US20020005205A1 - Joint repair using mesenchymal stem cells - Google Patents

Joint repair using mesenchymal stem cells Download PDF

Info

Publication number
US20020005205A1
US20020005205A1 US09/841,413 US84141301A US2002005205A1 US 20020005205 A1 US20020005205 A1 US 20020005205A1 US 84141301 A US84141301 A US 84141301A US 2002005205 A1 US2002005205 A1 US 2002005205A1
Authority
US
United States
Prior art keywords
joint
stem cells
mesenchymal stem
joints
pharmaceutical carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/841,413
Other languages
English (en)
Inventor
Francis Barry
J. Murphy
Robert Deans
David Fink
Annemarie Moseley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesoblast International SARL
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26894885&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020005205(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/841,413 priority Critical patent/US20020005205A1/en
Assigned to OSIRIS THERAPEUTICS, INC. reassignment OSIRIS THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FINK, DAVID J., DEANS, ROBERT, MOSELEY, ANNEMARIE, BARRY, FRANCIS P., MURPHY, J. MARY
Publication of US20020005205A1 publication Critical patent/US20020005205A1/en
Priority to US12/132,290 priority patent/US20090041730A1/en
Priority to US13/402,444 priority patent/US20120148548A1/en
Priority to US13/743,004 priority patent/US9050178B2/en
Assigned to MESOBLAST INTERNATIONAL SÀRL reassignment MESOBLAST INTERNATIONAL SÀRL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OSIRIS THERAPEUTICS, INC.
Priority to US14/687,963 priority patent/US9814580B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3872Meniscus for implantation between the natural bone surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • This invention relates to the repair of joints, which have been injured and/or been subjected to disorders such as osteoarthritis. More particularly, this invention relates to the repair of joints to preventing or reducing subchondral bone sclerosis in a joint, and to preventing damage to the articular cartilage in a joint, and to preventing or reducing the formation of osteophytes in a joint, by administering mesenchymal stem cells to a joint which is in need of repair.
  • Osteoarthritis is one of the most common diseases of the joint. There is radiological evidence of the disease in approximately 70% of individuals over 65 years, with a slightly higher incidence in females. In the age range of 45-65 years, the incidence approaches 30% of the population (American Academy of Orthopedic Surgeons, 1992). Osteoarthritis is a degenerative disease involving erosion of the articular surface at the ends of bones, leading ultimately to complete loss of the cartilage surface and exposure of the subchondral bone. These changes accompany the onset of severe symptoms including loss of motion, stiffness and joint pain. Articular cartilage, once damaged, does not demonstrate significant self-repair. What little tissue repair occurs is typically fibrous in nature and is an inadequate functional true substitute for articular cartilage. A variety of methods have been investigated to enhance the healing of defects in articular cartilage, with varying degrees of success.
  • osteoarthritis is a major disease affecting a large proportion of the population, the causative factors are unknown. Knee injuries involving the meniscus or the anterior cruciate ligament (ACL) significantly increase the development of radiographic gonarthrosis. Meniscal injury alone results in a 20-fold increase in the risk of developing osteoarthritis. In patients that suffer injury to the ACL or other ligaments in combination with meniscus rupture, there is a very high likelihood that osteoarthritis of the knee will develop. (Gillquist and Messner, Sports Med., Vol. 27, pgs. 143-156 (1999)).
  • the adult goat has the advantage of being active and having a structural and tissue organization in the stifle joint that compares well with the human knee.
  • transection of the anterior cruciate ligament resulted in focal defects on the condylar cartilage (Ho, et al., Invest. Radiol., Vol. 27, pgs. 84-90, 1992).
  • surgical transection of the cruciate ligament failed to produce osteoarthritic changes after 8 months in young, confined goats (Rorvik and Tiege, Acta. Vet. Scand., Vol. 37, pgs. 265-272, 1996).
  • ACL resection resulted in osteophyte formation and other subchondral changes and fibrillation of the cartilage surface primarily on the anterior medial condyle.
  • Medial meniscectomy also induced osteophyte formation and other subchondral changes and cartilage lesions mainly confined to the middle medial condyle. These changes were more severe than those found as a result of ACL resection.
  • Medial meniscectomy in combination with ACL resection resulted in advanced osteoarthritic changes to both hard and soft tissue in the goat stifle after 12 weeks.
  • Cartilage on the unprotected medial tibial plateau also was affected although there is some degree of spontaneous osteoarthritis at this site.
  • a method of repairing a joint in an animal comprises administering to the joint mesenchymal stem cells.
  • the animal may be a mammal, and in particular, may be a human or non-human primate.
  • the mesenchymal stem cells may be autologous to the recipient, or may be allogeneic to the recipient.
  • the mesenchymal stem cells may be obtained by means known to those skilled in the art.
  • the mesenchymal stem cells may be obtained from a bone marrow aspirate, and then expanded in culture. Once expanded in culture, the mesenchymal stem cells are administered to the joint.
  • the mesenchymal stem cells may be administered to the joint in conjunction with an acceptable pharmaceutical carrier.
  • a suitable carrier includes, but are not limited to, hyaluronan, chemically modified hyaluronan, saline, phosphate buffered saline, chondroitin sulfate, glucosamine, mannosamine, proteoglycan, proteoglycan fragments, chitin, chitosan, or other polysaccharide or polymer material.
  • mesenchymal stem cells when administered to a joint, provide for the repair and stabilization of a damaged joint, where such damage is due to injury, inflammation, and/or a disease or disorder such as osteoarthritis, for example.
  • the mesenchymal stem cells need not be administered in a scaffold, although a scaffold can be employed.
  • the mesenchymal stem cells When administered to a joint, the mesenchymal stem cells differentiate into cartilaginous tissue, including meniscal tissue.
  • the mesenchymal stem cells when administered to the joint, respond to the destructive forces on the joint, due to the missing and/or damaged tissue, whereby the mesenchymal stem cells differentiate into fibrocartilage tissue.
  • the mesenchymal stem cells when administered to a joint, are capable of replacing missing and/or damaged tissue in the joint, including meniscal tissue.
  • the administration of mesenchymal stem cells to a joint provides for regeneration of cartilaginous tissue, including meniscal tissue, in the joint, thereby providing for repair and stabilization of the joint, as well as reducing pain in the joint and reducing subchondral bone sclerosis.
  • the mesenchymal stem cells may be administered to a joint to provide for the repair and stabilization of damaged, injured, or inflamed joints.
  • the damage, injury, or inflammation may be associated with a disease or disorder, such as osteoarthritis, rheumatoid arthritis, gout, reactive arthritis, psoriatic arthritis, or juvenile arthritis, for example. It also may result from an osteoarthrosis or chronic disease of the joint of noninflammatory character.
  • Joints which may be repaired and/or stabilized, and/or in which inflammation may be reduced, include, but are not limited to, knee joints, hip joints, shoulder joints, elbow joints, ankle joints, tarsal and metatarsal joints, wrist joints, spine, carpal and metacarpal joints, and the temporal mandibular joint.
  • the mesenchymal stem cells are administered in an amount effective to repair and/or stabilize a joint in the recipient.
  • the mesenchymal stem cells are administered in an amount ranging from about 1 ⁇ 10 4 to about 1.5 ⁇ 10 8 , preferably from about 1 ⁇ 10 5 to about 1 ⁇ 10 8 , more preferably from about 1 ⁇ 10 6 to about 1 ⁇ 10 7 .
  • the exact number of cells is dependent upon a variety of factors, including, but not limited to, the age, weight, and sex of the patient, the extent and severity of the damage or injury to the joint, or of the disease affecting the joint, the degree of exudation within the joint, the joint space, and other anatomical characteristics that will influence the delivery.
  • Injury to a specific joint may be determined by common medical practice, including but not limited to X-ray and MRI data, visualization by arthroscopy, and the review of a medical history and physical examination of the patient.
  • FIG. 1 Effect of MSCs on the formation of meniscal-like tissue in goat knees previously destabilized by a combination of ACL resection and medial meniscectomy.
  • Immature meniscal-like tissue black arrow was formed in the area between the medial condyle (MC) and medial tibial plateau (MTP) in knees, previously destabilized by ACL resection and medial meniscectomy and exposed to MSCs, of G151 (A), G154 (B) and G163 (C).
  • FIG. 2 Effect of MSCs on the development of cartilage lesions on the middle medial condyle in goat knees previously destabilized by a combination of ACL resection and medial meniscectomy.
  • Cartilage lesions graded as described in Table 2 and with scores indicated in Table 3 developed on the middle medial condyle of vehicle-only goats (G102, G127, and G143, top panel left, middle and right images, respectively).
  • MSCs injected along with the vehicle prevented the development of severe lesions at this site in several animals, for example, in the case of G151 (bottom panel, middle image) but not in all cases, as in the case of G166 (bottom panel, right image).
  • FIG. 3 Gross appearance of tissue 6 months post-surgery. Gross appearance of the tibial surfaces with menisci attached (A and C) and the anterior and middle medial condyle (B and D) of an osteoarthritic goat knee injected with HA (A and B) and with GFP-transduced MSCs plus HA (C and D). Arrows indicate the meniscal neotissue formed in a joint exposed to MSCs and to a synovial-like proliferation noted in a control goat knee. Asterisk indicates osteophyte formation.
  • FIG. 4 Histological Analysis of Meniscal Neotissue. Fluorescence micrographs of meniscal tissue show GFP-positive cells at the condylar surface of the meniscal neotissue (B and C). A negative micrograph was taken of the posterior of the cut tissue not exposed to the joint environment. Cells in the center of the tissue bound the anti-Type II collagen antibody (D through F). Original magnification was 200 ⁇ for A through E and 100 ⁇ for F.
  • HA-treated group intraarticular injection of sodium hyaluronan
  • H+MSC-treated group intraarticular injection of MSCs suspended in sodium hyaluronan
  • FIG. 6 Macroscopic appearance of tibial plateau of animals treated with allogeneic cells suspended in a solution of sodium hyaluronan either 1 or 6 weeks following complete medial meniscectomy. Control animals were treated by injection with sodium hyaluronan only. In the treated groups the neomeniscal tissue was detached from the tibial plateau and appeared to provide a bearing surface.
  • a total of 12 castrated male Western Cross goats were obtained that were confirmed to be negative for Q fever, brucellosis, and Caprine Arthritis Encephalitis.
  • MSCs mesenchymal stem cells
  • marrow was aspirated from the iliac crest of each goat and mesenchymal stem cells were isolated and cultured from the aspirates using the following procedure. Marrow was added to Complete Human MSC (hMSC) Medium (low-glucose DMEM containing 10% fetal bovine serum from selected lots, and Penicillin-Streptomycin at 10 mL per liter) and centrifuged to pellet the cells and remove the fat layer. The cells were washed with medium and plated on culture dishes at 100,000-400,000 cells/cm 2 . All preparations were cultured at 37° C. in a humidified atmosphere containing 5% CO 2 .
  • hMSC Complete Human MSC
  • DMEM low-glucose DMEM containing 10% fetal bovine serum from selected lots, and Penicillin-Streptomycin at 10 mL per liter
  • Non-adherent cells were removed 3-5 days after plating at the time of the first medium change, and the medium was changed twice weekly thereafter. When culture dishes became almost confluent, cells were detached with 0.05% (w/v) trypsin containing 1 mM EDTA for 5 min at 37° C. For subculturing, MSCs were plated in T-185 flasks at 0.5-1.0 ⁇ 10 6 cells per flask in 35 mL Complete hMSC Medium. MSCs not immediately used were cryopreserved by freezing in MSC Freezing Medium (40 ml of Complete MSC Medium, 5 ml of FBS, and 5 ml of DMSO).
  • Human MSCs may be isolated and cultured according to the method disclosed in U.S. Pat. No. 5,486,359. Human MSCs also may be purchased from BioWhittaker (Walkersville, Md.). The use of allogeneic MSCs is discussed in PCT Application No. PCT/US99/05351.
  • a lateral arthrotomy was performed and the anterior (cranial) cruciate ligament was excised from its attachment on the medial aspect of the lateral femoral condyle using a #11 blade. This proximal attachment was brought forward (anterior) and the entire cruciate ligament was excised from its tibial attachment. The caudal horn of the meniscus was grasped with hemostat and its axial (lateral) attachment was excised from its tibial attachment. Working from caudal to lateral, then cranial, the meniscus was excised from attachments until it was completely removed. The stifle was moved in a drawer test to assure that the entire cruciate ligament had been excised.
  • the joint capsule was closed using absorbable synthetic suture material (examples include Vicryl, PSD, Dexon, Maxon, etc.) in a simple continuous or cruciate pattern.
  • the lateral fascia was closed using 0 or 2-0 absorbable synthetic suture material in a continuous pattern.
  • the subcutaneous tissues were closed using 2-0 absorbable synthetic suture material in a subcuticular pattern.
  • the skin was closed using skin staples.
  • Analgesics were given twice a day for three days, post-operatively. The incision was monitored for signs of infection, including redness, exudate, and excessive swelling. The skin staples/sutures were removed in two weeks. After a recovery period of two weeks, all animals were exercised for five days a week until sacrifice. The exercise regimen consisted of a run approximately 90 m in length.
  • the plasmid pOT24 which includes a polynucleotide sequence encoding GFP protein, was transfected into the GP+E86 packaging cell line, and virus was produced by the modified GP+E86 cells. This virus then was transduced into the PG13 packaging cell line, and virus was produced by the modified PG13 cells.
  • MSCs cryopreserved at the end of primary culture, were thawed and transduced with retrovirus produced from the PG13 (mouse 3T3-based) packaging cell line containing a gibbon-ape envelope (Coffin et al, Retroviruses, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pgs. 71-119, 1997).
  • the virus carried the sequence for the enhanced green fluorescent protein of the jellyfish Aequorea victoria.
  • the standard transduction was performed as follows: goat mesenchymal stem cells were cultured at 37° C.
  • Vials containing the cryopreserved transduced goat MSCs were thawed rapidly at 37° C. and added to 40 ml of hMSC Complete Medium. The cells were centrifuged for 5 min at 1500 rpm and 20° C. and resuspended in 5 ml PBS. 50 ⁇ l cell suspension was removed for determination of viable cell count using Trypan Blue. A total of 10 ⁇ 10 6 cells were washed with 20 ml PBS twice and resuspended in 5 ml of 4 mg/ml Hyalartin V (Pharmacia) using a 12-ml syringe with an 18 G needle attached. The cell suspension was aspirated into the syringe for injection into the goat knee and 1-mI PBS added to the tube for washing.
  • the goats were weighed and blood was collected to obtain serum.
  • the knee area was shaved and the goats were anesthetized and intubated.
  • the goat was placed in dorsal recumbency with the knee to be injected held up.
  • the area around the knee was sterilized and the knee was flexed and extended 20 times to circulate synovial fluid.
  • the knee placed in 70-90° flexion, as much fluid as possible was aspirated from the joint and retained for analysis.
  • 10-20 ml PBS was injected into the joint laterally.
  • An 18 G needle was inserted just proximal to the meniscus and posterior to the lateral edge of the patellar ligament, through the triangle formed by the epicondyle of the femur, the meniscal/tibial plateau and the notch formed by their junction. After flexing and extending 20 times the lavage was aspirated from the joint and retained.
  • a three-way stopcock with an 18 G needle attached was inserted into the triangle described above on the medial side of the joint, just medial to the patellar ligament. With the stopcock in the open position, the syringe containing the cell suspension prepared as described above was attached to the stopcock and the cell suspension injected into the joint capsule. Any suspension remaining in the stopcock was washed with 1 ml PBS. The joint was flexed and extended 20 times and the goat was maintained in this position for at least 10 min before recovery and transfer to the holding pen.
  • Group 1 and 2 goats were sacrificed six weeks after injection of transduced cells into the joint.
  • the popliteal and inguinal lymph nodes were collected from both operated and contralateral control limbs before disarticulation at the hip. Radiographs were taken and synovial fluid was collected without lavage and also after a 10 ml PBS lavage. After aspirating the lavage the joint was dissected and the following tissues collected: joint/synovial capsule lining, fat pad, extensor digitorum longus tendon, posterior cruciate ligament and lateral meniscus. Any repair medial meniscal tissue was also collected.
  • the selected areas were located on the protected and unprotected sections of the medial and lateral tibial plateaus, the anterior, middle and posterior sections of the medial condyle, the middle and posterior sections of the lateral condyle, the lateral, central and medial sections of the trochlear ridge and on the patella.
  • cartilage samples from the middle and lateral medial condyles, and from the unprotected area of the medial and lateral tibial plateaus were obtained. Portions of all tissues collected were snap frozen for molecular analysis and fixed in formalin for histological analysis. The joints also were fixed in formalin.
  • Radiography was performed prior to initial surgery, at injection, and at sacrifice.
  • FIGS. 1A, 1B, and 1 C show the appearance and location of the repair tissue for G151, G154 and G163, respectively. In these cases the newly regenerated tissue occupied a slightly posterior location in the joint because of the altered mechanical environment. In the two cases where the tissue was most organized and not as posterior on the joint (G154 and G163), there appeared to be some protection of the cartilage on the middle medial condyle and less osteophyte formation on the femoral condyle and groove indicating less sever osteoarthritis.
  • FIG. 2 shows the degree of protection afforded by the meniscal-like tissue in G151 and G154 (bottom panel).
  • Cartilage damage was significantly less in these joints, which had been injected with MSCs, compared to that found in vehicle-only joints (FIG. 2, top panel).
  • Osteophyte formation on the medial aspect of the medial condyle also was significantly less in these MSC injected joints compared to ‘Vehicle Only’ goats (FIG. 2).
  • Limited fibrous, poorly organized, meniscal repair was observed in 2 of 3 ‘Vehicle Only’ goats on the anterior aspect of the joint. In neither case was the mass or degree of organization as significant as that observed in the ‘+Cells’ group, and there was no apparent protection of the joint as indicated by the Cartilage Score (Table 4).
  • FIG. 3B shows the appearance of the medial condyle of a 6-month control goat with complete degradation of articular cartilage across the entire surface and repopulation of the area with osteophyte. Protection of this surface was noted in test joints exposed to MSCs (FIG. 3D). This effect was not observed in the vehicle only, control joints. Other changes such as joint effusion, osteophyte formation on the femoral condyle and joint broadening also were reduced, consistent with the protective effect of the MSC treatment.
  • One application of the discovery is the reduction of pain by way of meniscal tissue regeneration between opposing bone or osteochondral surfaces.
  • Another application of the above results is to forestall or eliminate the need for joint replacement. Still another application is the reduction of inflammation in a damaged or diseased joint, thus leading to the reduction of pain and to the restoration of function of the joint.
  • Osteophytes were particularly prominent in the control group (FIG. 5, left panel) and these are marked with an arrow.
  • the treated group there was significantly less osteophyte formation associated with those joints where there was evidence of meniscal regeneration (FIG. 5, middle panel) and the condyles had a more symmetrical appearance, suggesting that they may have been less exposed to abnormal mechanical forces.
  • the medial condyles from 2 of the 6 treated animals showed evidence of significant osteophyte formation (FIG. 5, right panel, marked with arrow). In these joints there was less evidence of formation of neomeniscal tissue.
  • the exercise regimen began two weeks after injection and was maintained until sacrifice at 12 weeks following the surgical procedure. Cranial to caudal and lateral radiographs of both stifles were taken prior to the initial surgery and at sacrifice.
  • Exercise The exercise regimen consisted of 12 runs on a circular track of outside circumference of 28.6 m and inside circumference of 16.3 m. This was carried out once a day, five days per week.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Hematology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Dermatology (AREA)
  • Pain & Pain Management (AREA)
  • Neurosurgery (AREA)
US09/841,413 2000-04-25 2001-04-24 Joint repair using mesenchymal stem cells Abandoned US20020005205A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/841,413 US20020005205A1 (en) 2000-04-25 2001-04-24 Joint repair using mesenchymal stem cells
US12/132,290 US20090041730A1 (en) 2000-04-25 2008-06-03 Joint Repair Using Mesenchymal Stem Cells
US13/402,444 US20120148548A1 (en) 2000-04-25 2012-02-22 Joint Repair Using Mesenchymal Stem Cells
US13/743,004 US9050178B2 (en) 2000-04-25 2013-01-16 Joint repair using mesenchymal stem cells
US14/687,963 US9814580B2 (en) 2000-04-25 2015-04-16 Joint repair using mesenchymal stem cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19954900P 2000-04-25 2000-04-25
US23610600P 2000-09-28 2000-09-28
US09/841,413 US20020005205A1 (en) 2000-04-25 2001-04-24 Joint repair using mesenchymal stem cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/132,290 Continuation US20090041730A1 (en) 2000-04-25 2008-06-03 Joint Repair Using Mesenchymal Stem Cells

Publications (1)

Publication Number Publication Date
US20020005205A1 true US20020005205A1 (en) 2002-01-17

Family

ID=26894885

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/841,413 Abandoned US20020005205A1 (en) 2000-04-25 2001-04-24 Joint repair using mesenchymal stem cells
US12/132,290 Abandoned US20090041730A1 (en) 2000-04-25 2008-06-03 Joint Repair Using Mesenchymal Stem Cells
US13/402,444 Abandoned US20120148548A1 (en) 2000-04-25 2012-02-22 Joint Repair Using Mesenchymal Stem Cells
US13/743,004 Expired - Fee Related US9050178B2 (en) 2000-04-25 2013-01-16 Joint repair using mesenchymal stem cells
US14/687,963 Expired - Fee Related US9814580B2 (en) 2000-04-25 2015-04-16 Joint repair using mesenchymal stem cells

Family Applications After (4)

Application Number Title Priority Date Filing Date
US12/132,290 Abandoned US20090041730A1 (en) 2000-04-25 2008-06-03 Joint Repair Using Mesenchymal Stem Cells
US13/402,444 Abandoned US20120148548A1 (en) 2000-04-25 2012-02-22 Joint Repair Using Mesenchymal Stem Cells
US13/743,004 Expired - Fee Related US9050178B2 (en) 2000-04-25 2013-01-16 Joint repair using mesenchymal stem cells
US14/687,963 Expired - Fee Related US9814580B2 (en) 2000-04-25 2015-04-16 Joint repair using mesenchymal stem cells

Country Status (10)

Country Link
US (5) US20020005205A1 (ja)
EP (1) EP1276486B2 (ja)
JP (4) JP5090604B2 (ja)
AT (1) ATE489101T1 (ja)
AU (2) AU2001257236B2 (ja)
CA (1) CA2405345C (ja)
DE (1) DE60143517D1 (ja)
ES (1) ES2353061T5 (ja)
PT (1) PT1276486E (ja)
WO (1) WO2001080865A2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030109038A1 (en) * 2001-12-07 2003-06-12 Thies R. Scott Chondrocyte precursors derived from human embryonic stem cells
US20040241144A1 (en) * 2001-08-14 2004-12-02 Christian Kaps Cell compositions for use in the treatment of osteo-arthrosis, and methods for producing the same
US20050130121A1 (en) * 2003-12-16 2005-06-16 3M Innovative Properties Company Analysis of chemically crosslinked cellular samples
US20070274960A1 (en) * 2003-10-08 2007-11-29 Vet-Stem Inc. Methods of Preparing and Using Novel Stem Cell Compositions and Kits Comprising the Same
US20080260703A1 (en) * 2007-04-23 2008-10-23 Medistem Labortories Treatment of Insulin Resistance and Diabetes
US20090035257A1 (en) * 2005-08-25 2009-02-05 Repair Technologies, Inc. Devices, compositions and methods for the protection and repair of cells and tissues
US20100150888A1 (en) * 2008-11-14 2010-06-17 Howmedica Osteonics Corp. Cells for joint fluid
US20100260721A1 (en) * 2006-01-18 2010-10-14 University Of Leeds Enrichment of Cells
US20110027236A1 (en) * 2008-02-15 2011-02-03 Bone Therapeutics Pharmaceutical composition for use in the treatment or prevention of osteoarticular diseases
US20110177492A1 (en) * 2005-06-16 2011-07-21 3M Innovative Properties Company Method of classifying chemically crosslinked cellular samples using mass spectra
US20120276067A1 (en) * 2009-10-13 2012-11-01 Allocure, Inc. Assay for the Prediction of Therapeutic Effectiveness of Mesenchymal Stromal Cells, and Methods of Using Same
US20130084268A1 (en) * 2008-02-15 2013-04-04 Bone Therapeutics Pharmaceutical composition for use in the treatment and/or the prevention of osteoarticular diseases
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
US8709401B2 (en) 2011-02-25 2014-04-29 Howmedica Osteonics Corp. Primed stem cells and uses thereof to treat inflammatory conditions in joints
US20140205574A1 (en) * 2013-01-22 2014-07-24 Animal Cell Therapies, Inc. Use of stem cells or progenitor cells to treat, delay, prevent, or repair tearing of cruciate ligaments
US20170173084A1 (en) * 2014-02-12 2017-06-22 Replicel Life Sciences Inc. Compositions and methods for treating bone, joints and cartilage
US10272118B2 (en) 2013-02-12 2019-04-30 Replicel Life Sciences Inc. Compositions and methods for treating and repairing tendons
US10507266B2 (en) 2013-08-01 2019-12-17 Two Cells Co., Ltd. Cartilage-damage treatment agent and method for producing same

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2353061T5 (es) * 2000-04-25 2014-04-07 Osiris Therapeutics, Inc. Reparación de articulaciones utilizando células madre mesenquimatosas
AR047712A1 (es) * 2002-09-07 2006-02-15 Royal Veterinary College Metodo de tratamiento de una lesion de tejido esqueletico blando natural administrando una composicion de celulas madre mesenquimatosas
AU2015252160A1 (en) * 2004-03-22 2015-11-26 Mesoblast International Sarl Mesenchymal stem cells and uses therefor
AU2012205269B2 (en) * 2004-03-22 2015-08-27 Mesoblast International Sarl Mesenchymal stem cells and uses therefor
JP2007530543A (ja) 2004-03-22 2007-11-01 オシリス セラピューティクス,インコーポレイテッド 間葉幹細胞及びその使用法
ES2643076T3 (es) * 2004-03-22 2017-11-21 Mesoblast International Sàrl Células madre mesenquimales y sus usos
CA2644922C (en) * 2006-03-07 2019-07-23 Geeta Shroff Compositions comprising human embryonic stem cells and their derivatives, methods of use, and methods of preparation
US9095562B2 (en) * 2007-07-05 2015-08-04 Regenerative Sciences, Inc. Methods and compositions for optimized expansion and implantation of mesenchymal stem cells
TR201821239T4 (tr) * 2007-08-06 2019-01-21 Mesoblast Inc Bağ dokusu hastalıklarının tedavisinde kullanım için stro-1 parlak hücreler.
KR101688449B1 (ko) * 2007-08-06 2016-12-21 메소블라스트, 아이엔씨. 생체 내에서 결합 조직을 생성, 복구 및/또는 유지하는 방법
AU2013203054B2 (en) * 2007-08-06 2017-05-18 Mesoblast, Inc. Methods of generating, repairing and/or maintaining connective tissue in vivo
US20110200642A1 (en) 2007-12-19 2011-08-18 Regenerative Sciences, Llc Compositions and Methods to Promote Implantation and Engrafment of Stem Cells
EP2090308A1 (en) * 2008-02-15 2009-08-19 Bone Therapeutics Pharmaceutical composition for the treatment or prevention of osteoarticular diseases
WO2009114785A2 (en) 2008-03-14 2009-09-17 Regenerative Sciences, Inc. Compositions and methods for cartilage repair
US8858932B2 (en) 2008-06-25 2014-10-14 Mesoblast, Inc. Repair and/or reconstitution of invertebral discs
US9192695B2 (en) 2008-11-20 2015-11-24 Allosource Allografts combined with tissue derived stem cells for bone healing
CN102325536A (zh) 2008-12-05 2012-01-18 再生科学有限责任公司 促进无血管组织修复的方法和组合物
US9277999B2 (en) 2009-02-27 2016-03-08 University of Pittsburgh—of the Commonwealth System of Higher Education Joint bioscaffolds
IT1394570B1 (it) * 2009-07-02 2012-07-05 Fidia Farmaceutici Materiale biologico adatto per la terapia dell osteoartrosi del danno dei legamenti e per il trattamento delle patologie delle articolazioni.
US9113950B2 (en) 2009-11-04 2015-08-25 Regenerative Sciences, Llc Therapeutic delivery device
US20140286911A1 (en) 2013-03-15 2014-09-25 Allosource Cell repopulated collagen matrix for soft tissue repair and regeneration
BR112013004917A2 (pt) * 2010-08-31 2016-09-20 Cook General Biotechnology Llc terapias de células tronco alogênicas sistêmicas para tratamento de doenças em animais.
PL2726603T3 (pl) 2011-06-29 2020-10-05 Biorestorative Therapies, Inc. Kompozycje i sposoby dotyczące brązowych komórek tłuszczowych
GB201202319D0 (en) 2012-02-10 2012-03-28 Orbsen Therapeutics Ltd Stromal stem cells
EP2958523B1 (en) 2013-02-22 2020-04-22 AlloSource Cartilage mosaic compositions and methods
US9168140B2 (en) 2013-03-15 2015-10-27 Allosource Perforated osteochondral allograft compositions
US20150010606A1 (en) * 2013-07-08 2015-01-08 Arthrex, Inc. Intra-articular injection and implant attachment of molecule consisting of lubricin and extracellular superoxide dismutase or hyaluronic acid and extracellular superoxide dismutase
US9597099B2 (en) * 2013-07-29 2017-03-21 Covidien Lp Energy-based treatment methods for refractory gout
EP3099335A1 (en) 2014-01-28 2016-12-07 Medivation Technologies, Inc. Targeted therapeutics
EP3074506A1 (en) 2014-02-12 2016-10-05 National University of Ireland, Galway Selection and use of stem cells
RU2559089C1 (ru) * 2014-04-22 2015-08-10 Государственное автономное учреждение здравоохранения "Республиканская клиническая больница Министерства здравоохранения Республики Татарстан" Способ восстановления дефектов гиалинового хряща суставных поверхностей суставов конечностей
US10918669B2 (en) 2014-07-25 2021-02-16 Recellerate, Inc. Methods of treating exercise-induced pulmonary hemorrhage
TWI566774B (zh) * 2014-10-06 2017-01-21 佛教慈濟醫療財團法人花蓮慈濟醫院 治療關節疾病的組成物及其方法
RU2644650C2 (ru) 2014-12-01 2018-02-13 Общество с ограниченной ответственностью "Т-Хелпер Клеточные Технологии" Материал стволовых клеток и способ его получения
WO2017019832A1 (en) 2015-07-29 2017-02-02 Medivation Technologies, Inc. Methods and compositions using repair cells and cationic dyes
KR101720329B1 (ko) 2015-12-11 2017-03-28 주식회사 에이티앤씨 무선통신 단말기용 nfc 및 mst 공용 안테나 장치
RU2708329C2 (ru) 2016-05-31 2019-12-05 Общество с ограниченной ответственностью "Т-Хелпер Клеточные Технологии" Материал стволовых клеток, композиции и способы применения
CN106075585B (zh) * 2016-07-08 2019-06-21 福建师范大学 一种基于人工肌腱支架材料的组织工程化人工肌腱移植物的制备方法
EP3522984A1 (en) * 2016-10-07 2019-08-14 Cytori Therapeutics, Inc. Regenerative cell therapy for musculoskeletal disorders
US9980984B2 (en) 2016-10-13 2018-05-29 Kenneth Allen Pettine Treatment of inflammation of osteoarthritic knees with mesenchymal stem cells
WO2018092769A1 (ja) 2016-11-15 2018-05-24 株式会社カネカ 胎児付属物に由来する間葉系幹細胞を含む細胞集団とその製造方法、及び医薬組成物
PT3573630T (pt) 2017-01-27 2021-05-06 Xintela Ab Prevenção e tratamento de danos ou doenças na cartilagem e no osso
US20200368291A1 (en) 2017-12-28 2020-11-26 Kaneka Corporation Cell population including adhesive stem cells, production method therefor and pharmaceutical composition
EP3720948A1 (en) 2018-03-12 2020-10-14 Universidade do Porto Compositions for use in the treatment of musculoskeletal conditions and methods for producing the same leveraging the synergistic activity of two different types of mesenchymal stromal/stem cells
JPWO2020251020A1 (ja) 2019-06-14 2020-12-17
US11583402B2 (en) 2019-07-16 2023-02-21 William Baumgartl Method for treating joint pain
CA3149572A1 (en) * 2019-08-30 2021-03-04 Ashlee WATTS Xenogen-free mesenchymal stem cell compositions and methods of use
EP4065692A4 (en) * 2019-11-26 2023-06-14 Cells For Cells S.A. MESENCHYMATOUS STEM CELLS WITH ENHANCED THERAPEUTIC PROPERTIES

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL68218A (en) * 1983-03-23 1985-12-31 Univ Ramot Compositions for cartilage repair comprising embryonal chondrocytes
US5053050A (en) * 1988-04-29 1991-10-01 Samuel Itay Compositions for repair of cartilage and bone
US5399493A (en) * 1989-06-15 1995-03-21 The Regents Of The University Of Michigan Methods and compositions for the optimization of human hematopoietic progenitor cell cultures
FR2667788B1 (fr) * 1990-10-12 1994-12-02 Oreal Utilisation d'hydroxyalkylamino-9,10-anthraquinones pour la teinture de fibres keratiniques humaines, composition cosmetique les contenant en association avec des colorants azouiques et nitres.
US5486359A (en) * 1990-11-16 1996-01-23 Osiris Therapeutics, Inc. Human mesenchymal stem cells
US5206023A (en) * 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
US5326357A (en) * 1992-03-18 1994-07-05 Mount Sinai Hospital Corporation Reconstituted cartridge tissue
US5736396A (en) * 1995-01-24 1998-04-07 Case Western Reserve University Lineage-directed induction of human mesenchymal stem cell differentiation
US5906934A (en) * 1995-03-14 1999-05-25 Morphogen Pharmaceuticals, Inc. Mesenchymal stem cells for cartilage repair
US5716616A (en) * 1995-03-28 1998-02-10 Thomas Jefferson University Isolated stromal cells for treating diseases, disorders or conditions characterized by bone defects
EP0868505B1 (en) * 1995-11-16 2005-02-02 Case Western Reserve University In vitro chondrogenic induction of human mesenchymal stem cells
US6482231B1 (en) * 1995-11-20 2002-11-19 Giovanni Abatangelo Biological material for the repair of connective tissue defects comprising mesenchymal stem cells and hyaluronic acid derivative
PT2111876E (pt) * 1995-12-18 2011-12-23 Angiodevice Internat Gmbh Composições de polímero reticulado e seus métodos de utilização
US6200606B1 (en) * 1996-01-16 2001-03-13 Depuy Orthopaedics, Inc. Isolation of precursor cells from hematopoietic and nonhematopoietic tissues and their use in vivo bone and cartilage regeneration
US5842477A (en) * 1996-02-21 1998-12-01 Advanced Tissue Sciences, Inc. Method for repairing cartilage
CA2288690A1 (en) * 1997-05-13 1998-11-19 Osiris Therapeutics, Inc. Osteoarthritis cartilage regeneration using human mesenchymal stem cells
CA2212300A1 (en) * 1997-08-04 1999-02-04 Abdellatif Chenite In vitro or in vivo gelfying chitosan and therapeutic uses thereof
US6082364A (en) * 1997-12-15 2000-07-04 Musculoskeletal Development Enterprises, Llc Pluripotential bone marrow cell line and methods of using the same
JP4441115B2 (ja) * 1998-03-13 2010-03-31 オシリス セラピューティクス,インコーポレイテッド ヒト非自己間葉幹細胞を使用する方法と利用
IT1299488B1 (it) * 1998-06-01 2000-03-16 Afatec S R L Tubo corrugato bimetallico e procedimento per la sua realizzazione
AU3856400A (en) * 1999-02-12 2000-08-29 Collagenesis, Inc. Injectable collagen-based system for delivery of cells or therapeutic agents
US6716616B1 (en) * 1999-09-28 2004-04-06 Lexicon Genetics Incorporated Human kinase proteins and polynucleotides encoding the same
ES2353061T5 (es) * 2000-04-25 2014-04-07 Osiris Therapeutics, Inc. Reparación de articulaciones utilizando células madre mesenquimatosas

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241144A1 (en) * 2001-08-14 2004-12-02 Christian Kaps Cell compositions for use in the treatment of osteo-arthrosis, and methods for producing the same
US7906330B2 (en) 2001-12-07 2011-03-15 Geron Corporation Two cell population comprising chondrocyte precursors and human embryonic stem cells
US20030109038A1 (en) * 2001-12-07 2003-06-12 Thies R. Scott Chondrocyte precursors derived from human embryonic stem cells
US20060148077A1 (en) * 2001-12-07 2006-07-06 Thies R S Chondrocyte precursors derived from human embryonic stem cells
US8546101B2 (en) 2001-12-07 2013-10-01 Geron Corporation Compound screening using chondrocytes derived from primate pluripotent stem cells
US20110129867A1 (en) * 2001-12-07 2011-06-02 Thies R Scott Compound Screening Using Chondrocytes
US20070274960A1 (en) * 2003-10-08 2007-11-29 Vet-Stem Inc. Methods of Preparing and Using Novel Stem Cell Compositions and Kits Comprising the Same
US11129855B2 (en) 2003-10-08 2021-09-28 Vetstem Biopharma, Inc. Methods of preparing and using novel stem cell compositions and kits comprising the same
US10668105B2 (en) 2003-10-08 2020-06-02 Vetstem Biopharma, Inc. Methods of preparing and using novel stem cell compositions and kits comprising the same
US9453202B2 (en) 2003-10-08 2016-09-27 Vet-Stem, Inc. Methods of preparing and using novel stem cell compositions and kits comprising the same
US8012693B2 (en) * 2003-12-16 2011-09-06 3M Innovative Properties Company Analysis of chemically crosslinked cellular samples
US20050130121A1 (en) * 2003-12-16 2005-06-16 3M Innovative Properties Company Analysis of chemically crosslinked cellular samples
US8399203B2 (en) 2003-12-16 2013-03-19 3M Innovative Properties Company Analysis of chemically crosslinked cellular samples
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
US20110177492A1 (en) * 2005-06-16 2011-07-21 3M Innovative Properties Company Method of classifying chemically crosslinked cellular samples using mass spectra
EP2267030A1 (en) 2005-08-25 2010-12-29 Repair Technologies, Inc. Devices, compositions and methods for the protection and repair of cells and tissues
US20090035257A1 (en) * 2005-08-25 2009-02-05 Repair Technologies, Inc. Devices, compositions and methods for the protection and repair of cells and tissues
US20100260721A1 (en) * 2006-01-18 2010-10-14 University Of Leeds Enrichment of Cells
US20080260703A1 (en) * 2007-04-23 2008-10-23 Medistem Labortories Treatment of Insulin Resistance and Diabetes
US9446065B2 (en) * 2008-02-15 2016-09-20 Bone Therapeutics Pharmaceutical composition for use in the treatment and/or the prevention of osteoarticular diseases
US9872876B2 (en) * 2008-02-15 2018-01-23 Bone Therapeutics Pharmaceutical composition for use in the treatment and/or the prevention of osteoarticular diseases
US20110027236A1 (en) * 2008-02-15 2011-02-03 Bone Therapeutics Pharmaceutical composition for use in the treatment or prevention of osteoarticular diseases
US20130084268A1 (en) * 2008-02-15 2013-04-04 Bone Therapeutics Pharmaceutical composition for use in the treatment and/or the prevention of osteoarticular diseases
US9415036B2 (en) * 2008-02-15 2016-08-16 Bone Therapeutics Pharmaceutical composition for use in the treatment or prevention of osteoarticular diseases
US20170056434A1 (en) * 2008-02-15 2017-03-02 Bone Therapeutics Pharmaceutical composition for use in the treatment and/or the prevention of osteoarticular diseases
US8343480B2 (en) 2008-11-14 2013-01-01 Howmedica Osteonics Corp. Administration of stem or progenitor cells to a joint to enhance recovery from joint surgery
US20100150888A1 (en) * 2008-11-14 2010-06-17 Howmedica Osteonics Corp. Cells for joint fluid
US20120276067A1 (en) * 2009-10-13 2012-11-01 Allocure, Inc. Assay for the Prediction of Therapeutic Effectiveness of Mesenchymal Stromal Cells, and Methods of Using Same
US8709401B2 (en) 2011-02-25 2014-04-29 Howmedica Osteonics Corp. Primed stem cells and uses thereof to treat inflammatory conditions in joints
US9457051B2 (en) * 2013-01-22 2016-10-04 Animal Cell Therapies, Inc. Use of stem cells or progenitor cells to treat, delay, prevent, or repair tearing of cruciate ligaments
US20140205574A1 (en) * 2013-01-22 2014-07-24 Animal Cell Therapies, Inc. Use of stem cells or progenitor cells to treat, delay, prevent, or repair tearing of cruciate ligaments
US10272118B2 (en) 2013-02-12 2019-04-30 Replicel Life Sciences Inc. Compositions and methods for treating and repairing tendons
US10507266B2 (en) 2013-08-01 2019-12-17 Two Cells Co., Ltd. Cartilage-damage treatment agent and method for producing same
US20170173084A1 (en) * 2014-02-12 2017-06-22 Replicel Life Sciences Inc. Compositions and methods for treating bone, joints and cartilage
US10500233B2 (en) * 2014-02-12 2019-12-10 Replicel Life Sciences Inc. Compositions and methods for treating bone, joints and cartilage

Also Published As

Publication number Publication date
US20150216904A1 (en) 2015-08-06
ES2353061T5 (es) 2014-04-07
US20120148548A1 (en) 2012-06-14
US20090041730A1 (en) 2009-02-12
AU2001257236B2 (en) 2006-03-09
US9814580B2 (en) 2017-11-14
EP1276486A2 (en) 2003-01-22
DE60143517D1 (de) 2011-01-05
PT1276486E (pt) 2011-02-07
JP5090604B2 (ja) 2012-12-05
US20130131804A1 (en) 2013-05-23
JP5792686B2 (ja) 2015-10-14
EP1276486B2 (en) 2014-03-05
WO2001080865A9 (en) 2002-12-27
EP1276486B8 (en) 2011-01-19
JP6382262B2 (ja) 2018-08-29
ATE489101T1 (de) 2010-12-15
JP2016216487A (ja) 2016-12-22
ES2353061T3 (es) 2011-02-25
EP1276486B1 (en) 2010-11-24
JP2004507454A (ja) 2004-03-11
JP2012210437A (ja) 2012-11-01
WO2001080865A3 (en) 2002-04-11
CA2405345C (en) 2012-09-18
US9050178B2 (en) 2015-06-09
CA2405345A1 (en) 2001-11-01
JP2015128633A (ja) 2015-07-16
WO2001080865A2 (en) 2001-11-01
AU5723601A (en) 2001-11-07

Similar Documents

Publication Publication Date Title
US9814580B2 (en) Joint repair using mesenchymal stem cells
AU2001257236A1 (en) Joint repair using mesenchymal stem cells
Murphy et al. Stem cell therapy in a caprine model of osteoarthritis
Al Faqeh et al. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model
Arzi et al. Cartilage immunoprivilege depends on donor source and lesion location
Caminal et al. Use of a chronic model of articular cartilage and meniscal injury for the assessment of long-term effects after autologous mesenchymal stromal cell treatment in sheep
KR102270617B1 (ko) 조직 손상 및 질환을 치료 및 예방하기 위한 조성물 및 방법
Awad et al. Meta-analysis and evidence base for the efficacy of autologous bone marrow mesenchymal stem cells in knee cartilage repair: methodological guidelines and quality assessment
Keller et al. Preclinical safety study of a combined therapeutic bone wound dressing for osteoarticular regeneration
AU2006200478B2 (en) Joint repair using mesenchymal stem cells
Rodríguez-Merchán Intra-articular injections of mesenchymal stem cells for knee osteoarthritis
Mardones et al. BM-MSCs differentiated to chondrocytes for treatment of full-thickness cartilage defect of the knee
Lu et al. Low-intensity pulsed ultrasound stimulation for tendon-bone healing: a dose-dependent study
Yoshida et al. Treatment of partial growth arrest using an in vitro-generated scaffold-free tissue-engineered construct derived from rabbit synovial mesenchymal stem cells
Qu et al. Biological characteristics and effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rats
Aratikatla et al. Wharton's jelly and osteoarthritis of the knee.
Hu et al. Enhanced treatment of articular cartilage defect of the knee by intra‐articular injection of Bcl‐xL‐engineered mesenchymal stem cells in rabbit model
Fan et al. Study on feasibility of the partial meniscal allograft transplantation
US20210268031A1 (en) Cartilage Regeneration by Synovial Fluid-Derived Stem Cells and Their Derivatives
Papakostas et al. Single-stage autologous chondrocyte coimplantation on a hyaluronan scaffold for the treatment of knee cartilage lesions: a case series of 16 patients with clinical outcomes up to 5 years
Murphy et al. Injected mesenchymal stem cells stimulate meniscal repair and protection of articular cartilage
Benea Innovative Materials and Techniques for Osteochondral Repair
TREAT WHICH LESIONS SHOULD WE TREAT?
Reissis A novel method of articular cartilage repair
Allen et al. The response to surgical excision of the central one-third of the pateliar tendon: a radiographic study in goats

Legal Events

Date Code Title Description
AS Assignment

Owner name: OSIRIS THERAPEUTICS, INC., MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARRY, FRANCIS P.;MURPHY, J. MARY;DEANS, ROBERT;AND OTHERS;REEL/FRAME:011957/0200;SIGNING DATES FROM 20010529 TO 20010614

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: MESOBLAST INTERNATIONAL S?RL, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSIRIS THERAPEUTICS, INC.;REEL/FRAME:031533/0828

Effective date: 20131010

Owner name: MESOBLAST INTERNATIONAL SARL, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSIRIS THERAPEUTICS, INC.;REEL/FRAME:031533/0828

Effective date: 20131010