoscopic ligation instrument
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5336252A (en) * 1992-06-22 1994-08-09 Cohen Donald M System and method for implanting cardiac electrical leads
US5385148A (en) * 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5391182A (en) * 1993-08-03 1995-02-21 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5496330A (en) * 1993-02-19 1996-03-05 Boston Scientific Corporation Surgical extractor with closely angularly spaced individual filaments
US5498230A (en) * 1994-10-03 1996-03-12 Adair; Edwin L. Sterile connector and video camera cover for sterile endoscope
US5591119A (en) * 1994-12-07 1997-01-07 Adair; Edwin L. Sterile surgical coupler and drape
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5593405A (en) * 1994-07-16 1997-01-14 Osypka; Peter Fiber optic endoscope
US5593422A (en) * 1989-05-29 1997-01-14 Muijs Van De Moer; Wouter M. Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5713907A (en) * 1995-07-20 1998-02-03 Endotex Interventional Systems, Inc. Apparatus and method for dilating a lumen and for inserting an intraluminal graft
US5713946A (en) * 1993-07-20 1998-02-03 Biosense, Inc. Apparatus and method for intrabody mapping
US5716321A (en) * 1995-10-10 1998-02-10 Conceptus, Inc. Method for maintaining separation between a falloposcope and a tubal wall
US5722403A (en) * 1996-10-28 1998-03-03 Ep Technologies, Inc. Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US5725523A (en) * 1996-03-29 1998-03-10 Mueller; Richard L. Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications
US5860974A (en) * 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
US5860991A (en) * 1992-12-10 1999-01-19 Perclose, Inc. Method for the percutaneous suturing of a vascular puncture site
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US6012457A (en) * 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6024740A (en) * 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6027501A (en) * 1995-06-23 2000-02-22 Gyrus Medical Limited Electrosurgical instrument
US6168594B1 (en) * 1992-11-13 2001-01-02 Scimed Life Systems, Inc. Electrophysiology RF energy treatment device
US6168591B1 (en) * 1994-09-09 2001-01-02 Cardiofocus, Inc. Guide for penetrating phototherapy
US6174307B1 (en) * 1996-03-29 2001-01-16 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
US6178346B1 (en) * 1998-10-23 2001-01-23 David C. Amundson Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6190381B1 (en) * 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US20020004644A1 (en) * 1999-11-22 2002-01-10 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US20020026145A1 (en) * 1997-03-06 2002-02-28 Bagaoisan Celso J. Method and apparatus for emboli containment
US20030009085A1 (en) * 2001-06-04 2003-01-09 Olympus Optical Co., Ltd. Treatment apparatus for endoscope
US6514249B1 (en) * 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6517533B1 (en) * 1997-07-29 2003-02-11 M. J. Swaminathan Balloon catheter for controlling tissue remodeling and/or tissue proliferation
US20030035156A1 (en) * 2001-08-15 2003-02-20 Sony Corporation System and method for efficiently performing a white balance operation
US20030036698A1 (en) * 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
US6673090B2 (en) * 1999-08-04 2004-01-06 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue
US20040006333A1 (en) * 1994-09-09 2004-01-08 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
US6676656B2 (en) * 1994-09-09 2004-01-13 Cardiofocus, Inc. Surgical ablation with radiant energy
US6679836B2 (en) * 2002-06-21 2004-01-20 Scimed Life Systems, Inc. Universal programmable guide catheter
US6682526B1 (en) * 1997-09-11 2004-01-27 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes, and method of use
US6689128B2 (en) * 1996-10-22 2004-02-10 Epicor Medical, Inc. Methods and devices for ablation
US6692430B2 (en) * 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
US6840923B1 (en) * 1999-06-24 2005-01-11 Colocare Holdings Pty Limited Colostomy pump device
US6840936B2 (en) * 1996-10-22 2005-01-11 Epicor Medical, Inc. Methods and devices for ablation
US20050014995A1 (en) * 2001-11-09 2005-01-20 David Amundson Direct, real-time imaging guidance of cardiac catheterization
US20050015048A1 (en) * 2003-03-12 2005-01-20 Chiu Jessica G. Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof
US20050020914A1 (en) * 2002-11-12 2005-01-27 David Amundson Coronary sinus access catheter with forward-imaging
US6849073B2 (en) * 1998-07-07 2005-02-01 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US20050027163A1 (en) * 2003-07-29 2005-02-03 Scimed Life Systems, Inc. Vision catheter
US6858005B2 (en) * 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US20050124969A1 (en) * 2003-03-18 2005-06-09 Fitzgerald Peter J. Methods and devices for retrieval of a medical agent from a physiological efferent fluid collection site
US20050125024A1 (en) * 2000-06-29 2005-06-09 Concentric Medical, Inc., A Delaware Corporation Systems, methods and devices for removing obstructions from a blood vessel
US6982740B2 (en) * 1997-11-24 2006-01-03 Micro-Medical Devices, Inc. Reduced area imaging devices utilizing selected charge integration periods
US6984232B2 (en) * 2003-01-17 2006-01-10 St. Jude Medical, Daig Division, Inc. Ablation catheter assembly having a virtual electrode comprising portholes
US20060009715A1 (en) * 2000-04-13 2006-01-12 Khairkhahan Alexander K Method and apparatus for accessing the left atrial appendage
US20060009737A1 (en) * 2004-07-12 2006-01-12 Whiting James S Methods and devices for transseptal access
US20060015096A1 (en) * 2004-05-28 2006-01-19 Hauck John A Radio frequency ablation servo catheter and method
US20060025651A1 (en) * 2004-07-29 2006-02-02 Doron Adler Endoscope electronics assembly
US20060022234A1 (en) * 1997-10-06 2006-02-02 Adair Edwin L Reduced area imaging device incorporated within wireless endoscopic devices
US20060025787A1 (en) * 2002-06-13 2006-02-02 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US6994094B2 (en) * 2003-04-29 2006-02-07 Biosense, Inc. Method and device for transseptal facilitation based on injury patterns
US20060030844A1 (en) * 2004-08-04 2006-02-09 Knight Bradley P Transparent electrode for the radiofrequency ablation of tissue
US7041098B2 (en) * 1997-09-11 2006-05-09 Vnus Medical Technologies, Inc. Expandable vein ligator catheter and method of use
US7156845B2 (en) * 1998-07-07 2007-01-02 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US20070005019A1 (en) * 2005-06-24 2007-01-04 Terumo Kabushiki Kaisha Catheter assembly
US7163534B2 (en) * 2003-10-30 2007-01-16 Medical Cv, Inc. Laser-based maze procedure for atrial fibrillation
US20070016130A1 (en) * 2005-05-06 2007-01-18 Leeflang Stephen A Complex Shaped Steerable Catheters and Methods for Making and Using Them
US20070015964A1 (en) * 2002-05-30 2007-01-18 Eversull Christian S Apparatus and Methods for Coronary Sinus Access
US7166537B2 (en) * 2002-03-18 2007-01-23 Sarcos Investments Lc Miniaturized imaging device with integrated circuit connector system
US20070043338A1 (en) * 2004-03-05 2007-02-22 Hansen Medical, Inc Robotic catheter system and methods
US20070043413A1 (en) * 2005-08-16 2007-02-22 Eversull Christian S Apparatus and methods for delivering transvenous leads
US20080009859A1 (en) * 2003-02-13 2008-01-10 Coaptus Medical Corporation Transseptal left atrial access and septal closure
US20080009747A1 (en) * 2005-02-02 2008-01-10 Voyage Medical, Inc. Transmural subsurface interrogation and ablation
US20080015569A1 (en) * 2005-02-02 2008-01-17 Voyage Medical, Inc. Methods and apparatus for treatment of atrial fibrillation
US20080015445A1 (en) * 2005-02-02 2008-01-17 Voyage Medical, Inc. Tissue visualization device and method variations
US20080027464A1 (en) * 2006-07-26 2008-01-31 Moll Frederic H Systems and methods for performing minimally invasive surgical operations
US20080033290A1 (en) * 2005-10-25 2008-02-07 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
US20080033241A1 (en) * 2006-08-01 2008-02-07 Ruey-Feng Peh Left atrial appendage closure
US20090030276A1 (en) * 2007-07-27 2009-01-29 Voyage Medical, Inc. Tissue visualization catheter with imaging systems integration
US20090030412A1 (en) * 2007-05-11 2009-01-29 Willis N Parker Visual electrode ablation systems
US20090054803A1 (en) * 2005-02-02 2009-02-26 Vahid Saadat Electrophysiology mapping and visualization system
US20100004633A1 (en) * 2008-07-07 2010-01-07 Voyage Medical, Inc. Catheter control systems
US20100004506A1 (en) * 2005-02-02 2010-01-07 Voyage Medical, Inc. Tissue visualization and manipulation systems
US20100004661A1 (en) * 2006-07-12 2010-01-07 Les Hopitaux Universitaires De Geneve Medical device for tissue ablation
US20100010311A1 (en) * 2005-10-25 2010-01-14 Voyage Medical, Inc. Methods and apparatus for efficient purging
US20120016221A1 (en) * 2010-02-12 2012-01-19 Voyage Medical, Inc. Image stabilization techniques and methods

Family Cites Families (352)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US623022A (en) 1899-04-11 johnson
US2305462A (en) 1940-06-20 1942-12-15 Wolf Richard Cystoscopic instrument
US2453862A (en) 1947-06-02 1948-11-16 Salisbury Peter Frederic Gastroscope
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4175545A (en) 1977-03-10 1979-11-27 Zafmedico Corp. Method and apparatus for fiber-optic cardiovascular endoscopy
US4326529A (en) 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
JPS5869527A (en) 1981-10-20 1983-04-25 Fuji Photo Film Co Ltd High frequency knife and endoscope using same
US4470407A (en) 1982-03-11 1984-09-11 Laserscope, Inc. Endoscopic device
US4445892A (en) 1982-05-06 1984-05-01 Laserscope, Inc. Dual balloon catheter device
JPS5993413A (en) 1982-11-18 1984-05-29 Olympus Optical Co Ltd Endoscope
DE3370132D1 (en) * 1982-12-13 1987-04-16 Sumitomo Electric Industries Endoscope
CA1255757C (en) 1983-01-24 1989-06-13
US4619247A (en) 1983-03-31 1986-10-28 Sumitomo Electric Industries, Ltd. Catheter
JPS59181315A (en) 1983-03-31 1984-10-15 Kiyoshi Inoue Fiber scope
JPH0355943Y2 (en) 1984-02-03 1991-12-13
US4917084A (en) 1985-07-31 1990-04-17 C. R. Bard, Inc. Infrared laser catheter system
DE3686621D1 (en) 1985-07-31 1992-10-08 Bard Inc C R Infrared laser catheter device.
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US4709698A (en) 1986-05-14 1987-12-01 Thomas J. Fogarty Heatable dilation catheter
US4784133A (en) 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US4961738A (en) 1987-01-28 1990-10-09 Mackin Robert A Angioplasty catheter with illumination and visualization within angioplasty balloon
US4976710A (en) 1987-01-28 1990-12-11 Mackin Robert A Working well balloon method
NL8700329A (en) 1987-02-11 1988-09-01 Hoed Daniel Stichting Device and method for examining and / or exposing a cave in a body.
US4943290A (en) 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
IT1235460B (en) 1987-07-31 1992-07-30 Confida Spa Flexible Endoscope.
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
AU3696989A (en) 1988-05-18 1989-12-12 Kasevich Associates, Inc. Microwave balloon angioplasty
US6120437A (en) 1988-07-22 2000-09-19 Inbae Yoon Methods for creating spaces at obstructed sites endoscopically and methods therefor
US4957484A (en) 1988-07-26 1990-09-18 Automedix Sciences, Inc. Lymph access catheters and methods of administration
US5123428A (en) 1988-10-11 1992-06-23 Schwarz Gerald R Laparoscopically implanting bladder control apparatus
USRE34002E (en) 1989-02-03 1992-07-21 Sterilizable video camera cover
US4914521A (en) 1989-02-03 1990-04-03 Adair Edwin Lloyd Sterilizable video camera cover
DE3915636C1 (en) 1989-05-12 1990-04-26 Sass, Wolfgang, Dr.
US4950285A (en) 1989-11-27 1990-08-21 Wilk Peter J Suture device
US5514153A (en) 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
JP2893833B2 (en) 1990-03-30 1999-05-24 東レ株式会社 Endoscopic balloon catheter
US5171259A (en) 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5236413B1 (en) 1990-05-07 1996-06-18 Andrew J Feiring Method and apparatus for inducing the permeation of medication into internal tissue
US5370647A (en) 1991-01-23 1994-12-06 Surgical Innovations, Inc. Tissue and organ extractor
US5156141A (en) 1991-03-11 1992-10-20 Helmut Krebs Connector for coupling an endoscope to a video camera
JP3065702B2 (en) 1991-04-23 2000-07-17 オリンパス光学工業株式会社 Endoscope system
US5330496A (en) 1991-05-06 1994-07-19 Alferness Clifton A Vascular catheter assembly for tissue penetration and for cardiac stimulation and methods thereof
DE69226375T2 (en) 1991-05-29 1998-12-03 Origin Medsystems Inc Retractor device for endoscopic surgery
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5697281A (en) 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
JPH05103746A (en) 1991-10-18 1993-04-27 Olympus Optical Co Ltd Metabolism information measuring device
US5334159A (en) 1992-03-30 1994-08-02 Symbiosis Corporation Thoracentesis needle assembly utilizing check valve
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg Perfectionally resorbable blood filter.
DE4214283A1 (en) 1992-04-30 1993-11-04 Schneider Co Optische Werke Contactless length measuring camera - contains semiconducting transducer moved axially within camera body during focussing
US5435805A (en) 1992-08-12 1995-07-25 Vidamed, Inc. Medical probe device with optical viewing capability
US5672153A (en) 1992-08-12 1997-09-30 Vidamed, Inc. Medical probe device and method
US5527338A (en) 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5339800A (en) 1992-09-10 1994-08-23 Devmed Group Inc. Lens cleaning means for invasive viewing medical instruments with anti-contamination means
US5313943A (en) 1992-09-25 1994-05-24 Ep Technologies, Inc. Catheters and methods for performing cardiac diagnosis and treatment
AT397458B (en) 1992-09-25 1994-04-25 Avl Verbrennungskraft Messtech Sensor arrangement
US5373840A (en) 1992-10-02 1994-12-20 Knighton; David R. Endoscope and method for vein removal
US5575756A (en) 1993-08-16 1996-11-19 Olympus Optical Co., Ltd. Endoscope apparatus
US6068653A (en) 1992-11-13 2000-05-30 Scimed Life Systems, Inc. Electrophysiology catheter device
US6923805B1 (en) 1992-11-13 2005-08-02 Scimed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
US5676693A (en) 1992-11-13 1997-10-14 Scimed Life Systems, Inc. Electrophysiology device
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5403326A (en) 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
US6346074B1 (en) 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US6161543A (en) 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US6311692B1 (en) 1996-10-22 2001-11-06 Epicor, Inc. Apparatus and method for diagnosis and therapy of electrophysiological disease
US6805128B1 (en) 1996-10-22 2004-10-19 Epicor Medical, Inc. Apparatus and method for ablating tissue
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US7052493B2 (en) 1996-10-22 2006-05-30 Epicor Medical, Inc. Methods and devices for ablation
US6237605B1 (en) 1996-10-22 2001-05-29 Epicor, Inc. Methods of epicardial ablation
US5306234A (en) 1993-03-23 1994-04-26 Johnson W Dudley Method for closing an atrial appendage
CA2165829A1 (en) 1993-07-01 1995-01-19 John E. Abele Imaging, electrical potential sensing, and ablation catheters
US5571088A (en) 1993-07-01 1996-11-05 Boston Scientific Corporation Ablation catheters
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
AU7404994A (en) 1993-07-30 1995-02-28 Regents Of The University Of California, The Endocardial infusion catheter
US5405376A (en) 1993-08-27 1995-04-11 Medtronic, Inc. Method and apparatus for ablation
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US6129724A (en) 1993-10-14 2000-10-10 Ep Technologies, Inc. Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements
US5575810A (en) 1993-10-15 1996-11-19 Ep Technologies, Inc. Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5471515A (en) 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
US5746747A (en) 1994-05-13 1998-05-05 Mckeating; John A. Polypectomy instrument
US5842973A (en) 1994-05-17 1998-12-01 Bullard; James Roger Nasal intubation apparatus
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
US6423058B1 (en) 1998-02-19 2002-07-23 Curon Medical, Inc. Assemblies to visualize and treat sphincters and adjoining tissue regions
US5575788A (en) 1994-06-24 1996-11-19 Stuart D. Edwards Thin layer ablation apparatus
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US5681308A (en) 1994-06-24 1997-10-28 Stuart D. Edwards Ablation apparatus for cardiac chambers
US6464697B1 (en) 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
JP2802244B2 (en) 1994-08-29 1998-09-24 オリンパス光学工業株式会社 Endoscope sheath
US7935108B2 (en) 1999-07-14 2011-05-03 Cardiofocus, Inc. Deflectable sheath catheters
US20050222558A1 (en) 1999-07-14 2005-10-06 Cardiofocus, Inc. Methods of cardiac ablation employing a deflectable sheath catheter
US20050234436A1 (en) 1999-07-14 2005-10-20 Cardiofocus, Inc. Methods of cardiac ablation in the vicinity of the right inferior pulmonary vein
US6270492B1 (en) 1994-09-09 2001-08-07 Cardiofocus, Inc. Phototherapeutic apparatus with diffusive tip assembly
US6579285B2 (en) 1994-09-09 2003-06-17 Cardiofocus, Inc. Photoablation with infrared radiation
US8540704B2 (en) 1999-07-14 2013-09-24 Cardiofocus, Inc. Guided cardiac ablation catheters
US20050234437A1 (en) 1999-07-14 2005-10-20 Cardiofocus, Inc. Deflectable sheath catheters with out-of-plane bent tip
US6102905A (en) 1994-09-09 2000-08-15 Cardiofocus, Inc. Phototherapy device including housing for an optical element and method of making
US20040147911A1 (en) 1999-08-25 2004-07-29 Cardiofocus, Inc. Surgical ablation instruments for forming an encircling lesion
US20040167503A1 (en) 1999-08-25 2004-08-26 Cardiofocus, Inc. Malleable surgical ablation instruments
US5792045A (en) 1994-10-03 1998-08-11 Adair; Edwin L. Sterile surgical coupler and drape
GB2313310B (en) 1995-01-19 1999-03-17 Cate Folkert Jan Ten Local delivery and monitoring of drugs
US6063081A (en) 1995-02-22 2000-05-16 Medtronic, Inc. Fluid-assisted electrocautery device
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
JP3134726B2 (en) 1995-08-14 2001-02-13 富士写真光機株式会社 Ultrasound diagnostic equipment
JP3151153B2 (en) 1995-09-20 2001-04-03 定夫 尾股 Frequency deviation detection circuit and measuring instrument using the same
US6726677B1 (en) 1995-10-13 2004-04-27 Transvascular, Inc. Stabilized tissue penetrating catheters
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
AU690862B2 (en) 1995-12-04 1998-04-30 Target Therapeutics, Inc. Fibered micro vaso-occlusive devices
US5925038A (en) 1996-01-19 1999-07-20 Ep Technologies, Inc. Expandable-collapsible electrode structures for capacitive coupling to tissue
US5895417A (en) 1996-03-06 1999-04-20 Cardiac Pathways Corporation Deflectable loop design for a linear lesion ablation apparatus
US6063077A (en) 1996-04-08 2000-05-16 Cardima, Inc. Linear ablation device and assembly
US5797903A (en) 1996-04-12 1998-08-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods using porous electrode structures with electrically conductive surfaces
US6270477B1 (en) 1996-05-20 2001-08-07 Percusurge, Inc. Catheter for emboli containment
US5754313A (en) 1996-07-17 1998-05-19 Welch Allyn, Inc. Imager assembly
US6830577B2 (en) 1996-07-26 2004-12-14 Kensey Nash Corporation System and method of use for treating occluded vessels and diseased tissue
US6905505B2 (en) 1996-07-26 2005-06-14 Kensey Nash Corporation System and method of use for agent delivery and revascularizing of grafts and vessels
US5826576A (en) 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
EP1207788A4 (en) 1999-07-19 2009-12-09 St Jude Medical Atrial Fibrill Apparatus and method for ablating tissue
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5848969A (en) 1996-10-28 1998-12-15 Ep Technologies, Inc. Systems and methods for visualizing interior tissue regions using expandable imaging structures
US5908445A (en) 1996-10-28 1999-06-01 Ep Technologies, Inc. Systems for visualizing interior tissue regions including an actuator to move imaging element
US5827268A (en) 1996-10-30 1998-10-27 Hearten Medical, Inc. Device for the treatment of patent ductus arteriosus and method of using the device
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US6071279A (en) 1996-12-19 2000-06-06 Ep Technologies, Inc. Branched structures for supporting multiple electrode elements
JP3134287B2 (en) 1997-01-30 2001-02-13 株式会社ニッショー Catheter assembly for endocardial suture surgery
US5968053A (en) 1997-01-31 1999-10-19 Cardiac Assist Technologies, Inc. Method and apparatus for implanting a graft in a vessel of a patient
US6295989B1 (en) 1997-02-06 2001-10-02 Arteria Medical Science, Inc. ICA angioplasty with cerebral protection
US6086534A (en) 1997-03-07 2000-07-11 Cardiogenesis Corporation Apparatus and method of myocardial revascularization using ultrasonic pulse-echo distance ranging
WO1998040014A1 (en) 1997-03-10 1998-09-17 Robin Medical Inc. Method and apparatus for the assessment and display of variability in mechanical activity of the heart, and enhancement of ultrasound contrast imaging by variability analysis
US6086582A (en) 1997-03-13 2000-07-11 Altman; Peter A. Cardiac drug delivery system
US5944690A (en) 1997-03-17 1999-08-31 C.R. Bard, Inc. Slidable control mechanism for steerable catheter
US5897487A (en) 1997-04-15 1999-04-27 Asahi Kogaku Kogyo Kabushiki Kaisha Front end hood for endoscope
US6081740A (en) 1997-04-23 2000-06-27 Accumed International, Inc. Method and apparatus for imaging and sampling diseased tissue
US5971983A (en) 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US6251109B1 (en) 1997-06-27 2001-06-26 Daig Corporation Process and device for the treatment of atrial arrhythmia
US6997925B2 (en) 1997-07-08 2006-02-14 Atrionx, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6164283A (en) 1997-07-08 2000-12-26 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
AT262946T (en) 1997-07-22 2004-04-15 Terumo Corp Residential catheter set and manufacturing method
US5941845A (en) 1997-08-05 1999-08-24 Irvine Biomedical, Inc. Catheter having multiple-needle electrode and methods thereof
US6459919B1 (en) 1997-08-26 2002-10-01 Color Kinetics, Incorporated Precision illumination methods and systems
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6086528A (en) 1997-09-11 2000-07-11 Adair; Edwin L. Surgical devices with removable imaging capability and methods of employing same
US6211904B1 (en) 1997-09-11 2001-04-03 Edwin L. Adair Surgical devices incorporating reduced area imaging devices
US6043839A (en) 1997-10-06 2000-03-28 Adair; Edwin L. Reduced area imaging devices
US5986693A (en) 1997-10-06 1999-11-16 Adair; Edwin L. Reduced area imaging devices incorporated within surgical instruments
US6310642B1 (en) 1997-11-24 2001-10-30 Micro-Medical Devices, Inc. Reduced area imaging devices incorporated within surgical instruments
US5929901A (en) 1997-10-06 1999-07-27 Adair; Edwin L. Reduced area imaging devices incorporated within surgical instruments
US6240312B1 (en) 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
US5997571A (en) 1997-12-17 1999-12-07 Cardiofocus, Inc. Non-occluding phototherapy probe stabilizers
US6071302A (en) 1997-12-31 2000-06-06 Cardiofocus, Inc. Phototherapeutic apparatus for wide-angle diffusion
US7090683B2 (en) 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US7214230B2 (en) 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
US5997509A (en) 1998-03-06 1999-12-07 Cornell Research Foundation, Inc. Minimally invasive gene therapy delivery device and method
US6115626A (en) 1998-03-26 2000-09-05 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in instruments in interior body regions
JPH11299725A (en) 1998-04-21 1999-11-02 Olympus Optical Co Ltd Hood for endoscope
US6522930B1 (en) 1998-05-06 2003-02-18 Atrionix, Inc. Irrigated ablation device assembly
JP2002514448A (en) 1998-05-13 2002-05-21 ヨーン,インバエ Penetrating endoscope and endoscopic surgical instrument with CMOS image sensor and display
US7263397B2 (en) 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US6315777B1 (en) 1998-07-07 2001-11-13 Medtronic, Inc. Method and apparatus for creating a virtual electrode used for the ablation of tissue
US6537272B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6494902B2 (en) 1998-07-07 2002-12-17 Medtronic, Inc. Method for creating a virtual electrode for the ablation of tissue and for selected protection of tissue during an ablation
US6238393B1 (en) 1998-07-07 2001-05-29 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
AU5101699A (en) 1998-07-15 2000-02-07 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of vascular calcified lesions
US6394096B1 (en) 1998-07-15 2002-05-28 Corazon Technologies, Inc. Method and apparatus for treatment of cardiovascular tissue mineralization
US6562020B1 (en) 1998-07-15 2003-05-13 Corazon Technologies, Inc. Kits for use in the treatment of vascular calcified lesions
US6112123A (en) 1998-07-28 2000-08-29 Endonetics, Inc. Device and method for ablation of tissue
JP2003524443A (en) 1998-08-02 2003-08-19 スーパー ディメンション リミテッド Medical guidance device
US6139508A (en) 1998-08-04 2000-10-31 Endonetics, Inc. Articulated medical device
US6099498A (en) 1998-09-02 2000-08-08 Embol-X, Inc Cardioplegia access view probe and methods of use
US6123703A (en) 1998-09-19 2000-09-26 Tu; Lily Chen Ablation catheter and methods for treating tissues
US6123718A (en) 1998-11-02 2000-09-26 Polymerex Medical Corp. Balloon catheter
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6162179A (en) 1998-12-08 2000-12-19 Scimed Life Systems, Inc. Loop imaging catheter
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US6396873B1 (en) 1999-02-25 2002-05-28 Envision Advanced Medical Systems Optical device
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6167297A (en) 1999-05-05 2000-12-26 Benaron; David A. Detecting, localizing, and targeting internal sites in vivo using optical contrast agents
JP3490933B2 (en) 1999-06-07 2004-01-26 ペンタックス株式会社 Swallowable endoscope device
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US20040249367A1 (en) 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
US6423055B1 (en) 1999-07-14 2002-07-23 Cardiofocus, Inc. Phototherapeutic wave guide apparatus
US6572609B1 (en) 1999-07-14 2003-06-03 Cardiofocus, Inc. Phototherapeutic waveguide apparatus
JP5065052B2 (en) 2005-02-22 2012-10-31 カーディオフォーカス・インコーポレイテッドCardioFocus,Inc. Flexible sheath catheter
US6755811B1 (en) 1999-08-25 2004-06-29 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue
US6527979B2 (en) 1999-08-27 2003-03-04 Corazon Technologies, Inc. Catheter systems and methods for their use in the treatment of calcified vascular occlusions
US6702780B1 (en) 1999-09-08 2004-03-09 Super Dimension Ltd. Steering configuration for catheter with rigid distal device
US6315778B1 (en) 1999-09-10 2001-11-13 C. R. Bard, Inc. Apparatus for creating a continuous annular lesion
US6458151B1 (en) 1999-09-10 2002-10-01 Frank S. Saltiel Ostial stent positioning device and method
US6423051B1 (en) 1999-09-16 2002-07-23 Aaron V. Kaplan Methods and apparatus for pericardial access
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6385476B1 (en) 1999-09-21 2002-05-07 Biosense, Inc. Method and apparatus for intracardially surveying a condition of a chamber of a heart
US6915154B1 (en) 1999-09-24 2005-07-05 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
US6485489B2 (en) 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US6488671B1 (en) 1999-10-22 2002-12-03 Corazon Technologies, Inc. Methods for enhancing fluid flow through an obstructed vascular site, and systems and kits for use in practicing the same
US6290689B1 (en) 1999-10-22 2001-09-18 Corazón Technologies, Inc. Catheter devices and methods for their use in the treatment of calcified vascular occlusions
US6533767B2 (en) 2000-03-20 2003-03-18 Corazon Technologies, Inc. Methods for enhancing fluid flow through an obstructed vascular site, and systems and kits for use in practicing the same
US6780151B2 (en) 1999-10-26 2004-08-24 Acmi Corporation Flexible ureteropyeloscope
US6613062B1 (en) 1999-10-29 2003-09-02 Medtronic, Inc. Method and apparatus for providing intra-pericardial access
US7758521B2 (en) 1999-10-29 2010-07-20 Medtronic, Inc. Methods and systems for accessing the pericardial space
US6529756B1 (en) 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
US6156350A (en) 1999-12-02 2000-12-05 Corazon Technologies, Inc. Methods and kits for use in preventing restenosis
US20010047136A1 (en) 2000-01-21 2001-11-29 Domanik Richard A. In-vivo tissue inspection and sampling
US6892091B1 (en) 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
US6478769B1 (en) 2000-02-22 2002-11-12 The Board Of Trustees Of The University Of Arkansas Anatomical fluid evacuation apparatus and method
US6544195B2 (en) 2000-03-04 2003-04-08 Joseph F. Wilson Tissue of foreign body extractor
JP2001258822A (en) 2000-03-14 2001-09-25 Olympus Optical Co Ltd Endoscope
US6440061B1 (en) 2000-03-24 2002-08-27 Donald E. Wenner Laparoscopic instrument system for real-time biliary exploration and stone removal
IL135571D0 (en) 2000-04-10 2001-05-20 Doron Adler Minimal invasive surgery imaging system
US6650923B1 (en) 2000-04-13 2003-11-18 Ev3 Sunnyvale, Inc. Method for accessing the left atrium of the heart by locating the fossa ovalis
US6558382B2 (en) 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
US6375654B1 (en) 2000-05-19 2002-04-23 Cardiofocus, Inc. Catheter system with working portion radially expandable upon rotation
US6532380B1 (en) 2000-06-30 2003-03-11 Cedars Sinai Medical Center Image guidance for coronary stent deployment
US6558375B1 (en) 2000-07-14 2003-05-06 Cardiofocus, Inc. Cardiac ablation instrument
US6811562B1 (en) 2000-07-31 2004-11-02 Epicor, Inc. Procedures for photodynamic cardiac ablation therapy and devices for those procedures
US6773402B2 (en) 2001-07-10 2004-08-10 Biosense, Inc. Location sensing with real-time ultrasound imaging
JP2002058642A (en) 2000-08-21 2002-02-26 Asahi Optical Co Ltd Imaging element for electronic endoscope
US6605055B1 (en) 2000-09-13 2003-08-12 Cardiofocus, Inc. Balloon catheter with irrigation sheath
JP2002177198A (en) 2000-10-02 2002-06-25 Olympus Optical Co Ltd Endoscope
US6540733B2 (en) 2000-12-29 2003-04-01 Corazon Technologies, Inc. Proton generating catheters and methods for their use in enhancing fluid flow through a vascular site occupied by a calcified vascular occlusion
DE10115341A1 (en) 2001-03-28 2002-10-02 Philips Corp Intellectual Pty Method and imaging ultrasound system for determining the position of a catheter
US7422579B2 (en) 2001-05-01 2008-09-09 St. Jude Medical Cardiology Divison, Inc. Emboli protection devices and related methods of use
EP1385439A1 (en) 2001-05-10 2004-02-04 Rita Medical Systems, Inc. Rf tissue ablation apparatus and method
US6635070B2 (en) 2001-05-21 2003-10-21 Bacchus Vascular, Inc. Apparatus and methods for capturing particulate material within blood vessels
US6771996B2 (en) 2001-05-24 2004-08-03 Cardiac Pacemakers, Inc. Ablation and high-resolution mapping catheter system for pulmonary vein foci elimination
AU2003247526A1 (en) 2002-06-12 2003-12-31 Mitral Interventions, Inc. Method and apparatus for tissue connection
AT387160T (en) 2001-08-31 2008-03-15 Mitral Interventions Device for a heart lapse repair
WO2003028571A2 (en) 2001-09-28 2003-04-10 Institut De Cardiologie De Montreal Method for identification and visualization of atrial tissue
CA2463021A1 (en) 2001-10-12 2003-04-24 Applied Medical Resources Corporation High-flow low-pressure irrigation system
EP1450715A4 (en) 2001-11-14 2006-03-08 Latis Inc Improved catheters for clot removal
CA2469773A1 (en) 2001-12-11 2003-07-03 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
EP2260897B1 (en) 2001-12-26 2019-09-18 Yale University Vascular access device
US7019610B2 (en) 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US7717899B2 (en) 2002-01-28 2010-05-18 Cardiac Pacemakers, Inc. Inner and outer telescoping catheter delivery system
JP3826045B2 (en) 2002-02-07 2006-09-27 オリンパス株式会社 Endoscope hood
US6974464B2 (en) 2002-02-28 2005-12-13 3F Therapeutics, Inc. Supportless atrioventricular heart valve and minimally invasive delivery systems thereof
US20060146172A1 (en) 2002-03-18 2006-07-06 Jacobsen Stephen C Miniaturized utility device having integrated optical capabilities
US7787939B2 (en) 2002-03-18 2010-08-31 Sterling Lc Miniaturized imaging device including utility aperture and SSID
US6712798B2 (en) 2002-03-18 2004-03-30 Corazon Technologies, Inc. Multilumen catheters and methods for their use
US6866651B2 (en) 2002-03-20 2005-03-15 Corazon Technologies, Inc. Methods and devices for the in situ dissolution of renal calculi
US6932809B2 (en) 2002-05-14 2005-08-23 Cardiofocus, Inc. Safety shut-off device for laser surgical instruments employing blackbody emitters
AU2003224415A1 (en) 2002-05-16 2003-12-02 Cbyond Inc. Miniature camera head
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US8956280B2 (en) 2002-05-30 2015-02-17 Intuitive Surgical Operations, Inc. Apparatus and methods for placing leads using direct visualization
US6837847B2 (en) 2002-06-13 2005-01-04 Usgi Medical, Inc. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US7421295B2 (en) 2002-07-19 2008-09-02 Oscor Inc. Implantable cardiac lead having removable fluid delivery port
US6887237B2 (en) 2002-07-22 2005-05-03 Medtronic, Inc. Method for treating tissue with a wet electrode and apparatus for using same
US6701581B2 (en) 2002-08-10 2004-03-09 Epicor Industries, Inc. Clamp retention device
US6863668B2 (en) 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
JP4511935B2 (en) 2002-08-24 2010-07-28 サブラマニアム シー. クリシュナン Transseptal puncture device
US6755790B2 (en) 2002-10-14 2004-06-29 Medtronic, Inc. Transseptal access tissue thickness sensing dilator devices and methods for fabricating and using same
AU2003287332A1 (en) 2002-11-01 2004-06-07 The Regents Of The University Of California Methods of treating pulmonary fibrotic disorders
US6899672B2 (en) 2002-11-08 2005-05-31 Scimed Life Systems, Inc. Endoscopic imaging system including removable deflection device
AU2002952663A0 (en) 2002-11-14 2002-11-28 Western Sydney Area Health Service An intramural needle-tipped surgical device
US20040158289A1 (en) 2002-11-30 2004-08-12 Girouard Steven D. Method and apparatus for cell and electrical therapy of living tissue
US20040138707A1 (en) 2003-01-14 2004-07-15 Greenhalgh E. Skott Anchor removable from a substrate
NZ579430A (en) 2003-02-21 2011-03-31 Electro Cat Llc System and method for measuring cross-sectional areas and pressure gradients in luminal organs
WO2004078066A2 (en) * 2003-03-03 2004-09-16 Sinus Rhythm Technologies, Inc. Primary examiner
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US20070055142A1 (en) 2003-03-14 2007-03-08 Webler William E Method and apparatus for image guided position tracking during percutaneous procedures
AU2004221408A1 (en) 2003-03-18 2004-09-30 Catharos Medical Systems, Inc. Methods and devices for retrieval of a medical agent from a physiological efferent fluid collection site
US7293562B2 (en) 2003-03-27 2007-11-13 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US6939348B2 (en) 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US20040215180A1 (en) 2003-04-25 2004-10-28 Medtronic, Inc. Ablation of stomach lining to treat obesity
US20040220471A1 (en) 2003-04-29 2004-11-04 Yitzhack Schwartz Method and device for transseptal facilitation using location system
JP4414682B2 (en) 2003-06-06 2010-02-10 オリンパス株式会社 Ultrasound endoscope device
US20040260182A1 (en) 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
AU2004259205C1 (en) 2003-07-17 2009-09-03 Corazon Technologies, Inc. Devices and methods for percutaneously treating aortic valve stenosis
US7534204B2 (en) 2003-09-03 2009-05-19 Guided Delivery Systems, Inc. Cardiac visualization devices and methods
US7569052B2 (en) 2003-09-12 2009-08-04 Boston Scientific Scimed, Inc. Ablation catheter with tissue protecting assembly
US20050059862A1 (en) 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Cannula with integrated imaging and optical capability
US7736362B2 (en) 2003-09-15 2010-06-15 Boston Scientific Scimed, Inc. Catheter balloons
US8172747B2 (en) 2003-09-25 2012-05-08 Hansen Medical, Inc. Balloon visualization for traversing a tissue wall
US7435248B2 (en) 2003-09-26 2008-10-14 Boston Scientific Scimed, Inc. Medical probes for creating and diagnosing circumferential lesions within or around the ostium of a vessel
US7875049B2 (en) 2004-10-04 2011-01-25 Medtronic, Inc. Expandable guide sheath with steerable backbone and methods for making and using them
US7207989B2 (en) 2003-10-27 2007-04-24 Biosense Webster, Inc. Method for ablating with needle electrode
CA2542280A1 (en) 2003-11-06 2005-05-26 Nmt Medical, Inc. Transseptal puncture apparatus
US20050215895A1 (en) 2003-11-12 2005-09-29 Popp Richard L Devices and methods for obtaining three-dimensional images of an internal body site
WO2006126979A2 (en) 2003-12-04 2006-11-30 Ev3, Inc. System and method for delivering a left atrial appendage containment device
US20050165456A1 (en) 2003-12-19 2005-07-28 Brian Mann Digital electrode for cardiac rhythm management
JP3823321B2 (en) 2003-12-25 2006-09-20 フジノン株式会社 Balloon control device
US7399271B2 (en) 2004-01-09 2008-07-15 Cardiokinetix, Inc. Ventricular partitioning device
WO2005077435A1 (en) 2004-01-19 2005-08-25 Atul Kumar A system for distending body tissue cavities by continuous flow irrigation
US20050228452A1 (en) 2004-02-11 2005-10-13 Mourlas Nicholas J Steerable catheters and methods for using them
US7186214B2 (en) 2004-02-12 2007-03-06 Medtronic, Inc. Instruments and methods for accessing an anatomic space
US20050197623A1 (en) 2004-02-17 2005-09-08 Leeflang Stephen A. Variable steerable catheters and methods for using them
US8021326B2 (en) 2004-03-05 2011-09-20 Hansen Medical, Inc. Instrument driver for robotic catheter system
US7789890B2 (en) 2005-03-30 2010-09-07 Ethicon Endo-Surgery, Inc. Harness and balloon catheter assembly and method for use in anastomosis procedures
US20050273095A1 (en) * 2004-06-07 2005-12-08 Scimed Life Systems, Inc. Ablation catheters having anchoring capability and methods of using same
WO2006014993A1 (en) 2004-07-27 2006-02-09 Medeikon Corporation Device for tissue characterization
EP1793731B1 (en) 2004-08-24 2013-12-25 The General Hospital Corporation Imaging apparatus comprising a fluid delivery arrangement and a pull-back arrangement
US20060069303A1 (en) 2004-09-30 2006-03-30 Couvillon Lucien A Jr Endoscopic apparatus with integrated hemostasis device
US8029470B2 (en) 2004-09-30 2011-10-04 Pacesetter, Inc. Transmembrane access systems and methods
US20060089637A1 (en) 2004-10-14 2006-04-27 Werneth Randell L Ablation catheter
JP5090176B2 (en) 2004-11-17 2012-12-05 バイオセンス・ウエブスター・インコーポレーテツド Real-time evaluation system for tissue ablation
US7883503B2 (en) 2005-01-26 2011-02-08 Kalser Gary Illuminating balloon catheter and method for using the catheter
US7860556B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue imaging and extraction systems
US10064540B2 (en) 2005-02-02 2018-09-04 Intuitive Surgical Operations, Inc. Visualization apparatus for transseptal access
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
US8078266B2 (en) 2005-10-25 2011-12-13 Voyage Medical, Inc. Flow reduction hood systems
US20060258909A1 (en) 2005-04-08 2006-11-16 Usgi Medical, Inc. Methods and apparatus for maintaining sterility during transluminal procedures
US20060271032A1 (en) 2005-05-26 2006-11-30 Chin Albert K Ablation instruments and methods for performing abalation
US7575569B2 (en) 2005-08-16 2009-08-18 Medtronic, Inc. Apparatus and methods for delivering stem cells and other agents into cardiac tissue
US7416552B2 (en) 2005-08-22 2008-08-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Multipolar, multi-lumen, virtual-electrode catheter with at least one surface electrode and method for ablation
US8355801B2 (en) 2005-09-26 2013-01-15 Biosense Webster, Inc. System and method for measuring esophagus proximity
US20070093805A1 (en) 2005-10-17 2007-04-26 Coaptus Medical Corporation Systems and methods for securing cardiovascular tissue, including via asymmetric electrodes
US7918793B2 (en) 2005-10-28 2011-04-05 Biosense Webster, Inc. Synchronization of ultrasound imaging data with electrical mapping
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US8303505B2 (en) 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
WO2007079268A2 (en) 2005-12-30 2007-07-12 C.R. Bard, Inc. Methods and apparatus for ablation of cardiac tissue
CN101421000B (en) 2006-03-20 2013-01-30 麦德托尼克公司 Slittable or removable valves and apparatus
US20070270686A1 (en) 2006-05-03 2007-11-22 Ritter Rogers C Apparatus and methods for using inertial sensing to navigate a medical device
EP2018129B1 (en) 2006-05-12 2020-04-01 Vytronus, Inc. Device for ablating body tissue
US9220402B2 (en) 2006-06-07 2015-12-29 Intuitive Surgical Operations, Inc. Visualization and treatment via percutaneous methods and devices
WO2008015625A2 (en) 2006-08-02 2008-02-07 Koninklijke Philips Electronics N.V. 3d segmentation by voxel classification based on intensity histogram thresholding initialised by k-means clustering
WO2008017080A2 (en) 2006-08-03 2008-02-07 Hansen Medical, Inc. Systems for performing minimally invasive procedures
WO2008024261A2 (en) 2006-08-23 2008-02-28 Cardio-Optics, Inc Image-guided therapy of the fossa ovalis and septal defects
US20080057106A1 (en) 2006-08-29 2008-03-06 Erickson Signe R Low profile bioactive agent delivery device
US20080097476A1 (en) 2006-09-01 2008-04-24 Voyage Medical, Inc. Precision control systems for tissue visualization and manipulation assemblies
US10004388B2 (en) 2006-09-01 2018-06-26 Intuitive Surgical Operations, Inc. Coronary sinus cannulation
US20080058590A1 (en) 2006-09-01 2008-03-06 Nidus Medical, Llc. Tissue visualization device having multi-segmented frame
US10335131B2 (en) 2006-10-23 2019-07-02 Intuitive Surgical Operations, Inc. Methods for preventing tissue migration
US20080183036A1 (en) 2006-12-18 2008-07-31 Voyage Medical, Inc. Systems and methods for unobstructed visualization and ablation
US8337518B2 (en) 2006-12-20 2012-12-25 Onset Medical Corporation Expandable trans-septal sheath
US9226648B2 (en) 2006-12-21 2016-01-05 Intuitive Surgical Operations, Inc. Off-axis visualization systems
US8131350B2 (en) 2006-12-21 2012-03-06 Voyage Medical, Inc. Stabilization of visualization catheters
US9155452B2 (en) 2007-04-27 2015-10-13 Intuitive Surgical Operations, Inc. Complex shape steerable tissue visualization and manipulation catheter
US8657805B2 (en) 2007-05-08 2014-02-25 Intuitive Surgical Operations, Inc. Complex shape steerable tissue visualization and manipulation catheter
US20080287805A1 (en) 2007-05-16 2008-11-20 General Electric Company System and method to guide an instrument through an imaged subject
US8527032B2 (en) 2007-05-16 2013-09-03 General Electric Company Imaging system and method of delivery of an instrument to an imaged subject
KR20100023952A (en) 2007-06-08 2010-03-04 싸이노슈어, 인코포레이티드 Thermal surgery safety apparatus and method
US20090062790A1 (en) 2007-08-31 2009-03-05 Voyage Medical, Inc. Direct visualization bipolar ablation systems
US8235985B2 (en) 2007-08-31 2012-08-07 Voyage Medical, Inc. Visualization and ablation system variations
US20090125022A1 (en) 2007-11-12 2009-05-14 Voyage Medical, Inc. Tissue visualization and ablation systems
US20090143640A1 (en) 2007-11-26 2009-06-04 Voyage Medical, Inc. Combination imaging and treatment assemblies
WO2009092021A1 (en) 2008-01-17 2009-07-23 Nidus Medical, Llc Epicardial access and treatment systems
US8858609B2 (en) 2008-02-07 2014-10-14 Intuitive Surgical Operations, Inc. Stent delivery under direct visualization
US9492216B2 (en) 2008-03-12 2016-11-15 Afreeze Gmbh Handle for an ablation device
US8494608B2 (en) 2008-04-18 2013-07-23 Medtronic, Inc. Method and apparatus for mapping a structure
US8532734B2 (en) 2008-04-18 2013-09-10 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US20090326572A1 (en) 2008-06-27 2009-12-31 Ruey-Feng Peh Apparatus and methods for rapid tissue crossing
US8333012B2 (en) 2008-10-10 2012-12-18 Voyage Medical, Inc. Method of forming electrode placement and connection systems
US9468364B2 (en) 2008-11-14 2016-10-18 Intuitive Surgical Operations, Inc. Intravascular catheter with hood and image processing systems
US20110144576A1 (en) 2009-12-14 2011-06-16 Voyage Medical, Inc. Catheter orientation control system mechanisms
US9814522B2 (en) 2010-04-06 2017-11-14 Intuitive Surgical Operations, Inc. Apparatus and methods for ablation efficacy

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559651A (en) * 1968-10-14 1971-02-02 David H Moss Body-worn all disposable urinal
US4576146A (en) * 1983-03-22 1986-03-18 Sumitomo Electric Industries, Ltd. Fiberscope
US4569335A (en) * 1983-04-12 1986-02-11 Sumitomo Electric Industries, Ltd. Fiberscope
US4611594A (en) * 1984-04-11 1986-09-16 Northwestern University Medical instrument for containment and removal of calculi
US4727418A (en) * 1985-07-02 1988-02-23 Olympus Optical Co., Ltd. Image processing apparatus
US5090959A (en) * 1987-04-30 1992-02-25 Advanced Cardiovascular Systems, Inc. Imaging balloon dilatation catheter
US4998972A (en) * 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4998916A (en) * 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US4911148A (en) * 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US4991578A (en) * 1989-04-04 1991-02-12 Siemens-Pacesetter, Inc. Method and system for implanting self-anchoring epicardial defibrillation electrodes
US5593422A (en) * 1989-05-29 1997-01-14 Muijs Van De Moer; Wouter M. Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5282827A (en) * 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5281238A (en) * 1991-11-22 1994-01-25 Chin Albert K Endoscopic ligation instrument
US5336252A (en) * 1992-06-22 1994-08-09 Cohen Donald M System and method for implanting cardiac electrical leads
US6168594B1 (en) * 1992-11-13 2001-01-02 Scimed Life Systems, Inc. Electrophysiology RF energy treatment device
US5860991A (en) * 1992-12-10 1999-01-19 Perclose, Inc. Method for the percutaneous suturing of a vascular puncture site
US5496330A (en) * 1993-02-19 1996-03-05 Boston Scientific Corporation Surgical extractor with closely angularly spaced individual filaments
US5860974A (en) * 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
US5713946A (en) * 1993-07-20 1998-02-03 Biosense, Inc. Apparatus and method for intrabody mapping
US5385148A (en) * 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5391182A (en) * 1993-08-03 1995-02-21 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5593405A (en) * 1994-07-16 1997-01-14 Osypka; Peter Fiber optic endoscope
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US20050038419A9 (en) * 1994-09-09 2005-02-17 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
US20040006333A1 (en) * 1994-09-09 2004-01-08 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
US6676656B2 (en) * 1994-09-09 2004-01-13 Cardiofocus, Inc. Surgical ablation with radiant energy
US6168591B1 (en) * 1994-09-09 2001-01-02 Cardiofocus, Inc. Guide for penetrating phototherapy
US5498230A (en) * 1994-10-03 1996-03-12 Adair; Edwin L. Sterile connector and video camera cover for sterile endoscope
US5591119A (en) * 1994-12-07 1997-01-07 Adair; Edwin L. Sterile surgical coupler and drape
US20080015563A1 (en) * 1995-02-22 2008-01-17 Hoey Michael F Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6190381B1 (en) * 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US6027501A (en) * 1995-06-23 2000-02-22 Gyrus Medical Limited Electrosurgical instrument
US5713907A (en) * 1995-07-20 1998-02-03 Endotex Interventional Systems, Inc. Apparatus and method for dilating a lumen and for inserting an intraluminal graft
US5716321A (en) * 1995-10-10 1998-02-10 Conceptus, Inc. Method for maintaining separation between a falloposcope and a tubal wall
US5873815A (en) * 1995-10-10 1999-02-23 Conceptus, Inc. Access catheter and method for maintaining separation between a falloposcope and a tubal wall
US6174307B1 (en) * 1996-03-29 2001-01-16 Eclipse Surgical Technologies, Inc. Viewing surgical scope for minimally invasive procedures
US5725523A (en) * 1996-03-29 1998-03-10 Mueller; Richard L. Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications
US6858026B2 (en) * 1996-10-22 2005-02-22 Epicor Medical, Inc. Methods and devices for ablation
US6840936B2 (en) * 1996-10-22 2005-01-11 Epicor Medical, Inc. Methods and devices for ablation
US6689128B2 (en) * 1996-10-22 2004-02-10 Epicor Medical, Inc. Methods and devices for ablation
US5722403A (en) * 1996-10-28 1998-03-03 Ep Technologies, Inc. Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US20020026145A1 (en) * 1997-03-06 2002-02-28 Bagaoisan Celso J. Method and apparatus for emboli containment
US6024740A (en) * 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6514249B1 (en) * 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US6012457A (en) * 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6502576B1 (en) * 1997-07-08 2003-01-07 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6517533B1 (en) * 1997-07-29 2003-02-11 M. J. Swaminathan Balloon catheter for controlling tissue remodeling and/or tissue proliferation
US7041098B2 (en) * 1997-09-11 2006-05-09 Vnus Medical Technologies, Inc. Expandable vein ligator catheter and method of use
US6682526B1 (en) * 1997-09-11 2004-01-27 Vnus Medical Technologies, Inc. Expandable catheter having two sets of electrodes, and method of use
US20060022234A1 (en) * 1997-10-06 2006-02-02 Adair Edwin L Reduced area imaging device incorporated within wireless endoscopic devices
US6982740B2 (en) * 1997-11-24 2006-01-03 Micro-Medical Devices, Inc. Reduced area imaging devices utilizing selected charge integration periods
US7156845B2 (en) * 1998-07-07 2007-01-02 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US7169144B2 (en) * 1998-07-07 2007-01-30 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6849073B2 (en) * 1998-07-07 2005-02-01 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6178346B1 (en) * 1998-10-23 2001-01-23 David C. Amundson Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6840923B1 (en) * 1999-06-24 2005-01-11 Colocare Holdings Pty Limited Colostomy pump device
US6673090B2 (en) * 1999-08-04 2004-01-06 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue
US20020004644A1 (en) * 1999-11-22 2002-01-10 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US6858005B2 (en) * 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6692430B2 (en) * 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
US20060009715A1 (en) * 2000-04-13 2006-01-12 Khairkhahan Alexander K Method and apparatus for accessing the left atrial appendage
US20050125024A1 (en) * 2000-06-29 2005-06-09 Concentric Medical, Inc., A Delaware Corporation Systems, methods and devices for removing obstructions from a blood vessel
US20030009085A1 (en) * 2001-06-04 2003-01-09 Olympus Optical Co., Ltd. Treatment apparatus for endoscope
US20030035156A1 (en) * 2001-08-15 2003-02-20 Sony Corporation System and method for efficiently performing a white balance operation
US20030036698A1 (en) * 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
US20050014995A1 (en) * 2001-11-09 2005-01-20 David Amundson Direct, real-time imaging guidance of cardiac catheterization
US7166537B2 (en) * 2002-03-18 2007-01-23 Sarcos Investments Lc Miniaturized imaging device with integrated circuit connector system
US20070015964A1 (en) * 2002-05-30 2007-01-18 Eversull Christian S Apparatus and Methods for Coronary Sinus Access
US20060025787A1 (en) * 2002-06-13 2006-02-02 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US6679836B2 (en) * 2002-06-21 2004-01-20 Scimed Life Systems, Inc. Universal programmable guide catheter
US20050020914A1 (en) * 2002-11-12 2005-01-27 David Amundson Coronary sinus access catheter with forward-imaging
US6984232B2 (en) * 2003-01-17 2006-01-10 St. Jude Medical, Daig Division, Inc. Ablation catheter assembly having a virtual electrode comprising portholes
US20080009859A1 (en) * 2003-02-13 2008-01-10 Coaptus Medical Corporation Transseptal left atrial access and septal closure
US20050015048A1 (en) * 2003-03-12 2005-01-20 Chiu Jessica G. Infusion treatment agents, catheters, filter devices, and occlusion devices, and use thereof
US20050124969A1 (en) * 2003-03-18 2005-06-09 Fitzgerald Peter J. Methods and devices for retrieval of a medical agent from a physiological efferent fluid collection site
US6994094B2 (en) * 2003-04-29 2006-02-07 Biosense, Inc. Method and device for transseptal facilitation based on injury patterns
US20050027163A1 (en) * 2003-07-29 2005-02-03 Scimed Life Systems, Inc. Vision catheter
US7163534B2 (en) * 2003-10-30 2007-01-16 Medical Cv, Inc. Laser-based maze procedure for atrial fibrillation
US20070043338A1 (en) * 2004-03-05 2007-02-22 Hansen Medical, Inc Robotic catheter system and methods
US20060015096A1 (en) * 2004-05-28 2006-01-19 Hauck John A Radio frequency ablation servo catheter and method
US20060009737A1 (en) * 2004-07-12 2006-01-12 Whiting James S Methods and devices for transseptal access
US20060025651A1 (en) * 2004-07-29 2006-02-02 Doron Adler Endoscope electronics assembly
US20060030844A1 (en) * 2004-08-04 2006-02-09 Knight Bradley P Transparent electrode for the radiofrequency ablation of tissue
US20090054803A1 (en) * 2005-02-02 2009-02-26 Vahid Saadat Electrophysiology mapping and visualization system
US20100004506A1 (en) * 2005-02-02 2010-01-07 Voyage Medical, Inc. Tissue visualization and manipulation systems
US20080009747A1 (en) * 2005-02-02 2008-01-10 Voyage Medical, Inc. Transmural subsurface interrogation and ablation
US20080015445A1 (en) * 2005-02-02 2008-01-17 Voyage Medical, Inc. Tissue visualization device and method variations
US20080015569A1 (en) * 2005-02-02 2008-01-17 Voyage Medical, Inc. Methods and apparatus for treatment of atrial fibrillation
US20070016130A1 (en) * 2005-05-06 2007-01-18 Leeflang Stephen A Complex Shaped Steerable Catheters and Methods for Making and Using Them
US20070005019A1 (en) * 2005-06-24 2007-01-04 Terumo Kabushiki Kaisha Catheter assembly
US20070043413A1 (en) * 2005-08-16 2007-02-22 Eversull Christian S Apparatus and methods for delivering transvenous leads
US20100010311A1 (en) * 2005-10-25 2010-01-14 Voyage Medical, Inc. Methods and apparatus for efficient purging
US20080033290A1 (en) * 2005-10-25 2008-02-07 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
US20100004661A1 (en) * 2006-07-12 2010-01-07 Les Hopitaux Universitaires De Geneve Medical device for tissue ablation
US20080027464A1 (en) * 2006-07-26 2008-01-31 Moll Frederic H Systems and methods for performing minimally invasive surgical operations
US20080033241A1 (en) * 2006-08-01 2008-02-07 Ruey-Feng Peh Left atrial appendage closure
US20090030412A1 (en) * 2007-05-11 2009-01-29 Willis N Parker Visual electrode ablation systems
US20090030276A1 (en) * 2007-07-27 2009-01-29 Voyage Medical, Inc. Tissue visualization catheter with imaging systems integration
US20100004633A1 (en) * 2008-07-07 2010-01-07 Voyage Medical, Inc. Catheter control systems
US20120016221A1 (en) * 2010-02-12 2012-01-19 Voyage Medical, Inc. Image stabilization techniques and methods

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441136B2 (en) 2006-12-18 2019-10-15 Intuitive Surgical Operations, Inc. Systems and methods for unobstructed visualization and ablation
US10058380B2 (en) 2007-10-05 2018-08-28 Maquet Cordiovascular Llc Devices and methods for minimally-invasive surgical procedures
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US20140200568A1 (en) * 2008-10-06 2014-07-17 Virender K. Sharma Method and Apparatus for Tissue Ablation
US9561067B2 (en) * 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US20100191232A1 (en) * 2009-01-27 2010-07-29 Boveda Marco Medical Llc Catheters and methods for performing electrophysiological interventions
WO2010088301A1 (en) * 2009-01-27 2010-08-05 Boveda Marco Medical Llc Catheters and methods for performing electrophysiological interventions
US8728011B2 (en) 2011-07-22 2014-05-20 Michael D. Khoury Multi wire sheath
US10076238B2 (en) 2011-09-22 2018-09-18 The George Washington University Systems and methods for visualizing ablated tissue
US9084611B2 (en) 2011-09-22 2015-07-21 The George Washington University Systems and methods for visualizing ablated tissue
US9014789B2 (en) 2011-09-22 2015-04-21 The George Washington University Systems and methods for visualizing ablated tissue
US10342608B2 (en) 2012-10-18 2019-07-09 The Board Of Trustees Of The Leland Stanford Junior University Ablation catheter system and method for deploying same
US20160256216A1 (en) * 2013-03-11 2016-09-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses for pulmonary artery neuromodulation
US20150190616A1 (en) * 2014-01-07 2015-07-09 Aldo Antonio Salvestro Medical device including manipulable portion with connected elongate members
US10278590B2 (en) 2014-01-07 2019-05-07 Kardium Inc. Medical device including manipulable portion with connected elongate members
US9993160B2 (en) * 2014-01-07 2018-06-12 Kardium Inc. Medical device including manipulable portion with connected elongate members
US20160089172A1 (en) * 2014-09-30 2016-03-31 Boston Scientific Scimed, Inc. Devices and methods for applying suction
US10143517B2 (en) 2014-11-03 2018-12-04 LuxCath, LLC Systems and methods for assessment of contact quality
US10682179B2 (en) 2014-11-03 2020-06-16 460Medical, Inc. Systems and methods for determining tissue type
EP3328293A4 (en) * 2015-07-31 2019-11-27 University of Utah Research Foundation Devices, systems, and methods for imaging and treating a selected tissue
US10695126B2 (en) 2017-05-19 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue

Also Published As

Publication number Publication date
US20160157702A1 (en) 2016-06-09
US10441136B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
US10368951B2 (en) Robotic catheter system and methods
US20190159800A1 (en) Methods and systems for ablating tissue
US20170027415A1 (en) Assemblies for use with endoscopes and applications therfor
US20190175799A1 (en) Directed fluidics
US8607800B2 (en) Method for ablating body tissue
US20200054200A1 (en) Delivery of biological compounds to ischemic and/or infarcted tissue
US9839410B2 (en) Medical probe with fluid rotary joint
KR101437251B1 (en) Improved catheter
JP2017056199A (en) Convertible basket catheter
JP6205344B2 (en) Occlusion crossing device, imaging device and atherectomy device
US8083691B2 (en) Apparatus and method for sensing force
US7951069B2 (en) Methods and devices for minimally invasive cardiac surgery for atrial fibrillation
US9055959B2 (en) Methods and devices for ablation
EP0964644B9 (en) Systems for visualizing interior tissue regions
US9717501B2 (en) Methods and systems for occluding vessels during cardiac ablation including optional electroanatomical guidance
US6659981B2 (en) Medical device delivery catheter with distal locator
US7695452B2 (en) Method and apparatus for venous drainage and retrograde coronary perfusion
US8190238B2 (en) Robotic catheter system and methods
US7429261B2 (en) Atrial ablation catheter and method of use
US7588568B2 (en) Atrial ablation catheter and method for treating atrial fibrillation
EP1450664B1 (en) System for mapping and ablating body tissue of the interior region of the heart
US7963288B2 (en) Robotic catheter system
US6979290B2 (en) Apparatus and methods for coronary sinus access
US7344543B2 (en) Method and apparatus for epicardial left atrial appendage isolation in patients with atrial fibrillation
JP2015013170A (en) Imaging and tool for use with moving organ

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOYAGE MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAADAT, VAHID;ROTHE, CHRIS A.;PEH, RUEY-FENG;AND OTHERS;REEL/FRAME:020264/0571

Effective date: 20071029

AS Assignment

Owner name: TRIPLEPOINT CAPITAL LLC, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:VOYAGE MEDICAL, INC.;REEL/FRAME:029011/0077

Effective date: 20120921

AS Assignment

Owner name: INTUITIVE SURGICAL OPERATIONS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VOYAGE MEDICAL, INC.;REEL/FRAME:031030/0061

Effective date: 20130816

Owner name: VOYAGE MEDICAL, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRIPLEPOINT CAPITAL LLC;REEL/FRAME:031029/0949

Effective date: 20130816

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION