US20010045628A1 - Frame for semiconductor package - Google Patents

Frame for semiconductor package Download PDF

Info

Publication number
US20010045628A1
US20010045628A1 US09/850,211 US85021101A US2001045628A1 US 20010045628 A1 US20010045628 A1 US 20010045628A1 US 85021101 A US85021101 A US 85021101A US 2001045628 A1 US2001045628 A1 US 2001045628A1
Authority
US
United States
Prior art keywords
frame
semiconductor
lead
leads
semiconductor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/850,211
Inventor
Chikao Ikenaga
Kouji Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Assigned to DAINIPPON PRINTING CO., LTD reassignment DAINIPPON PRINTING CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKENAGA, CHIKAO, TOMITA, KOUJI
Publication of US20010045628A1 publication Critical patent/US20010045628A1/en
Priority to US10/340,943 priority Critical patent/US6897549B2/en
Priority to US11/017,896 priority patent/US7247515B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a frame for semiconductor package in which a semiconductor device is mounted on a lead frame and the outside thereof, particularly the upper surface of semiconductor device is encapsulated with molding compound.
  • FIG. 1 is a sectional view of one example of semiconductor package.
  • FIG. 2 is a plan view thereof.
  • the semiconductor package shown in FIGS. 1 and 2 is comprised of a lead frame 1 , a semiconductor device 4 mounted on die-pad 3 supported with suspending leads 2 of lead frame 1 , metallic thin wires 6 electrically connecting electrodes provided on the top face of the semiconductor device 4 with terminals 5 of lead frame 1 , respectively and molding compound 7 for encapsulating the outside region of semiconductor device 4 including the upper side of semiconductor device 4 and the lower side of die-pad 3 .
  • the semiconductor package is of non-lead type in which so-called outer leads are not projected from the semiconductor package and the two of inner leads and outer leads are integrated into terminals 5 , wherein used lead flame 1 is half-cut by etching in such a manner that die-pad 3 is positioned higher than terminals 5 . Since such a step is formed between die pads 3 and terminals 5 , molding compound 7 can be inserted into the lower side of die-pad 3 so that a thin semiconductor package can be realized even though the semiconductor package has non-exposed die-pad.
  • a matrix type frame is mainly used for the above-mentioned semiconductor package of non-lead type, in which plural semiconductor devices are arranged in a direction of a width of the matrix type frame. Further, recently, from a demand for cost down, it is thought to switch over a frame of individually molding type shown in FIG. 3 to a frame of collectively molding type shown in FIG. 4.
  • FIG. 3(A) In the frame of individually molding type, as shown in FIG. 3(A), individual molding cavities C of small size are provided separately within a frame F. After molding, individual semiconductor packages are stamped out so that semiconductor packages S shown in FIG. 3(B) are obtained. Namely, semiconductor devices are mounted on die-pads of lead frames through silver paste and others, and wire bonding is carried out. Thereafter, respective semiconductor devices are individually molded with molding compound and the respective molded semiconductor devices are stamped out to form individual semiconductor packages.
  • FIG. 4(A) In the frame of collectively molding type, as shown in FIG. 4(A), some molding cavities C of large size are provided within a frame F. Multiple semiconductor devices are arranged in matrix within each molding cavity C, respectively and collectively molded with molding compound. Thereafter, the collectively molded semiconductor devices are cut at grid-leads L by means of dicing saw so that a semiconductor package S shown in FIG. 4(B) is obtained. Namely, semiconductor devices are mounted on die-pads of lead frames through silver pastes and others and wire bonding is carried out. Thereafter, plural semiconductor devices arranged are collectively molded with molding compound to a given cavity size, and then the collectively molded semiconductor devices are cut to form individual semiconductor packages by dicing.
  • suspending leads In the above-mentioned semiconductor package of collectively molding type, heat generated in semiconductor device is transmitted through a die-pad to suspending leads, in which there is a case where suspending leads come off from molded resin due to a difference in thermal expansion coefficient between metal and resin. Therefore, in order to prevent the coming-off of suspending leads suspending leads are formed with projection portions, or as shown in FIG. 2, the tips of suspending leads are formed into a forked shape, so-called fish tail shape.
  • An object of the present invention is to provide a frame for semiconductor package of collectively molding type used for the production of semiconductor package, in which the frame for semiconductor package is formed in such a manner that any metal piece is not left at edges of semiconductor device in dicing.
  • a frame for semiconductor package of the present invention comprises plural lead frames arranged in matrix through grid-leads, in which the individual semiconductor devices are mounted on die-pads supported with suspending leads of the individual lead frames, respectively, the semiconductor devices are collectively molded with molding compound and the collectively molded semiconductor devices are cut at grid-leads by means of dicing saw to obtain individual semiconductor packages, wherein the suspending leads are formed into fish tails and at least one of longitudinal grid-lead and transverse grid-lead is eliminated within areas enclosed with fish tails of the suspending leads.
  • FIG. 1 is a sectional view of one example of semiconductor package.
  • FIG. 2 is a plan view of semiconductor package shown in FIG. 1.
  • FIG. 3 is an explanatory view of a frame of individually molding type.
  • FIG. 4 is an explanatory view of a frame of collectively molding type.
  • FIG. 5 is an explanatory view of R-shape generated by etching.
  • FIG. 6 is an explanatory view showing a state where metal piece is left at edges of semiconductor package.
  • FIG. 7 is a plan view of one example of the present invention.
  • FIG. 8 is a partial enlarged view of the frame shown in FIG. 7.
  • FIG. 9 is a sectional view of another example of frame shown corresponding to FIG. 8.
  • FIG. 7 is a plan view of one example of a frame of the present invention.
  • FIG. 8 is a partial enlarged plan view of the frame.
  • F designates a metal frame for lead frames, in which lead frames 10 are arranged in a matrix of 3 ⁇ 4 through grid-leads L.
  • the grid-leads L connect terminals 11 of adjacent lead frames 10 with each other.
  • die-pad 3 is supported with suspending leads 2 .
  • suspending leads 2 are formed into fish tail and both the longitudinal grid-lead L and transverse grid-lead L are eliminated within areas enclosed with fish tails of the suspending leads 2 .
  • Process for producing semiconductor packages using the frame F is as follows. First, semiconductor devices are mounted on die-pads 3 of the respective lead frames 10 of frame F through silver pastes and wire bonding is made between terminals 11 of lead frames and electrodes provided on the top face of semiconductor devices. Thereafter, twelve semiconductor devices are collectively molded with molding compound to a given cavity size and then the collectively molded semiconductor devices are cut at grid-leads L by means of dicing saw in such a manner that terminals 5 of individual lead frames are left, by which the collectively molded semiconductor devices are divided into individual semiconductor packages. In this dicing, edges of semiconductor package are formed with resin cut into an orthogonal shape, since nothing exists except molded resin at edges X of each semiconductor device.
  • FIG. 9 is a partial enlarged plan view of another example shown corresponding to FIG. 8.
  • transverse grid-lead L is eliminated within areas enclosed with fish tails of suspending leads 2 .
  • Semiconductor devices are mounted on the frame F for semiconductor packages and collectively molded with molding compound. Thereafter the collectively molded semiconductor devices are cut at dicing lines ⁇ by means dicing saw to form individual semiconductor packages. Even though longitudinal grid-lead L exists outward at each edge X of individual semiconductor package, this part is not roundish. Therefore, edges of semiconductor package are formed with mounted resin cut into orthogonal shape.
  • a frame for semiconductor package of the present invention comprises plural lead frames arranged in matrix through grid-leads, in which individual semiconductor devices are mounted on die-pads supported with suspending leads of the individual lead frames, respectively, the semiconductor devices are collectively molded with molding compound and the collectively molded semiconductor devices are cut at grid-leads by means of dicing saw to obtain individual semiconductor packages, wherein the suspending leads are formed into fish tails and at least one of longitudinal grid-lead and transverse grid-lead is eliminated within areas enclosed with fish tails of the suspending leads.

Abstract

A frame F for semiconductor package has die-pads 3 supported with suspending leads 2 of individual lead frames 10. Semiconductor devices are arranged on die-pads 3. These semiconductor devices are collectively molded with molding compounds, and then the collectively molded semiconductor packages are cut into individual packages by means of dicing saw. In the frame F, suspending leads are formed into fish tails, wherein at least one of longitudinal grid-lead and transverse grid-lead is eliminated within areas enclosed with fish tails of the suspending leads 2. Accordingly, whether R-shape generated by producing frame for semiconductor package by etching process is large or small, to exist metal piece at edges of semiconductor packages in dicing becomes almost nothing.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a frame for semiconductor package in which a semiconductor device is mounted on a lead frame and the outside thereof, particularly the upper surface of semiconductor device is encapsulated with molding compound. [0002]
  • 2. Description o the Prior Art [0003]
  • In recent years, it has been required to miniaturize and shape semiconductor product mounted on a substrate thinner, as packaging of semiconductor is made denser. It has been severely required for LSI to reduce the number of chips by improving integration level and to miniaturize and make a package lighter. The popularization of so-called CSP (Chip Size Package) is rapidly advancing. Particularly, in the development of thin semiconductor product with lead frame, the semiconductor package of single side encapsulation type has been developed in which a semiconductor device is mounted on a lead frame and the surface of semiconductor device mounted on a lead frame is encapsulated with molding compound. [0004]
  • FIG. 1 is a sectional view of one example of semiconductor package. FIG. 2 is a plan view thereof. The semiconductor package shown in FIGS. 1 and 2 is comprised of a [0005] lead frame 1, a semiconductor device 4 mounted on die-pad 3 supported with suspending leads 2 of lead frame 1, metallic thin wires 6 electrically connecting electrodes provided on the top face of the semiconductor device 4 with terminals 5 of lead frame 1, respectively and molding compound 7 for encapsulating the outside region of semiconductor device 4 including the upper side of semiconductor device 4 and the lower side of die-pad 3. The semiconductor package is of non-lead type in which so-called outer leads are not projected from the semiconductor package and the two of inner leads and outer leads are integrated into terminals 5, wherein used lead flame 1 is half-cut by etching in such a manner that die-pad 3 is positioned higher than terminals 5. Since such a step is formed between die pads 3 and terminals 5, molding compound 7 can be inserted into the lower side of die-pad 3 so that a thin semiconductor package can be realized even though the semiconductor package has non-exposed die-pad.
  • Since semiconductor device is miniature, a matrix type frame is mainly used for the above-mentioned semiconductor package of non-lead type, in which plural semiconductor devices are arranged in a direction of a width of the matrix type frame. Further, recently, from a demand for cost down, it is thought to switch over a frame of individually molding type shown in FIG. 3 to a frame of collectively molding type shown in FIG. 4. [0006]
  • In the frame of individually molding type, as shown in FIG. 3(A), individual molding cavities C of small size are provided separately within a frame F. After molding, individual semiconductor packages are stamped out so that semiconductor packages S shown in FIG. 3(B) are obtained. Namely, semiconductor devices are mounted on die-pads of lead frames through silver paste and others, and wire bonding is carried out. Thereafter, respective semiconductor devices are individually molded with molding compound and the respective molded semiconductor devices are stamped out to form individual semiconductor packages. [0007]
  • In the frame of collectively molding type, as shown in FIG. 4(A), some molding cavities C of large size are provided within a frame F. Multiple semiconductor devices are arranged in matrix within each molding cavity C, respectively and collectively molded with molding compound. Thereafter, the collectively molded semiconductor devices are cut at grid-leads L by means of dicing saw so that a semiconductor package S shown in FIG. 4(B) is obtained. Namely, semiconductor devices are mounted on die-pads of lead frames through silver pastes and others and wire bonding is carried out. Thereafter, plural semiconductor devices arranged are collectively molded with molding compound to a given cavity size, and then the collectively molded semiconductor devices are cut to form individual semiconductor packages by dicing. [0008]
  • In the above-mentioned semiconductor package of collectively molding type, heat generated in semiconductor device is transmitted through a die-pad to suspending leads, in which there is a case where suspending leads come off from molded resin due to a difference in thermal expansion coefficient between metal and resin. Therefore, in order to prevent the coming-off of suspending leads suspending leads are formed with projection portions, or as shown in FIG. 2, the tips of suspending leads are formed into a forked shape, so-called fish tail shape. [0009]
  • Generally, in case of producing products by etching, parts designed to be form a right angle are finished to have roundish shape (R-shape), no matter how etching process is carried out. In a frame for semiconductor package of collectively molding type having suspending leads formed into fish tail shape. R-shape formed by etching is also seen. For example, even if suspending [0010] leads 2 having fish tail shape are designed as shown in FIG. 5, etched products have R-shape as shown by the dotted line.
  • Semiconductors are mounted on the frame F for semiconductor package of collectively molding type, collectively molded, thereafter divided into individual semiconductor packages by dicing. At this time, if roundish part of R-shape does not come to dicing line α there is no problem. However, if roundish part of R-shape comes to dicing line α because of large R-shape, as shown in FIG. 6, a [0011] metal piece 8 of grid-lead L is left at an edge of individual semiconductor package. Further, in a few cases, when mounting semiconductor product on a substrate, the metal piece 8 comes off from molded resin and drops down on the substrate, so that a state where accident such as shot circuit is likely to occur is generated.
  • BRIEF SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a frame for semiconductor package of collectively molding type used for the production of semiconductor package, in which the frame for semiconductor package is formed in such a manner that any metal piece is not left at edges of semiconductor device in dicing. [0012]
  • In order to achieve the above-mentioned object, a frame for semiconductor package of the present invention comprises plural lead frames arranged in matrix through grid-leads, in which the individual semiconductor devices are mounted on die-pads supported with suspending leads of the individual lead frames, respectively, the semiconductor devices are collectively molded with molding compound and the collectively molded semiconductor devices are cut at grid-leads by means of dicing saw to obtain individual semiconductor packages, wherein the suspending leads are formed into fish tails and at least one of longitudinal grid-lead and transverse grid-lead is eliminated within areas enclosed with fish tails of the suspending leads.[0013]
  • BREIF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view of one example of semiconductor package. [0014]
  • FIG. 2 is a plan view of semiconductor package shown in FIG. 1. [0015]
  • FIG. 3 is an explanatory view of a frame of individually molding type. [0016]
  • FIG. 4 is an explanatory view of a frame of collectively molding type. [0017]
  • FIG. 5 is an explanatory view of R-shape generated by etching. [0018]
  • FIG. 6 is an explanatory view showing a state where metal piece is left at edges of semiconductor package. [0019]
  • FIG. 7 is a plan view of one example of the present invention. [0020]
  • FIG. 8 is a partial enlarged view of the frame shown in FIG. 7. [0021]
  • FIG. 9 is a sectional view of another example of frame shown corresponding to FIG. 8.[0022]
  • DETAILED DESCRIPTION
  • Then, referring to figures, embodiments of the present inventions are explained. FIG. 7 is a plan view of one example of a frame of the present invention. FIG. 8 is a partial enlarged plan view of the frame. [0023]
  • In these figures, F designates a metal frame for lead frames, in which [0024] lead frames 10 are arranged in a matrix of 3×4 through grid-leads L. The grid-leads L connect terminals 11 of adjacent lead frames 10 with each other. In each lead frame 10, die-pad 3 is supported with suspending leads 2. Further, suspending leads 2 are formed into fish tail and both the longitudinal grid-lead L and transverse grid-lead L are eliminated within areas enclosed with fish tails of the suspending leads 2.
  • Process for producing semiconductor packages using the frame F is as follows. First, semiconductor devices are mounted on die-[0025] pads 3 of the respective lead frames 10 of frame F through silver pastes and wire bonding is made between terminals 11 of lead frames and electrodes provided on the top face of semiconductor devices. Thereafter, twelve semiconductor devices are collectively molded with molding compound to a given cavity size and then the collectively molded semiconductor devices are cut at grid-leads L by means of dicing saw in such a manner that terminals 5 of individual lead frames are left, by which the collectively molded semiconductor devices are divided into individual semiconductor packages. In this dicing, edges of semiconductor package are formed with resin cut into an orthogonal shape, since nothing exists except molded resin at edges X of each semiconductor device.
  • FIG. 9 is a partial enlarged plan view of another example shown corresponding to FIG. 8. [0026]
  • In this case, transverse grid-lead L is eliminated within areas enclosed with fish tails of suspending [0027] leads 2. Semiconductor devices are mounted on the frame F for semiconductor packages and collectively molded with molding compound. Thereafter the collectively molded semiconductor devices are cut at dicing lines α by means dicing saw to form individual semiconductor packages. Even though longitudinal grid-lead L exists outward at each edge X of individual semiconductor package, this part is not roundish. Therefore, edges of semiconductor package are formed with mounted resin cut into orthogonal shape.
  • As above-mentioned, a frame for semiconductor package of the present invention comprises plural lead frames arranged in matrix through grid-leads, in which individual semiconductor devices are mounted on die-pads supported with suspending leads of the individual lead frames, respectively, the semiconductor devices are collectively molded with molding compound and the collectively molded semiconductor devices are cut at grid-leads by means of dicing saw to obtain individual semiconductor packages, wherein the suspending leads are formed into fish tails and at least one of longitudinal grid-lead and transverse grid-lead is eliminated within areas enclosed with fish tails of the suspending leads. Accordingly, whether R-shape generated by producing frame for semiconductor package by etching process is large or small, to exist metal piece at edges of semiconductor packages in dicing becomes almost nothing. Accordingly, when mounting semiconductor products on a substrate, there is no case where metal piece drops out on the substrate, so that accident of short circuit occurs. [0028]

Claims (1)

What is claimed is:
1. A frame for semiconductor package comprising plural lead frames arranged in matrix through grid-leads, in which individual semiconductor devices are mounted on die-pads supported with suspending leads of the individual lead frames, respectively, the semiconductor devices are collectively molded with molding compound and the collectively molded semiconductor devices are cut at grid-leads by means of dicing saw to obtain individual semiconductor packages, wherein the suspending leads are formed into fish tails and at least one of longitudinal grid-lead and transverse grid-lead is eliminated within areas enclosed with fish tails of the suspending leads.
US09/850,211 2000-05-09 2001-05-07 Frame for semiconductor package Abandoned US20010045628A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/340,943 US6897549B2 (en) 2000-05-09 2003-01-13 Frame for semiconductor package
US11/017,896 US7247515B2 (en) 2000-05-09 2004-12-21 Frame for semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-135337 2000-05-09
JP2000135337A JP4349541B2 (en) 2000-05-09 2000-05-09 Resin-encapsulated semiconductor device frame

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/340,943 Continuation US6897549B2 (en) 2000-05-09 2003-01-13 Frame for semiconductor package

Publications (1)

Publication Number Publication Date
US20010045628A1 true US20010045628A1 (en) 2001-11-29

Family

ID=18643427

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/850,211 Abandoned US20010045628A1 (en) 2000-05-09 2001-05-07 Frame for semiconductor package
US10/340,943 Expired - Lifetime US6897549B2 (en) 2000-05-09 2003-01-13 Frame for semiconductor package
US11/017,896 Expired - Lifetime US7247515B2 (en) 2000-05-09 2004-12-21 Frame for semiconductor package

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/340,943 Expired - Lifetime US6897549B2 (en) 2000-05-09 2003-01-13 Frame for semiconductor package
US11/017,896 Expired - Lifetime US7247515B2 (en) 2000-05-09 2004-12-21 Frame for semiconductor package

Country Status (2)

Country Link
US (3) US20010045628A1 (en)
JP (1) JP4349541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259037A (en) * 2019-07-23 2019-09-20 佛山市东鹏陶瓷有限公司 A kind of tile laying device and its laying method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822322B1 (en) * 2000-02-23 2004-11-23 Oki Electric Industry Co., Ltd. Substrate for mounting a semiconductor chip and method for manufacturing a semiconductor device
JP4525277B2 (en) * 2004-09-30 2010-08-18 ルネサスエレクトロニクス株式会社 Semiconductor device
US7554179B2 (en) * 2005-02-08 2009-06-30 Stats Chippac Ltd. Multi-leadframe semiconductor package and method of manufacture
CN102082100B (en) * 2009-11-30 2013-05-15 万国半导体有限公司 Packaging method for semiconductor devices with bulged pins

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390598A (en) * 1982-04-05 1983-06-28 Fairchild Camera & Instrument Corp. Lead format for tape automated bonding
US4862246A (en) 1984-09-26 1989-08-29 Hitachi, Ltd. Semiconductor device lead frame with etched through holes
US4868635A (en) 1988-01-13 1989-09-19 Texas Instruments Incorporated Lead frame for integrated circuit
US4994895A (en) 1988-07-11 1991-02-19 Fujitsu Limited Hybrid integrated circuit package structure
US4924291A (en) 1988-10-24 1990-05-08 Motorola Inc. Flagless semiconductor package
US5318926A (en) * 1993-02-01 1994-06-07 Dlugokecki Joseph J Method for packaging an integrated circuit using a reconstructed plastic package
US5327008A (en) * 1993-03-22 1994-07-05 Motorola Inc. Semiconductor device having universal low-stress die support and method for making the same
US5610437A (en) * 1994-05-25 1997-03-11 Texas Instruments Incorporated Lead frame for integrated circuits
US5847930A (en) 1995-10-13 1998-12-08 Hei, Inc. Edge terminals for electronic circuit modules
US6229200B1 (en) 1998-06-10 2001-05-08 Asat Limited Saw-singulated leadless plastic chip carrier
US6239480B1 (en) * 1998-07-06 2001-05-29 Clear Logic, Inc. Modified lead frame for improved parallelism of a die to package
US6300224B1 (en) 1999-07-30 2001-10-09 Nippon Sheet Glass Co., Ltd. Methods of dicing semiconductor wafer into chips, and structure of groove formed in dicing area
JP2001320007A (en) * 2000-05-09 2001-11-16 Dainippon Printing Co Ltd Frame for resin sealed semiconductor device
US6400004B1 (en) * 2000-08-17 2002-06-04 Advanced Semiconductor Engineering, Inc. Leadless semiconductor package
TW498443B (en) * 2001-06-21 2002-08-11 Advanced Semiconductor Eng Singulation method for manufacturing multiple lead-free semiconductor packages
US6812552B2 (en) * 2002-04-29 2004-11-02 Advanced Interconnect Technologies Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110259037A (en) * 2019-07-23 2019-09-20 佛山市东鹏陶瓷有限公司 A kind of tile laying device and its laying method

Also Published As

Publication number Publication date
US20030098503A1 (en) 2003-05-29
US20050106777A1 (en) 2005-05-19
JP2001320008A (en) 2001-11-16
JP4349541B2 (en) 2009-10-21
US6897549B2 (en) 2005-05-24
US7247515B2 (en) 2007-07-24

Similar Documents

Publication Publication Date Title
US6703696B2 (en) Semiconductor package
US6744118B2 (en) Frame for semiconductor package
KR100927319B1 (en) Stamped Leadframe and Manufacturing Method Thereof
US20040016994A1 (en) Semiconductor package and fabricating method thereof
US7410835B2 (en) Method for fabricating semiconductor package with short-prevented lead frame
US20050218499A1 (en) Method for manufacturing leadless semiconductor packages
US7436049B2 (en) Lead frame, semiconductor chip package using the lead frame, and method of manufacturing the semiconductor chip package
US20050051877A1 (en) Semiconductor package having high quantity of I/O connections and method for fabricating the same
US20020149090A1 (en) Lead frame and semiconductor package
US6703694B2 (en) Frame for semiconductor package including plural lead frames having thin parts or hollows adjacent the terminal roots
KR20040108582A (en) Seniconductor device and method for fabricating the same
US20030098503A1 (en) Frame for semiconductor package
US20020048851A1 (en) Process for making a semiconductor package
JP5467506B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP4475785B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP4356960B2 (en) Resin-sealed semiconductor device
US20240145355A1 (en) Method of manufacturing semiconductor devices, corresponding component, semiconductor device and method
KR100819794B1 (en) Lead-frame and method for manufacturing semi-conductor package using such
JP2002026190A (en) Resin-sealed semiconductor device
JPH0738036A (en) Manufacture of semiconductor device
US20020145186A1 (en) Method of forming HSQFN type package
JP2002026192A (en) Lead frame
CN114725029A (en) Semiconductor packaging structure and manufacturing method thereof
JPH09129803A (en) Hall element and its manufacture
JP2004039709A (en) Lead frame and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAINIPPON PRINTING CO., LTD, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IKENAGA, CHIKAO;TOMITA, KOUJI;REEL/FRAME:011784/0481

Effective date: 20010424

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION