US11433210B2 - Gases mixing and measuring for a medical device - Google Patents
Gases mixing and measuring for a medical device Download PDFInfo
- Publication number
- US11433210B2 US11433210B2 US15/313,836 US201515313836A US11433210B2 US 11433210 B2 US11433210 B2 US 11433210B2 US 201515313836 A US201515313836 A US 201515313836A US 11433210 B2 US11433210 B2 US 11433210B2
- Authority
- US
- United States
- Prior art keywords
- gases
- flow path
- measuring chamber
- upstream
- pulse train
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0057—Pumps therefor
- A61M16/0066—Blowers or centrifugal pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1005—Preparation of respiratory gases or vapours with O2 features or with parameter measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/021—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
- A61M16/022—Control means therefor
- A61M16/024—Control means therefor including calculation means, e.g. using a processor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
- A61M16/122—Preparation of respiratory gases or vapours by mixing different gases with dilution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/14—Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
- A61M16/16—Devices to humidify the respiration air
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
- G01F25/15—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H5/00—Measuring propagation velocity of ultrasonic, sonic or infrasonic waves, e.g. of pressure waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/024—Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/24—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
- G01P5/245—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/14—Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
- A61M16/16—Devices to humidify the respiration air
- A61M16/161—Devices to humidify the respiration air with means for measuring the humidity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1005—Preparation of respiratory gases or vapours with O2 features or with parameter measurement
- A61M2016/102—Measuring a parameter of the content of the delivered gas
- A61M2016/1025—Measuring a parameter of the content of the delivered gas the O2 concentration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/02—Gases
- A61M2202/0208—Oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3368—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3375—Acoustical, e.g. ultrasonic, measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2206/00—Characteristics of a physical parameter; associated device therefor
- A61M2206/10—Flow characteristics
- A61M2206/14—Static flow deviators in tubes disturbing laminar flow in tubes, e.g. archimedes screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2206/00—Characteristics of a physical parameter; associated device therefor
- A61M2206/10—Flow characteristics
- A61M2206/20—Flow characteristics having means for promoting or enhancing the flow, actively or passively
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/021—Gases
- G01N2291/0212—Binary gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/021—Gases
- G01N2291/0215—Mixtures of three or more gases, e.g. air
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02809—Concentration of a compound, e.g. measured by a surface mass change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02836—Flow rate, liquid level
Definitions
- the present disclosure generally relates to a medical gases delivery system. More particularly, certain features, aspects, and advantages of the present disclosure relate to a respiratory gases delivery system that mixes different respiratory gases and measures properties or characteristics of the mixed gases.
- a gases delivery system may be used to provide respiratory gases to a patient.
- the gases delivery system may include a humidification device to condition the gases provided to the patient.
- the gases may be heated and/or humidified prior to delivery.
- Gases are delivered to the patient via a tube that is in fluid communication with a patient interface. Gases delivered to patients at 100% relative humidity and 37° C. generally mimic properties of air resulting from the transformation that occurs as air passes through airways from the nose to the lungs. This can promote efficient gases exchange and ventilation in the lungs, aid defense mechanisms in the airways, and increase patient comfort during treatment.
- a gases delivery system used for oxygen therapy may provide oxygen to the patient.
- the oxygen may be mixed with air to provide a desired or targeted therapy to the patient.
- a gases delivery system may monitor the concentration of oxygen to ensure that the desired or targeted amount is being delivered to the patient and to reduce or prevent wastage of oxygen.
- An aspect of at least one of the embodiments disclosed herein includes the realization that there are problems associated with typical approaches to mixing gases and measuring properties of mixed gases.
- Typical gases delivery systems may use a combination of gases, such as oxygen and air, but may not mix these sufficiently. Sensors used to measure properties of such a combination of gases may produce unreliable results. Flow rate and gases concentration measurements may both be affected by insufficient gases mixing.
- a mixing chamber may be used to enable sufficient mixing of gases; however, the size of a typical mixing chamber may cause the gases delivery system to be bulky or undesirably large.
- Typical mixing chambers may induce turbulence to encourage mixing between gases; however, turbulence may result in an acoustically noisy process and may lead to difficulties when measuring gases properties such as gases flow rate, gases concentration, or the like.
- Some systems may use ultrasonic sensors to measure a gases property such as concentration by inducing pressure waves that are generally perpendicular to the flow direction of the gases. Some of these systems may position a pair of ultrasonic sensors in close proximity to each other, which may increase the sensitivity of the system. In such systems, one or more additional sensors may be used to determine the gases flow rate.
- a measurement apparatus of a gases delivery system can comprise a measuring chamber positioned within a mixing chamber in a coaxial arrangement.
- the coaxial chamber arrangement may increase a gases path length through the measurement apparatus while remaining more compact relative to linear or serial chamber arrangements.
- the mixing chamber can be configured to sufficiently mix gases before the gases move to the measuring chamber.
- a mixing element within the mixing chamber may induce swirling of the gases to promote mixing, this being accomplished with little or no turbulence.
- At least one ultrasonic sensor can be located at each end of the measuring chamber to measure gases properties or characteristics along the gases flow. Gases concentration, flow rate, and velocity can be measured using the ultrasonic sensors.
- Other embodiments can comprise a mixing chamber comprising a baffle configured to promote turbulent mixing of the gases and a vane configured to linearize the gases to improve measurement of the gases properties in the measuring chamber.
- At least one aspect of the present disclosure relates to a gases measurement apparatus comprising a gases measuring chamber, a controller, and first and second ultrasonic sensors.
- the gases measuring chamber comprises a gases flow path from a first end to a second end of the gases measuring chamber.
- a downstream direction is defined along the gases flow path from the first end to the second end.
- An upstream direction is defined along the gases flow path from the second end to the first end.
- the first ultrasonic sensor is positioned at the first end of the gases measuring chamber.
- the first ultrasonic sensor is configured to transmit a downstream acoustic pulse train in a first measurement phase.
- the first ultrasonic sensor is configured to detect an upstream acoustic pulse train in a second measurement phase.
- the first ultrasonic sensor is configured to send a signal to the controller.
- the second ultrasonic sensor is positioned at the second end of the gases measuring chamber.
- the second ultrasonic sensor is configured to transmit the upstream acoustic pulse train in the second measurement phase.
- the second ultrasonic sensor is configured to detect the downstream acoustic pulse train in the first measurement phase.
- the second ultrasonic sensor is configured to send a signal to the controller.
- the controller is configured to determine a characteristic of the gases based at least in part on a signal received from the first ultrasonic sensor and a signal received from the second ultrasonic sensor.
- the gases can comprise two gases.
- the two gases can comprise oxygen and air.
- the downstream acoustic pulse train can comprise a plurality of acoustic pulses.
- the upstream acoustic pulse train can comprise a plurality of acoustic pulses.
- the downstream acoustic pulse train can comprise a single acoustic pulse.
- the upstream acoustic pulse train can comprise a single acoustic pulse.
- the characteristic of the gases can comprise at least one of gases concentration, flow rate, or velocity.
- the first ultrasonic sensor can be configured to be excited at a natural resonant frequency.
- the second ultrasonic sensor can be configured to be excited at a natural resonant frequency.
- the controller can be configured to determine a downstream time of flight for the downstream acoustic pulse train.
- the controller can be configured to determine an upstream time of flight for the upstream acoustic pulse train.
- the controller can be configured to determine the characteristic of the gases based at least in part on the downstream time of flight and the upstream time of flight.
- At least one aspect of the present disclosure relates to a method for determining a characteristic of gases flowing through an apparatus along a gases flow path from a first end to a second end of the apparatus, the apparatus comprising a first ultrasonic sensor positioned at the first end and a second ultrasonic sensor positioned at the second end.
- a downstream direction is defined along the gases flow path from the first end to the second end.
- An upstream direction is defined along the gases flow path from the second end to the first end.
- the method comprises transmitting a downstream acoustic pulse train from the first ultrasonic sensor.
- the method comprises detecting the downstream acoustic pulse train at the second ultrasonic sensor.
- the method comprises determining a downstream time of flight based at least in part on the downstream acoustic pulse train.
- the method comprises transmitting an upstream acoustic pulse train from the second ultrasonic sensor.
- the method comprises detecting the upstream acoustic pulse train at the first ultrasonic sensor.
- the method comprises determining an upstream time of flight based at least in part on the upstream acoustic pulse train.
- the method comprises determining the characteristic of the gases based at least in part on the downstream time of flight and the upstream time of flight.
- the downstream acoustic pulse train can comprise a plurality of acoustic pulses.
- the upstream acoustic pulse train can comprise a plurality of acoustic pulses.
- the downstream acoustic pulse train can comprise a single acoustic pulse.
- the upstream acoustic pulse train can comprise a single acoustic pulse.
- the method can comprise transmitting a second downstream acoustic pulse train from the first ultrasonic sensor.
- the method can comprise detecting the second downstream acoustic pulse train at the second ultrasonic sensor.
- the method can comprise determining the downstream time of flight based at least in part on an average of the downstream acoustic pulse train and the second downstream acoustic pulse train.
- the method can comprise transmitting a second upstream acoustic pulse train from the second ultrasonic sensor.
- the method can comprise detecting the second upstream acoustic pulse train at the first ultrasonic sensor.
- the method can comprise determining the upstream time of flight based at least in part on an average of the upstream acoustic pulse train and the second upstream acoustic pulse train.
- the characteristic of the gases can comprise at least one of gases concentration, flow rate, or velocity.
- Transmitting a downstream acoustic pulse train from the first ultrasonic sensor can comprise exciting the first ultrasonic sensor at a natural resonant frequency.
- Transmitting an upstream acoustic pulse train from the second ultrasonic sensor can comprise exciting the second ultrasonic sensor at the natural resonant frequency.
- Determining the characteristic of the gases can comprise determining a flow rate in liters per minute for a given oxygen concentration by subtracting the downstream time of flight from the upstream time of flight, subtracting from that a calibrated correction for the gases mixture, and then multiplying the result by a constant factor for geometric aspects of the apparatus.
- the calibrated correction for the gases mixture can be determined by subtracting a calibrated correction for air from a calibrated correction for oxygen, multiplying the result by the difference between the given oxygen concentration and 20.9 (the oxygen concentration of air expressed as a percentage), dividing that result by the concentration as a volume percentage of gases in air other than oxygen, and then adding the calibrated correction for air.
- At least one aspect of the present disclosure relates to a gases delivery apparatus comprising a gases mixing chamber and a gases measuring chamber.
- the gases mixing chamber is configured to receive gases from a gases source.
- the gases mixing chamber comprises a gases flow path from a first end to a second end of the gases mixing chamber.
- the gases mixing chamber comprises at least one mixing element situated within the gases flow path.
- the gases measuring chamber is configured to receive gases from the gases mixing chamber.
- the gases measuring chamber comprises a gases flow path from a first end to a second end of the gases measuring chamber.
- the gases measuring chamber is situated coaxially within the gases mixing chamber.
- the at least one mixing element is configured to mix gases in the gases flow path of the gases mixing chamber before the gases enter the gases flow path of the gases measuring chamber.
- the at least one mixing element can comprise a vane that is configured to reduce turbulence in gases that flow from the gases flow path of the gases mixing chamber to the gases flow path of the gases measuring chamber.
- the at least one mixing element can comprise a baffle that is configured to increase the length of the gases flow path of the gases mixing chamber.
- the gases mixing chamber can be configured to receive two or more gases.
- the gases mixing chamber can be configured to mix the received gases.
- the apparatus can comprise a first ultrasonic sensor positioned at the first end of the gases measuring chamber.
- the apparatus can comprise a second ultrasonic sensor positioned at the second end of the gases measuring chamber.
- FIG. 1 illustrates an example embodiment of a gases delivery system.
- FIGS. 2-4 illustrate an example embodiment of a mixing chamber and a measuring chamber in a coaxial chamber arrangement.
- FIGS. 5-6 illustrate another example embodiment of a mixing chamber and a measuring chamber in a coaxial chamber arrangement.
- FIG. 7 illustrates an example embodiment of a measuring chamber with ultrasonic sensors at the ends of the chamber.
- FIGS. 8A-8C illustrate example plots of measurements acquired with ultrasonic sensors to demonstrate how the control system determines gases characteristics.
- a gases delivery system can be configured to deliver respiratory gases to a patient.
- the respiratory gases can be conditioned to have targeted or desirable properties. These properties can be selected to provide therapeutic effects for a patient, to increase comfort of a patient during therapy, or to otherwise improve respiration for the patient.
- Some gases delivery systems can be configured to provide a mixture of gases to a patient.
- a gases delivery system can be configured to provide air mixed with oxygen to a patient. The concentration of oxygen in the gases mixture can be measured and maintained by the gases delivery system using a control feedback loop.
- the gases delivery system can comprise a measurement apparatus configured to measure the concentrations of component gases in the gases mixture and a controller configured to control a valve to regulate the contribution of at least one of the component gases to the gases mixture, based at least in part on the measurements provided by the measurement apparatus.
- the measurement apparatus can comprise a mixing chamber configured to efficiently mix the component gases prior to entry of the mixed gases into a measuring chamber where the mixed gases can be measured. The accuracy of measurements provided by such a measurement apparatus may be superior to measurements provided by other devices that do not sufficiently mix the gases prior to measurement.
- a gases delivery system can be configured to mix two component gases and control the contribution of at least one of the component gases to the gases mixture via one or more control valves.
- the gases delivery system can be configured to mix the component gases into a substantially homogeneous binary mixture.
- the gases delivery system can comprise ultrasonic transducers or sensors configured to generate and detect pressure waves along the flow of gases through a measuring chamber to determine gas concentrations or relative ratios of the component gases.
- the output of the ultrasonic sensors can be signals indicative of properties or characteristics of the gases.
- the gases delivery system can comprise a mixing chamber configured to direct the flow of gases along a spiralling gases flow path around the outside of the measuring chamber, the measuring chamber being situated coaxially within the mixing chamber.
- a coaxial chamber arrangement can provide a relatively long gases flow path to promote efficient mixing of gases as well as a relatively long distance between the ultrasonic sensors to improve measurement accuracy.
- the gases delivery system can comprise baffles and/or vanes.
- the gases delivery system can operate the one or more control valves based at least in part on measurements of concentrations of component gases to maintain a targeted or desired relative ratio of gases in the gases mixture.
- FIG. 1 illustrates an example gases delivery system 1 configured to deliver respiratory gases to a patient 18 .
- the gases delivery system 1 comprises a blower assembly 2 , a humidifier 4 , a blower conduit 12 , a patient conduit 14 , and a patient interface 16 .
- the blower assembly 2 comprises a blower 10 and a measurement apparatus 20 .
- the humidifier 4 comprises a humidification chamber 6 and a heating device 8 configured to heat fluids within the humidification chamber 6 .
- the blower conduit 12 transports gases from the blower assembly 2 to the humidifier 4 and the patient conduit 14 transports humidified gases from the humidifier 4 to the patient interface 16 .
- each of the blower conduit 12 and the patient conduit 14 may comprise an inspiratory conduit, an expiratory conduit, a dry line, or any other form of conduit, tube, or circuit configured to connect the patient 18 to a gases source.
- the patient 18 receives the humidified gases via the patient interface 16 .
- the blower 10 as herein described can comprise a gases source, a ventilation device, a flow generator, a fan, or a combination of these or the like.
- the blower 10 is configured to provide air to the measurement apparatus 20 .
- the measurement apparatus 20 is further configured to receive a second gas or additional gases to mix with the air provided by the blower 10 .
- the patient interface 16 as herein described can comprise a nasal mask, an oral mask, a full face mask, a nasal cannula, nasal pillows, a tracheal mask, insufflation device, or the like.
- the systems and methods disclosed herein may be used with invasive or non-invasive therapies, and, in some embodiments, with laparascopic therapies.
- the gases delivered to the patient 18 can comprise air, oxygen, carbon dioxide, nitrous oxide, or a combination of any of the gases listed above. It is to be understood that other gases or combinations of gases may also fall within the scope of the present disclosure.
- the measurement apparatus 20 can be configured to mix two component gases to provide a binary gases mixture to the patient 18 .
- Each of the component gases in a binary gases mixture may comprise a pure gas or a mixture of gases.
- a particular example of a binary gases mixture is a mixture of oxygen and air, where air and oxygen are considered component gases of the binary gases mixture even though air is itself a mixture of gases that includes oxygen.
- the present disclosure will describe apparatus and systems operating on a binary gases mixture of oxygen and air, but it is to be understood that the apparatus and systems will operate in similar fashion on any binary gases mixture.
- the measurement apparatus 20 can be configured to mix gases from the blower 10 and/or an additional source of gases to provide a substantially well-mixed gases mixture to the patient 18 .
- a substantially well-mixed gases mixture can comprise a substantially homogeneous gases mixture.
- a substantially homogeneous gases mixture can refer to a gases mixture that is substantially mixed and that has a generally uniform temperature (e.g., a temperature that is sufficiently consistent or uniform such that variations within the mixture are not clinically relevant).
- a substantially homogeneous gases mixture can refer to a gases mixture that is substantially uniform with respect to a gases concentration gradient and/or a temperature gradient, such that any differences between high and low measurements of concentration and/or temperature are not clinically relevant.
- a non-homogeneous gases mixture may display transient changes in gases properties or characteristics (e.g., flow rate or temperature) that may lead to inaccuracies in gases measurements. It may be advantageous for the measurement apparatus 20 to provide a substantially homogeneous gases mixture because more accurate gases measurements may be achieved more quickly for a substantially homogeneous gases mixture than for a non-homogeneous gases mixture.
- a transient state (e.g., a period of time during which a concentration of gases is changing) may be shorter than for a system without the measurement apparatus 20 , which may allow for faster sampling rates.
- the time it takes to detect changes in the concentration of gases can be similar to the time it takes for the gases to transit through the measurement apparatus 20 .
- the time taken for these changes to be detected by the measurement apparatus 20 may depend, at least in part, on the volume of the measurement apparatus 20 and the flow rate of gases through the gases delivery system 1 .
- Accuracy of sensing may be improved due at least in part to features of the measurement apparatus 20 that increase heat transfer from the gases flowing through the measurement apparatus 20 to a housing of the measurement apparatus 20 and reduce heat transfer from the gases to the environment, such as but not limited to tracks formed on a surface of a printed circuit board (PCB) or a moulded component, a conductive path assembled into the measurement apparatus 20 , or the like. This may help to reduce the influence of stem effects on measurement accuracy. High flow rates near a wall of the housing may lead to a high rate of heat transfer between the gases and the housing, which may improve the response time of the materials of the housing to temperature changes and thus ensure that the housing temperature remains generally uniform during a measurement phase.
- PCB printed circuit board
- Material properties of the housing can be chosen to reduce or minimize dimensional changes that occur with changes in temperature, which may affect the measurement path length, thereby reducing sensitivity to external parameters.
- Oxygen, or other supplementary gases such as but not limited to carbon dioxide, may be supplied to the gases delivery system 1 from a wall source, a gases bottle, or the like.
- the supplementary gases can be supplied to the gases delivery system 1 through the measurement apparatus 20 .
- the gases delivery system 1 can comprise a control system 9 configured to receive measurements or signals from sensors in the gases delivery system 1 , control delivery of power to the heating device 8 , receive signals from the measurement apparatus 20 , control speed or flow rate of the blower 10 , and the like.
- the control system 9 can comprise a controller and data storage device.
- the controller can comprise one or more microprocessors, application-specific integrated circuits (ASICs), field programmable gate arrays, or the like.
- the controller can be configured to execute computer executable instructions stored on the data storage device.
- the data storage device can comprise one or more non-transitory storage devices such as solid state drives, hard disk drives, ROMs, EEPROMs, RAM, and the like.
- the control system 9 can be a part of the humidifier 4 , part of the blower assembly 2 , or part of both the humidifier 4 and the blower assembly 2 .
- FIG. 2 illustrates an example embodiment of the measurement apparatus 20 configured in a coaxial arrangement.
- the measurement apparatus 20 comprises a mixing chamber 21 that is an outer chamber of the coaxial arrangement.
- the coaxial arrangement provides a compact design for the measurement apparatus 20 while allowing for an extended gases flow path which helps to ensure a substantially well-mixed gases mixture.
- the measurement apparatus 20 may be more compact than a measurement apparatus with a non-coaxial arrangement.
- the mixing chamber 21 comprises a mixing element 24 .
- the mixing element 24 may extend the length of the gases flow path through the mixing chamber 21 .
- the inner diameter of the oxygen inlet 32 can be substantially smaller than that of the air inlet 30 .
- One advantage of such a configuration is that the oxygen will enter the mixing chamber 21 at a higher velocity than will the air. This can encourage the air to travel along a longer path length, and may also increase the time that the air and the oxygen are in contact with each other, promoting increased mixing of the air and the oxygen.
- the air inlet 30 may be positioned such that it is offset from the oxygen inlet 32 .
- the oxygen inlet 32 may be located such that the oxygen does not pass near the air inlet 30 where it could be redirected towards the blower 10 , as that may result in a loss of oxygen.
- the mixing element 24 is located in the mixing chamber 21 of the measurement apparatus 20 .
- the mixing element 24 promotes a swirling flow of the air and the oxygen around the mixing chamber 21 and towards the measuring chamber 22 .
- FIG. 4 illustrates the mixing element 24 apart from the mixing chamber 21 .
- a swirling flow promotes gases mixing, which may be important with respect to determining gases properties and for generating predictable measurements, particularly at different flow rates.
- the swirling flow can also maintain a generally symmetric and stable gases profile, and can reduce or eliminate a varying axial component of the gases flow.
- the swirling flow may also contribute to an acoustically quieter system.
- FIG. 3 illustrates a wall 25 that separates the gases in the mixing chamber 21 from the mixed gases in the measuring chamber 22 .
- the measuring chamber 22 is conical in shape.
- an entrance of the measuring chamber 22 can be larger than an exit of the measuring chamber 22 .
- An inner diameter of the measuring chamber 22 can decrease along the direction of flow.
- an inner wall of the measuring chamber 22 can form an angle with a longitudinal axis of the measuring chamber 22 of less than or equal to about 5 degrees, less than or equal to about 4 degrees, less than or equal to about 3 degrees, or less than or equal to about 1.5 degrees.
- an entrance of the measuring chamber 22 can be larger than an exit of the measuring chamber 22 by about 5%, by about 3%, or by about 2%.
- gases can enter the measuring chamber 22 through an entrance that has a radius that is at least about 2-3% larger than a radius of an exit through which gases leave the measuring chamber 22 .
- a cross-sectional width of the measuring chamber 22 decreases along the direction of flow of gases. The decrease in cross-sectional width is not necessarily linear, but can have any suitable form.
- FIG. 5 illustrates an example embodiment of a measurement apparatus 40 .
- the measurement apparatus 40 may comprise a mixing chamber 41 and a measuring chamber 22 .
- the mixing chamber 41 may comprise one or more baffles 44 a , 44 b .
- the mixing chamber 41 may comprise a vane 46 .
- the mixing chamber 41 may comprise the one or more baffles 44 a , 44 b combined with the vane 46 . Other combinations may also be possible.
- the measurement apparatus 40 comprises two baffles 44 a , 44 b , but a different number of baffles may be used, such as but not limited to one, three, or four baffles.
- the baffle 44 a may be located at or near the air inlet 30 to encourage mixing of the air and the oxygen near the entry of the air and/or the oxygen.
- the baffle 44 b may be located further downstream from the baffle 44 a .
- the vane 46 may be a continuation of the baffle 44 b or may be located further downstream from the baffle 44 b .
- the spacing between each of the baffles 44 a , 44 b and the spacing between the baffle 44 b and the vane 46 may be affected by the geometry of the mixing chamber 41 .
- the spacing between the baffle 44 b and the vane 46 can be similar to the spacing between each of the baffles 44 a , 44 b . It is to be understood that different variations of spacing between these features may exist.
- the baffles 44 a , 44 b may increase the path length that the gases travel as they move through the mixing chamber 41 .
- the baffles 44 a , 44 b may induce turbulence to encourage mixing between the air and the oxygen.
- the positioning of the baffles 44 a , 44 b can be configured to enable the gases to be substantially mixed in a relatively small space.
- the baffles 44 a , 44 b can be orientated perpendicular to the direction of the flow of gases. In some embodiments, the baffles 44 a , 44 b can be orientated non-perpendicular to the direction of the flow of gases while still inducing turbulence to improve mixing of gases.
- FIG. 6 illustrates that the baffles 44 a , 44 b extend at least partially around the measuring chamber 22 , which may leave respective gaps 45 a , 45 b around which the baffles 44 a , 44 b do not extend.
- the baffle 44 a and the gap 45 a are shown in FIG. 6 , but it is to be understood that the baffle 44 b and the corresponding gap 45 b can be configured in a similar manner.
- the baffles 44 a , 44 b extend approximately 270° around the mixing chamber 41 .
- the baffles 44 a , 44 b extend approximately 180° around the mixing chamber 41 .
- the baffles 44 a , 44 b may be configured to extend between 180° and 270° around the mixing chamber 41 .
- the baffles 44 a , 44 b may also extend around the mixing chamber 41 less than 180° or greater than 270°, not including 360°.
- Each of the baffles 44 a , 44 b can extend differently around the mixing chamber 41 (e.g., the baffle 44 a can extend 270° and the baffle 44 b can extend 250° around the mixing chamber 41 ).
- the gaps 45 a , 45 b encourage the gases to spiral around the mixing chamber 41 and are located such that the gases are encouraged to mix along a greater portion of the flow path around the mixing chamber 41 .
- the gaps 45 a , 45 b can be offset from one another (e.g., the gaps 45 a , 45 b can be not axially or longitudinally aligned with one another).
- the baffles 44 a , 44 b may comprise rounded corners to reduce flow separation and to reduce acoustic noise. In some embodiments, the baffles 44 a , 44 b may comprise squared corners.
- the vane 46 can be configured to cause the turbulent, unsteady gases to become more laminar, enabling the gases to be substantially more stable, with fewer fluctuations, by the time they reach the measuring chamber 22 .
- the vane 46 may also reduce pressure-induced acoustic noise in the gases delivery system 1 by reducing the turbulence of the gases. Due at least in part to the positioning of the baffles 44 a , 44 b , the vane 46 may increase the stability of the gases and may cause the gases to be more laminar, even at relatively high flow rates.
- the measuring chamber 22 may be the inner chamber of a coaxial arrangement. Gases move from the mixing chamber 21 , 41 into the measuring chamber 22 .
- the measuring chamber 22 may comprise ultrasonic transducers, transceivers, or sensors 26 at each end, as shown in FIGS. 2, 3, and 5 .
- the ultrasonic sensors 26 may comprise a pair of sensors or multiple pairs of sensors.
- the distance between each of the ultrasonic sensors 26 may enable greater measurement resolution as compared to small changes in gases concentration. An increased distance between each of the ultrasonic sensors 26 may allow for a longer time period for acoustic signals between each of the ultrasonic sensors 26 due to the speed of sound relating to the time of flight. The distance may also decrease the sensitivity of the measurement apparatus 40 with regards to the precision of time measurements, where precision is limited by discretization error.
- Each of the ultrasonic sensors 26 alternately transmits and receives pressure waves along the gases flow path.
- a first one of the ultrasonic sensors 26 configured as a transmitter, transmits a pulse series in a downstream direction along the gases flow path.
- a second one of the ultrasonic sensors 26 configured as a receiver, detects the transmitted pulses after a first period of time.
- the configuration of the ultrasonic sensors 26 is reversed: the second one of the ultrasonic sensors 26 transmits a series of pulses in an upstream direction along the gases flow path, and the first one of the ultrasonic sensors 26 detects the transmitted pulses after a second period of time.
- a downstream direction is defined as a direction with or following the direction of the flow of gases along the gases flow path.
- An upstream direction is defined as a direction against or opposite the direction of the flow of gases (and thus opposite the downstream direction) along the gases flow path.
- the first and second time periods may or may not be of the same length; when they differ, generally the first time period (for the downstream transmission) will be shorter than the second time period (for the upstream transmission). Transmission and detection of pulses along the gases flow path in both directions may reduce the susceptibility of the measurement apparatus 20 , 40 to system variations. In some embodiments, it is feasible to transmit only in a single direction.
- Sensing along the gases flow path may allow any or all of the following gases properties or characteristics to be measured: velocity, flow rate, and/or oxygen concentration. Sensing along the gases flow path may enable these gases properties to be determined without the need for additional sensors. For redundancy and/or improvement of accuracy purposes, additional sensors, such as but not limited to temperature or humidity sensors, may be incorporated within the gases delivery system 1 without departing from the scope of the disclosed systems and methods. Sensing along the gases flow path enables the sensing to occur within a closed system. It may be advantageous for the gases delivery system 1 to be a closed system to improve the capability of the gases delivery system 1 to contain oxygen (e.g., to reduce the likelihood of oxygen leaks) and to prolong the life of plastic components in the gases delivery system 1 .
- oxygen e.g., to reduce the likelihood of oxygen leaks
- the time an ultrasonic pulse takes to travel from one end of the measuring chamber 22 to the other, herein referred to as the time of flight, as well as the length and geometry of the measuring chamber 22 , can be used to determine the velocity of the gases and the gases concentration based on the speed of sound. Changes in gases concentration may predictably affect the time of flight of ultrasonic signals in each direction along the gases flow path. Temperature sensors may be included in the gases delivery system 1 to enable detection of any temperature changes that may also affect changes to calculations of the speed of sound in the gases mixture.
- Ultrasonic sensing can provide faster responses and redundancy to the measurement apparatus 20 , 40 .
- Measurements in the measurement apparatus 20 , 40 and information regarding the flow rate of the gases can be generated quickly relative to other sensing systems. Redundancy may be provided in the form of an in-built verification of measured gases properties. If an unlikely gases flow rate has been detected, this may imply that the oxygen concentration detected is incorrect. Similarly, if an unlikely oxygen concentration is detected, this may indicate that the gases flow rate is incorrect. Such redundancy may help to improve safety factors at the lower and higher extremes for flow rate.
- the gases that enter the measuring chamber 22 may be substantially mixed, which may reduce inconsistencies in measurements that may occur from unmixed gases.
- a pulse can be defined as a peak of a single cycle associated with the driving frequency of a transducer.
- a pulse series may use a plurality of cycles and may detect a chosen amount of peaks.
- a pulse series may be defined by the period of time for which a transducer transmits the desired excitation frequency, such that a desired number of peaks may be transmitted.
- the number of transmitted cycles, the dispersion characteristics of the ultrasonic transducers 26 and the physical design of the measurement apparatus 20 , 40 may be controlled to reduce or minimize multi-path interference in the measurement apparatus 20 , 40 .
- the time interval between transmission sequences may be configured to be shorter than the time of flight and to not cause significant interference.
- a single pulse may be less sensitive to the effect of multi-path interference due at least in part to the dispersion characteristics of the ultrasonic transducers 26 and the effects of the physical design of the measurement apparatus 20 , 40 on the received signal.
- a pulse series may be used advantageously to transmit a measurement signal that may be higher in amplitude and less sensitive to electronic noise than a single pulse.
- Use of the pulse series may also enable the ultrasonic sensors 26 to be excited at the driving frequency and may help to ensure that the acoustic period of the driving frequency is known, thereby removing or reducing issues that may be caused by a resonant response, such as phase delay.
- the driving frequency may not necessarily equal the natural frequency of the ultrasonic sensors 26 , which is dependent on temperature, gases concentration, and sensor construction.
- the time period between when each peak may be determined from the phase shift between the transmitted signal, the received signal, and the measured temperature of the gases mixture. Peak discrimination may be easier at lower frequencies due to larger time intervals between pulses.
- the pulse series may yield a large sample of readings which can be processed using averaging techniques to improve accuracy.
- Calculations of the speed of sound in the mixed gases can be affected by temperature and/or humidity. To improve the accuracy of calculations of the speed of sound, temperature and/or humidity corrections can be made. For example, based on properties of an ideal gas, the speed of sound is proportional to the square root of temperature. Temperature can be measured in the gases delivery system 1 for use as a correction factor. For example, temperature sensors 29 may be located at the input of the measuring chamber 22 and, in some embodiments, at the output of the measurement apparatus 20 , 40 as the gases enter the humidification chamber 6 via the blower conduit 12 . In some embodiments, measurement methods disclosed herein can be performed without the use of temperature corrections. In some embodiments, systems and methods disclosed herein can maintain the measuring chamber 22 at or near a targeted temperature, thus allowing calculations of the speed of sound to be performed without the use of temperature corrections.
- a humidity sensor 27 may be positioned at the intake manifold of the blower assembly 2 to measure the humidity of the air entering the gases delivery system 1 .
- the humidity sensor 27 may be positioned at the outlet of the measurement apparatus 20 , 40 .
- a humidity sensor can be placed both at the intake manifold of the blower assembly 2 and at the outlet of the measurement apparatus 20 , 40 . Use of two humidity sensors may provide the additional advantage of helping to determine the presence of a leak.
- Pressure sensors 31 may be located at the oxygen inlet 32 and at the air inlet 30 of the measurement apparatus 20 , 40 .
- the static or dynamic pressure of each of the input gases can be measured as they enter the measurement apparatus 20 , 40 .
- the static or dynamic pressure of the air inlet 30 can be approximated by blower speed. This may give an approximation of the ratio of the input gases composition, or the relative fraction of input gases to one another.
- An additional pressure sensor 31 may be located at the output of the measurement apparatus 20 , 40 as the gases enter the humidification chamber 6 .
- the measurement of pressure may provide a secondary gases concentration and a flow rate measurement system, which may be more independent of, or less sensitive to, effects of mixing, carbon dioxide, water vapour, temperature, or altitude changes.
- the temperature 29 , humidity 29 , and pressure 31 sensors may provide measurement data to improve the accuracy in the measurement of oxygen concentration. This can be achieved through direct calculations or via a lookup table.
- Acoustic meta-materials may be chosen to control, manipulate, and/or direct pressure waves to reduce dispersion that may lead to interference. Such materials may be used in conjunction with, or instead of, relying on the positioning of the ultrasonic sensors 26 with respect to an appropriate aperture diameter for a measurement section that is designed according to the chosen driving frequency.
- the measurement apparatus 20 , 40 may be used with a humidification system that is not limited to a gases source comprising a blower but instead may be attached to a ventilator, insufflator, or other gases source.
- the measurement apparatus 20 , 40 may not be a part of the blower assembly 2 but may be a separate component of the gases delivery system 1 that is located between a gases source and a humidification system.
- the measurement apparatus 20 , 40 can be configured to provide electrical signals to a control system that are indicative of characteristics or properties of the gases in the gases delivery system 1 .
- the control system can receive electrical signals, determine gases properties or characteristics (e.g., gases concentration, mixing ratios, flow rate, velocity, temperature, or humidity), and control devices or components of the gases delivery system 1 at least in part in response to the electrical signals.
- FIG. 7 illustrates a schematic of a measuring chamber 700 with at least two ultrasonic sensors 710 a , 710 b configured to measure at least one gases characteristic, where the ultrasonic sensors 710 a , 710 b are configured to transmit and receive pressure waves or pulses along the gases flow path.
- the ultrasonic sensors 710 a , 710 b can be configured to measure, for example and without limitation, gases concentration, flow rate, velocity, or the like.
- Each ultrasonic sensor 710 a , 710 b can be configured to transmit and receive pressure waves or pulses 712 .
- the ultrasonic sensor 710 a can be configured to act as a transmitter to transmit the pulse or pulse train 712 in a downstream direction (with or following the flow of gases along the gases flow path).
- the ultrasonic sensor 710 b can be configured to act as a receiver to generate an electrical signal in response to the received pulses 712 .
- the roles of the ultrasonic sensors can be reversed—the ultrasonic sensor 710 b can be switched to act as a transmitter and ultrasonic sensor 710 a can be switched to act as a receiver.
- the pressure waves or pulses 712 are transmitted in an upstream direction (against or opposite the flow of gases, and thus opposite the downstream direction, along the gases flow path).
- the ultrasonic sensors 710 a , 710 b can be operably coupled to a control system 720 .
- the control system 720 can comprise a controller, data storage, communication buses, and the like to communicate with the sensors 710 a , 710 b , determine gases characteristics based at least in part on signals received from the ultrasonic sensors 710 a , 710 b , control components of the gases delivery system 1 in response to the determined characteristics, and the like.
- the control system 720 can be configured to determine gases characteristics by comparing the time of flight (arrival time) of the pulses 712 in each direction (from each measurement phase).
- the control system 720 can determine the flow rate of the gases, for example, based at least in part on the differences in time of flight.
- the control system 720 can control a blower, a valve, or other similar component of the gases delivery system 1 in response to the determined characteristics.
- the ultrasonic sensors 710 a , 710 b are configured to transmit and receive the pulses 712 at a frequency that is at or near a natural operating frequency of the ultrasonic sensors 710 a , 710 b .
- the ultrasonic sensors 710 a , 710 b can be configured to have the same natural operating frequency. This can advantageously reduce distortion from noise.
- the natural frequency of the ultrasonic sensors 710 a , 710 b is about 25 kHz.
- the ultrasonic sensors 710 a , 710 b can transmit and/or receive the pulses 712 about every 10 ms.
- the pulse train or pulses 712 can be a square wave, a sawtooth pattern, a sine wave, or some other shape of pulse.
- the control system 720 can be configured to identify or detect the frequency of the pulses 712 and/or the time of flight of the pulses 712 .
- the control system 720 can be configured to identify rising or falling edges, maxima or minima, and/or zero crossing points, etc., of the pulses 712 .
- sampling is done in each direction so that about 40 samples are acquired (e.g., 40 samples of rising edges and 40 samples of falling edges).
- the sampling rate is set at about 50 Hz. In some embodiments, signals are not filtered.
- the signal time of flight between the ultrasonic sensors 710 a , 710 b is affected by various characteristics or properties of the gases (e.g., oxygen levels, humidity, and temperature). At a particular temperature, the signal time of flight is expected to fall within a time range bound by the time of flight for air and for a pure oxygen environment. These time of flight boundaries are affected by factors such as gas flow, physical design of the measurement apparatus 20 , 40 , and assembly variations and may also be different in the downstream and upstream directions. This is illustrated in FIG.
- FIG. 8A shows a plot of a binary gas calibration curve based on example measurements of a binary gas mixture of oxygen and air using a particular embodiment of the measuring chamber 700 .
- the measured time of flight of pulses for an unknown mixture of gases in the downstream and upstream directions, G d and G u respectively, are plotted against a measured temperature, as is an average time of flight for both directions G avg . Also shown in FIG.
- the averages for air and oxygen represent boundaries of potential time of flight measurements within the gases delivery system 1 .
- the control system 720 can be configured to identify peaks in pulse trains received by the ultrasonic sensors 710 a , 710 b and calculate an average time of flight in each direction based on the number of peaks received and the times of each received peak.
- the oxygen concentration can be calculated as a volume percentage:
- G avg ( G d + G u ) 2
- a avg ( A d + A u ) 2
- O avg ( O d + O u ) 2
- G d represents the downstream average time of flight for the binary gases mixture
- G u represents the upstream average time of flight for the binary gases mixture
- G avg represents the average of G d and G u
- a d , A u , and A avg represent the equivalent averages for air (which is 20.9% oxygen)
- O d , O u , and O avg represent the equivalent averages for 100% oxygen.
- a linear relationship between the average time of flight O avg in 100% oxygen and the average time of flight A avg in an environment where there is 20.9% oxygen (e.g., air) is used to calculate the gases concentration x (e.g., the fraction of oxygen in the binary gases mixture).
- the line in FIG. 8B is based on the data in FIG. 8A for a given temperature (e.g., the measured temperature).
- the calibrated correction compensates at least in part for asymmetry in the measuring chamber 700 . For example, even when the flow rate of gases is zero or near zero, there may be a difference in the time of flight for pulses moving in the downstream and upstream directions.
- the calibrated correction f G can be determined from a time of flight in each direction for the gases mixture based on the concentration x previously determined (e.g., as shown in FIG. 8B ).
- f G f A + ( f O - f A ) ⁇ ( x - 20.9 ) ( 100 - 20.9 )
- k is a constant representing the influence of the cross sectional area of the measuring chamber 700 and the distance between the ultrasonic sensors 710 a , 710 b
- f A is a calibrated correction for air
- f O is a calibrated correction for oxygen.
- the calibrated correction f G is a linear interpolation between f A and f O based on gas concentration.
- the apparatus and system of the present disclosure may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Emergency Medicine (AREA)
- Fluid Mechanics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Accessories For Mixers (AREA)
- Measuring Volume Flow (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/313,836 US11433210B2 (en) | 2014-05-27 | 2015-05-27 | Gases mixing and measuring for a medical device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462003423P | 2014-05-27 | 2014-05-27 | |
PCT/NZ2015/050068 WO2015183107A1 (fr) | 2014-05-27 | 2015-05-27 | Mélange et mesure de gaz pour un dispositif médical |
US15/313,836 US11433210B2 (en) | 2014-05-27 | 2015-05-27 | Gases mixing and measuring for a medical device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NZ2015/050068 A-371-Of-International WO2015183107A1 (fr) | 2014-05-27 | 2015-05-27 | Mélange et mesure de gaz pour un dispositif médical |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/815,882 Continuation US12053585B2 (en) | 2014-05-27 | 2022-07-28 | Gases mixing and measuring for a medical device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170197056A1 US20170197056A1 (en) | 2017-07-13 |
US11433210B2 true US11433210B2 (en) | 2022-09-06 |
Family
ID=54699331
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/313,836 Active 2036-01-23 US11433210B2 (en) | 2014-05-27 | 2015-05-27 | Gases mixing and measuring for a medical device |
US17/815,882 Active US12053585B2 (en) | 2014-05-27 | 2022-07-28 | Gases mixing and measuring for a medical device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/815,882 Active US12053585B2 (en) | 2014-05-27 | 2022-07-28 | Gases mixing and measuring for a medical device |
Country Status (8)
Country | Link |
---|---|
US (2) | US11433210B2 (fr) |
EP (2) | EP4235120A3 (fr) |
JP (4) | JP2017517319A (fr) |
CN (4) | CN106535972B (fr) |
AU (3) | AU2015268171B2 (fr) |
CA (1) | CA2950073A1 (fr) |
SG (2) | SG11201609863WA (fr) |
WO (1) | WO2015183107A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230160513A1 (en) * | 2019-04-01 | 2023-05-25 | Inogen, Inc. | Compact portable oxygen concentrator |
US11918748B2 (en) | 2012-04-05 | 2024-03-05 | Fisher & Paykel Healthcare Limited | Respiratory assistance apparatus |
US12053585B2 (en) | 2014-05-27 | 2024-08-06 | Fisher & Paykel Healthcare Limited | Gases mixing and measuring for a medical device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2599020B (en) * | 2015-12-02 | 2022-06-22 | Fisher & Paykel Healthcare Ltd | Flow path sensing for flow therapy apparatus |
US10324104B2 (en) * | 2016-01-04 | 2019-06-18 | Bradley Charles Ashmore | Device for measuring the speed and direction of a gas flow |
CN105920711B (zh) * | 2016-06-23 | 2018-09-11 | 湖南明康中锦医疗科技发展有限公司 | 一种用于呼吸机的空氧混合气道及呼吸机和方法 |
US11549699B2 (en) | 2017-10-03 | 2023-01-10 | Vornado Air, Llc | Portable humidifier |
SG11202004017XA (en) * | 2017-11-22 | 2020-06-29 | Fisher & Paykel Healthcare Ltd | Respiratory rate monitoring for respiratory flow therapy systems |
US11583640B2 (en) * | 2018-04-20 | 2023-02-21 | Gough Industries, Inc. | Medicine vaporizer apparatus and methods of using the same |
CN211316436U (zh) * | 2018-09-09 | 2020-08-21 | G·皮斯 | 一种空气加湿系统 |
US11609219B2 (en) | 2019-08-01 | 2023-03-21 | Evoqua Water Technologies Llc | Continuous sonic wave analyzer |
DE102020000268A1 (de) * | 2020-01-17 | 2021-07-22 | Drägerwerk AG & Co. KGaA | Anästhesiemitteldosiervorrichtung mit einer Messeinheit |
US11181544B2 (en) | 2020-02-20 | 2021-11-23 | Bradley Charles Ashmore | Configurable flow velocimeter |
JP2021187389A (ja) | 2020-06-03 | 2021-12-13 | 株式会社東海理化電機製作所 | 筐体装置およびシステム |
CN113413530B (zh) * | 2021-06-20 | 2022-04-01 | 三河科达实业有限公司 | 一种可以应用于高寒冷环境下的空气混氧模块 |
GB2629311A (en) * | 2021-12-23 | 2024-10-23 | Fisher & Paykel Healthcare Ltd | Respiratory support system |
KR102397529B1 (ko) * | 2022-03-07 | 2022-05-12 | 이창수 | 환자의 원활한 호흡 유도 기능을 강화한 메디컬 콘솔용 네블라이저 |
Citations (209)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191408838A (en) | 1912-05-05 | 1914-10-29 | A C Clark & Company | Improvements in or relating to Apparatus for use in Administering Gas for Medical or like purposes. |
US1269599A (en) | 1914-04-30 | 1918-06-18 | Fritz Haber | Method and apparatus for testing gases. |
DE404809C (de) | 1923-05-08 | 1924-10-21 | Willi Kunze Dr | Verfahren zum Nachweis und zur quantitativen Analyse von Gasen aus der Tonhoehe eines oder mehrerer mit dem zu bestimmenden Medium gefuellter und elektrisch zu Schallschwingungen erregter Resonatoren |
US1570781A (en) | 1921-12-20 | 1926-01-26 | Ruben Samuel | Testing apparatus and method |
US2283750A (en) | 1940-01-16 | 1942-05-19 | Gen Electric | Apparatus for measuring the density of gases |
US2568277A (en) | 1942-08-01 | 1951-09-18 | Bendix Aviat Corp | Fluid testing apparatus |
US2874564A (en) | 1954-11-17 | 1959-02-24 | Parsons & Co Sir Howard G | Sonic gas analysers |
US2984097A (en) | 1956-09-11 | 1961-05-16 | Merck & Co Inc | Gas measuring apparatus |
US3120750A (en) | 1958-11-28 | 1964-02-11 | Iii Elihu Root | Gas analyzer |
US3343403A (en) | 1963-01-28 | 1967-09-26 | Commissariat Energie Atomique | Apparatus for the measurement of the velocity of sound in a gas |
US3468157A (en) | 1966-03-03 | 1969-09-23 | Phillips Petroleum Co | Acoustical apparatus for detecting the composition of a gas |
US3495628A (en) | 1964-09-14 | 1970-02-17 | Polva Nederland Bv | Tubular construction |
US3724484A (en) | 1971-07-13 | 1973-04-03 | Us Air Force | Particle density control system for colloid core nuclear reactor |
US3762197A (en) | 1970-09-14 | 1973-10-02 | Phillips Petroleum Co | Acoustical detecting apparatus |
US3805590A (en) | 1973-03-09 | 1974-04-23 | Us Navy | Oxygen partial pressure sensor |
US3848457A (en) | 1973-05-14 | 1974-11-19 | Minnesota Mining & Mfg | Gaseous fluid monitoring apparatus |
US3863630A (en) | 1971-11-10 | 1975-02-04 | Synthelabo | Respiratory apparatus |
US3926223A (en) | 1972-06-21 | 1975-12-16 | Aristovoulos George Petzetakis | Large diameter hollow bodies of helical thermoplastic strip |
US3981176A (en) | 1974-09-16 | 1976-09-21 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare | Dual frequency acoustic gas composition analyzer |
US4033808A (en) | 1972-06-21 | 1977-07-05 | Aristovoulos George Petzetakis | Apparatus for the production of hollow bodies, especially large-diameter ducts from thermoplastic synthetic resin |
US4155246A (en) | 1977-04-13 | 1979-05-22 | Harley E. Schear | Rapid gas analyzing system |
JPS554528A (en) | 1978-06-27 | 1980-01-14 | Sumitomo Bakelite Co Ltd | Method and apparatus for measuring gas concentration |
US4215409A (en) | 1978-03-13 | 1980-07-29 | Mckesson Company | Flow control system for anesthesia apparatus |
US4255964A (en) | 1978-11-30 | 1981-03-17 | The Garrett Corporation | Fluid monitor |
US4280183A (en) | 1978-08-04 | 1981-07-21 | S.S.O.S. Sub Sea Oil Services S.P.A. | Gas analyzer |
US4313436A (en) | 1979-11-10 | 1982-02-02 | Dragerwerk Aktiengesellschaft | Fresh gas device with mixer for medical and respiration apparatus |
US4326513A (en) | 1979-07-02 | 1982-04-27 | Dragerwerk Ag | Patient data controlled respiration system |
US4331025A (en) | 1980-10-14 | 1982-05-25 | Mapco, Inc. | Methods of measuring fluid viscosity and flow rate |
GB2087559A (en) | 1980-11-15 | 1982-05-26 | Nat Maritime Inst | Determining gas compositions acoustically |
US4340044A (en) | 1980-03-20 | 1982-07-20 | Berkshire Research Partners | Volume ventilator |
US4345612A (en) | 1979-06-12 | 1982-08-24 | Citizen Watch Company Limited | Anesthetic gas control apparatus |
US4380167A (en) | 1981-03-18 | 1983-04-19 | Energy Controls, Inc. | Apparatus and method for detecting a fraction of a gas |
JPS58190439A (ja) | 1982-04-14 | 1983-11-07 | フランシス・エイ・レスペランス | コンタクトレンズの構造 |
US4452090A (en) | 1982-05-17 | 1984-06-05 | Airco, Inc. | Ultrasonic flowmeter |
US4520654A (en) * | 1983-03-14 | 1985-06-04 | General Electric Company | Method and apparatus for detecting hydrogen, oxygen and water vapor concentrations in a host gas |
US4531551A (en) | 1982-12-14 | 1985-07-30 | Siemens Aktiengesellschaft | Double-walled, flexible hose |
US4555932A (en) | 1984-02-03 | 1985-12-03 | Rca Corporation | Method and apparatus for assaying the purity of a gas |
US4662212A (en) * | 1984-09-10 | 1987-05-05 | Sumitomo Bakelite Company Limited | Measuring instrument for concentration of gas |
US4773448A (en) | 1987-02-26 | 1988-09-27 | Francis Norman L | Freeze-resistant plastic pipe and method for its manufacture |
US4889116A (en) | 1987-11-17 | 1989-12-26 | Phospho Energetics, Inc. | Adaptive control of neonatal fractional inspired oxygen |
JPH01321508A (ja) | 1988-06-23 | 1989-12-27 | Kojima Seisakusho:Kk | 酸素濃度制御装置 |
US4903736A (en) | 1987-05-23 | 1990-02-27 | Vobau Artur Baston Gesellschaft Fur Vorrichtungsbau Mit Beschrankter Haftung | Hollow cylindrical body made from spirally wound extruded plastic strip material |
US4938066A (en) | 1988-01-29 | 1990-07-03 | Xecutek Corporation | Ultrasonic apparatus for measuring the speed of sound in a gaseous medium |
US4989595A (en) | 1985-09-23 | 1991-02-05 | Battelle Development Corporation | Aspirator/nebulizer |
US5060506A (en) | 1989-10-23 | 1991-10-29 | Douglas David W | Method and apparatus for monitoring the content of binary gas mixtures |
US5060507A (en) | 1989-06-21 | 1991-10-29 | John Urmson | Method and apparatus for fluid mixture monitoring, constituent analysis, and composition control |
US5060514A (en) * | 1989-11-30 | 1991-10-29 | Puritan-Bennett Corporate | Ultrasonic gas measuring device |
US5127442A (en) | 1988-08-17 | 1992-07-07 | Oy Kwh Pipe Ab | Plastic tube formed by spiral winding of hollow section |
US5179862A (en) | 1990-06-29 | 1993-01-19 | Panametrics, Inc. | Snap-on flow measurement system |
US5247826A (en) | 1992-11-12 | 1993-09-28 | Devilbiss Health Care, Inc. | Gas concentration and/or flow sensor |
US5285677A (en) | 1989-12-08 | 1994-02-15 | Oscar Oehler | Selective gas detection by field separation and velocity of sound determination, especially O2 detection |
US5343760A (en) | 1992-07-09 | 1994-09-06 | General Motors Corporation | Gas concentration and flow rate sensor |
US5351522A (en) * | 1993-11-02 | 1994-10-04 | Aequitron Medical, Inc. | Gas sensor |
US5359897A (en) | 1989-08-08 | 1994-11-01 | Front Engineering Ltd. | Apparatus for determining the time taken for sound energy to cross a body of fluid in a pipe |
US5365922A (en) | 1991-03-19 | 1994-11-22 | Brigham And Women's Hospital, Inc. | Closed-loop non-invasive oxygen saturation control system |
US5392635A (en) | 1993-12-30 | 1995-02-28 | At&T Corp. | Acoustic analysis of gas mixtures |
US5452714A (en) | 1990-06-07 | 1995-09-26 | Infrasonics, Inc. | Human lung ventilator system |
US5460175A (en) | 1992-11-26 | 1995-10-24 | Normalair-Garrett (Holdings) Limited | Air-oxygen mixture controllers for breathing demand regulators |
WO1995028193A1 (fr) | 1994-04-19 | 1995-10-26 | Boesherz Jakob | Respirateur s'utilisant notamment dans le traitement des insuffisances respiratoires, et son procede de fonctionnement |
US5463906A (en) | 1994-01-24 | 1995-11-07 | Triton Technology, Inc. | Interchangeable disposable acoustic for use with an ultrasonic flowmeter, particularly during extracorporeal measurement of blood flow |
US5490763A (en) * | 1994-09-15 | 1996-02-13 | Abrams; Andrew L. | Pump for shear sensitive fluids |
US5503151A (en) | 1993-09-30 | 1996-04-02 | Ndd Medzintechnik Gmbh | Apparatus for measuring the parameters of respiratory gases |
US5551419A (en) | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
US5581014A (en) | 1995-04-05 | 1996-12-03 | Douglas; David W. | Method and apparatus for acoustic analysis of binary gas mixtures with continuous self-calibration |
US5591292A (en) | 1992-04-30 | 1997-01-07 | Oy Kwh Pipe Ab | Welding method in the manufacture of a spirally wound tube and a welding head for performing the method |
US5625140A (en) | 1995-12-12 | 1997-04-29 | Lucent Technologies Inc. | Acoustic analysis of gas mixtures |
US5627323A (en) | 1995-05-25 | 1997-05-06 | Stern; Michael | Ultrasonic binary gas measuring device |
US5640951A (en) | 1994-03-15 | 1997-06-24 | Fisher & Paykel Limited | Humidifier conduit |
EP0788805A2 (fr) | 1996-02-06 | 1997-08-13 | DeVilbiss Health Care, Inc. | Circuit de commande pour appareil à ventilation spontanée en pression positive continue |
EP0813060A2 (fr) | 1996-06-13 | 1997-12-17 | Leybold Inficon, Inc. | Capteur acoustique pour la surveillance continue en ligne de gaz |
US5701883A (en) | 1996-09-03 | 1997-12-30 | Respironics, Inc. | Oxygen mixing in a blower-based ventilator |
US5792665A (en) | 1996-05-29 | 1998-08-11 | Morrow, Iii; Donald W. | Oxygen sensing method and hand held analyzer therefore |
US5809997A (en) | 1995-05-18 | 1998-09-22 | Medtrac Technologies, Inc. | Electronic medication chronolog device |
US5823186A (en) | 1996-06-20 | 1998-10-20 | Dragerwerk Ag | Respirator |
US5917135A (en) | 1996-06-14 | 1999-06-29 | Invacare Corporation | Gas concentration sensor and control for oxygen concentrator utilizing gas concentration sensor |
US6039696A (en) | 1997-10-31 | 2000-03-21 | Medcare Medical Group, Inc. | Method and apparatus for sensing humidity in a patient with an artificial airway |
WO2000045883A1 (fr) | 1999-02-04 | 2000-08-10 | Versamed Medical Systems Ltd. | Systeme de ventilation portatif commande par ordinateur |
US6105649A (en) | 1998-09-30 | 2000-08-22 | Jerry C. Levingston | Pipe extrusion apparatus including winding a hollow profile |
US6138674A (en) | 1997-10-16 | 2000-10-31 | Datex-Ohmeda, Inc. | Active temperature and humidity compensator for anesthesia monitoring systems |
US6142149A (en) | 1997-10-23 | 2000-11-07 | Steen; Scot Kenneth | Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation |
US6178827B1 (en) * | 1999-04-22 | 2001-01-30 | Murray F. Feller | Ultrasonic flow sensor |
JP2001120661A (ja) | 1999-09-09 | 2001-05-08 | Siemens Elema Ab | ガス含量を決定する方法 |
US6279379B1 (en) | 1998-04-17 | 2001-08-28 | Lorex Industries, Inc. | Apparatus and methods for performing acoustical measurements |
EP1138341A2 (fr) | 2000-03-21 | 2001-10-04 | FISHER & PAYKEL LIMITED | Appareil d'humidification |
CN1336536A (zh) | 2000-07-28 | 2002-02-20 | 山东科技大学资源与环境工程学院 | 组合式管道气、液流体多参数一体化传感器组件 |
EP1205747A2 (fr) | 2000-10-20 | 2002-05-15 | Fisher & Paykel Healthcare Limited | Capteur d'humidité |
US20020062681A1 (en) | 2000-11-30 | 2002-05-30 | Livingston Richard A. | Oxygen sensor and flow meter device |
US6397841B1 (en) | 1997-06-18 | 2002-06-04 | Resmed Limited | Apparatus for supplying breathable gas |
JP2002214012A (ja) | 2001-01-22 | 2002-07-31 | Teijin Ltd | 超音波式ガス濃度流量測定方法及び装置 |
JP2002306603A (ja) | 2001-04-16 | 2002-10-22 | Teijin Ltd | 酸素濃縮装置 |
US6487916B1 (en) | 2000-02-02 | 2002-12-03 | Bechtel Bxwt Idaho, Llc | Ultrasonic flow metering system |
EP1286159A1 (fr) | 2001-01-22 | 2003-02-26 | Teijin Limited | Appareil et procede pour mesurer la concentration et le debit de gaz par ultrasons |
US6537405B1 (en) | 1997-10-16 | 2003-03-25 | Nomaco, Inc. | Spiral formed products and method of manufacture |
US20030065274A1 (en) | 1999-08-02 | 2003-04-03 | Mault James R. | Method of respiratory gas analysis using a metabolic calorimeter |
US6543449B1 (en) | 1997-09-19 | 2003-04-08 | Respironics, Inc. | Medical ventilator |
US6581595B1 (en) | 2000-11-14 | 2003-06-24 | Sensormedics Corporation | Positive airway pressure device with indirect calorimetry system |
EP0896671B1 (fr) | 1996-04-22 | 2003-09-10 | Lattice Intellectual Property Limited | Appareil de mesure d'une grandeur concernant un gaz |
US6629934B2 (en) | 2000-02-02 | 2003-10-07 | Healthetech, Inc. | Indirect calorimeter for medical applications |
US6634356B1 (en) | 1998-09-04 | 2003-10-21 | Caradyne (R&D) Limited | Continuous positive airway pressure controller |
WO2003090903A1 (fr) | 2002-04-24 | 2003-11-06 | Airsep Corporation | Concentrateur d'oxygene a bruit reduit |
WO2004039444A1 (fr) | 2002-11-01 | 2004-05-13 | Fisher & Paykel Healthcare Limited | Systeme permettant de detecter l'apport de gaz a un patient |
WO2004069922A1 (fr) | 2003-02-07 | 2004-08-19 | The Nippon Synthetic Chemical Industry Co., Ltd. | Composition de resine et utilisation de ladite composition |
US20040211244A1 (en) | 2003-04-28 | 2004-10-28 | Maquet Critical Care Ab | Method and arrangement for acoustic determination of moisture content of a gas mixture |
WO2004112873A1 (fr) | 2003-06-20 | 2004-12-29 | Resmed Limited | Appareil respiratoire pour inhalation de gaz, muni d'un humidificateur |
US20050121033A1 (en) | 1998-02-25 | 2005-06-09 | Ric Investments, Llc. | Respiratory monitoring during gas delivery |
US20050125170A1 (en) * | 2003-10-10 | 2005-06-09 | Gysling Daniel L. | Flow measurement apparatus having strain-based sensors and ultrasonic sensors |
US6910481B2 (en) | 2003-03-28 | 2005-06-28 | Ric Investments, Inc. | Pressure support compliance monitoring system |
US20050223795A1 (en) * | 2004-04-08 | 2005-10-13 | Henning Gerder | Measuring device for measuring the volume flow or the substance properties of a gas, whose direction of flow can reverse |
JP2005537083A (ja) | 2002-08-30 | 2005-12-08 | フィッシャー アンド ペイケル ヘルスケア リミテッド | 加湿システム |
US20060042638A1 (en) | 2004-08-31 | 2006-03-02 | Niklewski Paul J | Apparatus for delivering oxygen to a patient undergoing a medical procedure |
US7066175B2 (en) | 2001-05-07 | 2006-06-27 | Emergent Respiratory Products, Inc. | Portable gas powered positive pressure breathing apparatus and method |
US20060156828A1 (en) * | 2004-12-14 | 2006-07-20 | Uwe Konzelmann | Ultrasonic flow meter including guide elements |
US20060158956A1 (en) * | 1998-10-28 | 2006-07-20 | Covaris, Inc. | Methods and systems for modulating acoustic energy delivery |
CN1817378A (zh) | 2006-03-10 | 2006-08-16 | 张培林 | 无压缩空气智能化呼吸机空氧混合系统 |
US7111624B2 (en) | 2000-03-21 | 2006-09-26 | Fisher & Paykel Healthcare Limited | Apparatus for delivering humidified gases |
US20060283450A1 (en) | 2005-06-21 | 2006-12-21 | Ric Investments, Llc. | Respiratory device measurement system |
WO2007004898A1 (fr) | 2005-07-01 | 2007-01-11 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire avec collecteur pour ajouter des gaz auxiliaires aux gaz ambiants |
US7183552B2 (en) | 2003-03-07 | 2007-02-27 | Ric Investments, Llc | Optical system for a gas measurement system |
US20070044799A1 (en) | 2005-07-08 | 2007-03-01 | Hete Bernie F | Modular oxygen regulator system and respiratory treatment system |
US20070062531A1 (en) | 2003-02-19 | 2007-03-22 | Joseph Fisher | Method of measuring cardiac related parameters non-invasively via the lung during spontaneous and controlled ventilation |
US20070125374A1 (en) | 2005-12-02 | 2007-06-07 | Smith Michael S | Gas blender with auxiliary mixed gas outlet |
WO2007069922A1 (fr) | 2005-12-15 | 2007-06-21 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire |
WO2007103855A2 (fr) | 2006-03-06 | 2007-09-13 | Ric Investments, Llc | Systeme de mesure du gaz |
US20070245802A1 (en) * | 2006-04-25 | 2007-10-25 | Howard Austerlitz | Asm output ultrasonic oxygen sensor |
US20070283958A1 (en) | 2006-05-23 | 2007-12-13 | Ray Naghavi | Positive airway pressure device |
US20080041381A1 (en) | 2006-08-21 | 2008-02-21 | Tham Robert Q | Non-invasive determination of cardiac output, gas exchange and arterial blood gas concentration |
US20080060647A1 (en) | 2006-09-12 | 2008-03-13 | Invacare Corporation | System and method for delivering a breathing gas |
CN101152592A (zh) | 2006-09-27 | 2008-04-02 | 德拉格医疗股份两合公司 | 具有呼吸机和加湿器的设备 |
US20080092891A1 (en) | 2004-09-03 | 2008-04-24 | Anagram Consultants Ag | Gas Flow Control In A Ventilator |
US7370651B2 (en) | 2005-04-01 | 2008-05-13 | Ric Investments, Llc | Gas conserving device |
JP2008518640A (ja) | 2003-06-20 | 2008-06-05 | レスメド リミテッド | 加湿器を備えた呼吸可能なガス供給装置 |
US20080156328A1 (en) | 2006-11-13 | 2008-07-03 | John Taube | Solenoid air/oxygen system for use with an adaptive oxygen controller and therapeutic methods of use |
EP1961439A1 (fr) | 2007-02-23 | 2008-08-27 | The General Electric Company | Système de mise en place d'anesthésie d'inhalation et procédé de détection de fuite dans un système de mise en place d'anesthésie d'inhalation |
CN101252966A (zh) | 2005-05-26 | 2008-08-27 | 菲舍尔和佩克尔保健有限公司 | 呼吸辅助设备 |
US7432508B2 (en) | 2003-02-21 | 2008-10-07 | Ric Investments, Llc | Gas measurement system |
US7448376B2 (en) | 2005-08-27 | 2008-11-11 | Pamela Lepel | Medication delivery device and method |
CN101318049A (zh) | 1997-06-17 | 2008-12-10 | 菲舍尔和佩克尔有限公司 | 呼吸系统加湿器 |
WO2008149868A1 (fr) | 2007-05-31 | 2008-12-11 | Teijin Pharma Limited | Procédé ultrasonique de mesure de la concentration d'un gaz et dispositif en faisant usage |
US20090020120A1 (en) | 2007-07-20 | 2009-01-22 | Map Medizin-Technologie Gmbh | Monitor for CPAP/ventilator apparatus |
US20090056715A1 (en) | 2007-07-18 | 2009-03-05 | Vapotherm, Inc. | Delivery tube for breathing gas heating and humidification system |
US7501630B2 (en) | 2003-02-21 | 2009-03-10 | Koninklijke Philips Electronics N.V. | Gas measurement system |
US7509957B2 (en) | 2006-02-21 | 2009-03-31 | Viasys Manufacturing, Inc. | Hardware configuration for pressure driver |
WO2009045198A1 (fr) | 2007-10-05 | 2009-04-09 | Vapotherm, Inc. | Système d'humidification hyperthermique |
US20090107501A1 (en) | 2007-10-24 | 2009-04-30 | Ana Krieger | System and method of monitoring respiratory airflow and oxygen concentration |
WO2009052631A1 (fr) | 2007-10-26 | 2009-04-30 | Uti Limited Partnership | Système de stabilisation de ventilation |
WO2009058081A1 (fr) | 2007-10-29 | 2009-05-07 | Poseidon Diving Systems | Régulation de l'oxygène dans un appareil respiratoire |
US20090145428A1 (en) | 2007-12-05 | 2009-06-11 | Sequal Technologies, Inc. | System and Method for Controlling Supply of Oxygen Based on Breathing Rate |
US20090178490A1 (en) * | 2005-08-16 | 2009-07-16 | Uwe Konzelmann | Ultrasonic Measuring Unit Having Integrated Humidity Analysis |
US20090241953A1 (en) | 2008-03-31 | 2009-10-01 | Nellcor Puritan Bennett Llc | Ventilator with piston-cylinder and buffer volume |
CN101554510A (zh) | 2009-05-18 | 2009-10-14 | 浙江新丰医疗器械有限公司 | 一种呼吸器的呼气阀 |
US7606668B2 (en) | 2003-02-21 | 2009-10-20 | Ric Investments, Llc | Gas monitoring system and method |
WO2009145646A1 (fr) | 2008-05-27 | 2009-12-03 | Fisher & Paykel Healthcare Limited | Régulation de la température de chambre d’un humidificateur pour une régulation précise de l’humidité |
CN201379872Y (zh) | 2009-04-21 | 2010-01-13 | 嘉美科仪(北京)医疗设备有限公司 | 一种呼吸机 |
US20100006098A1 (en) | 2008-07-10 | 2010-01-14 | Mcginnis William J | Cpap-oximeter hybrid device and method of using |
WO2010084183A2 (fr) | 2009-01-22 | 2010-07-29 | Plastiflex Belgium | Manchon chauffant pour conduit respiratoire |
US20100218591A1 (en) | 2007-06-21 | 2010-09-02 | Rhodes George W | Method and apparatus for controlling relative coal flow in pipes from a pulverizer |
US20100224191A1 (en) | 2009-03-06 | 2010-09-09 | Cardinal Health 207, Inc. | Automated Oxygen Delivery System |
US7810497B2 (en) | 2006-03-20 | 2010-10-12 | Ric Investments, Llc | Ventilatory control system |
CN101861182A (zh) | 2007-11-15 | 2010-10-13 | 帝人制药株式会社 | 氧浓缩装置 |
JP2010537779A (ja) | 2007-09-06 | 2010-12-09 | イノヴァ ラブス,インコーポレイテッド | 酸素濃縮装置およびその方法 |
WO2011010191A1 (fr) | 2009-07-22 | 2011-01-27 | Koninklijke Philips Electronics N.V. | Détecteurs de chute et procédé de détection de chutes |
WO2011058196A1 (fr) | 2009-11-16 | 2011-05-19 | Maquet Critical Care Ab | Appareil respiratoire avec dispositif de distribution contrôlé |
JP2011120661A (ja) | 2009-12-09 | 2011-06-23 | Kao Corp | 生理用ナプキン |
WO2011075030A1 (fr) | 2009-12-18 | 2011-06-23 | Maquet Critical Care Ab | Compteur à gaz pour mesures ultrasonores dans un appareil d'assistance respiratoire |
US20110209558A1 (en) * | 2010-03-01 | 2011-09-01 | Denso Corporation | Ultrasonic flow meter |
US8047082B2 (en) | 2005-12-08 | 2011-11-01 | Continental Automotive Gmbh | Device for determining a mass flow of a first gas within an overall mixture of gases |
CN102261937A (zh) | 2011-04-25 | 2011-11-30 | 西安交通大学 | 一种高精度时差式超声波流量计及其流量测量方法 |
WO2011157196A1 (fr) | 2010-06-13 | 2011-12-22 | Jia Bingcheng | Structure de connexion de châssis de véhicule |
US20110314897A1 (en) | 2009-03-23 | 2011-12-29 | Koninklijke Philips Electronics N.V. | Gas sensing using ultrasound |
CN102316920A (zh) | 2009-02-13 | 2012-01-11 | 皇家飞利浦电子股份有限公司 | 压力支持设备用户界面 |
US20120006326A1 (en) | 2009-03-23 | 2012-01-12 | Koninklijke Philips Electronics N.V. | Gas mixing control apparatus and method |
WO2012021557A2 (fr) | 2010-08-10 | 2012-02-16 | The Regents Of The University Of California | Système d'administration de fluide automatisé et procédé |
US20120055340A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Power management systems and methods for use in an oxygen concentrator |
US20120065533A1 (en) | 2010-05-28 | 2012-03-15 | Carrillo Jr Oscar | Positive Airway Pressure System and Method |
US20120109536A1 (en) * | 2009-07-07 | 2012-05-03 | Koninklijke Philips Electronics N.V. | Multifunction sensor system and method for supervising room conditions |
US20120125121A1 (en) | 2010-11-19 | 2012-05-24 | Cameron International Corporation | Chordal gas flowmeter with transducers installed outside the pressure boundary, housing and method |
US20120271188A1 (en) * | 2009-11-03 | 2012-10-25 | Koninklijke Philips Electronics N.V. | Apparatus for measuring a level of a specific gas in exhaled breath |
US20130008438A1 (en) * | 2010-01-15 | 2013-01-10 | Ikiken Co., Ltd. | Oxygen concentrator |
US8381722B2 (en) | 1993-11-05 | 2013-02-26 | Resmed Limited | Distinguishing between closed and open airway apneas and treating patients accordingly |
US8485183B2 (en) * | 2008-06-06 | 2013-07-16 | Covidien Lp | Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal |
WO2013128365A1 (fr) | 2012-02-29 | 2013-09-06 | Koninklijke Philips N.V. | Compensation de variations de densité atmosphérique dans un dispositif d'aide inspiratoire |
WO2013137753A1 (fr) | 2012-03-15 | 2013-09-19 | Fisher & Paykel Healthcare Limited | Système d'humidification de gaz respiratoire |
US20130239960A1 (en) | 2011-09-12 | 2013-09-19 | Resmed Limited | Modularized respiratory treatment apparatus |
US20130267863A1 (en) | 2010-12-21 | 2013-10-10 | Koninklijke Philips Electronics N.V. | System and method for determining carbon dioxide excreted during non-invasive ventilation |
US20130263854A1 (en) | 2011-09-26 | 2013-10-10 | Resmed Paris Sas | Ventilator apparatus and method |
WO2013151447A1 (fr) | 2012-04-05 | 2013-10-10 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire |
US20140007878A1 (en) | 2011-03-23 | 2014-01-09 | Resmed Limited | Detection of ventilation sufficiency |
US20140034051A1 (en) | 2004-02-20 | 2014-02-06 | Pneumoflex Systems, Llc | Nebulizer having horizontal venturi |
WO2014059405A1 (fr) | 2012-10-12 | 2014-04-17 | Inova Labs, Inc. | Procédé et systèmes de distribution de gaz enrichi en oxygène |
US8752544B2 (en) | 2011-03-21 | 2014-06-17 | General Electric Company | Medical vaporizer and method of monitoring of a medical vaporizer |
US20140261414A1 (en) | 2013-03-15 | 2014-09-18 | Microdose Therapeutx, Inc. | Inhalation device, control method and computer program |
US20140311253A1 (en) * | 2011-11-04 | 2014-10-23 | Masamichi Iwasa | Ultrasonic sensor and ultrasonic flowmeter using same |
US8875587B2 (en) | 2008-12-29 | 2014-11-04 | Endress + Hauser Flowtec Ag | Ultrasonic flow measuring system and method for monitoring fluid flow having measuring tube inlet and outlet axis forming and angle not equal to 90° with the measuring tube axis |
AU2014202639A1 (en) | 2013-05-16 | 2014-12-04 | Air Liquide Medical Systems | Artificial breathing device with absolute pressure sensor and differential pressure sensor |
US20150048530A1 (en) * | 2012-03-30 | 2015-02-19 | Fisher & Paykel Healthcare Limited | Humidification system |
WO2015038013A1 (fr) | 2013-09-13 | 2015-03-19 | Fisher And Paykel Healthcare Limited | Raccords pour système d'humidification |
US20150107587A1 (en) | 2012-12-26 | 2015-04-23 | Beijing Aeonmed Co., Ltd. | Zero point calibration method and apparatus for pressure sensor of anesthesia machine |
US20150136129A1 (en) | 2012-05-30 | 2015-05-21 | Koninklijke Philips N.V. | Portable handheld blending gas enriched pressure support system and method |
US9119933B2 (en) | 2007-08-14 | 2015-09-01 | Plastiflex Group | Respiratory system |
US9149590B2 (en) | 2009-05-13 | 2015-10-06 | Mapquet Critical Care AB | Anesthetic breathing apparatus having volume reflector unit with controllable penetration |
US20150283339A1 (en) | 2012-08-13 | 2015-10-08 | Koninklijke Philips N.V./Philips Deutscland GMBH a corporation | Handheld dyspnea treatmeent device with drug and gas delivery |
WO2015183107A1 (fr) | 2014-05-27 | 2015-12-03 | Fisher & Paykel Healthcare Limited | Mélange et mesure de gaz pour un dispositif médical |
US20160082220A1 (en) | 2014-07-21 | 2016-03-24 | Fisher & Paykel Healthcare Limited | Fluid mixing structure |
US20160114121A1 (en) | 2013-05-17 | 2016-04-28 | Resmed Paris Sas | Flow diffuser and sound cone |
US20160228670A1 (en) | 2013-09-11 | 2016-08-11 | Advanced Inhalation Therapies (Ait) Ltd. | System for nitric oxide inhalation |
US20160287824A1 (en) | 2015-04-03 | 2016-10-06 | Invent Medical Corporation | Ventilator |
US20160354573A1 (en) | 2012-11-14 | 2016-12-08 | Matthew Liam Buswell | Zone heating for respiratory circuits |
WO2017095241A2 (fr) | 2015-12-02 | 2017-06-08 | Fisher & Paykel Healthcare Limited | Détection de trajet d'écoulement pour appareil de traitement de débit |
US20180236191A1 (en) | 2015-08-14 | 2018-08-23 | Resmed Limited | Monitoring respiratory pressure therapy |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5063776A (en) * | 1989-12-14 | 1991-11-12 | Anadrill, Inc. | Method and system for measurement of fluid flow in a drilling rig return line |
JP3223669B2 (ja) | 1992-10-30 | 2001-10-29 | 東洋製罐株式会社 | 開封されていないことを保証するスクリューキャップ |
JPH08122117A (ja) * | 1994-10-19 | 1996-05-17 | Matsushita Electric Ind Co Ltd | 流量計測装置 |
CA2187288A1 (fr) * | 1995-02-08 | 1996-08-15 | Edwin B. Merrick | Appareil melangeur de gaz pour un ventilateur |
CN2255610Y (zh) * | 1995-11-01 | 1997-06-04 | 中国科学院声学研究所 | 油罐液位超声波测量的声速校正器 |
US6041777A (en) | 1995-12-01 | 2000-03-28 | Alliance Pharmaceutical Corp. | Methods and apparatus for closed-circuit ventilation therapy |
JPH09243421A (ja) * | 1996-03-07 | 1997-09-19 | Matsushita Electric Ind Co Ltd | 流量計測装置 |
US5915834A (en) | 1997-06-09 | 1999-06-29 | Litton Systems, Inc. | Variable set point oxygen concentration mixer |
WO2002017991A2 (fr) | 2000-08-28 | 2002-03-07 | Healthtech, Inc. | Detecteurs de gaz respiratoire dans un trajet d'ecoulement |
FR2830454A1 (fr) * | 2001-10-10 | 2003-04-11 | Taema | Appareil d'assistance respiratoire a melangeur de gaz |
US6827084B2 (en) | 2002-06-21 | 2004-12-07 | Lloyd Thomas Grubb, Jr. | Automatic gas blender |
CN1671437A (zh) * | 2002-07-31 | 2005-09-21 | 菲舍尔和佩克尔保健有限公司 | 增湿系统的隔离式温度传感器 |
US7654975B2 (en) * | 2003-04-24 | 2010-02-02 | Northgate Technologies, Inc. | Mixed-gas insufflation system |
JP2005221302A (ja) * | 2004-02-04 | 2005-08-18 | Kurita Water Ind Ltd | 超音波式空中センサによる測距方法 |
DE102004030747A1 (de) | 2004-06-25 | 2006-01-19 | Weinmann Geräte für Medizin GmbH + Co. KG | Verfahren und Vorrichtung zum Mischen von Sauerstoff und Luft |
US7740031B2 (en) * | 2005-04-26 | 2010-06-22 | Eden Innovations Ltd. | System for blending and compressing gases |
US8371298B2 (en) * | 2005-12-06 | 2013-02-12 | Maquet Critical Care Ab | Method and apparatus for lung volume estimation |
AU2008208148B2 (en) | 2007-01-23 | 2014-04-17 | Fisher & Paykel Healthcare Limited | Humidification apparatus having RFID tag sensor at patient end of gas pathway |
US9802022B2 (en) * | 2008-03-06 | 2017-10-31 | Resmed Limited | Humidification of respiratory gases |
CN101584898A (zh) * | 2008-05-23 | 2009-11-25 | 北京航天长峰股份有限公司 | 一种调节呼吸机输出氧气浓度的方法 |
CN201250799Y (zh) * | 2008-09-08 | 2009-06-03 | 瑞安市日正汽车部件有限公司 | 一种高风量低噪音轴流风机 |
CN101598800B (zh) * | 2009-07-10 | 2012-02-22 | 衡阳师范学院 | 一种将测氡仪测量室内气体浓度混合均匀的方法及装置 |
US20110112639A1 (en) | 2009-11-06 | 2011-05-12 | Moximed, Inc. | Positioning Systems and Methods for Implanting an Energy Absorbing System |
US9463293B2 (en) | 2010-01-14 | 2016-10-11 | Koninklijke Philips N.V. | Servo ventilation using negative pressure support |
CN201908869U (zh) * | 2010-12-15 | 2011-07-27 | 西安交通大学 | 一种叶片尾缘带条纹型仿生表面的吸油烟机用仿生叶轮 |
CN102266630B (zh) | 2010-12-31 | 2014-10-01 | 北京谊安医疗系统股份有限公司 | 一种呼吸机气体比例控制方法及装置 |
US8893720B2 (en) * | 2011-02-15 | 2014-11-25 | Binyomin A. Cohen | Inhalation apparatus |
US8997738B2 (en) * | 2011-03-22 | 2015-04-07 | Carefusion 207, Inc. | Delivering diluted oxygen to a patient |
JP5938597B2 (ja) * | 2011-05-20 | 2016-06-22 | 独立行政法人国立高等専門学校機構 | 超音波流量計を用いた酸素濃度計 |
CN103889493B (zh) | 2011-10-05 | 2016-08-24 | 皇家飞利浦有限公司 | 使用气体混合回路的呼吸治疗系统和方法 |
MY169964A (en) * | 2012-06-29 | 2019-06-19 | Intel Corp | An architected protocol for changing link operating mode |
CN203009329U (zh) * | 2012-12-14 | 2013-06-19 | 上海冠带通风节能设备有限公司 | 机翼型插入式风机 |
EP3019227B1 (fr) | 2013-07-09 | 2019-06-19 | Koninklijke Philips N.V. | Mesures ultrasonores pour surveiller des patients utilisant des dispositifs d'administration de thérapie respiratoire |
US10449320B2 (en) | 2013-10-15 | 2019-10-22 | Fisher & Paykel Healthcare Limited | Sensing and control arrangements for respiratory device |
US10532174B2 (en) | 2014-02-21 | 2020-01-14 | Masimo Corporation | Assistive capnography device |
US20150327807A1 (en) | 2014-05-13 | 2015-11-19 | Karl Kuefner GmbH & Co. KG | Device and method for monitoring compressions at a cardiac massage |
US10506950B2 (en) | 2015-04-01 | 2019-12-17 | Compliant Games, Inc. | Respiratory therapy instrument offering game-based incentives, training, and telemetry collection |
EP3146897A1 (fr) | 2015-09-22 | 2017-03-29 | Srett (Sas) | Dispositif et procédé de surveillance de l'oxygénothérapie |
WO2017106636A1 (fr) | 2015-12-18 | 2017-06-22 | Inova Labs, Inc. | Utilisation d'un concentrateur d'oxygène pour thérapie ppc |
-
2015
- 2015-05-27 EP EP23171381.9A patent/EP4235120A3/fr active Pending
- 2015-05-27 CN CN201580040688.9A patent/CN106535972B/zh active Active
- 2015-05-27 CN CN201910721144.9A patent/CN110393839B/zh active Active
- 2015-05-27 CN CN201910721185.8A patent/CN110354356B/zh active Active
- 2015-05-27 AU AU2015268171A patent/AU2015268171B2/en active Active
- 2015-05-27 SG SG11201609863WA patent/SG11201609863WA/en unknown
- 2015-05-27 EP EP15798891.6A patent/EP3148624B1/fr active Active
- 2015-05-27 WO PCT/NZ2015/050068 patent/WO2015183107A1/fr active Application Filing
- 2015-05-27 CN CN202211232718.4A patent/CN115554543A/zh active Pending
- 2015-05-27 CA CA2950073A patent/CA2950073A1/fr active Pending
- 2015-05-27 US US15/313,836 patent/US11433210B2/en active Active
- 2015-05-27 JP JP2016569767A patent/JP2017517319A/ja active Pending
- 2015-05-27 SG SG10201810281TA patent/SG10201810281TA/en unknown
-
2020
- 2020-02-17 JP JP2020024550A patent/JP7330117B2/ja active Active
- 2020-02-27 AU AU2020201432A patent/AU2020201432B2/en active Active
-
2022
- 2022-03-29 JP JP2022054460A patent/JP2022091902A/ja active Pending
- 2022-03-29 AU AU2022202127A patent/AU2022202127B2/en active Active
- 2022-07-28 US US17/815,882 patent/US12053585B2/en active Active
-
2023
- 2023-12-04 JP JP2023204891A patent/JP2024023533A/ja active Pending
Patent Citations (240)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB191408838A (en) | 1912-05-05 | 1914-10-29 | A C Clark & Company | Improvements in or relating to Apparatus for use in Administering Gas for Medical or like purposes. |
US1269599A (en) | 1914-04-30 | 1918-06-18 | Fritz Haber | Method and apparatus for testing gases. |
US1570781A (en) | 1921-12-20 | 1926-01-26 | Ruben Samuel | Testing apparatus and method |
DE404809C (de) | 1923-05-08 | 1924-10-21 | Willi Kunze Dr | Verfahren zum Nachweis und zur quantitativen Analyse von Gasen aus der Tonhoehe eines oder mehrerer mit dem zu bestimmenden Medium gefuellter und elektrisch zu Schallschwingungen erregter Resonatoren |
US2283750A (en) | 1940-01-16 | 1942-05-19 | Gen Electric | Apparatus for measuring the density of gases |
US2568277A (en) | 1942-08-01 | 1951-09-18 | Bendix Aviat Corp | Fluid testing apparatus |
US2874564A (en) | 1954-11-17 | 1959-02-24 | Parsons & Co Sir Howard G | Sonic gas analysers |
US2984097A (en) | 1956-09-11 | 1961-05-16 | Merck & Co Inc | Gas measuring apparatus |
US3120750A (en) | 1958-11-28 | 1964-02-11 | Iii Elihu Root | Gas analyzer |
US3343403A (en) | 1963-01-28 | 1967-09-26 | Commissariat Energie Atomique | Apparatus for the measurement of the velocity of sound in a gas |
US3495628A (en) | 1964-09-14 | 1970-02-17 | Polva Nederland Bv | Tubular construction |
US3468157A (en) | 1966-03-03 | 1969-09-23 | Phillips Petroleum Co | Acoustical apparatus for detecting the composition of a gas |
US3762197A (en) | 1970-09-14 | 1973-10-02 | Phillips Petroleum Co | Acoustical detecting apparatus |
US3724484A (en) | 1971-07-13 | 1973-04-03 | Us Air Force | Particle density control system for colloid core nuclear reactor |
US3863630A (en) | 1971-11-10 | 1975-02-04 | Synthelabo | Respiratory apparatus |
US4033808A (en) | 1972-06-21 | 1977-07-05 | Aristovoulos George Petzetakis | Apparatus for the production of hollow bodies, especially large-diameter ducts from thermoplastic synthetic resin |
US3926223A (en) | 1972-06-21 | 1975-12-16 | Aristovoulos George Petzetakis | Large diameter hollow bodies of helical thermoplastic strip |
US3805590A (en) | 1973-03-09 | 1974-04-23 | Us Navy | Oxygen partial pressure sensor |
US3848457A (en) | 1973-05-14 | 1974-11-19 | Minnesota Mining & Mfg | Gaseous fluid monitoring apparatus |
US3981176A (en) | 1974-09-16 | 1976-09-21 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare | Dual frequency acoustic gas composition analyzer |
US4155246A (en) | 1977-04-13 | 1979-05-22 | Harley E. Schear | Rapid gas analyzing system |
US4215409A (en) | 1978-03-13 | 1980-07-29 | Mckesson Company | Flow control system for anesthesia apparatus |
JPS554528A (en) | 1978-06-27 | 1980-01-14 | Sumitomo Bakelite Co Ltd | Method and apparatus for measuring gas concentration |
US4220040A (en) | 1978-06-27 | 1980-09-02 | Sumitomo Bakelite Company Limited | Method and system for transmission and receipt of measuring ultrasonic wave |
US4280183A (en) | 1978-08-04 | 1981-07-21 | S.S.O.S. Sub Sea Oil Services S.P.A. | Gas analyzer |
US4255964A (en) | 1978-11-30 | 1981-03-17 | The Garrett Corporation | Fluid monitor |
US4345612A (en) | 1979-06-12 | 1982-08-24 | Citizen Watch Company Limited | Anesthetic gas control apparatus |
US4326513A (en) | 1979-07-02 | 1982-04-27 | Dragerwerk Ag | Patient data controlled respiration system |
US4313436A (en) | 1979-11-10 | 1982-02-02 | Dragerwerk Aktiengesellschaft | Fresh gas device with mixer for medical and respiration apparatus |
US4340044A (en) | 1980-03-20 | 1982-07-20 | Berkshire Research Partners | Volume ventilator |
US4331025A (en) | 1980-10-14 | 1982-05-25 | Mapco, Inc. | Methods of measuring fluid viscosity and flow rate |
GB2087559A (en) | 1980-11-15 | 1982-05-26 | Nat Maritime Inst | Determining gas compositions acoustically |
US4380167A (en) | 1981-03-18 | 1983-04-19 | Energy Controls, Inc. | Apparatus and method for detecting a fraction of a gas |
JPS58190439A (ja) | 1982-04-14 | 1983-11-07 | フランシス・エイ・レスペランス | コンタクトレンズの構造 |
US4452090A (en) | 1982-05-17 | 1984-06-05 | Airco, Inc. | Ultrasonic flowmeter |
US4531551A (en) | 1982-12-14 | 1985-07-30 | Siemens Aktiengesellschaft | Double-walled, flexible hose |
US4520654A (en) * | 1983-03-14 | 1985-06-04 | General Electric Company | Method and apparatus for detecting hydrogen, oxygen and water vapor concentrations in a host gas |
US4555932A (en) | 1984-02-03 | 1985-12-03 | Rca Corporation | Method and apparatus for assaying the purity of a gas |
US4662212A (en) * | 1984-09-10 | 1987-05-05 | Sumitomo Bakelite Company Limited | Measuring instrument for concentration of gas |
US4989595A (en) | 1985-09-23 | 1991-02-05 | Battelle Development Corporation | Aspirator/nebulizer |
US4773448A (en) | 1987-02-26 | 1988-09-27 | Francis Norman L | Freeze-resistant plastic pipe and method for its manufacture |
US4903736A (en) | 1987-05-23 | 1990-02-27 | Vobau Artur Baston Gesellschaft Fur Vorrichtungsbau Mit Beschrankter Haftung | Hollow cylindrical body made from spirally wound extruded plastic strip material |
US4889116A (en) | 1987-11-17 | 1989-12-26 | Phospho Energetics, Inc. | Adaptive control of neonatal fractional inspired oxygen |
US4938066A (en) | 1988-01-29 | 1990-07-03 | Xecutek Corporation | Ultrasonic apparatus for measuring the speed of sound in a gaseous medium |
JPH01321508A (ja) | 1988-06-23 | 1989-12-27 | Kojima Seisakusho:Kk | 酸素濃度制御装置 |
US5127442A (en) | 1988-08-17 | 1992-07-07 | Oy Kwh Pipe Ab | Plastic tube formed by spiral winding of hollow section |
US5060507A (en) | 1989-06-21 | 1991-10-29 | John Urmson | Method and apparatus for fluid mixture monitoring, constituent analysis, and composition control |
US5359897A (en) | 1989-08-08 | 1994-11-01 | Front Engineering Ltd. | Apparatus for determining the time taken for sound energy to cross a body of fluid in a pipe |
US5060506A (en) | 1989-10-23 | 1991-10-29 | Douglas David W | Method and apparatus for monitoring the content of binary gas mixtures |
US5060514A (en) * | 1989-11-30 | 1991-10-29 | Puritan-Bennett Corporate | Ultrasonic gas measuring device |
US5313820A (en) | 1989-11-30 | 1994-05-24 | Puritan Bennett Corporation | Ultrasonic gas measuring device |
US5452621A (en) | 1989-11-30 | 1995-09-26 | Puritan-Bennett Corporation | Ultrasonic gas measuring device incorporating efficient display |
US5285677A (en) | 1989-12-08 | 1994-02-15 | Oscar Oehler | Selective gas detection by field separation and velocity of sound determination, especially O2 detection |
US5452714A (en) | 1990-06-07 | 1995-09-26 | Infrasonics, Inc. | Human lung ventilator system |
US5179862A (en) | 1990-06-29 | 1993-01-19 | Panametrics, Inc. | Snap-on flow measurement system |
US5365922A (en) | 1991-03-19 | 1994-11-22 | Brigham And Women's Hospital, Inc. | Closed-loop non-invasive oxygen saturation control system |
US5591292A (en) | 1992-04-30 | 1997-01-07 | Oy Kwh Pipe Ab | Welding method in the manufacture of a spirally wound tube and a welding head for performing the method |
US5343760A (en) | 1992-07-09 | 1994-09-06 | General Motors Corporation | Gas concentration and flow rate sensor |
US5247826B1 (en) | 1992-11-12 | 1995-07-18 | Devilbiss Health Care Inc | Gas concentration and/or flow sensor |
US5247826A (en) | 1992-11-12 | 1993-09-28 | Devilbiss Health Care, Inc. | Gas concentration and/or flow sensor |
US5460175A (en) | 1992-11-26 | 1995-10-24 | Normalair-Garrett (Holdings) Limited | Air-oxygen mixture controllers for breathing demand regulators |
US5503151A (en) | 1993-09-30 | 1996-04-02 | Ndd Medzintechnik Gmbh | Apparatus for measuring the parameters of respiratory gases |
US5351522A (en) * | 1993-11-02 | 1994-10-04 | Aequitron Medical, Inc. | Gas sensor |
US8381722B2 (en) | 1993-11-05 | 2013-02-26 | Resmed Limited | Distinguishing between closed and open airway apneas and treating patients accordingly |
US5392635A (en) | 1993-12-30 | 1995-02-28 | At&T Corp. | Acoustic analysis of gas mixtures |
US5463906A (en) | 1994-01-24 | 1995-11-07 | Triton Technology, Inc. | Interchangeable disposable acoustic for use with an ultrasonic flowmeter, particularly during extracorporeal measurement of blood flow |
US5640951A (en) | 1994-03-15 | 1997-06-24 | Fisher & Paykel Limited | Humidifier conduit |
WO1995028193A1 (fr) | 1994-04-19 | 1995-10-26 | Boesherz Jakob | Respirateur s'utilisant notamment dans le traitement des insuffisances respiratoires, et son procede de fonctionnement |
US5490763A (en) * | 1994-09-15 | 1996-02-13 | Abrams; Andrew L. | Pump for shear sensitive fluids |
US5551419A (en) | 1994-12-15 | 1996-09-03 | Devilbiss Health Care, Inc. | Control for CPAP apparatus |
US5581014A (en) | 1995-04-05 | 1996-12-03 | Douglas; David W. | Method and apparatus for acoustic analysis of binary gas mixtures with continuous self-calibration |
US5809997A (en) | 1995-05-18 | 1998-09-22 | Medtrac Technologies, Inc. | Electronic medication chronolog device |
US5627323A (en) | 1995-05-25 | 1997-05-06 | Stern; Michael | Ultrasonic binary gas measuring device |
US5625140A (en) | 1995-12-12 | 1997-04-29 | Lucent Technologies Inc. | Acoustic analysis of gas mixtures |
EP0788805A2 (fr) | 1996-02-06 | 1997-08-13 | DeVilbiss Health Care, Inc. | Circuit de commande pour appareil à ventilation spontanée en pression positive continue |
EP0896671B1 (fr) | 1996-04-22 | 2003-09-10 | Lattice Intellectual Property Limited | Appareil de mesure d'une grandeur concernant un gaz |
US5792665A (en) | 1996-05-29 | 1998-08-11 | Morrow, Iii; Donald W. | Oxygen sensing method and hand held analyzer therefore |
JPH1073574A (ja) | 1996-06-13 | 1998-03-17 | Leybold Inficon Inc | 音響セル、音響センサおよび2元ガスの組成決定方法 |
EP0813060A2 (fr) | 1996-06-13 | 1997-12-17 | Leybold Inficon, Inc. | Capteur acoustique pour la surveillance continue en ligne de gaz |
US5917135A (en) | 1996-06-14 | 1999-06-29 | Invacare Corporation | Gas concentration sensor and control for oxygen concentrator utilizing gas concentration sensor |
US5823186A (en) | 1996-06-20 | 1998-10-20 | Dragerwerk Ag | Respirator |
US5701883A (en) | 1996-09-03 | 1997-12-30 | Respironics, Inc. | Oxygen mixing in a blower-based ventilator |
US6123074A (en) | 1996-09-03 | 2000-09-26 | Respironics, Inc. | Oxygen mixing in a blower-based ventilator |
CN101318049A (zh) | 1997-06-17 | 2008-12-10 | 菲舍尔和佩克尔有限公司 | 呼吸系统加湿器 |
US6397841B1 (en) | 1997-06-18 | 2002-06-04 | Resmed Limited | Apparatus for supplying breathable gas |
US6543449B1 (en) | 1997-09-19 | 2003-04-08 | Respironics, Inc. | Medical ventilator |
US6138674A (en) | 1997-10-16 | 2000-10-31 | Datex-Ohmeda, Inc. | Active temperature and humidity compensator for anesthesia monitoring systems |
US6537405B1 (en) | 1997-10-16 | 2003-03-25 | Nomaco, Inc. | Spiral formed products and method of manufacture |
US6142149A (en) | 1997-10-23 | 2000-11-07 | Steen; Scot Kenneth | Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation |
US6039696A (en) | 1997-10-31 | 2000-03-21 | Medcare Medical Group, Inc. | Method and apparatus for sensing humidity in a patient with an artificial airway |
US20050121033A1 (en) | 1998-02-25 | 2005-06-09 | Ric Investments, Llc. | Respiratory monitoring during gas delivery |
US6279379B1 (en) | 1998-04-17 | 2001-08-28 | Lorex Industries, Inc. | Apparatus and methods for performing acoustical measurements |
US6634356B1 (en) | 1998-09-04 | 2003-10-21 | Caradyne (R&D) Limited | Continuous positive airway pressure controller |
US6105649A (en) | 1998-09-30 | 2000-08-22 | Jerry C. Levingston | Pipe extrusion apparatus including winding a hollow profile |
US20060158956A1 (en) * | 1998-10-28 | 2006-07-20 | Covaris, Inc. | Methods and systems for modulating acoustic energy delivery |
WO2000045883A1 (fr) | 1999-02-04 | 2000-08-10 | Versamed Medical Systems Ltd. | Systeme de ventilation portatif commande par ordinateur |
US6178827B1 (en) * | 1999-04-22 | 2001-01-30 | Murray F. Feller | Ultrasonic flow sensor |
US20030065274A1 (en) | 1999-08-02 | 2003-04-03 | Mault James R. | Method of respiratory gas analysis using a metabolic calorimeter |
JP2001120661A (ja) | 1999-09-09 | 2001-05-08 | Siemens Elema Ab | ガス含量を決定する方法 |
EP1083427B1 (fr) | 1999-09-09 | 2011-02-02 | Maquet Critical Care AB | Méthode pour la mesure de la teneur de gas |
US6487916B1 (en) | 2000-02-02 | 2002-12-03 | Bechtel Bxwt Idaho, Llc | Ultrasonic flow metering system |
US6629934B2 (en) | 2000-02-02 | 2003-10-07 | Healthetech, Inc. | Indirect calorimeter for medical applications |
EP1138341A2 (fr) | 2000-03-21 | 2001-10-04 | FISHER & PAYKEL LIMITED | Appareil d'humidification |
US7111624B2 (en) | 2000-03-21 | 2006-09-26 | Fisher & Paykel Healthcare Limited | Apparatus for delivering humidified gases |
CN1336536A (zh) | 2000-07-28 | 2002-02-20 | 山东科技大学资源与环境工程学院 | 组合式管道气、液流体多参数一体化传感器组件 |
EP1205747A2 (fr) | 2000-10-20 | 2002-05-15 | Fisher & Paykel Healthcare Limited | Capteur d'humidité |
US6581595B1 (en) | 2000-11-14 | 2003-06-24 | Sensormedics Corporation | Positive airway pressure device with indirect calorimetry system |
US20020062681A1 (en) | 2000-11-30 | 2002-05-30 | Livingston Richard A. | Oxygen sensor and flow meter device |
CN1455865A (zh) | 2001-01-22 | 2003-11-12 | 帝人株式会社 | 利用超声波测定气体浓度和流量的装置及方法 |
EP1286159A1 (fr) | 2001-01-22 | 2003-02-26 | Teijin Limited | Appareil et procede pour mesurer la concentration et le debit de gaz par ultrasons |
JP2002214012A (ja) | 2001-01-22 | 2002-07-31 | Teijin Ltd | 超音波式ガス濃度流量測定方法及び装置 |
JP2002306603A (ja) | 2001-04-16 | 2002-10-22 | Teijin Ltd | 酸素濃縮装置 |
US7066175B2 (en) | 2001-05-07 | 2006-06-27 | Emergent Respiratory Products, Inc. | Portable gas powered positive pressure breathing apparatus and method |
WO2003090903A1 (fr) | 2002-04-24 | 2003-11-06 | Airsep Corporation | Concentrateur d'oxygene a bruit reduit |
JP2005537083A (ja) | 2002-08-30 | 2005-12-08 | フィッシャー アンド ペイケル ヘルスケア リミテッド | 加湿システム |
US20060113690A1 (en) | 2002-08-30 | 2006-06-01 | Huddart Brett J | Humidification system |
WO2004039444A1 (fr) | 2002-11-01 | 2004-05-13 | Fisher & Paykel Healthcare Limited | Systeme permettant de detecter l'apport de gaz a un patient |
WO2004069922A1 (fr) | 2003-02-07 | 2004-08-19 | The Nippon Synthetic Chemical Industry Co., Ltd. | Composition de resine et utilisation de ladite composition |
US20070062531A1 (en) | 2003-02-19 | 2007-03-22 | Joseph Fisher | Method of measuring cardiac related parameters non-invasively via the lung during spontaneous and controlled ventilation |
US7501630B2 (en) | 2003-02-21 | 2009-03-10 | Koninklijke Philips Electronics N.V. | Gas measurement system |
US7606668B2 (en) | 2003-02-21 | 2009-10-20 | Ric Investments, Llc | Gas monitoring system and method |
US7432508B2 (en) | 2003-02-21 | 2008-10-07 | Ric Investments, Llc | Gas measurement system |
US7183552B2 (en) | 2003-03-07 | 2007-02-27 | Ric Investments, Llc | Optical system for a gas measurement system |
US6910481B2 (en) | 2003-03-28 | 2005-06-28 | Ric Investments, Inc. | Pressure support compliance monitoring system |
US20040211244A1 (en) | 2003-04-28 | 2004-10-28 | Maquet Critical Care Ab | Method and arrangement for acoustic determination of moisture content of a gas mixture |
US7063668B2 (en) | 2003-04-28 | 2006-06-20 | Maquet Critical Care Ab | Method and arrangement for acoustic determination of moisture content of a gas mixture |
US8042535B2 (en) | 2003-06-20 | 2011-10-25 | Resmed Limited | Breathable gas apparatus with humidifier |
JP2008518640A (ja) | 2003-06-20 | 2008-06-05 | レスメド リミテッド | 加湿器を備えた呼吸可能なガス供給装置 |
WO2004112873A1 (fr) | 2003-06-20 | 2004-12-29 | Resmed Limited | Appareil respiratoire pour inhalation de gaz, muni d'un humidificateur |
US20050125170A1 (en) * | 2003-10-10 | 2005-06-09 | Gysling Daniel L. | Flow measurement apparatus having strain-based sensors and ultrasonic sensors |
US20140034051A1 (en) | 2004-02-20 | 2014-02-06 | Pneumoflex Systems, Llc | Nebulizer having horizontal venturi |
US20050223795A1 (en) * | 2004-04-08 | 2005-10-13 | Henning Gerder | Measuring device for measuring the volume flow or the substance properties of a gas, whose direction of flow can reverse |
US20060042638A1 (en) | 2004-08-31 | 2006-03-02 | Niklewski Paul J | Apparatus for delivering oxygen to a patient undergoing a medical procedure |
US20080092891A1 (en) | 2004-09-03 | 2008-04-24 | Anagram Consultants Ag | Gas Flow Control In A Ventilator |
US20060156828A1 (en) * | 2004-12-14 | 2006-07-20 | Uwe Konzelmann | Ultrasonic flow meter including guide elements |
US7370651B2 (en) | 2005-04-01 | 2008-05-13 | Ric Investments, Llc | Gas conserving device |
CN101252966A (zh) | 2005-05-26 | 2008-08-27 | 菲舍尔和佩克尔保健有限公司 | 呼吸辅助设备 |
US8561611B2 (en) | 2005-06-21 | 2013-10-22 | Ric Investments, Llc | Respiratory device measurement system |
US20060283450A1 (en) | 2005-06-21 | 2006-12-21 | Ric Investments, Llc. | Respiratory device measurement system |
WO2007004898A1 (fr) | 2005-07-01 | 2007-01-11 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire avec collecteur pour ajouter des gaz auxiliaires aux gaz ambiants |
US20070044799A1 (en) | 2005-07-08 | 2007-03-01 | Hete Bernie F | Modular oxygen regulator system and respiratory treatment system |
US20090178490A1 (en) * | 2005-08-16 | 2009-07-16 | Uwe Konzelmann | Ultrasonic Measuring Unit Having Integrated Humidity Analysis |
US7448376B2 (en) | 2005-08-27 | 2008-11-11 | Pamela Lepel | Medication delivery device and method |
US20070125374A1 (en) | 2005-12-02 | 2007-06-07 | Smith Michael S | Gas blender with auxiliary mixed gas outlet |
US8047082B2 (en) | 2005-12-08 | 2011-11-01 | Continental Automotive Gmbh | Device for determining a mass flow of a first gas within an overall mixture of gases |
WO2007069922A1 (fr) | 2005-12-15 | 2007-06-21 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire |
US7509957B2 (en) | 2006-02-21 | 2009-03-31 | Viasys Manufacturing, Inc. | Hardware configuration for pressure driver |
WO2007103855A2 (fr) | 2006-03-06 | 2007-09-13 | Ric Investments, Llc | Systeme de mesure du gaz |
CN1817378A (zh) | 2006-03-10 | 2006-08-16 | 张培林 | 无压缩空气智能化呼吸机空氧混合系统 |
US7810497B2 (en) | 2006-03-20 | 2010-10-12 | Ric Investments, Llc | Ventilatory control system |
US20070245802A1 (en) * | 2006-04-25 | 2007-10-25 | Howard Austerlitz | Asm output ultrasonic oxygen sensor |
US20070283958A1 (en) | 2006-05-23 | 2007-12-13 | Ray Naghavi | Positive airway pressure device |
US20080041381A1 (en) | 2006-08-21 | 2008-02-21 | Tham Robert Q | Non-invasive determination of cardiac output, gas exchange and arterial blood gas concentration |
US20080060647A1 (en) | 2006-09-12 | 2008-03-13 | Invacare Corporation | System and method for delivering a breathing gas |
US8100124B2 (en) | 2006-09-27 | 2012-01-24 | Dräger Medical GmbH | Device with a respirator and a humidifier |
CN101152592A (zh) | 2006-09-27 | 2008-04-02 | 德拉格医疗股份两合公司 | 具有呼吸机和加湿器的设备 |
US20080156328A1 (en) | 2006-11-13 | 2008-07-03 | John Taube | Solenoid air/oxygen system for use with an adaptive oxygen controller and therapeutic methods of use |
EP1961439A1 (fr) | 2007-02-23 | 2008-08-27 | The General Electric Company | Système de mise en place d'anesthésie d'inhalation et procédé de détection de fuite dans un système de mise en place d'anesthésie d'inhalation |
US20100126249A1 (en) | 2007-05-31 | 2010-05-27 | Teijin Pharma Limited | Ultrasonic apparatus and method for measuring the concentration of gas |
EP2154526A1 (fr) | 2007-05-31 | 2010-02-17 | Teijin Pharma Limited | Procede ultrasonique de mesure de la concentration d'un gaz et dispositif en faisant usage |
WO2008149868A1 (fr) | 2007-05-31 | 2008-12-11 | Teijin Pharma Limited | Procédé ultrasonique de mesure de la concentration d'un gaz et dispositif en faisant usage |
US8746037B2 (en) | 2007-05-31 | 2014-06-10 | Teijin Pharma Limited | Ultrasonic apparatus and method for measuring the concentration of gas |
CN101680859A (zh) | 2007-05-31 | 2010-03-24 | 帝人制药株式会社 | 超声波式气体浓度测定方法及使用该方法的装置 |
US20100218591A1 (en) | 2007-06-21 | 2010-09-02 | Rhodes George W | Method and apparatus for controlling relative coal flow in pipes from a pulverizer |
US20090056715A1 (en) | 2007-07-18 | 2009-03-05 | Vapotherm, Inc. | Delivery tube for breathing gas heating and humidification system |
US20090020120A1 (en) | 2007-07-20 | 2009-01-22 | Map Medizin-Technologie Gmbh | Monitor for CPAP/ventilator apparatus |
US9119933B2 (en) | 2007-08-14 | 2015-09-01 | Plastiflex Group | Respiratory system |
JP2010537779A (ja) | 2007-09-06 | 2010-12-09 | イノヴァ ラブス,インコーポレイテッド | 酸素濃縮装置およびその方法 |
WO2009045198A1 (fr) | 2007-10-05 | 2009-04-09 | Vapotherm, Inc. | Système d'humidification hyperthermique |
EP2200687B1 (fr) | 2007-10-05 | 2015-06-17 | Vapotherm, Inc. | Système d'humidification hyperthermique |
US20090107501A1 (en) | 2007-10-24 | 2009-04-30 | Ana Krieger | System and method of monitoring respiratory airflow and oxygen concentration |
WO2009052631A1 (fr) | 2007-10-26 | 2009-04-30 | Uti Limited Partnership | Système de stabilisation de ventilation |
WO2009058081A1 (fr) | 2007-10-29 | 2009-05-07 | Poseidon Diving Systems | Régulation de l'oxygène dans un appareil respiratoire |
CN101861182A (zh) | 2007-11-15 | 2010-10-13 | 帝人制药株式会社 | 氧浓缩装置 |
US20090145428A1 (en) | 2007-12-05 | 2009-06-11 | Sequal Technologies, Inc. | System and Method for Controlling Supply of Oxygen Based on Breathing Rate |
US20090241953A1 (en) | 2008-03-31 | 2009-10-01 | Nellcor Puritan Bennett Llc | Ventilator with piston-cylinder and buffer volume |
CN102105189A (zh) | 2008-05-27 | 2011-06-22 | 菲舍尔和佩克尔保健有限公司 | 用于精确湿度控制的增湿器室温度控制 |
WO2009145646A1 (fr) | 2008-05-27 | 2009-12-03 | Fisher & Paykel Healthcare Limited | Régulation de la température de chambre d’un humidificateur pour une régulation précise de l’humidité |
US8616202B2 (en) * | 2008-05-27 | 2013-12-31 | Fisher & Paykel Healthcare Limited | Control of humidifier chamber temperature for accurate humidity control |
JP2011521705A (ja) | 2008-05-27 | 2011-07-28 | フィッシャー アンド ペイケル ヘルスケア リミテッド | 湿度を正確に制御するための加湿器チャンバ温度の制御 |
US20110120462A1 (en) | 2008-05-27 | 2011-05-26 | Fisher & Paykel Heathcare Limited | Control of humidifier chamber temperature for accurate humidity control |
US8485183B2 (en) * | 2008-06-06 | 2013-07-16 | Covidien Lp | Systems and methods for triggering and cycling a ventilator based on reconstructed patient effort signal |
US20100006098A1 (en) | 2008-07-10 | 2010-01-14 | Mcginnis William J | Cpap-oximeter hybrid device and method of using |
US8875587B2 (en) | 2008-12-29 | 2014-11-04 | Endress + Hauser Flowtec Ag | Ultrasonic flow measuring system and method for monitoring fluid flow having measuring tube inlet and outlet axis forming and angle not equal to 90° with the measuring tube axis |
WO2010084183A2 (fr) | 2009-01-22 | 2010-07-29 | Plastiflex Belgium | Manchon chauffant pour conduit respiratoire |
CN102316920A (zh) | 2009-02-13 | 2012-01-11 | 皇家飞利浦电子股份有限公司 | 压力支持设备用户界面 |
US20100224191A1 (en) | 2009-03-06 | 2010-09-09 | Cardinal Health 207, Inc. | Automated Oxygen Delivery System |
US20110314897A1 (en) | 2009-03-23 | 2011-12-29 | Koninklijke Philips Electronics N.V. | Gas sensing using ultrasound |
US20120006326A1 (en) | 2009-03-23 | 2012-01-12 | Koninklijke Philips Electronics N.V. | Gas mixing control apparatus and method |
CN201379872Y (zh) | 2009-04-21 | 2010-01-13 | 嘉美科仪(北京)医疗设备有限公司 | 一种呼吸机 |
US9149590B2 (en) | 2009-05-13 | 2015-10-06 | Mapquet Critical Care AB | Anesthetic breathing apparatus having volume reflector unit with controllable penetration |
CN101554510A (zh) | 2009-05-18 | 2009-10-14 | 浙江新丰医疗器械有限公司 | 一种呼吸器的呼气阀 |
US20120109536A1 (en) * | 2009-07-07 | 2012-05-03 | Koninklijke Philips Electronics N.V. | Multifunction sensor system and method for supervising room conditions |
WO2011010191A1 (fr) | 2009-07-22 | 2011-01-27 | Koninklijke Philips Electronics N.V. | Détecteurs de chute et procédé de détection de chutes |
US20120271188A1 (en) * | 2009-11-03 | 2012-10-25 | Koninklijke Philips Electronics N.V. | Apparatus for measuring a level of a specific gas in exhaled breath |
US20160151601A1 (en) | 2009-11-16 | 2016-06-02 | Maquet Critical Care Ab | Breathing apparatus with monitored delivery device |
WO2011058196A1 (fr) | 2009-11-16 | 2011-05-19 | Maquet Critical Care Ab | Appareil respiratoire avec dispositif de distribution contrôlé |
JP2011120661A (ja) | 2009-12-09 | 2011-06-23 | Kao Corp | 生理用ナプキン |
WO2011075030A1 (fr) | 2009-12-18 | 2011-06-23 | Maquet Critical Care Ab | Compteur à gaz pour mesures ultrasonores dans un appareil d'assistance respiratoire |
US20130008438A1 (en) * | 2010-01-15 | 2013-01-10 | Ikiken Co., Ltd. | Oxygen concentrator |
US20110209558A1 (en) * | 2010-03-01 | 2011-09-01 | Denso Corporation | Ultrasonic flow meter |
US20120065533A1 (en) | 2010-05-28 | 2012-03-15 | Carrillo Jr Oscar | Positive Airway Pressure System and Method |
WO2011157196A1 (fr) | 2010-06-13 | 2011-12-22 | Jia Bingcheng | Structure de connexion de châssis de véhicule |
WO2012021557A2 (fr) | 2010-08-10 | 2012-02-16 | The Regents Of The University Of California | Système d'administration de fluide automatisé et procédé |
US20120055340A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Power management systems and methods for use in an oxygen concentrator |
US20120125121A1 (en) | 2010-11-19 | 2012-05-24 | Cameron International Corporation | Chordal gas flowmeter with transducers installed outside the pressure boundary, housing and method |
US20130267863A1 (en) | 2010-12-21 | 2013-10-10 | Koninklijke Philips Electronics N.V. | System and method for determining carbon dioxide excreted during non-invasive ventilation |
US8752544B2 (en) | 2011-03-21 | 2014-06-17 | General Electric Company | Medical vaporizer and method of monitoring of a medical vaporizer |
US20140007878A1 (en) | 2011-03-23 | 2014-01-09 | Resmed Limited | Detection of ventilation sufficiency |
CN102261937A (zh) | 2011-04-25 | 2011-11-30 | 西安交通大学 | 一种高精度时差式超声波流量计及其流量测量方法 |
US20130239960A1 (en) | 2011-09-12 | 2013-09-19 | Resmed Limited | Modularized respiratory treatment apparatus |
US9302066B2 (en) | 2011-09-12 | 2016-04-05 | Resmed Limited | Modularized respiratory treatment apparatus |
US9649459B2 (en) | 2011-09-26 | 2017-05-16 | Resmed Paris Sas | Ventilator apparatus and method |
US20130263854A1 (en) | 2011-09-26 | 2013-10-10 | Resmed Paris Sas | Ventilator apparatus and method |
US20140311253A1 (en) * | 2011-11-04 | 2014-10-23 | Masamichi Iwasa | Ultrasonic sensor and ultrasonic flowmeter using same |
WO2013128365A1 (fr) | 2012-02-29 | 2013-09-06 | Koninklijke Philips N.V. | Compensation de variations de densité atmosphérique dans un dispositif d'aide inspiratoire |
WO2013137753A1 (fr) | 2012-03-15 | 2013-09-19 | Fisher & Paykel Healthcare Limited | Système d'humidification de gaz respiratoire |
US20150048530A1 (en) * | 2012-03-30 | 2015-02-19 | Fisher & Paykel Healthcare Limited | Humidification system |
JP2018118085A (ja) | 2012-04-05 | 2018-08-02 | フィッシャー アンド ペイケル ヘルスケア リミテッド | 呼吸補助装置 |
US20150059745A1 (en) | 2012-04-05 | 2015-03-05 | Fisher & Paykel Healthcare Limited | Respiratory assistance apparatus |
EP2833953B1 (fr) | 2012-04-05 | 2019-01-16 | Fisher&Paykel Healthcare Limited | Appareil d'assistance respiratoire |
US10357629B2 (en) | 2012-04-05 | 2019-07-23 | Fisher & Paykel Healthcare Limited | Respiratory assistance apparatus |
US20190269874A1 (en) | 2012-04-05 | 2019-09-05 | Fisher & Paykel Healthcare Limited | Respiratory assistance apparatus |
WO2013151447A1 (fr) | 2012-04-05 | 2013-10-10 | Fisher & Paykel Healthcare Limited | Appareil d'assistance respiratoire |
US20150136129A1 (en) | 2012-05-30 | 2015-05-21 | Koninklijke Philips N.V. | Portable handheld blending gas enriched pressure support system and method |
US20150283339A1 (en) | 2012-08-13 | 2015-10-08 | Koninklijke Philips N.V./Philips Deutscland GMBH a corporation | Handheld dyspnea treatmeent device with drug and gas delivery |
US20140137859A1 (en) | 2012-10-12 | 2014-05-22 | Inova Labs, Inc., A Delaware Corporation | Method and systems for the delivery of oxygen enriched gas |
WO2014059405A1 (fr) | 2012-10-12 | 2014-04-17 | Inova Labs, Inc. | Procédé et systèmes de distribution de gaz enrichi en oxygène |
US20160354573A1 (en) | 2012-11-14 | 2016-12-08 | Matthew Liam Buswell | Zone heating for respiratory circuits |
US20150107587A1 (en) | 2012-12-26 | 2015-04-23 | Beijing Aeonmed Co., Ltd. | Zero point calibration method and apparatus for pressure sensor of anesthesia machine |
US20140261414A1 (en) | 2013-03-15 | 2014-09-18 | Microdose Therapeutx, Inc. | Inhalation device, control method and computer program |
AU2014202639A1 (en) | 2013-05-16 | 2014-12-04 | Air Liquide Medical Systems | Artificial breathing device with absolute pressure sensor and differential pressure sensor |
US20160114121A1 (en) | 2013-05-17 | 2016-04-28 | Resmed Paris Sas | Flow diffuser and sound cone |
US20160228670A1 (en) | 2013-09-11 | 2016-08-11 | Advanced Inhalation Therapies (Ait) Ltd. | System for nitric oxide inhalation |
WO2015038013A1 (fr) | 2013-09-13 | 2015-03-19 | Fisher And Paykel Healthcare Limited | Raccords pour système d'humidification |
WO2015183107A1 (fr) | 2014-05-27 | 2015-12-03 | Fisher & Paykel Healthcare Limited | Mélange et mesure de gaz pour un dispositif médical |
US20160082220A1 (en) | 2014-07-21 | 2016-03-24 | Fisher & Paykel Healthcare Limited | Fluid mixing structure |
US20160287824A1 (en) | 2015-04-03 | 2016-10-06 | Invent Medical Corporation | Ventilator |
US20180236191A1 (en) | 2015-08-14 | 2018-08-23 | Resmed Limited | Monitoring respiratory pressure therapy |
WO2017095241A2 (fr) | 2015-12-02 | 2017-06-08 | Fisher & Paykel Healthcare Limited | Détection de trajet d'écoulement pour appareil de traitement de débit |
Non-Patent Citations (7)
Title |
---|
H. Toda et al., "High-speed gas concentration measurement using ultrasound", Sensors and Actuators A: Physical, vol. 144, Issue 1, May 28, 2008, pp. 1-6. |
International Preliminary Report on Patentability in corresponding International Patent Application No. PCT/NZ2015/050068, dated Dec. 8, 2016, in 9 pages. |
International Search Report in corresponding International Patent Application No. PCT/NZ2015/050068, dated Oct. 29, 2015, in 7 pages. |
J.C. Vyas et al., "A non-invasive ultrasonic gas sensor for binary gas mixtures", Sensors and Actuators B: Chemical, vol. 115, Issue 1, May 23, 2006, pp. 28-32. |
Li Daohua, "Sensor Circuit Analysis and Design," Wuhan University Press, Mar. 2000, pp. 203-209. |
Markus Joos et al., "An ultrasonic sensor for the analysis of binary gas mixtures", Sensors and Actuators B: Chemical, vol. 16, Issues 1-3, Oct. 1993, pp. 413-419. |
Office Action in corresponding Chinese Patent Application No. 201711259795.8, dated Feb. 3, 2020, in 9 pages. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11918748B2 (en) | 2012-04-05 | 2024-03-05 | Fisher & Paykel Healthcare Limited | Respiratory assistance apparatus |
US12053585B2 (en) | 2014-05-27 | 2024-08-06 | Fisher & Paykel Healthcare Limited | Gases mixing and measuring for a medical device |
US20230160513A1 (en) * | 2019-04-01 | 2023-05-25 | Inogen, Inc. | Compact portable oxygen concentrator |
Also Published As
Publication number | Publication date |
---|---|
AU2020201432A1 (en) | 2020-03-19 |
US20230026603A1 (en) | 2023-01-26 |
CN110354356A (zh) | 2019-10-22 |
US20170197056A1 (en) | 2017-07-13 |
JP2024023533A (ja) | 2024-02-21 |
EP4235120A2 (fr) | 2023-08-30 |
CA2950073A1 (fr) | 2015-12-03 |
SG10201810281TA (en) | 2018-12-28 |
EP3148624A4 (fr) | 2018-01-17 |
AU2020201432B2 (en) | 2022-05-05 |
EP3148624A1 (fr) | 2017-04-05 |
CN110393839A (zh) | 2019-11-01 |
US12053585B2 (en) | 2024-08-06 |
CN115554543A (zh) | 2023-01-03 |
JP2022091902A (ja) | 2022-06-21 |
AU2022202127A1 (en) | 2022-04-14 |
JP2020096914A (ja) | 2020-06-25 |
CN110393839B (zh) | 2023-03-24 |
AU2022202127B2 (en) | 2024-06-27 |
SG11201609863WA (en) | 2016-12-29 |
EP4235120A3 (fr) | 2023-10-04 |
WO2015183107A1 (fr) | 2015-12-03 |
CN106535972B (zh) | 2019-09-03 |
EP3148624B1 (fr) | 2023-06-28 |
JP2017517319A (ja) | 2017-06-29 |
CN110354356B (zh) | 2022-11-01 |
CN106535972A (zh) | 2017-03-22 |
AU2015268171A1 (en) | 2016-12-15 |
AU2015268171B2 (en) | 2020-05-07 |
JP7330117B2 (ja) | 2023-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12053585B2 (en) | Gases mixing and measuring for a medical device | |
CN108472470B (zh) | 流量治疗设备的流动路径感测 | |
JP6836531B2 (ja) | 呼吸補助装置 | |
US12090270B2 (en) | Thermistor flow sensor having multiple temperature points | |
JP2022091902A5 (fr) | ||
EP2183011B1 (fr) | Système de ventilation d'un patient équipé d'un moyen pour identifier un gaz | |
JP2017517319A5 (fr) | ||
CN115252985A (zh) | 用于流量治疗设备的流动路径感测 | |
US20140260667A1 (en) | Systems and methods for acoustic detection using flow sensors | |
US20230273057A1 (en) | Ultrasonic Gas Flow Calibration Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FISHER & PAYKEL HEALTHCARE LIMITED, NEW ZEALAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN SCHALKWYK, ANDRE;NEWLAND, ANTHONY JAMES;GLAVES, RACHAEL;AND OTHERS;SIGNING DATES FROM 20161209 TO 20170113;REEL/FRAME:042880/0035 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |