US11005058B2 - Light-emitting device including quantum dots - Google Patents

Light-emitting device including quantum dots Download PDF

Info

Publication number
US11005058B2
US11005058B2 US16/445,875 US201916445875A US11005058B2 US 11005058 B2 US11005058 B2 US 11005058B2 US 201916445875 A US201916445875 A US 201916445875A US 11005058 B2 US11005058 B2 US 11005058B2
Authority
US
United States
Prior art keywords
layer
emitting device
light emitting
transporting
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/445,875
Other versions
US20190312222A1 (en
Inventor
Zhaoqun ZHOU
Peter T. Kazlas
Mead Misic
Zoran Popovic
John Spencer Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Research America Inc
Original Assignee
Samsung Research America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Research America Inc filed Critical Samsung Research America Inc
Priority to US16/445,875 priority Critical patent/US11005058B2/en
Publication of US20190312222A1 publication Critical patent/US20190312222A1/en
Application granted granted Critical
Publication of US11005058B2 publication Critical patent/US11005058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H01L51/5012
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • H01L51/502
    • H01L51/5048
    • H01L51/5088
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H01L2251/552
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to the technical field of devices including quantum dots.
  • a light emitting device including a cathode, a layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a hole injection material, and an anode.
  • a light emitting device includes a cathode and an anode, and an emissive layer comprising quantum dots provided between the cathode and the anode, and wherein the device further includes: a layer comprising material capable of transporting and injecting electrons provided between the cathode and the emissive layer, a layer comprising material capable of transporting holes provided between the emissive layer and the anode, and a layer comprising a hole-injection material provided between the anode and the layer comprising material capable of transporting holes, wherein the material capable of transporting and injecting electrons comprises an inorganic material and the material capable of transporting holes comprises an organic material.
  • the material capable of transporting and injecting electrons comprises an inorganic that is doped with a species to enhance electron transport characteristics of the inorganic material.
  • the material capable of transporting and injecting electrons comprises an inorganic semiconductor material.
  • the material capable of transporting and injecting electrons comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the material capable of transporting and injecting electrons comprises a metal oxide.
  • the inorganic material comprises titanium dioxide.
  • the inorganic material comprises zinc oxide.
  • the inorganic material comprises a mixture of two or more inorganic materials.
  • the inorganic material comprises a mixture of zinc oxide and titanium oxide.
  • the layers are formed in the following sequential order: the cathode, the layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, the emissive layer comprising quantum dots, the layer comprising a material capable of transporting holes comprising an organic material, the layer comprising a hole injection material, and the anode.
  • the layer comprising a material capable of transporting and injecting electrons comprises a stratified structure including two or more horizontal zones having different conductivities.
  • the stratified structure includes a first zone, on a side of the structure closer to the cathode, comprising an n-type doped material with electron injecting characteristics, and a second zone, on the side of the structure closer to the emissive layer, comprising an intrinsic or lightly doped material with electron transport characteristics.
  • the first zone can comprise n-type doped zinc oxide and the second zone can comprise intrinsic zinc oxide or n-type doped zinc oxide with a lower n-type dopant concentration that that of the zinc oxide in the first zone.
  • the stratified structure can include a first zone, on a side of the structure closer to the cathode, comprising an n-type doped material with electron injecting characteristics, a third zone, on a side of the structure closer to the emissive layer, comprising an intrinsic material with hole blocking characteristics, and a second zone, between the first and third zones, comprising an intrinsic or lightly doped material with electron transport characteristics.
  • the layer comprising a material capable of transporting and injecting electrons can comprise a first layer, closer to the cathode, comprising a material capable of injecting electrons and a second layer, closer to the emissive layer, comprising a material capable of transporting electrons.
  • the layer comprising a material capable of transporting and injecting electrons can comprise a first layer, closer to the cathode, comprising a material capable of injecting electrons, a second layer, closer to the emissive layer, comprising a material capable of blocking holes, and a third layer between the first and second layers, comprising a material capable of transporting electrons.
  • the device can further include a spacer layer between the emissive layer and an adjacent layer included in the device (e.g., a layer comprising a material capable of transporting holes and/or a layer comprising a material capable of transporting and injecting electrons).
  • a spacer layer between the emissive layer and an adjacent layer included in the device e.g., a layer comprising a material capable of transporting holes and/or a layer comprising a material capable of transporting and injecting electrons.
  • a spacer layer can comprise an inorganic material.
  • a spacer layer can comprise an organic material. Additional information concerning a spacer layer is provided below.
  • a spacer layer comprises a material non-quenching to quantum dot emission.
  • the hole injection material can comprise a material capable of transporting holes that is p-type doped.
  • the absolute value of the difference between E LUMO of the quantum dots and the Work function of the Cathode is less than 0.5 eV. In certain embodiments, the absolute value of the difference between E LUMO of the quantum dots and the Work function of the Cathode is less than 0.3 eV. In certain embodiments, the absolute value of the difference between E LUMO of the quantum dots and the Work function of the Cathode is less than 0.2 eV.
  • the absolute value of the difference between E LUMO of the quantum dots and E conduction band edge of the material capable of transporting & injecting electrons is less than 0.5 eV. In certain embodiments, the absolute value of the difference between E LUMO of the quantum dots and E conduction band edge of material capable of transporting & injecting electrons is less than 0.3 eV. In certain embodiments, the absolute value of the difference between E LUMO of the quantum dots and E conduction band edge of material capable of transporting & injecting electrons is less than 0.2 eV.
  • the absolute value of the difference between E HOMO of the quantum dots and the E VALENCE band edge of the material capable of transporting and injecting electrons is greater than about 1 eV. In certain embodiments, the absolute value of the difference between E HOMO of the quantum dots and the E VALENCE band edge of the material capable of transporting and injecting electrons is greater than about 0.5 eV. In certain embodiments, the absolute value of the difference between E HOMO of the quantum dots and the E VALENCE band edge of the material capable of transporting and injecting electrons is greater than about 0.3 eV.
  • the device can have an initial turn-on voltage that is not greater than 1240/ ⁇ , wherein ⁇ represents the wavelength (nm) of light emitted by the emissive layer.
  • light emission from the light emissive material occurs at a bias across the device that is less than the electron-Volt of the bandgap of the quantum dots in the emissive layer.
  • quantum dots can include a core comprising a first material and a shell disposed over at least a portion of, and preferably substantially all, of the outer surface of the core, the shell comprising a second material.
  • a quantum dot including a core and shell is also described herein as having a core/shell structure.
  • more than one shell can be included in the core.
  • the first material comprises an inorganic semiconductor material.
  • the second material comprises an inorganic semiconductor material.
  • quantum dots comprise inorganic semiconductor nanocrystals.
  • inorganic semiconductor nanocrystals can comprise a core/shell structure.
  • quantum dots comprise colloidally grown inorganic semiconductor nanocrystals.
  • the quantum dots include a ligand attached to an outer surface thereof.
  • two or more chemically distinct ligands can be attached to an outer surface of at least a portion of the quantum dots.
  • an anode comprising a material with ⁇ 5 eV work function can be used, thereby avoiding the need to utilize precious metals such as gold, etc.
  • a method for preparing a light emitting device comprising:
  • a layer comprising a material capable of transporting and injecting electrons on a cathode, wherein the material capable of transporting and injecting electrons comprises an inorganic material;
  • a layer comprising a material capable of transporting holes comprising an organic material over the emissive layer
  • the method further comprises encapsulating the light emitting device.
  • a light emitting device including a pair of electrodes, a layer comprising a light emissive material comprising quantum dots provided between the electrodes, and a layer comprising a material capable of transporting electrons comprising an inorganic material provided between the emissive layer and one of the electrodes, wherein the layer comprising the material capable of transporting electrons comprising an inorganic material comprises a stratified structure including two or more horizontal zones having different conductivities.
  • the inorganic material included in different zones of the stratified structure can be doped or undoped forms of the same or different materials.
  • the electron and hole populations are balanced at the emissive layer of the device.
  • the inorganic material comprises an inorganic semiconductor material.
  • the inorganic material comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the inorganic material comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide.
  • the inorganic material comprises zinc oxide.
  • the zinc oxide is surface treated with an oxidizing agent to render the surface proximate to the emissive layer intrinsic.
  • the inorganic material can comprise a mixture of two or more inorganic materials.
  • the layer comprising a stratified structure as taught herein can serve as a layer capable of transporting and injecting electrons.
  • a zone in a layer comprising a stratified structure as taught herein can have a predetermined conductivity so as to serve as a layer capable of transporting electrons, a layer capable of injecting electrons, and/or a layer capable of blocking holes.
  • a zone can comprise a distinct layer.
  • a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/ ⁇ , wherein ⁇ represents the wavelength (nm) of light emitted by the emissive layer.
  • a light emitting device comprising a cathode, a layer comprising a material capable of transporting and injecting electrons, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a hole injection material, and an anode, the device having an initial turn-on voltage that is not greater than 1240/ ⁇ , wherein ⁇ represents the wavelength (nm) of light emitted by the emissive layer.
  • the material capable of transporting holes comprises an organic material.
  • the material capable of transporting and injecting electrons comprises an inorganic material.
  • the material capable of transporting and injecting electrons comprises an inorganic semiconductor material.
  • the material capable of transporting and injecting electrons comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the material capable of transporting and injecting electrons comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide.
  • the inorganic material comprises zinc oxide.
  • the inorganic material comprises a mixture of two or more inorganic materials.
  • the inorganic material comprises a mixture of zinc oxide and titanium oxide.
  • the material capable of transporting holes comprises an inorganic material.
  • the material capable of transporting holes comprises an organic material.
  • the layers are formed in the following sequential order: the cathode, the layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, the emissive layer comprising quantum dots, the layer comprising a material capable of transporting holes, the layer comprising a hole injection material, and the anode.
  • a light emitting device comprising a pair of electrodes and a layer of a light emissive material provided between the electrodes, wherein light emission from the light emissive material occurs at a bias voltage across the device that is less than the energy in electron-Volts of the bandgap of the emissive material.
  • the light emitting device includes an emissive material comprising quantum dots. In certain embodiments, other well known light emissive materials can be used or included in the device. In certain embodiments, additional layers can also be included. In certain embodiments, the device comprises a light emitting device in accordance with embodiments of the invention taught herein.
  • an emissive layer can include two or more different types of quantum dots, wherein each type is selected to emit light having a predetermined wavelength.
  • quantum dot types can be different based on, for example, factors such composition, structure and/or size of the quantum dot.
  • quantum dots can be selected to emit at any predetermined wavelength across the electromagnetic spectrum.
  • An emissive layer can include different types of quantum dots that have emissions at different wavelengths.
  • the light emitting device includes quantum dots capable of emitting visible light.
  • the light emitting device includes quantum dots capable of emitting infrared light.
  • inorganic material and “organic material” may be further defined by a functional descriptor, depending on the desired function being addressed. In certain embodiments, the same material can address more than one function.
  • horizontal zones are preferably parallel to the cathode.
  • FIG. 1 is schematic drawing depicting an example of an embodiment of a light-emitting device structure in accordance with the invention.
  • FIG. 2 provides a schematic band structure of an example of an embodiment of a light-emitting device in accordance with the invention.
  • FIGS. 3 & 4 graphically present performance data for the Red Light Emitting Device of the Examples.
  • FIG. 5 graphically presents performance data for the Green Light Emitting Device (A) and the Blue Light emitting Device (B) of the Examples.
  • FIG. 6 graphically compares lifetime data for the Red Light Emitting Device of the Examples (indicated as “inverted structure” in the figure) and the Standard Light Emitting Device (a comparative device) described in the Examples (indicated as “standard structure” in the figure).
  • FIG. 7 depicts an I (current)-V (voltage) curves for devices that include hole injection layers and a device without a hole injection layer.
  • FIG. 8 shows device luminance efficiency for different device structures.
  • FIG. 9 shows luminance efficiency of a device without an electron transport and hole blocking layer.
  • FIG. 10 shows luminance of inverted device without either a hole blocking or electron transport and injection layer.
  • FIG. 11 shows performance data for an example of device in accordance with an embodiment of the invention.
  • FIG. 12 shows operating voltage for an example of a red light emitting device in accordance with an embodiment of the invention.
  • FIG. 13 shows operating voltage for an example of an orange light emitting device in accordance with an embodiment of the invention.
  • FIG. 14 shows efficiency at certain luminance for an example of an orange light emitting device in accordance with an embodiment of the invention.
  • FIG. 15 shows performance for an example of a device in accordance with any embodiment of the invention.
  • FIG. 16 is a schematic drawing depicting an example of an embodiment of a light-emitting device structure in accordance with the invention.
  • FIG. 1 provides a schematic representation of an example of the architecture of a light-emitting device according to one embodiment of the present invention.
  • the light-emitting device 10 includes (from top to bottom) an anode 1 , a layer comprising a hole injection material 2 , a layer comprising a material capable of transporting holes (also referred to herein as a “hole transport material”) 3 , a layer including quantum dots 4 , a layer comprising a material capable of transporting and injecting electrons (also referred to herein as an “electron transport material”) comprising an inorganic material 5 , a cathode 6 , and a substrate (not shown).
  • an anode 1 a layer comprising a hole injection material 2 , a layer comprising a material capable of transporting holes (also referred to herein as a “hole transport material”) 3 , a layer including quantum dots 4 , a layer comprising a material capable of transporting and injecting electrons (also referred to herein as
  • the anode When voltage is applied across the anode and cathode, the anode injects holes into the hole injection material while the cathode injects electrons into the electron transport material.
  • the injected holes and injected electrons combine to form an exciton on the quantum dot and emit light.
  • the substrate (not shown) can be opaque or transparent.
  • a transparent substrate can be used, for example, in the manufacture of a transparent light emitting device. See, for example, Bulovic, V. et al., Nature 1996, 380, 29; and Gu, G. et al., Appl. Phys. Lett. 1996, 68, 2606-2608, each of which is incorporated by reference in its entirety.
  • the substrate can be rigid or flexible.
  • the substrate can be plastic, metal, semiconductor wafer, or glass.
  • the substrate can be a substrate commonly used in the art. Preferably the substrate has a smooth surface. A substrate surface free of defects is particularly desirable.
  • the cathode 6 can be formed on the substrate (not shown).
  • a cathode can comprise, ITO, aluminum, silver, gold, etc.
  • the cathode preferably comprises a material with a work function chosen with regard to the quantum dots included in the device.
  • the absolute value of the difference between E LUMO of the quantum dots and the work function of the cathode is less than about 0.5 eV.
  • the absolute value of the difference between E LUMO of the quantum dots and the work function of the cathode is less than about 0.3 eV, and preferably less than about 0.2 eV.
  • E LUMO of the quantum dots represents the energy level of the lowest unoccupied molecular orbital (LUMO) of the quantum dot.
  • a cathode comprising indium tin oxide (ITO) can be preferred for use with an emissive material including quantum dots comprising a CdSe core/CdZnSe shell.
  • Substrates including patterned ITO are commercially available and can be used in making a device according to the present invention.
  • the layer comprising a material capable of transporting and injection electrons 5 preferably comprises an inorganic material.
  • the inorganic material included in the layer capable or transporting and injection electrons comprises an inorganic semiconductor material.
  • Preferred inorganic semiconductor materials include those having a band gap that is greater than the emission energy of the emissive material.
  • the absolute value of the difference between E LUMO of the quantum dots and E conduction band edge of material capable of transporting and injecting electrons is less than about 0.5 eV.
  • the absolute value of the difference between E LUMO of the quantum dots and E conduction band edge of the material capable of transporting and injecting electrons is less than about 0.3 eV, and preferably less than about 0.2 eV
  • E LUMO of the quantum dots represents the energy level of the lowest unoccupied molecular orbital (LUMO) of the quantum dots
  • E of the conduction band edge of the material capable of transporting and injecting electrons represents the energy level of the conduction band edge of the material capable of transporting and injecting electrons.
  • inorganic semiconductor materials include a metal chalcogenide, a metal pnictide, or elemental semiconductor, such as a metal oxide, a metal sulfide, a metal selenide, a metal telluride, a metal nitride, a metal phosphide, a metal arsenide, or metal arsenide.
  • a metal chalcogenide such as a metal oxide, a metal sulfide, a metal selenide, a metal telluride, a metal nitride, a metal phosphide, a metal arsenide, or metal arsenide.
  • an inorganic semiconductor material can include, without limitation, zinc oxide, a titanium oxide, a niobium oxide, an indium tin oxide, copper oxide, nickel oxide, vanadium oxide, chromium oxide, indium oxide, tin oxide, gallium oxide, manganese oxide, iron oxide, cobalt oxide, aluminum oxide, thallium oxide, silicon oxide, germanium oxide, lead oxide, zirconium oxide, molybdenum oxide, hafnium oxide, tantalum oxide, tungsten oxide, cadmium oxide, iridium oxide, rhodium oxide, ruthenium oxide, osmium oxide, zinc sulfide, zinc selenide, zinc telluride, cadmium sulfide, cadmium selenide, cadmium telluride, mercury sulfide, mercury selenide, mercury telluride, silicon carbide, diamond (carbon), silicon, germanium, aluminum nitride, aluminum phosphide, aluminum arsenide, silicon
  • an electron transport material can include an n-type dopant.
  • An example of a preferred inorganic semiconductor material for inclusion in an electron transport material of a device in accordance with the invention is zinc oxide.
  • zinc oxide can be mixed or blended with one or more other inorganic materials, e.g., inorganic semiconductor materials, such as titanium oxide.
  • a layer comprising a material capable of transporting and injecting electrons can comprise zinc oxide.
  • Such zinc oxide can be prepared, for example, by a sol-gel process.
  • the zinc oxide can be chemically modified. Examples of chemical modification include treatment with hydrogen peroxide.
  • a layer comprising a material capable of transporting and injecting electrons can comprise a mixture including zinc oxide and titanium oxide.
  • the electron transport material is preferably included in the device as a layer.
  • the layer has a thickness in a range from about 10 nm to 500 nm.
  • Electron transport materials comprising an inorganic semiconductor material can be deposited at a low temperature, for example, by a known method, such as a vacuum vapor deposition method, an ion-plating method, sputtering, inkjet printing, sol-gel, etc.
  • a vacuum vapor deposition method for example, an ion-plating method
  • sputtering is typically performed by applying a high voltage across a low-pressure gas (for example, argon) to create a plasma of electrons and gas ions in a high-energy state.
  • a low-pressure gas for example, argon
  • Energized plasma ions strike a target of the desired coating material, causing atoms from that target to be ejected with enough energy to travel to, and bond with, the substrate.
  • the layer comprising a material capable of transporting and injecting electrons can comprise a stratified structure comprising an inorganic material, wherein the stratified structure includes two or more horizontal zones having different conductivities.
  • the layer can include a first zone at the upper portion of the layer (nearer the emissive layer) comprising an intrinsic or slightly n-type doped inorganic material (e.g., sputtered intrinsic or slightly n-type doped zinc oxide) with electron transporting characteristics, and a second zone at the lower portion of the layer (more remote from the emissive layer) comprising inorganic material that has a higher concentration of n-type doping than the material in the first zone (e.g., sputtered n-type doped ZnO) with electron injection characteristics.
  • the layer can include three horizontal zones, e.g., a hole block zone 5 c at the upper portion of the layer (nearest the emissive layer 4 ) comprising an intrinsic inorganic material (e.g., sputtered intrinsic zinc oxide) which can be hole blocking; a second zone 5 b (between the first hole block zone and the first zone) comprising an intrinsic or slightly n-type doped inorganic material (e.g., sputtered intrinsic or slightly n-type doped zinc oxide or another metal oxide) which can be electron transporting; and a first zone 5 a at the lowest portion of the layer (most remote from the emissive layer 4 ) comprising inorganic material that has a higher concentration of n-type doping than the material in the second zone (e.g., sputtered n-type doped ZnO or another metal oxide) which can be electron injecting.
  • a hole block zone 5 c at the upper portion of the layer (nearest the emissive layer 4 ) compris
  • the inorganic material included in the stratified structure comprises an inorganic semiconductor material.
  • the inorganic material comprises a metal chalcogenide.
  • the inorganic material comprises a metal sulfide.
  • the inorganic material comprises a metal oxide.
  • the inorganic material comprises titanium dioxide.
  • the inorganic material comprises zinc oxide.
  • the inorganic material can comprise a mixture of two or more inorganic materials. Other inorganic materials taught herein for inclusion in a layer comprising a material capable of transporting and injection electrons can also be included in a stratified structure.
  • the surface of the device on which an inorganic semiconductor material is to be formed can be cooled or heated for temperature control during the growth process.
  • the temperature can affect the crystallinity of the deposited material as well as how it interacts with the surface it is being deposited upon.
  • the deposited material can be polycrystalline or amorphous.
  • the deposited material can have crystalline domains with a size in the range of 10 Angstroms to 1 micrometer.
  • the doping concentration can be controlled by, for example, varying the gas, or mixture of gases, with a sputtering plasma technique. The nature and extent of doping can influence the conductivity of the deposited film, as well as its ability to optically quench neighboring excitons.
  • the emissive material 4 includes quantum dots.
  • the quantum dots comprise an inorganic semiconductor material.
  • the quantum dots comprise crystalline inorganic semiconductor material (also referred to as semiconductor nanocrystals).
  • preferred inorganic semiconductor materials include, but are not limited to, Group II-VI compound semiconductor nanocrystals, such as CdS, CdSe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, and other binary, ternary, and quaternary II-VI compositions; Group III-V compound semiconductor nanocrystals, such as GaP, GaAs, InP and InAs; PbS; PbSe; PbTe, and other binary, ternary, and quaternary Ill-V compositions.
  • materials for the quantum dot light-emitting layer may be core-shell structured nanocrystals (for example, CdSe/ZnS, CdS/ZnSe, InP/ZnS, etc.) wherein the core is composed of a semiconductor nanocrystal (e.g. CdSe, CdS, etc.) and the shell is composed of a crystalline inorganic semiconductor material (e.g., ZnS, ZnSe, etc.).
  • Quantum dots can also have various shapes, including, but not limited to, sphere, rod, disk, other shapes, and mixtures of various shaped particles.
  • An emissive material can comprise one or more different quantum dots.
  • the differences can be based, for example, on different composition, different size, different structure, or other distinguishing characteristic or property.
  • the color of the light output of a light-emitting device can be controlled by the selection of the composition, structure, and size of the quantum dots included in a light-emitting device as the emissive material.
  • the emissive material is preferably included in the device as a layer.
  • the emissive layer can comprise one or more layers of the same or different emissive material(s).
  • the emissive layer can have a thickness in a range from about 1 nm to about 20 nm.
  • the emissive layer can have a thickness in a range from about 1 nm to about 10 nm.
  • the emissive layer can have a thickness in a range from about 3 nm to about 6 about nm.
  • the emissive layer can have a thickness of about 4 nm.
  • a thickness of 4 nm can be preferred in a device including an electron transport material including a metal oxide.
  • the quantum dots include one or more ligands attached to the surface thereof.
  • a ligand can include an alkyl (e.g., C 1 -C 20 ) species.
  • an alkyl species can be straight-chain, branched, or cyclic.
  • an alkyl species can be substituted or unsubstituted.
  • an alkyl species can include a hetero-atom in the chain or cyclic species.
  • a ligand can include an aromatic species.
  • an aromatic species can be substituted or unsubstituted.
  • an aromatic species can include a hetero-atom. Additional information concerning ligands is provided herein and in various of the below-listed documents which are incorporated herein by reference.
  • Quantum dots can be prepared by known techniques. Preferably they are prepared by a wet chemistry technique wherein a precursor material is added to a coordinating or non-coordinating solvent (typically organic) and nanocrystals are grown so as to have an intended size.
  • a coordinating solvent typically organic
  • the organic solvent is naturally coordinated to the surface of the quantum dots, acting as a dispersant. Accordingly, the organic solvent allows the quantum dots to grow to the nanometer-scale level.
  • the wet chemistry technique has an advantage in that quantum dots of a variety of sizes can be uniformly prepared by appropriately controlling the concentration of precursors used, the kind of organic solvents, and preparation temperature and time, etc.
  • the emission from a quantum dot capable of emitting light can be a narrow Gaussian emission band that can be tuned through the complete wavelength range of the ultraviolet, visible, or infra-red regions of the spectrum by varying the size of the quantum dot, the composition of the quantum dot, or both.
  • a semiconductor nanocrystal comprising CdSe can be tuned in the visible region;
  • a semiconductor nanocrystal comprising InAs can be tuned in the infra-red region.
  • the narrow size distribution of a population of quantum dots capable of emitting light can result in emission of light in a narrow spectral range.
  • the population can be monodisperse preferably exhibits less than a 15% rms (root-mean-square) deviation in diameter of such quantum dots, more preferably less than 10%, most preferably less than 5%.
  • Spectral emissions in a narrow range of no greater than about 75 nm, no greater than about 60 nm, no greater than about 40 nm, and no greater than about 30 nm full width at half max (FWHM) for such quantum dots that emit in the visible can be observed.
  • IR-emitting quantum dots can have a FWHM of no greater than 150 nm, or no greater than 100 nm.
  • the emission can have a FWHM of no greater than 0.05 eV, or no greater than 0.03 eV.
  • the breadth of the emission decreases as the dispersity of the light-emitting quantum dot diameters decreases.
  • semiconductor nanocrystals can have high emission quantum efficiencies such as greater than 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%.
  • the narrow FWHM of semiconductor nanocrystals can result in saturated color emission.
  • the broadly tunable, saturated color emission over the entire visible spectrum of a single material system is unmatched by any class of organic chromophores (see, for example, Dabbousi et al., J. Phys. Chem. 101, 9463 (1997), which is incorporated by reference in its entirety).
  • a monodisperse population of semiconductor nanocrystals will emit light spanning a narrow range of wavelengths.
  • a pattern including more than one size of semiconductor nanocrystal can emit light in more than one narrow range of wavelengths.
  • the color of emitted light perceived by a viewer can be controlled by selecting appropriate combinations of semiconductor nanocrystal sizes and materials.
  • the degeneracy of the band edge energy levels of semiconductor nanocrystals facilitates capture and radiative recombination of all possible excitons.
  • TEM Transmission electron microscopy
  • Powder X-ray diffraction (XRD) patterns can provide the most complete information regarding the type and quality of the crystal structure of the semiconductor nanocrystals.
  • Estimates of size are also possible since particle diameter is inversely related, via the X-ray coherence length, to the peak width.
  • the diameter of the semiconductor nanocrystal can be measured directly by transmission electron microscopy or estimated from X-ray diffraction data using, for example, the Scherrer equation. It also can be estimated from the UV/Vis absorption spectrum.
  • An emissive material can be deposited by spin-casting, screen-printing, inkjet printing, gravure printing, roll coating, drop-casting, Langmuir-Blodgett techniques, contact printing or other techniques known or readily identified by one skilled in the relevant art.
  • a layer comprising a spacer material can be included between the emissive material and a layer of the device adjacent thereto, for example, an electron transport layer and/or a hole transport layer.
  • a layer comprising a spacer material can promote better electrical interface between the emissive layer and the adjacent charge transport layer.
  • a spacer material may comprise an organic material or an inorganic material.
  • a spacer material comprises parylene.
  • the spacer material comprises an ambipolar material. More preferably, it is non-quenching.
  • a spacer material between the emissive layer and a hole transport layer can comprise an ambipolar host or hole transport material, or nanoparticles such as nickel oxide, and other metal oxides.
  • Examples of hole transport materials 3 include organic material and inorganic materials.
  • An example of an organic material that can be included in a hole transport layer includes an organic chromophore.
  • the organic chromophore can include a phenyl amine, such as, for example, N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD).
  • hole transport layer can include (N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-spiro (spiro-TPD), 4-4′-N,N′-dicarbazolyl-biphenyl (CBP), 4,4-, bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD), etc., a polyaniline, a polypyrrole, a poly(phenylene vinylene), copper phthalocyanine, an aromatic tertiary amine or polynuclear aromatic tertiary amine, a 4,4′-bis(p-carbazolyl)-1,1′-biphenyl compound, N,N,N′,N′-tetraarylbenzidine, poly(3,4-ethylenedioxythiophene) (PEDOT)/polystyrene para-sulfonate (PSS) derivatives, poly-N-vin
  • a hole transport layer comprises an organic small molecule material, a polymer, a spiro-compound (e.g., spiro-NPB), etc.
  • a hole transport layer can comprise an inorganic material.
  • inorganic materials include, for example, inorganic semiconductor materials capable of transporting holes.
  • the inorganic material can be amorphous or polycrystalline. Examples of such inorganic materials and other information related to fabrication of inorganic hole transport materials that may be helpful are disclosed in International Application No. PCT/US2006/005184, filed 15 Feb. 2006, for “Light Emitting Device Including Semiconductor Nanocrystals, which published as WO 2006/088877 on 26 Aug. 2006, the disclosure of which is hereby incorporated herein by reference in its entirety.
  • Hole transport materials comprising, for example, an inorganic material such as an inorganic semiconductor material, can be deposited at a low temperature, for example, by a known method, such as a vacuum vapor deposition method, an ion-plating method, sputtering, inkjet printing, sol-gel, etc.
  • Organic hole transport materials may be deposited by known methods such as a vacuum vapor deposition method, a sputtering method, a dip-coating method, a spin-coating method, a casting method, a bar-coating method, a roll-coating method, and other film deposition methods.
  • organic layers are deposited under ultra-high vacuum (e.g., ⁇ 10 ⁇ 8 torr), high vacuum (e.g., from about 10 ⁇ 8 torr to about 10 ⁇ 5 torr), or low vacuum conditions (e.g., from about 10 ⁇ 5 torr to about 10 ⁇ 3 torr).
  • the hole transport material is preferably included in the device as a layer.
  • the layer can have a thickness in a range from about 10 nm to about 500 nm.
  • the hole-injection material may comprise a separate hole injection material or may comprise an upper portion of the hole transport layer that has been doped, preferably p-type doped.
  • the hole-injection material can be inorganic or organic. Examples of organic hole injection materials include, but are not limited to, LG-101 (see, for example, paragraph [0024] of EP 1 843 411 A1) and other HIL materials available from LG Chem. LTD. Other organic hole injection materials can be used. Examples of p-type dopants include, but are not limited to, stable, acceptor-type organic molecular material, which can lead to an increased hole conductivity in the doped layer, in comparison with a non-doped layer.
  • a dopant comprising an organic molecular material can have a high molecular mass, such as, for example, at least 300 amu.
  • dopants include, without limitation, F 4 -TCNQ, FeCl 3 , etc.
  • doped organic materials for use as a hole injection material include, but are not limited to, an evaporated hole transport material comprising, e.g., 4, 4′, 4′′-tris (diphenylamino)triphenylamine (TDATA) that is doped with tetrafluoro-tetracyano-quinodimethane (F 4 -TCNQ); p-doped phthalocyanine (e.g., zinc-phthalocyanine (ZnPc) doped with F 4 -TCNQ (at, for instance, a molar doping ratio of approximately 1:30); N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′biphenyl-4,4′′diamine (alpha-NPD) doped with F 4 -TCNQ.
  • an evaporated hole transport material comprising, e.g., 4, 4′, 4′′-tris (diphenylamino)triphenylamine (T
  • anode 1 may comprise an electrically conductive metal or its oxide that can easily inject holes. Examples include, but are not limited to, ITO, aluminum, aluminum-doped zinc oxide (AZO), silver, gold, etc. Other suitable anode materials are known and can be readily ascertained by the skilled artisan.
  • the anode material can be deposited using any suitable technique. In certain embodiments, the anode can be patterned.
  • the light-emitting device may be fabricated by sequentially forming the cathode 6 , the electron transport material comprising an inorganic material 5 , the emissive material 4 , the hole transport material 3 , and the anode 2 . This sequential approach avoids the deposition of the emissive material comprising quantum dots directly onto an organic material.
  • an adhesion promoter can be included between the electron transport material and the emissive material.
  • a suitable adhesion promoter is ozone treatment of the upper surface of the electron transport material.
  • Other adhesion promoters can be used.
  • the electrode (e.g., anode or cathode) materials and other materials are selected based on the light transparency characteristics thereof so that a device can be prepared that emits light from the top surface thereof.
  • a top emitting device can be advantageous for constructing an active matrix device (e.g., a display).
  • the electrode (e.g., anode or cathode) materials and other materials are selected based on light transparency characteristics thereof so that a device can be prepared that emits light from the bottom surface thereof.
  • the device can further include a substrate (not shown in the figure).
  • substrate materials include, without limitation, glass, plastic, insulated metal foil.
  • a device can further include a passivation or other protective layer that can be used to protect the device from the environment.
  • a protective glass layer can be included to encapsulate the device.
  • a desiccant or other moisture absorptive material can be included in the device before it is sealed, e.g., with an epoxy, such as a UV curable epoxy. Other desiccants or moisture absorptive materials can be used.
  • a method for preparing a light emitting device such as, for example, a device as illustrated in FIG. 1 .
  • the method comprising: forming a layer comprising a material capable of transporting and injecting electrons on a cathode, wherein the material capable of transporting and injecting electrons comprises an inorganic material; applying an emissive layer comprising quantum dots thereover; forming a layer comprising a material capable of transporting holes comprising an organic material over the emissive layer; forming a layer comprising a hole injection material over the layer comprising a material capable of transporting holes; and forming an anode over the layer comprising a hole injection material.
  • Examples of materials that can be included in the method include those described herein.
  • a light emitting device including a pair of electrodes, a layer comprising a light emissive material comprising quantum dots provided between the electrodes, and a layer comprising a material capable of transporting electrons comprising an inorganic material provided between the emissive layer and one of the electrodes, wherein the layer comprising the material capable of transporting electrons comprising an inorganic material comprises a stratified structure including two or more horizontal zones having different conductivities.
  • the inorganic material included in different zones of the stratified structure can be doped or undoped forms of the same or different materials.
  • the inorganic material comprises an inorganic semiconductor material.
  • a first zone comprises an intrinsic inorganic semiconductor material
  • a second zone, adjacent thereto can comprise a doped inorganic semiconductor material
  • a first zone comprises an n-type doped inorganic semiconductor material
  • a second zone, adjacent thereto can comprise a slightly lower n-type doped or intrinsic inorganic semiconductor material.
  • the inorganic semiconductor material that is doped can be a doped form of an intrinsic material included in another zone of the stratified structure. While these examples describe a stratified structure including two zones, a stratified structure can include more than two zones.
  • the inorganic semiconductor material included in different zones of the stratified structure can be doped or undoped forms of the same or different materials.
  • the layer comprising a stratified structure can serve as a layer capable of transporting and injecting electrons.
  • a zone in a layer comprising a stratified structure can have a predetermined conductivity so as to serve as a layer capable of transporting electrons, a layer capable of injecting electrons, and/or a layer capable of blocking holes.
  • a zone can comprise a distinct layer.
  • the inorganic material comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the inorganic material comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide. In certain more preferred embodiments, the inorganic material comprises zinc oxide. In certain embodiments, the inorganic material comprises a mixture of two or more inorganic materials. Other examples of inorganic semiconductor materials that can be used include those described elsewhere herein.
  • a layer comprising an inorganic semiconductor material that includes a stratified structure as taught herein can serve as a layer capable of transporting electrons, injecting electrons, and/or blocking holes.
  • Examples of materials useful for the anode and cathode include those described elsewhere herein.
  • Quantum dots included in the emissive layer can include those described elsewhere herein.
  • different conductivities can be accomplished, for example, by changing the carrier mobility and/or charge density of the material.
  • conduction properties of layers comprising a metal oxide are highly dependent on the concentration of oxygen in the layer structure since vacancies are the main mode of carrier conduction.
  • two properties of the deposition can be altered.
  • the power of deposition can be varied, increasing and decreasing the amount of oxygen that is incorporated in the layer.
  • the powers and resulting conductivities are highly dependent on the material and the sputter system used. More oxygen can also be incorporated into the layer by adding oxygen to the sputter chamber gas environment which is often dominated by noble gases like Argon.
  • Both the power and oxygen partial pressure can be used or customized to produce the desired layered metal oxide structure.
  • Lowering the RF power during deposition can increase the conductivity of the layer, reducing the parasitic resistance of the layer.
  • oxygen is incorporated into the deposition ambient to place a thin insulating surface on the layer formed.
  • a light emitting device comprising a pair of electrodes and a layer of a light emissive material provided between the electrodes, wherein light emission from the light emissive material occurs at a bias voltage across the device that is less than the energy in electron-Volts of the bandgap of the emissive material.
  • the light emitting device includes an emissive material comprising quantum dots.
  • quantum dots included in the emissive layer can include those described elsewhere herein.
  • other well known light emissive materials can be used or included in the device.
  • Examples of materials useful for the electrodes include those described elsewhere herein.
  • additional layers described herein can also be included.
  • the device comprises one of the light emitting devices taught herein.
  • a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/ ⁇ , wherein ⁇ represents the wavelength (nm) of light emitted by the emissive layer.
  • a light emitting device comprising a cathode, a layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a hole injection material, and an anode, the device having an initial turn-on voltage that is not greater than 1240/ ⁇ , wherein ⁇ represents the wavelength (nm) of light emitted by the emissive layer.
  • Examples of materials useful for the anode and cathode include those described elsewhere herein.
  • Examples of materials useful for the layer comprising a material capable of transporting and injection electrons include those described elsewhere herein.
  • Examples of materials useful for the layer comprising a material capable of transporting holes include those described elsewhere herein.
  • Examples of materials useful for the layer comprising a hole injection material include those described elsewhere herein.
  • additional layers described herein can also be included.
  • the device comprises one of the light emitting devices taught herein.
  • an additional hole transport material with a hole conductivity between that of the hole injection material and the hole transport material can be interposed between them.
  • Additional hole transport materials can be interposed between two other hole conductive materials included in the device.
  • any additional interposed hole transport material will have a hole conductivity that falls in-between those of the hole transport materials between which it is interposed.
  • FIG. 2 schematically provides the band structure of an example of an embodiment of a light emitting device of the present invention.
  • a metal oxide is used as a layer that is electron transporting and injecting and hole blocking. Such layer can be fabricated with solution process or thermal evaporation.
  • An electron transport layer including ZnO is preferred.
  • ZnO can be preferably doped to form an ohmic contact with the cathode.
  • the hole transport layer (HTL) can comprise an organic material (e.g., small organic molecules (for example, TPD, spiro-TPB, NPB, spiro-NPB, etc.).
  • the HTL can comprise an inorganic material.
  • a hole injection layer (or p-type doped HTL) is also included in the depicted example to enhance hole supply from the anode.
  • electrons are transported through the metal oxide and holes are transported through the HTL, excitons are generated in the quantum dot (QD) layer.
  • QD quantum dot
  • the composition and size of the quantum dots are selected to achieve light emission with a predetermined color or wavelength.
  • a light-emitting device in accordance with the invention can be used to make a light-emitting device including red-emitting, green-emitting, and/or blue-emitting quantum dots.
  • Other color light-emitting quantum dots can be included, alone or in combination with one or more other different quantum dots.
  • separate layers of one or more different quantum dots may be desirable.
  • a layer can include a mixture of two or more different quantum dots.
  • the quantum dots included in the emissive layer may comprise red-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “SOP”, “R-SOP”), green-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “GQD”), blue-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “BQD”), or yellow-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “YQD”), which are prepared generally according to the following respective procedures. In any instances where a quantum dot is described by a “10 ⁇ ” modifier, the preparation is generally carried out on a scale approximately ten times that of the respective preparation procedure described below.
  • Tri-n-octylphosphine oxide TOPO
  • ODPA octadecylphosphonic acid
  • Polycarbon 6.00 grams of Tri-n-octylphosphine oxide (TOPO) (99% Strem) and 0.668 grams of octadecylphosphonic acid (ODPA) (Polycarbon) are added to a 50 mL three necked round bottom flask. The ingredients are stirred and heated to a temperature of about 120° C. Once the flask reaches 120° C., the solution is degassed for 2 hours while maintained at 120° C. When the solution in the round bottom flask has finished degassing, the vacuum valve is closed and the flask is opened to nitrogen and stirred.
  • TOPO Tri-n-octylphosphine oxide
  • ODPA octadecylphosphonic acid
  • Periodic samples are taken until an absorbance of ⁇ 560 nm is obtained, at which time the heating mantle is removed and the solution is permitted to cool while stirring.
  • the temperature is 100° C.
  • the solution is divided into half into 2 centrifuge tubes, and 2 ⁇ volume of 3:1 methanol/isopropanol is added to each tube to precipitate semiconductor nanocrystal cores.
  • the supernatant is poured off, and the semiconductor nanocrystal cores are mixed with hexane (minimum volume 2.5 mL in each tube).
  • the contents of the two centrifuge tubes are then combined, centrifuged for 5 minutes at 4000 rpm, and filtered with hexane using a 0.2 micron filter.
  • the vacuum is closed and the flask is opened up to nitrogen.
  • the temperature of the flask is set to 70° C.
  • the CdSe cores prepared (approximately 0.09- to 0.1 mmol) as described above in hexane is added to the round bottom flask using a 5 mL syringe.
  • the vacuum is slowly opened up and all of the hexane is removed from the flask, leaving behind the CdSe cores (this can take as long as an hour).
  • the vacuum is closed and the flask is opened up to nitrogen.
  • the syringe pumps When the flask is at 155° C., the syringe pumps are turned on and the two solutions are pumped into the flask at a rate of 2 mL/hour, with rapid stirring (this will take about two hours). When all of the overcoating solutions from the two syringes has been added to the flask, the syringe pump lines are removed from the flask.
  • the temperature can be turned down to 100° C., and 10 mL of toluene can be added and allowed to sit overnight under nitrogen.
  • the total growth solution is divided into two aliquots, each being put into a 50 mL centrifuge tube. An excess ⁇ 30 mL of a 3:1 MeOH/Isopropanol mixture is added to each centrifuge tube and stirred. The centrifuge tubes are centrifuged 5 minutes at 4000 rpm. The particles in each tube are dispersed in about 10 mL of hexane with stirring using a vortexer. The centrifuge tubes are then centrifuged for 5 minutes at 4000 rpm. The supernatant includes the hexane and the overcoated cores. The supernatant from each tube is placed into another two centrifuge tubes.
  • the solid is a salt that has formed and is waste.
  • the hexane/overcoated core supernatant is filtered using a 0.2 ⁇ m syringe filter. An excess of 3:1 methanol/isopropanol is added to each tube to precipitate the overcoated cores.
  • the tubes are centrifuged for 5 minutes at 4000 rpm. The supernatant is poured off. The purified overcoated cores are now at the bottom of the tube and the supernatant is waste.
  • ZnSe semiconductor nanocrystals are prepared by rapidly injecting 86 mg (0.7 mmol) diethyl zinc (Strem) and 1 mL tri-n-octylphosphine selenide (TOP) (97% Strem) (1M) dispersed in 5 mL of tri-n-octylphosphine (TOP) (97% Strem), into a round bottom flask containing 7 grams of degassed oleylamine (distilled from 98% Sigma-Aldrich and degassed at 120° C. under nitrogen with stirring) at 310° C., and then growing at 270° C. for 30 minutes to one hour.
  • TOP tri-n-octylphosphine selenide
  • TOP tri-n-octylphosphine
  • the solution is then stirred at 150° C. for 21 hours.
  • the CdZnSe cores are isolated by precipitating them out of solution twice with a miscible non-solvent.
  • the CdZnS shell is grown by introducing dropwise a solution of dimethylcadmium (20% of total moles of cation for a shell of predetermined thickness) (Strem), diethylzinc (Strem), and hexamethyldisithiane (2 fold excess of amount for a shell of predetermined thickness) (Fluka) in 8 mL of TOP into a degassed solution of 10 grams of TOPO (99% Strem) and 0.4 grams (2.4 mmol) HPA (Polycarbon Industries), which contains the CdZnSe cores, at a temperature of 140° C. (the CdZnSe cores dispersed in hexane are added to the degasses TOPO/HPA solution and the hexane is pulled off at 70° C. under vacuum prior to addition of the shell precursors).
  • 0.050 g CdO (99.98% Puratronic) and 0.066 g of ZnO (99.99% Sigma Aldrich) is weighed out into a 100 mL three necked flask.
  • 4 mL oleic acid (90% tech grade from Aldrich) and 32 mL octadecene (ODE) (90% tech grade from Aldrich) are added to the flask.
  • the flask is set clamped on a heating mantle.
  • One of the necks of the flask is fitted with a condenser connected to a Schlenck line through a vacuum adaptor.
  • a temperature probe connected to a digital temperature controller is fitted to one of the two remaining flask necks.
  • the third neck of the flask is then fitted with a septum cap.
  • the contents of the flask are degassed at 80° C. for 20 minutes in vacuo (200 millitorr).
  • the contents of the three necked flask is stirred at a low stir rate (e.g., a setting of 4) and heated to 290° C. and held for 20 minutes at that temperature. Then temperature is raised to 310° C. under nitrogen. When the temperature reaches 305° C., stir rate is increased (e.g., from a setting of 4 to a setting of 5) and the sample is allowed to heat to 310° C. until all the oxides have dissolved to give a clear solution. The temperature controller is then set to 300° C. Once the temperature falls to 300° C., approximately 8 mL of S in ODE is rapidly injected after which stir rate is maintained (e.g., at a setting of 5).
  • a low stir rate e.g., a setting of 4
  • stir rate is increased (e.g., from a setting of 4 to a setting of 5) and the sample is allowed to heat to 310° C. until all the oxides have dissolved to give a clear solution.
  • the temperature of the solution is observed to fall to about 265-270° C. and climb back to 300 C in ⁇ 5 minutes. After 3 hours, heating is stopped by removing the heating mantle and the flask is allowed to cool to room temperature. The contents of the flask are transferred to a degassed vial under nitrogen, which is transferred to an inert atmosphere box for further purification. Precipitation of dots may be observed, keep overnight in inert box.
  • the purification method is as follows:
  • precursor reagents are prepared as follows:
  • the temperature in the flask is reduced to 70° C.
  • Vacuum lines are closed and the flask is opened to a positive nitrogen atmosphere line.
  • 3.3 mL cores (0.092 mmol) dispersed in hexane is drawn into a syringe in the glove box and injected into the flask.
  • the nitrogen line is closed and the flask is slowly opened to the vacuum lines to extract hexane from the flask.
  • Degassing is continued under vacuum until all of the hexane is removed. Once the degassing is completed, the vacuum lines are closed and positive nitrogen atmosphere is introduced into the flask.
  • the needles on the syringes containing the precursor reagents are removed and replaced with microcapillary tubes, the other end of which is in vials through syringe needle. Air bubbles are removed from the syringes and the syringes are set on a syringe pump ready for injection of the contents into the flask. The flow rate of the syringe pump is adjusted for a flow rate of 50 microliters per minute.
  • the temperature of the flask is raised to 170° C.
  • the end of the microcapillary tube attached to the syringe containing hexamethyl disilthiane is introduced into the second septa of the flask using an 18 gauge needle and place in such a way that the type of the microcapillary tube is immersed into the contents of the flask.
  • the injection of hexamethyl disilthiane is started.
  • the tip of the microcapillary tube of the other syringe containing the diethyl zinc precursor reagent is introduced into the flask with an 18 gauge needle through the other septum of the flask.
  • the temperature of the flask is allowed to drop to 90° C. and the contents of the flask is transferred into a degassed vial using a 20 mL syringe.
  • the vial containing the reaction mixture is then transferred into the glove box for isolation of the nanoparticles from the reaction mixture.
  • Dimethyl cadmium, diethyl zinc, and hexamethyldisilathiane were used as the Cd, Zn, and S precursors, respectively.
  • the Cd and Zn were mixed in equimolar ratios while the S was in two-fold excess relative to the Cd and Zn.
  • the Cd/Zn (0.37 mmol of dimethylcadmium and diethylzinc) and S (1.46 mmol of hexamethyldisilathiane) samples were each dissolved in 4 mL of trioctylphosphine inside a nitrogen atmosphere glove box. Once the precursor solutions were prepared, the reaction flask was heated to 155° C. under nitrogen.
  • the precursor solutions were added dropwise over the course of 2 hours at 155° C. using a syringe pump.
  • the nanocrystals were transferred to a nitrogen atmosphere glovebox and precipitated out of the growth solution by adding a 3:1 mixture of methanol and isopropanol.
  • the resulting precipitate was then dispersed in hexane and precipitated out of solution for a second time by adding a 3:1 mixture of methanol and isopropanol.
  • the isolated core-shell nanocrystals were then dispersed in hexane and used to make light emitting devices including quantum dots as described below.
  • a standard device was fabricated that includes R-SOP (CdSe/CdZnS core-shell semiconductor nanocrystals) and charge transport layers comprising organic materials.
  • the device was made as follows:
  • FIGS. 3-6 Various performance data for the devices of Table 1 are graphically presented in FIGS. 3-6 .
  • FIGS. 3 and 4 graphically present performance data for the Red Device described in Table 1.
  • FIG. 5 graphically presents performance data for the Green Device (A) and Blue Device (B) of the Examples. Lifetime improvements that can be achieved in certain embodiments of the invention are illustrated in FIG. 6 , which graphically present lifetime data for the Red Device and the Standard Device of the Examples.
  • a device is preferably baked or heated after fabrication, but before encapsulation.
  • baking e.g., at 80° C. on a hot plate in a nitrogen atmosphere
  • the devices identified in Table 2 were generally fabricated as set forth below. The details of each device (materials, thicknesses, etc) are set forth in Table 2 below. (Layer thicknesses for the test devices are listed in Table 2 parenthetically.)
  • TiOx The sol-gel procedure for producing TiOx is as follows: titanium(IV) isopropoxide (Ti[OCH(CH 3 ) 2 ]4, Aldrich, 99.999%, 10 mL) was prepared as a precursor and mixed with 2-methoxyethanol (CH 3 OCH 2 CH 2 OH. Aldrich, 99.9+%, 50 mL) and ethanolamine (H 2 NCH 2 CH 2 OH, Aldrich, 99+%, 5 mL) in a three-necked flask equipped with a condenser, a thermometer, and an argon-gas inlet/outlet. Then, the mixed solution was heated to 80° C. for 2 h in a silicon-oil bath under magnetic stirring, followed by heating to 120° C. for 1 h. The two-step heating (80 and 120° C.) was then repeated.
  • the typical TiOx precursor solution was prepared in isopropyl alcohol.
  • Test devices identified in Table 2 that include a ZnO layer were fabricated on patterned ITO substrates that were sonicated in acetone and isopropyl alcohol for 10 minutes each, followed by 6 minutes O 2 plasma treatment.
  • the spin coating sol-gel formulations used to fabricate a mixed ZnO—TiOx layer utilized a mixture of a ZnO spin coating sol-gel formulation (prepared substantially as described above) and a TiOx spin coating sol-gel formulation (prepared substantially as described above). The ZnO and TiOx formulations are mixed in a predetermined proportion.
  • ITO indium tin oxide
  • An electron transport layer comprising a metal oxide was formed by sol-gel technique (ZnO and/or TiO x , as indicated in Table 2), prepared substantially as described above).
  • the metal oxide coated glass is then returned to the nitrogen environment and spin-coated with an ink including quantum dots in hexane.
  • post-baking on partial finished device at 80° C. on hot plate (in glove box) is favorable. Then, the device is returned to the deposition chamber and pumped back down to 10 ⁇ 7 torr or better for evaporation of the next layer.
  • a layer of hole transport material is then evaporated onto the emissive layer in a deposition chamber (an ⁇ acute over ( ⁇ ) ⁇ MOD chamber, obtained from Angstrom Engineering, Ottowa, Canada) after the chamber is pumped down to 10 ⁇ 7 torr or better.
  • the hole transport material are typically (OLED grade, gradient sublimation purified) obtained from Luminescent Technologies, Taiwan).
  • a hole injection layer is included in the device, it is formed over the hole transport layer.
  • Each of the vapor deposited layers are patterned with use of shadow masks. After deposition of the hole transport material layer and hole injection layer, the mask is changed before deposition of the metal anode.
  • the finished device is encapsulated with glass lid and ready for testing.
  • FIG. 7 shows I-V curves of inverted structures with LG-101 and WO3 as hole injection layers respectively.
  • Device K is inverted structure with no hole injection layer. From the data, device K has insufficient current injection through anode.
  • FIG. 8 shows device luminance efficiency in different device structures.
  • the most efficient device is a device in accordance with an embodiment of the invention that includes small molecular material LG 101 as hole injection layer. Without a hole injection layer, luminance (see Device K) is not observable.
  • FIG. 9 shows the luminance efficiency of a device without an electron transport & injection layer and without a hole blocking layer.
  • FIG. 10 shows luminance of inverted device without an electron transport & injection layer and without a hole blocking layer.
  • FIG. 11 shows device performance for a device in accordance with an embodiment of the invention that includes an emissive layer including red-light emitting quantum dots.
  • Peak external quantum efficiency (EQE) 2.1% reaches at 3.46 v with brightness of 9671 nits.
  • FIG. 12 shows a device in accordance with an embodiment of the invention that includes an emissive layer including red-light emitting quantum dots operating at very low voltage.
  • Inset is EL spectrum of this device. It is noticed that the turn on voltage for this device is extremely low.
  • FIG. 13 shows a device in accordance with an embodiment of the invention that includes an emissive layer including yellow-light emitting quantum dots operating at very low voltage.
  • the turn on voltage for this device is below the energy required to overcome band gap of yellow emitter, which is 2.1 V.
  • Inset is EL spectrum of a yellow quantum dot light emitting device. Peak brightness 41300 cd/m2 is obtained at 8V.
  • FIG. 14 shows efficiency of Device N at certain luminance.
  • the peak luminance efficiency 9.8 lm/W reaches at 3V with 2620 nits.
  • the peak luminance efficiency 9.46 cd/A reaches at 3.5V with 6800 nits.
  • FIG. 15 shows examples of mixing ZnO with TiOx, which may improve the device efficiency by charge balance.
  • Light-emitting devices in accordance with various embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, a sign, lamps and various solid state lighting devices.
  • PDAs personal digital assistants
  • laptop computers digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, a sign, lamps and various solid state lighting devices.
  • PCT/US2007/019797 filed Sep. 12, 2007, of Coe-Sullivan, et al., for “A Composite Including Nanoparticles. Methods, And Products Including A Composite”: International Application No. PCT/US2007/019796, of Coe-Sullivan, et al., filed Sep. 12, 2007, for “Electroluminescent Display Useful For Displaying A Predetermined Pattern”; International Application No. PCT/US2007/24320, filed Nov. 21, 2007, of Clough, et al., for “Nanocrystals Including A Group IIIa Element And A Group Va Element, Method, Composition. Device And Other Products”; U.S. Patent Application No. 60/971,887, filed Sep.
  • PCT/US2007/013152 filed Jun. 4, 2007, of Coe-Sullivan, et al., for “Light-Emitting Devices And Displays With Improved Performance”
  • International Application No. PCT/US2007/24750 of Coe-Sullivan, et al., filed Dec. 3, 2007 “Improved Composites And Devices Including Nanoparticles”
  • International Application No. PCT/US2007/24310 filed Nov. 21, 2007, of Kazlas, et al., for “Light-Emitting Devices And Displays With Improved Performance”
  • International Application No. PCT/US2007/003677 filed Feb.
  • top and bottom are relative positional terms, based upon a location from a reference point. More particularly, “top” means furthest away from the substrate, while “bottom” means closest to the substrate.
  • the bottom electrode is the electrode closest to the substrate, and is generally the first electrode fabricated; the top electrode is the electrode that is more remote from the substrate, on the top side of the light-emitting material.
  • the bottom electrode has two surfaces, a bottom surface closest to the substrate, and a top surface further away from the substrate.
  • a first layer is described as disposed or deposited “over” a second layer, the first layer is disposed further away from substrate.
  • a cathode may be described as “disposed over” an anode, even though there are various organic and/or inorganic layers in between.

Abstract

A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.

Description

This application is a continuation of U.S. application Ser. No. 15/650,214, filed 14 Jul. 2017, which is a continuation of U.S. application Ser. No. 12/896,856, filed 2 Oct. 2010, and issued as U.S. Pat. No. 9,793,505, on Oct. 17, 2017, which is a continuation of commonly owned International Application No. PCT/US2009/002123, filed 3 Apr. 2009, which was published in the English language as PCT Publication No. WO2009/123763 on 8 Oct. 2009, which International Application claims priority to U.S. Application No. 61/042,154 filed 3 Apr. 2008, the disclosures of each of the foregoing being incorporated herein by reference in its entirety.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with Government support under Advanced Technology Program Award No. 70NANB7H7056 awarded by NIST. The United States has certain rights in the invention.
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the technical field of devices including quantum dots.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention there is provided a light emitting device including a cathode, a layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a hole injection material, and an anode.
In certain embodiments, a light emitting device includes a cathode and an anode, and an emissive layer comprising quantum dots provided between the cathode and the anode, and wherein the device further includes: a layer comprising material capable of transporting and injecting electrons provided between the cathode and the emissive layer, a layer comprising material capable of transporting holes provided between the emissive layer and the anode, and a layer comprising a hole-injection material provided between the anode and the layer comprising material capable of transporting holes, wherein the material capable of transporting and injecting electrons comprises an inorganic material and the material capable of transporting holes comprises an organic material.
In certain embodiments, the material capable of transporting and injecting electrons comprises an inorganic that is doped with a species to enhance electron transport characteristics of the inorganic material.
In certain embodiments, the material capable of transporting and injecting electrons comprises an inorganic semiconductor material.
In certain embodiments, the material capable of transporting and injecting electrons comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the material capable of transporting and injecting electrons comprises a metal oxide.
In certain embodiments, the inorganic material comprises titanium dioxide.
In certain more preferred embodiments, the inorganic material comprises zinc oxide.
In certain embodiments, the inorganic material comprises a mixture of two or more inorganic materials.
In certain preferred embodiments, the inorganic material comprises a mixture of zinc oxide and titanium oxide.
In certain embodiments, the layers are formed in the following sequential order: the cathode, the layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, the emissive layer comprising quantum dots, the layer comprising a material capable of transporting holes comprising an organic material, the layer comprising a hole injection material, and the anode.
In certain embodiments, the layer comprising a material capable of transporting and injecting electrons comprises a stratified structure including two or more horizontal zones having different conductivities. In certain embodiments, the stratified structure includes a first zone, on a side of the structure closer to the cathode, comprising an n-type doped material with electron injecting characteristics, and a second zone, on the side of the structure closer to the emissive layer, comprising an intrinsic or lightly doped material with electron transport characteristics. In certain embodiments, for example, the first zone can comprise n-type doped zinc oxide and the second zone can comprise intrinsic zinc oxide or n-type doped zinc oxide with a lower n-type dopant concentration that that of the zinc oxide in the first zone. In certain embodiments, for example, the stratified structure can include a first zone, on a side of the structure closer to the cathode, comprising an n-type doped material with electron injecting characteristics, a third zone, on a side of the structure closer to the emissive layer, comprising an intrinsic material with hole blocking characteristics, and a second zone, between the first and third zones, comprising an intrinsic or lightly doped material with electron transport characteristics. In certain embodiments, for example, the layer comprising a material capable of transporting and injecting electrons can comprise a first layer, closer to the cathode, comprising a material capable of injecting electrons and a second layer, closer to the emissive layer, comprising a material capable of transporting electrons. In certain embodiments, for example, the layer comprising a material capable of transporting and injecting electrons can comprise a first layer, closer to the cathode, comprising a material capable of injecting electrons, a second layer, closer to the emissive layer, comprising a material capable of blocking holes, and a third layer between the first and second layers, comprising a material capable of transporting electrons.
In certain embodiments, the device can further include a spacer layer between the emissive layer and an adjacent layer included in the device (e.g., a layer comprising a material capable of transporting holes and/or a layer comprising a material capable of transporting and injecting electrons).
A spacer layer can comprise an inorganic material. A spacer layer can comprise an organic material. Additional information concerning a spacer layer is provided below.
In certain preferred embodiments, a spacer layer comprises a material non-quenching to quantum dot emission.
In certain embodiments, the hole injection material can comprise a material capable of transporting holes that is p-type doped.
In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and the Work function of the Cathode is less than 0.5 eV. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and the Work function of the Cathode is less than 0.3 eV. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and the Work function of the Cathode is less than 0.2 eV.
In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and Econduction band edge of the material capable of transporting & injecting electrons is less than 0.5 eV. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and Econduction band edge of material capable of transporting & injecting electrons is less than 0.3 eV. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and Econduction band edge of material capable of transporting & injecting electrons is less than 0.2 eV.
In certain embodiments, the absolute value of the difference between EHOMO of the quantum dots and the EVALENCE band edge of the material capable of transporting and injecting electrons is greater than about 1 eV. In certain embodiments, the absolute value of the difference between EHOMO of the quantum dots and the EVALENCE band edge of the material capable of transporting and injecting electrons is greater than about 0.5 eV. In certain embodiments, the absolute value of the difference between EHOMO of the quantum dots and the EVALENCE band edge of the material capable of transporting and injecting electrons is greater than about 0.3 eV.
In certain embodiments, the device can have an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
In certain embodiments, light emission from the light emissive material occurs at a bias across the device that is less than the electron-Volt of the bandgap of the quantum dots in the emissive layer.
In certain embodiments, quantum dots can include a core comprising a first material and a shell disposed over at least a portion of, and preferably substantially all, of the outer surface of the core, the shell comprising a second material. (A quantum dot including a core and shell is also described herein as having a core/shell structure.) In certain embodiments, more than one shell can be included in the core. In certain embodiments, the first material comprises an inorganic semiconductor material. In certain embodiments, the second material comprises an inorganic semiconductor material.
In certain embodiments, quantum dots comprise inorganic semiconductor nanocrystals. In certain embodiments, inorganic semiconductor nanocrystals can comprise a core/shell structure. In certain preferred embodiments, quantum dots comprise colloidally grown inorganic semiconductor nanocrystals.
In certain embodiments, at least a portion of the quantum dots include a ligand attached to an outer surface thereof. In certain embodiments, two or more chemically distinct ligands can be attached to an outer surface of at least a portion of the quantum dots. In certain embodiments, an anode comprising a material with <5 eV work function can be used, thereby avoiding the need to utilize precious metals such as gold, etc.
In accordance with another aspect of the present invention, there is provided a method for preparing a light emitting device, the method comprising:
forming a layer comprising a material capable of transporting and injecting electrons on a cathode, wherein the material capable of transporting and injecting electrons comprises an inorganic material;
applying an emissive layer comprising quantum dots thereover;
forming a layer comprising a material capable of transporting holes comprising an organic material over the emissive layer;
forming a layer comprising a hole injection material over the layer comprising a material capable of transporting holes; and
forming an anode over the layer comprising a hole injection material.
In certain embodiments, the method further comprises encapsulating the light emitting device.
In accordance with another aspect of the present invention, there is provided a light emitting device including a pair of electrodes, a layer comprising a light emissive material comprising quantum dots provided between the electrodes, and a layer comprising a material capable of transporting electrons comprising an inorganic material provided between the emissive layer and one of the electrodes, wherein the layer comprising the material capable of transporting electrons comprising an inorganic material comprises a stratified structure including two or more horizontal zones having different conductivities. The inorganic material included in different zones of the stratified structure can be doped or undoped forms of the same or different materials.
In certain embodiments, the electron and hole populations are balanced at the emissive layer of the device.
In certain embodiments, the inorganic material comprises an inorganic semiconductor material.
In certain preferred embodiments, the inorganic material comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the inorganic material comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide.
In certain more preferred embodiments, the inorganic material comprises zinc oxide. In certain embodiments, the zinc oxide is surface treated with an oxidizing agent to render the surface proximate to the emissive layer intrinsic.
In certain embodiments, the inorganic material can comprise a mixture of two or more inorganic materials.
In certain embodiments, the layer comprising a stratified structure as taught herein can serve as a layer capable of transporting and injecting electrons. In certain embodiments, a zone in a layer comprising a stratified structure as taught herein can have a predetermined conductivity so as to serve as a layer capable of transporting electrons, a layer capable of injecting electrons, and/or a layer capable of blocking holes. In certain embodiments, a zone can comprise a distinct layer.
In accordance with another aspect of there present invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
In certain embodiments, a light emitting device comprising a cathode, a layer comprising a material capable of transporting and injecting electrons, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a hole injection material, and an anode, the device having an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
In certain embodiments the material capable of transporting holes comprises an organic material.
In certain embodiments, the material capable of transporting and injecting electrons comprises an inorganic material.
In certain embodiments, the material capable of transporting and injecting electrons comprises an inorganic semiconductor material.
In certain embodiments, the material capable of transporting and injecting electrons comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the material capable of transporting and injecting electrons comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide.
In certain more preferred embodiments, the inorganic material comprises zinc oxide.
In certain embodiments, the inorganic material comprises a mixture of two or more inorganic materials.
In certain preferred embodiments, the inorganic material comprises a mixture of zinc oxide and titanium oxide.
In certain embodiments the material capable of transporting holes comprises an inorganic material.
In certain embodiments the material capable of transporting holes comprises an organic material.
Preferably in certain embodiments, the layers are formed in the following sequential order: the cathode, the layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, the emissive layer comprising quantum dots, the layer comprising a material capable of transporting holes, the layer comprising a hole injection material, and the anode.
In accordance with another aspect of the present invention, there is provided a light emitting device comprising a pair of electrodes and a layer of a light emissive material provided between the electrodes, wherein light emission from the light emissive material occurs at a bias voltage across the device that is less than the energy in electron-Volts of the bandgap of the emissive material.
In certain embodiments, the light emitting device includes an emissive material comprising quantum dots. In certain embodiments, other well known light emissive materials can be used or included in the device. In certain embodiments, additional layers can also be included. In certain embodiments, the device comprises a light emitting device in accordance with embodiments of the invention taught herein.
In accordance with another aspect of the invention, there are provided displays and other products including the above-described light-emitting device.
In certain embodiments of the present invention taught are taught herein, an emissive layer can include two or more different types of quantum dots, wherein each type is selected to emit light having a predetermined wavelength. In certain embodiments, quantum dot types can be different based on, for example, factors such composition, structure and/or size of the quantum dot. In certain embodiments, quantum dots can be selected to emit at any predetermined wavelength across the electromagnetic spectrum. An emissive layer can include different types of quantum dots that have emissions at different wavelengths.
In certain embodiments, the light emitting device includes quantum dots capable of emitting visible light.
In certain embodiments, the light emitting device includes quantum dots capable of emitting infrared light.
As used herein, the terms “inorganic material” and “organic material” may be further defined by a functional descriptor, depending on the desired function being addressed. In certain embodiments, the same material can address more than one function.
In some embodiments, it may be desirable to have different conductivities which can be accomplished, for example, by changing the carrier mobility and/or charge density of a material in a zone and/or layer.
In certain embodiments including a stratified structure, horizontal zones are preferably parallel to the cathode.
Other aspects and embodiments of the invention relate to materials and methods that are useful in making the above described light-emitting devices, displays, and other products including the above-described light-emitting device.
The foregoing, and other aspects described herein, all constitute embodiments of the present invention.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. Other embodiments will be apparent to those skilled in the art from consideration of the description and drawings, from the claims, and from practice of the invention disclosed herein.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1 is schematic drawing depicting an example of an embodiment of a light-emitting device structure in accordance with the invention.
FIG. 2 provides a schematic band structure of an example of an embodiment of a light-emitting device in accordance with the invention.
FIGS. 3 & 4 graphically present performance data for the Red Light Emitting Device of the Examples.
FIG. 5 graphically presents performance data for the Green Light Emitting Device (A) and the Blue Light emitting Device (B) of the Examples.
FIG. 6 graphically compares lifetime data for the Red Light Emitting Device of the Examples (indicated as “inverted structure” in the figure) and the Standard Light Emitting Device (a comparative device) described in the Examples (indicated as “standard structure” in the figure).
FIG. 7 depicts an I (current)-V (voltage) curves for devices that include hole injection layers and a device without a hole injection layer.
FIG. 8 shows device luminance efficiency for different device structures.
FIG. 9 shows luminance efficiency of a device without an electron transport and hole blocking layer.
FIG. 10 shows luminance of inverted device without either a hole blocking or electron transport and injection layer.
FIG. 11 shows performance data for an example of device in accordance with an embodiment of the invention.
FIG. 12 shows operating voltage for an example of a red light emitting device in accordance with an embodiment of the invention.
FIG. 13 shows operating voltage for an example of an orange light emitting device in accordance with an embodiment of the invention.
FIG. 14 shows efficiency at certain luminance for an example of an orange light emitting device in accordance with an embodiment of the invention.
FIG. 15 shows performance for an example of a device in accordance with any embodiment of the invention.
FIG. 16 is a schematic drawing depicting an example of an embodiment of a light-emitting device structure in accordance with the invention.
The attached figures are simplified representations presented for purposes of illustration only; the actual structures may differ in numerous respects, including, e.g., relative scale, etc.
For a better understanding to the present invention, together with other advantages and capabilities thereof, reference is made to the following disclosure and appended claims in connection with the above-described drawings.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 provides a schematic representation of an example of the architecture of a light-emitting device according to one embodiment of the present invention. Referring to FIG. 1, the light-emitting device 10 includes (from top to bottom) an anode 1, a layer comprising a hole injection material 2, a layer comprising a material capable of transporting holes (also referred to herein as a “hole transport material”) 3, a layer including quantum dots 4, a layer comprising a material capable of transporting and injecting electrons (also referred to herein as an “electron transport material”) comprising an inorganic material 5, a cathode 6, and a substrate (not shown). When voltage is applied across the anode and cathode, the anode injects holes into the hole injection material while the cathode injects electrons into the electron transport material. The injected holes and injected electrons combine to form an exciton on the quantum dot and emit light.
The substrate (not shown) can be opaque or transparent. A transparent substrate can be used, for example, in the manufacture of a transparent light emitting device. See, for example, Bulovic, V. et al., Nature 1996, 380, 29; and Gu, G. et al., Appl. Phys. Lett. 1996, 68, 2606-2608, each of which is incorporated by reference in its entirety. The substrate can be rigid or flexible. The substrate can be plastic, metal, semiconductor wafer, or glass. The substrate can be a substrate commonly used in the art. Preferably the substrate has a smooth surface. A substrate surface free of defects is particularly desirable.
The cathode 6 can be formed on the substrate (not shown). In certain embodiments, a cathode can comprise, ITO, aluminum, silver, gold, etc. The cathode preferably comprises a material with a work function chosen with regard to the quantum dots included in the device. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and the work function of the cathode is less than about 0.5 eV. In certain embodiments the absolute value of the difference between ELUMO of the quantum dots and the work function of the cathode is less than about 0.3 eV, and preferably less than about 0.2 eV. ELUMO of the quantum dots represents the energy level of the lowest unoccupied molecular orbital (LUMO) of the quantum dot. For example, a cathode comprising indium tin oxide (ITO) can be preferred for use with an emissive material including quantum dots comprising a CdSe core/CdZnSe shell.
Substrates including patterned ITO are commercially available and can be used in making a device according to the present invention.
The layer comprising a material capable of transporting and injection electrons 5 preferably comprises an inorganic material. In certain embodiments, the inorganic material included in the layer capable or transporting and injection electrons comprises an inorganic semiconductor material. Preferred inorganic semiconductor materials include those having a band gap that is greater than the emission energy of the emissive material. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and Econduction band edge of material capable of transporting and injecting electrons, is less than about 0.5 eV. In certain embodiments, the absolute value of the difference between ELUMO of the quantum dots and Econduction band edge of the material capable of transporting and injecting electrons, is less than about 0.3 eV, and preferably less than about 0.2 eV ELUMO of the quantum dots represents the energy level of the lowest unoccupied molecular orbital (LUMO) of the quantum dots; Eof the conduction band edge of the material capable of transporting and injecting electrons represents the energy level of the conduction band edge of the material capable of transporting and injecting electrons.
Examples of inorganic semiconductor materials include a metal chalcogenide, a metal pnictide, or elemental semiconductor, such as a metal oxide, a metal sulfide, a metal selenide, a metal telluride, a metal nitride, a metal phosphide, a metal arsenide, or metal arsenide. For example, an inorganic semiconductor material can include, without limitation, zinc oxide, a titanium oxide, a niobium oxide, an indium tin oxide, copper oxide, nickel oxide, vanadium oxide, chromium oxide, indium oxide, tin oxide, gallium oxide, manganese oxide, iron oxide, cobalt oxide, aluminum oxide, thallium oxide, silicon oxide, germanium oxide, lead oxide, zirconium oxide, molybdenum oxide, hafnium oxide, tantalum oxide, tungsten oxide, cadmium oxide, iridium oxide, rhodium oxide, ruthenium oxide, osmium oxide, zinc sulfide, zinc selenide, zinc telluride, cadmium sulfide, cadmium selenide, cadmium telluride, mercury sulfide, mercury selenide, mercury telluride, silicon carbide, diamond (carbon), silicon, germanium, aluminum nitride, aluminum phosphide, aluminum arsenide, aluminum antimonide, gallium nitride, gallium phosphide, gallium arsenide, gallium antimonide, indium nitride, indium phosphide, indium arsenide, indium antimonide, thallium nitride, thallium phosphide, thallium arsenide, thallium antimonide, lead sulfide, lead selenide, lead telluride, iron sulfide, indium selenide, indium sulfide, indium telluride, gallium sulfide, gallium selenide, gallium telluride, tin selenide, tin telluride, tin sulfide, magnesium sulfide, magnesium selenide, magnesium telluride, barium titanate, barium zirconate, zirconium silicate, yttria, silicon nitride, and a mixture of two or more thereof. In certain embodiments, the inorganic semiconductor material can include a dopant.
In certain preferred embodiments, an electron transport material can include an n-type dopant.
An example of a preferred inorganic semiconductor material for inclusion in an electron transport material of a device in accordance with the invention is zinc oxide. In certain embodiments, zinc oxide can be mixed or blended with one or more other inorganic materials, e.g., inorganic semiconductor materials, such as titanium oxide.
As mentioned above, in certain preferred embodiments, a layer comprising a material capable of transporting and injecting electrons can comprise zinc oxide. Such zinc oxide can be prepared, for example, by a sol-gel process. In certain embodiments, the zinc oxide can be chemically modified. Examples of chemical modification include treatment with hydrogen peroxide.
In other preferred embodiments, a layer comprising a material capable of transporting and injecting electrons can comprise a mixture including zinc oxide and titanium oxide.
The electron transport material is preferably included in the device as a layer. In certain embodiments, the layer has a thickness in a range from about 10 nm to 500 nm.
Electron transport materials comprising an inorganic semiconductor material can be deposited at a low temperature, for example, by a known method, such as a vacuum vapor deposition method, an ion-plating method, sputtering, inkjet printing, sol-gel, etc. For example, sputtering is typically performed by applying a high voltage across a low-pressure gas (for example, argon) to create a plasma of electrons and gas ions in a high-energy state. Energized plasma ions strike a target of the desired coating material, causing atoms from that target to be ejected with enough energy to travel to, and bond with, the substrate.
In certain embodiments, the layer comprising a material capable of transporting and injecting electrons can comprise a stratified structure comprising an inorganic material, wherein the stratified structure includes two or more horizontal zones having different conductivities. For example, in certain embodiments, the layer can include a first zone at the upper portion of the layer (nearer the emissive layer) comprising an intrinsic or slightly n-type doped inorganic material (e.g., sputtered intrinsic or slightly n-type doped zinc oxide) with electron transporting characteristics, and a second zone at the lower portion of the layer (more remote from the emissive layer) comprising inorganic material that has a higher concentration of n-type doping than the material in the first zone (e.g., sputtered n-type doped ZnO) with electron injection characteristics.
In another example, in certain embodiments as shown in FIG. 16, the layer can include three horizontal zones, e.g., a hole block zone 5 c at the upper portion of the layer (nearest the emissive layer 4) comprising an intrinsic inorganic material (e.g., sputtered intrinsic zinc oxide) which can be hole blocking; a second zone 5 b (between the first hole block zone and the first zone) comprising an intrinsic or slightly n-type doped inorganic material (e.g., sputtered intrinsic or slightly n-type doped zinc oxide or another metal oxide) which can be electron transporting; and a first zone 5 a at the lowest portion of the layer (most remote from the emissive layer 4) comprising inorganic material that has a higher concentration of n-type doping than the material in the second zone (e.g., sputtered n-type doped ZnO or another metal oxide) which can be electron injecting.
In certain embodiments, the inorganic material included in the stratified structure comprises an inorganic semiconductor material. In certain preferred embodiments, the inorganic material comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the inorganic material comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide. In certain more preferred embodiments, the inorganic material comprises zinc oxide. In certain embodiments, the inorganic material can comprise a mixture of two or more inorganic materials. Other inorganic materials taught herein for inclusion in a layer comprising a material capable of transporting and injection electrons can also be included in a stratified structure.
Additional information concerning inorganic materials that may be useful for inclusion in an electron transport layer is disclosed in International Application No. PCT/US2006/005184, filed 15 Feb. 2006, for “Light Emitting Device Including Semiconductor Nanocrystals, which published as WO 2006/088877 on 26 Aug. 2006, the disclosure of which is hereby incorporated herein by reference in its entirety.
The surface of the device on which an inorganic semiconductor material is to be formed can be cooled or heated for temperature control during the growth process. The temperature can affect the crystallinity of the deposited material as well as how it interacts with the surface it is being deposited upon. The deposited material can be polycrystalline or amorphous. The deposited material can have crystalline domains with a size in the range of 10 Angstroms to 1 micrometer. If doped, the doping concentration can be controlled by, for example, varying the gas, or mixture of gases, with a sputtering plasma technique. The nature and extent of doping can influence the conductivity of the deposited film, as well as its ability to optically quench neighboring excitons.
The emissive material 4 includes quantum dots. In certain embodiments, the quantum dots comprise an inorganic semiconductor material. In certain preferred embodiments, the quantum dots comprise crystalline inorganic semiconductor material (also referred to as semiconductor nanocrystals). Examples of preferred inorganic semiconductor materials include, but are not limited to, Group II-VI compound semiconductor nanocrystals, such as CdS, CdSe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, and other binary, ternary, and quaternary II-VI compositions; Group III-V compound semiconductor nanocrystals, such as GaP, GaAs, InP and InAs; PbS; PbSe; PbTe, and other binary, ternary, and quaternary Ill-V compositions. Other non-limiting examples of inorganic semiconductor materials include Group II-V compounds, Group III-VI compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, Group IV elements, an alloy including any of the foregoing, and/or a mixture including any of the foregoing. Further, materials for the quantum dot light-emitting layer may be core-shell structured nanocrystals (for example, CdSe/ZnS, CdS/ZnSe, InP/ZnS, etc.) wherein the core is composed of a semiconductor nanocrystal (e.g. CdSe, CdS, etc.) and the shell is composed of a crystalline inorganic semiconductor material (e.g., ZnS, ZnSe, etc.).
Quantum dots can also have various shapes, including, but not limited to, sphere, rod, disk, other shapes, and mixtures of various shaped particles.
An emissive material can comprise one or more different quantum dots. The differences can be based, for example, on different composition, different size, different structure, or other distinguishing characteristic or property.
The color of the light output of a light-emitting device can be controlled by the selection of the composition, structure, and size of the quantum dots included in a light-emitting device as the emissive material.
The emissive material is preferably included in the device as a layer. In certain embodiments, the emissive layer can comprise one or more layers of the same or different emissive material(s). In certain embodiments, the emissive layer can have a thickness in a range from about 1 nm to about 20 nm. In certain embodiments, the emissive layer can have a thickness in a range from about 1 nm to about 10 nm. In certain embodiments, the emissive layer can have a thickness in a range from about 3 nm to about 6 about nm. In certain embodiments, the emissive layer can have a thickness of about 4 nm. A thickness of 4 nm can be preferred in a device including an electron transport material including a metal oxide.
Preferably, the quantum dots include one or more ligands attached to the surface thereof. In certain embodiments, a ligand can include an alkyl (e.g., C1-C20) species. In certain embodiments, an alkyl species can be straight-chain, branched, or cyclic. In certain embodiments, an alkyl species can be substituted or unsubstituted. In certain embodiments, an alkyl species can include a hetero-atom in the chain or cyclic species. In certain embodiments, a ligand can include an aromatic species. In certain embodiments, an aromatic species can be substituted or unsubstituted. In certain embodiments, an aromatic species can include a hetero-atom. Additional information concerning ligands is provided herein and in various of the below-listed documents which are incorporated herein by reference.
By controlling the structure, shape and size of quantum dots during preparation, energy levels over a very broad range of wavelengths can be obtained while the properties of the bulky materials are varied. Quantum dots (including but not limited to semiconductor nanocrystals) can be prepared by known techniques. Preferably they are prepared by a wet chemistry technique wherein a precursor material is added to a coordinating or non-coordinating solvent (typically organic) and nanocrystals are grown so as to have an intended size. According to the wet chemistry technique, when a coordinating solvent is used, as the quantum dots are grown, the organic solvent is naturally coordinated to the surface of the quantum dots, acting as a dispersant. Accordingly, the organic solvent allows the quantum dots to grow to the nanometer-scale level. The wet chemistry technique has an advantage in that quantum dots of a variety of sizes can be uniformly prepared by appropriately controlling the concentration of precursors used, the kind of organic solvents, and preparation temperature and time, etc.
The emission from a quantum dot capable of emitting light (e.g., a semiconductor nanocrystal) can be a narrow Gaussian emission band that can be tuned through the complete wavelength range of the ultraviolet, visible, or infra-red regions of the spectrum by varying the size of the quantum dot, the composition of the quantum dot, or both. For example, a semiconductor nanocrystal comprising CdSe can be tuned in the visible region; a semiconductor nanocrystal comprising InAs can be tuned in the infra-red region. The narrow size distribution of a population of quantum dots capable of emitting light (e.g., semiconductor nanocrystals) can result in emission of light in a narrow spectral range. The population can be monodisperse preferably exhibits less than a 15% rms (root-mean-square) deviation in diameter of such quantum dots, more preferably less than 10%, most preferably less than 5%. Spectral emissions in a narrow range of no greater than about 75 nm, no greater than about 60 nm, no greater than about 40 nm, and no greater than about 30 nm full width at half max (FWHM) for such quantum dots that emit in the visible can be observed. IR-emitting quantum dots can have a FWHM of no greater than 150 nm, or no greater than 100 nm. Expressed in terms of the energy of the emission, the emission can have a FWHM of no greater than 0.05 eV, or no greater than 0.03 eV. The breadth of the emission decreases as the dispersity of the light-emitting quantum dot diameters decreases.
For example, semiconductor nanocrystals can have high emission quantum efficiencies such as greater than 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%.
The narrow FWHM of semiconductor nanocrystals can result in saturated color emission. The broadly tunable, saturated color emission over the entire visible spectrum of a single material system is unmatched by any class of organic chromophores (see, for example, Dabbousi et al., J. Phys. Chem. 101, 9463 (1997), which is incorporated by reference in its entirety). A monodisperse population of semiconductor nanocrystals will emit light spanning a narrow range of wavelengths. A pattern including more than one size of semiconductor nanocrystal can emit light in more than one narrow range of wavelengths. The color of emitted light perceived by a viewer can be controlled by selecting appropriate combinations of semiconductor nanocrystal sizes and materials. The degeneracy of the band edge energy levels of semiconductor nanocrystals facilitates capture and radiative recombination of all possible excitons.
Transmission electron microscopy (TEM) can provide information about the size, shape, and distribution of the semiconductor nanocrystal population. Powder X-ray diffraction (XRD) patterns can provide the most complete information regarding the type and quality of the crystal structure of the semiconductor nanocrystals. Estimates of size are also possible since particle diameter is inversely related, via the X-ray coherence length, to the peak width. For example, the diameter of the semiconductor nanocrystal can be measured directly by transmission electron microscopy or estimated from X-ray diffraction data using, for example, the Scherrer equation. It also can be estimated from the UV/Vis absorption spectrum.
An emissive material can be deposited by spin-casting, screen-printing, inkjet printing, gravure printing, roll coating, drop-casting, Langmuir-Blodgett techniques, contact printing or other techniques known or readily identified by one skilled in the relevant art.
In certain embodiments, a layer comprising a spacer material (not shown) can be included between the emissive material and a layer of the device adjacent thereto, for example, an electron transport layer and/or a hole transport layer. A layer comprising a spacer material can promote better electrical interface between the emissive layer and the adjacent charge transport layer. A spacer material may comprise an organic material or an inorganic material. In certain embodiments, a spacer material comprises parylene. Preferably, the spacer material comprises an ambipolar material. More preferably, it is non-quenching. In certain embodiments, for example, a spacer material between the emissive layer and a hole transport layer can comprise an ambipolar host or hole transport material, or nanoparticles such as nickel oxide, and other metal oxides.
Examples of hole transport materials 3 include organic material and inorganic materials. An example of an organic material that can be included in a hole transport layer includes an organic chromophore. The organic chromophore can include a phenyl amine, such as, for example, N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD). Other hole transport layer can include (N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-spiro (spiro-TPD), 4-4′-N,N′-dicarbazolyl-biphenyl (CBP), 4,4-, bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD), etc., a polyaniline, a polypyrrole, a poly(phenylene vinylene), copper phthalocyanine, an aromatic tertiary amine or polynuclear aromatic tertiary amine, a 4,4′-bis(p-carbazolyl)-1,1′-biphenyl compound, N,N,N′,N′-tetraarylbenzidine, poly(3,4-ethylenedioxythiophene) (PEDOT)/polystyrene para-sulfonate (PSS) derivatives, poly-N-vinylcarbazole derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polymethacrylate derivatives, poly(9,9-octylfluorene) derivatives, poly(spiro-fluorene) derivatives, N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB), tris(3-methylphenylphenylamino)-triphenylamine (m-MTDATA), and poly(9,9′-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine (TFB), and spiro-NPB.
In certain preferred embodiments, a hole transport layer comprises an organic small molecule material, a polymer, a spiro-compound (e.g., spiro-NPB), etc.
In certain embodiments of the inventions described herein, a hole transport layer can comprise an inorganic material. Examples of inorganic materials include, for example, inorganic semiconductor materials capable of transporting holes. The inorganic material can be amorphous or polycrystalline. Examples of such inorganic materials and other information related to fabrication of inorganic hole transport materials that may be helpful are disclosed in International Application No. PCT/US2006/005184, filed 15 Feb. 2006, for “Light Emitting Device Including Semiconductor Nanocrystals, which published as WO 2006/088877 on 26 Aug. 2006, the disclosure of which is hereby incorporated herein by reference in its entirety.
Hole transport materials comprising, for example, an inorganic material such as an inorganic semiconductor material, can be deposited at a low temperature, for example, by a known method, such as a vacuum vapor deposition method, an ion-plating method, sputtering, inkjet printing, sol-gel, etc.
Organic hole transport materials may be deposited by known methods such as a vacuum vapor deposition method, a sputtering method, a dip-coating method, a spin-coating method, a casting method, a bar-coating method, a roll-coating method, and other film deposition methods. Preferably, organic layers are deposited under ultra-high vacuum (e.g., ≤10−8 torr), high vacuum (e.g., from about 10−8 torr to about 10−5 torr), or low vacuum conditions (e.g., from about 10−5 torr to about 10−3 torr).
Hole transport materials comprising organic materials and other information related to fabrication of organic charge transport layers that may be helpful are disclosed in U.S. patent application Ser. No. 11/253,612 for “Method And System For Transferring A Patterned Material”, filed 21 Oct. 2005, and Ser. No. 11/253,595 for “Light Emitting Device Including Semiconductor Nanocrystals”, filed 21 Oct. 2005, each of which is hereby incorporated herein by reference in its entirety.
The hole transport material is preferably included in the device as a layer. In certain embodiments, the layer can have a thickness in a range from about 10 nm to about 500 nm.
Device 10 includes a hole-injection material 2. The hole-injection material may comprise a separate hole injection material or may comprise an upper portion of the hole transport layer that has been doped, preferably p-type doped. The hole-injection material can be inorganic or organic. Examples of organic hole injection materials include, but are not limited to, LG-101 (see, for example, paragraph [0024] of EP 1 843 411 A1) and other HIL materials available from LG Chem. LTD. Other organic hole injection materials can be used. Examples of p-type dopants include, but are not limited to, stable, acceptor-type organic molecular material, which can lead to an increased hole conductivity in the doped layer, in comparison with a non-doped layer. In certain embodiments, a dopant comprising an organic molecular material can have a high molecular mass, such as, for example, at least 300 amu. Examples of dopants include, without limitation, F4-TCNQ, FeCl3, etc. Examples of doped organic materials for use as a hole injection material include, but are not limited to, an evaporated hole transport material comprising, e.g., 4, 4′, 4″-tris (diphenylamino)triphenylamine (TDATA) that is doped with tetrafluoro-tetracyano-quinodimethane (F4-TCNQ); p-doped phthalocyanine (e.g., zinc-phthalocyanine (ZnPc) doped with F4-TCNQ (at, for instance, a molar doping ratio of approximately 1:30); N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′biphenyl-4,4″diamine (alpha-NPD) doped with F4-TCNQ. See J. Blochwitz, et al., “Interface Electronic Structure Of Organic Semiconductors With Controlled Doping Levels”. Organic Electronics 2 (2001) 97-104; R. Schmechel, 48, Internationales Wissenschaftliches Kolloquium, Technische Universtaat Ilmenau, 22-25 Sep. 2003; C. Chan et al., “Contact Potential Difference Measurements Of Doped Organic Molecular Thin Films”, J. Vac. Sci. Technol. A 22(4), July/August 2004. The disclosures of the foregoing papers are hereby incorporated herein by reference in their entireties. See also, Examples of p-type doped inorganic hole transport materials are described in U.S. Patent Application No. 60/653,094 entitled “Light Emitting Device Including Semiconductor Nanocrystals, filed 16 Feb. 2005, which is hereby incorporated herein by reference in its entirety. Examples of p-type doped organic hole transport materials are described in U.S. Provisional Patent Application No. 60/795,420 of Beatty et al, for “Device Including Semiconductor Nanocrystals And A Layer Including A Doped Organic Material And Methods”, filed 27 Apr. 2006, which is hereby incorporated herein by reference in its entirety.
As shown in FIG. 1, anode 1 may comprise an electrically conductive metal or its oxide that can easily inject holes. Examples include, but are not limited to, ITO, aluminum, aluminum-doped zinc oxide (AZO), silver, gold, etc. Other suitable anode materials are known and can be readily ascertained by the skilled artisan. The anode material can be deposited using any suitable technique. In certain embodiments, the anode can be patterned.
In certain embodiments, the light-emitting device may be fabricated by sequentially forming the cathode 6, the electron transport material comprising an inorganic material 5, the emissive material 4, the hole transport material 3, and the anode 2. This sequential approach avoids the deposition of the emissive material comprising quantum dots directly onto an organic material.
In certain embodiments, an adhesion promoter can be included between the electron transport material and the emissive material. One example of a suitable adhesion promoter is ozone treatment of the upper surface of the electron transport material. Other adhesion promoters can be used.
In certain embodiments, the electrode (e.g., anode or cathode) materials and other materials are selected based on the light transparency characteristics thereof so that a device can be prepared that emits light from the top surface thereof. A top emitting device can be advantageous for constructing an active matrix device (e.g., a display). In certain embodiments, the electrode (e.g., anode or cathode) materials and other materials are selected based on light transparency characteristics thereof so that a device can be prepared that emits light from the bottom surface thereof.
As mentioned above, the device can further include a substrate (not shown in the figure). Examples of substrate materials include, without limitation, glass, plastic, insulated metal foil.
In certain embodiments, a device can further include a passivation or other protective layer that can be used to protect the device from the environment. For example, a protective glass layer can be included to encapsulate the device. Optionally a desiccant or other moisture absorptive material can be included in the device before it is sealed, e.g., with an epoxy, such as a UV curable epoxy. Other desiccants or moisture absorptive materials can be used.
In accordance with another aspect of the present invention, there is provided a method for preparing a light emitting device, such as, for example, a device as illustrated in FIG. 1. The method comprising: forming a layer comprising a material capable of transporting and injecting electrons on a cathode, wherein the material capable of transporting and injecting electrons comprises an inorganic material; applying an emissive layer comprising quantum dots thereover; forming a layer comprising a material capable of transporting holes comprising an organic material over the emissive layer; forming a layer comprising a hole injection material over the layer comprising a material capable of transporting holes; and forming an anode over the layer comprising a hole injection material.
Examples of materials that can be included in the method include those described herein.
Other information and techniques described herein and incorporated by reference can also be useful in practicing a method in accordance with the present invention.
In accordance with another aspect of the present invention, there is provided a light emitting device including a pair of electrodes, a layer comprising a light emissive material comprising quantum dots provided between the electrodes, and a layer comprising a material capable of transporting electrons comprising an inorganic material provided between the emissive layer and one of the electrodes, wherein the layer comprising the material capable of transporting electrons comprising an inorganic material comprises a stratified structure including two or more horizontal zones having different conductivities. The inorganic material included in different zones of the stratified structure can be doped or undoped forms of the same or different materials.
In certain embodiments, the inorganic material comprises an inorganic semiconductor material. For example, if a first zone comprises an intrinsic inorganic semiconductor material, a second zone, adjacent thereto, can comprise a doped inorganic semiconductor material; if a first zone comprises an n-type doped inorganic semiconductor material, a second zone, adjacent thereto, can comprise a slightly lower n-type doped or intrinsic inorganic semiconductor material. In certain embodiments, the inorganic semiconductor material that is doped can be a doped form of an intrinsic material included in another zone of the stratified structure. While these examples describe a stratified structure including two zones, a stratified structure can include more than two zones. The inorganic semiconductor material included in different zones of the stratified structure can be doped or undoped forms of the same or different materials.
In certain embodiments, the layer comprising a stratified structure can serve as a layer capable of transporting and injecting electrons. In certain embodiments, a zone in a layer comprising a stratified structure can have a predetermined conductivity so as to serve as a layer capable of transporting electrons, a layer capable of injecting electrons, and/or a layer capable of blocking holes. In certain embodiments, a zone can comprise a distinct layer.
In certain embodiments, the inorganic material comprises a metal chalcogenide. In certain embodiments, the inorganic material comprises a metal sulfide. In certain preferred embodiments, the inorganic material comprises a metal oxide. In certain embodiments, the inorganic material comprises titanium dioxide. In certain more preferred embodiments, the inorganic material comprises zinc oxide. In certain embodiments, the inorganic material comprises a mixture of two or more inorganic materials. Other examples of inorganic semiconductor materials that can be used include those described elsewhere herein.
In certain embodiments, a layer comprising an inorganic semiconductor material that includes a stratified structure as taught herein can serve as a layer capable of transporting electrons, injecting electrons, and/or blocking holes.
Examples of materials useful for the anode and cathode include those described elsewhere herein.
Quantum dots included in the emissive layer can include those described elsewhere herein.
In certain embodiments, different conductivities can be accomplished, for example, by changing the carrier mobility and/or charge density of the material.
In certain embodiments including an inorganic material comprising a metal oxide, for example, conduction properties of layers comprising a metal oxide are highly dependent on the concentration of oxygen in the layer structure since vacancies are the main mode of carrier conduction. For example, in certain embodiments, to control the oxygen concentration in sputter deposited layers (e.g., made by magnetron RF sputter deposition) two properties of the deposition can be altered. The power of deposition can be varied, increasing and decreasing the amount of oxygen that is incorporated in the layer. The powers and resulting conductivities are highly dependent on the material and the sputter system used. More oxygen can also be incorporated into the layer by adding oxygen to the sputter chamber gas environment which is often dominated by noble gases like Argon. Both the power and oxygen partial pressure can be used or customized to produce the desired layered metal oxide structure. Lowering the RF power during deposition can increase the conductivity of the layer, reducing the parasitic resistance of the layer. To deposit a low conductivity layer, oxygen is incorporated into the deposition ambient to place a thin insulating surface on the layer formed.
Other information and techniques described herein and incorporated by reference can also be useful with this aspect of the present invention.
In accordance with another aspect of the present invention, there is provided a light emitting device comprising a pair of electrodes and a layer of a light emissive material provided between the electrodes, wherein light emission from the light emissive material occurs at a bias voltage across the device that is less than the energy in electron-Volts of the bandgap of the emissive material. In certain embodiments, the light emitting device includes an emissive material comprising quantum dots.
Examples of quantum dots included in the emissive layer can include those described elsewhere herein.
In certain embodiments, other well known light emissive materials can be used or included in the device.
Examples of materials useful for the electrodes include those described elsewhere herein.
In certain embodiments, additional layers described herein can also be included.
Other information and techniques described herein and incorporated by reference can also be useful with this aspect of the present invention.
In certain embodiments, the device comprises one of the light emitting devices taught herein.
In accordance with another aspect of there present invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
In certain embodiments, a light emitting device comprising a cathode, a layer comprising a material capable of transporting and injecting electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a hole injection material, and an anode, the device having an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
Examples of materials useful for the anode and cathode include those described elsewhere herein.
Examples of materials useful for the layer comprising a material capable of transporting and injection electrons include those described elsewhere herein.
Examples of materials useful for the layer comprising a material capable of transporting holes include those described elsewhere herein.
Examples of materials useful for the layer comprising a hole injection material include those described elsewhere herein.
In certain embodiments, additional layers described herein can also be included.
Other information and techniques described herein and incorporated by reference can also be useful with this aspect of the present invention.
In certain embodiments, the device comprises one of the light emitting devices taught herein.
In certain embodiments an additional hole transport material with a hole conductivity between that of the hole injection material and the hole transport material can be interposed between them. Additional hole transport materials can be interposed between two other hole conductive materials included in the device. Preferably, any additional interposed hole transport material will have a hole conductivity that falls in-between those of the hole transport materials between which it is interposed.
FIG. 2 schematically provides the band structure of an example of an embodiment of a light emitting device of the present invention. In the depicted example, a metal oxide is used as a layer that is electron transporting and injecting and hole blocking. Such layer can be fabricated with solution process or thermal evaporation. An electron transport layer including ZnO is preferred. In certain embodiments, ZnO can be preferably doped to form an ohmic contact with the cathode. In the depicted example, the hole transport layer (HTL) can comprise an organic material (e.g., small organic molecules (for example, TPD, spiro-TPB, NPB, spiro-NPB, etc.). In certain embodiments, the HTL can comprise an inorganic material. A hole injection layer (or p-type doped HTL) is also included in the depicted example to enhance hole supply from the anode. In the depicted structure, electrons are transported through the metal oxide and holes are transported through the HTL, excitons are generated in the quantum dot (QD) layer. The composition and size of the quantum dots are selected to achieve light emission with a predetermined color or wavelength.
A light-emitting device in accordance with the invention can be used to make a light-emitting device including red-emitting, green-emitting, and/or blue-emitting quantum dots. Other color light-emitting quantum dots can be included, alone or in combination with one or more other different quantum dots. In certain embodiments, separate layers of one or more different quantum dots may be desirable. In certain embodiments, a layer can include a mixture of two or more different quantum dots.
The present invention will be further clarified by the following non-limiting examples, which are intended to be exemplary of the present invention.
EXAMPLES
In the following examples, the quantum dots included in the emissive layer may comprise red-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “SOP”, “R-SOP”), green-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “GQD”), blue-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “BQD”), or yellow-emitting core/shell semiconductor nanocrystals (also abbreviated herein as “YQD”), which are prepared generally according to the following respective procedures. In any instances where a quantum dot is described by a “10×” modifier, the preparation is generally carried out on a scale approximately ten times that of the respective preparation procedure described below.
I. Quantum Dot Preparations Red-Emitting Quantum Dot Preparation
A. Synthesis of CdSe Semiconductor Nanocrystal Cores
230 mg of anhydrous cadmium acetate (Cd(OAc)2) (1 mmol) (Prochem) and 4 mL of Tri-n-octylphosphine (TOP) (Strem 97%) is added to a 20 mL septum capped vial. The vial is suspended in a 140° C. oil bath (silicon oil). The content of the vial is degassed for about one-half hour. After the cadmium acetate solution is degassed, and the cadmium acetate is dissolved, the vacuum is closed and the vial is opened to nitrogen. The vial is removed from the oil bath and permitted to cool to room temperature while under nitrogen.
6.00 grams of Tri-n-octylphosphine oxide (TOPO) (99% Strem) and 0.668 grams of octadecylphosphonic acid (ODPA) (Polycarbon) are added to a 50 mL three necked round bottom flask. The ingredients are stirred and heated to a temperature of about 120° C. Once the flask reaches 120° C., the solution is degassed for 2 hours while maintained at 120° C. When the solution in the round bottom flask has finished degassing, the vacuum valve is closed and the flask is opened to nitrogen and stirred.
4 mL of the cadmium acetate solution is mixed and injected into the round bottom flask via a septum cap from a syringe filled under nitrogen. The temperature is increased to about 270° C. When the temperature of the solution in the round bottom flask stabilizes at 270° C., 2 mL of Tri-n-butylphosphine (TBP) (Strem 99%) is injected into the round bottom flask from a 5 mL syringe. When the contents of the round bottom flask has restabilized at 270° C., 1.1 mL of Tri-n-butylphosphine selenide (TBPSe) (1.5M) is injected into the round bottom flask. The temperature controller is adjusted to 250° C. After a brief delay (5 secs), the solution turns yellow then red.
Periodic samples are taken until an absorbance of ˜560 nm is obtained, at which time the heating mantle is removed and the solution is permitted to cool while stirring. When the temperature is 100° C., the solution is divided into half into 2 centrifuge tubes, and 2× volume of 3:1 methanol/isopropanol is added to each tube to precipitate semiconductor nanocrystal cores. The supernatant is poured off, and the semiconductor nanocrystal cores are mixed with hexane (minimum volume 2.5 mL in each tube). The contents of the two centrifuge tubes are then combined, centrifuged for 5 minutes at 4000 rpm, and filtered with hexane using a 0.2 micron filter.
B. Overcoating the CdSe Cores to Prepare CdSe/CdZnS Semiconductor Nanocrystals
    • Two 5 mL syringes are prepared in the glove box with the precursors for the overcoating.
    • The first syringe: 4 mL of Tri-n-octylphosphine (TOP) (97% Strem), 48.24 mg dimethylcadmium, and 41.81 mg diethylzinc.
    • The second syringe: 4 mL of Tri-n-octylphosphine (TOP) (97% Strem) and 241.68 mg of Bis(TMS)sulfide.
    • The overcoating precursor mixture for each syringe is prepared by placing the Tri-n-octylphosphine into an 8 mL glass vial. The precursors (dimethylcadmium, diethylzinc, or Bis(TMS)sulfide) are then dripped into the Tri-n-octylphosphine using a micropipette until the right weight of material has been added to each vial. The solution is mixed gently with the vial capped and then drawn up into the 5 mL syringe.
    • Micro capillary tubing is then loaded onto each syringe and a small amount of solution is pushed through to clear the tubing of nitrogen. (This can optionally be carried out inside a glove box).
Ten (10) grams of Tri-n-octylphosphine oxide (TOPO) (99% Strem) and 0.8 grams of octadecylphosphonic acid (ODPA) (Polycarbon Industries) are added to a 4 neck 50 mL round bottom flask including a football-shaped magnetic stirrer bar. The flask is also equipped with a rubber septum on two of the four necks, a distillation column on the middle neck and the temperature probe in the last neck. The contents of the flask are heated to 130° C. while under nitrogen. When the temperature reaches 130° C., the nitrogen line is closed, and the flask is slowly opened up to vacuum. The contents of the flask are degassed under vacuum at 130° C. for roughly 2 hours. When the solution in the round bottom flask has finished degassing, the vacuum is closed and the flask is opened up to nitrogen. The temperature of the flask is set to 70° C. When the flask has lowered to 70° C., the CdSe cores prepared (approximately 0.09- to 0.1 mmol) as described above in hexane is added to the round bottom flask using a 5 mL syringe. The vacuum is slowly opened up and all of the hexane is removed from the flask, leaving behind the CdSe cores (this can take as long as an hour). When all of the hexane has been removed, the vacuum is closed and the flask is opened up to nitrogen. 0.48 mL of Decylamine [1:1 amine:phosphonic] (using 1 mL syringe) is added and the temperature is increased to 155° C. under nitrogen. The syringes are loaded into syringe pumps to introduce the two lines into the flask (one going through each septum, so that the micro capillary tubing is hugging the flask wall and about 0.5 cm submerged into the stirring solution), and the temperature of the flask is heated to 155° C.; injections are initiated once the temperature is above 110° C. When the flask is at 155° C., the syringe pumps are turned on and the two solutions are pumped into the flask at a rate of 2 mL/hour, with rapid stirring (this will take about two hours). When all of the overcoating solutions from the two syringes has been added to the flask, the syringe pump lines are removed from the flask. Optionally, the temperature can be turned down to 100° C., and 10 mL of toluene can be added and allowed to sit overnight under nitrogen.
C. Clean Up of Core CdSe/CdZnS Core-Shell Semiconductor Nanocrystals:
The total growth solution is divided into two aliquots, each being put into a 50 mL centrifuge tube. An excess ˜30 mL of a 3:1 MeOH/Isopropanol mixture is added to each centrifuge tube and stirred. The centrifuge tubes are centrifuged 5 minutes at 4000 rpm. The particles in each tube are dispersed in about 10 mL of hexane with stirring using a vortexer. The centrifuge tubes are then centrifuged for 5 minutes at 4000 rpm. The supernatant includes the hexane and the overcoated cores. The supernatant from each tube is placed into another two centrifuge tubes. (The solid is a salt that has formed and is waste.) The hexane/overcoated core supernatant is filtered using a 0.2 μm syringe filter. An excess of 3:1 methanol/isopropanol is added to each tube to precipitate the overcoated cores. The tubes are centrifuged for 5 minutes at 4000 rpm. The supernatant is poured off. The purified overcoated cores are now at the bottom of the tube and the supernatant is waste.
Green-Emitting Quantum Dot Preparation
A. Synthesis of CdZnSe Semiconductor Nanocrystal Cores
ZnSe semiconductor nanocrystals are prepared by rapidly injecting 86 mg (0.7 mmol) diethyl zinc (Strem) and 1 mL tri-n-octylphosphine selenide (TOP) (97% Strem) (1M) dispersed in 5 mL of tri-n-octylphosphine (TOP) (97% Strem), into a round bottom flask containing 7 grams of degassed oleylamine (distilled from 98% Sigma-Aldrich and degassed at 120° C. under nitrogen with stirring) at 310° C., and then growing at 270° C. for 30 minutes to one hour.
8 mL of the above ZnSe semiconductor nanocrystal growth solution is transferred, while at 160° C. into a degassed solution of 16 grams tri-n-octylphosphine oxide (TOPO) (99% Strem), and 0.665 grams (4 mmol) hexylphosphonic acid (HPA) (Polycarbon Industries), which is also at 160° C. A solution of 1.1 mmol dimethylcadmium (Strem) and 1.2 mL TOPSe (1M) dispersed in 8 mL TOP (97% Strem) is then introduced dropwise (1 drop/˜seconds) via a syringe pump into the ZnSe semiconductor nanocrystal growth solution/TOPO/HPA mixture, which is at 150° C. The solution is then stirred at 150° C. for 21 hours. Before overcoating the CdZnSe cores with CdZnS, the CdZnSe cores are isolated by precipitating them out of solution twice with a miscible non-solvent.
B. Overcoating the CdZnSe Cores to Prepare CdZnSe/CdZnS Semiconductor Nanocrystals
The CdZnS shell is grown by introducing dropwise a solution of dimethylcadmium (20% of total moles of cation for a shell of predetermined thickness) (Strem), diethylzinc (Strem), and hexamethyldisithiane (2 fold excess of amount for a shell of predetermined thickness) (Fluka) in 8 mL of TOP into a degassed solution of 10 grams of TOPO (99% Strem) and 0.4 grams (2.4 mmol) HPA (Polycarbon Industries), which contains the CdZnSe cores, at a temperature of 140° C. (the CdZnSe cores dispersed in hexane are added to the degasses TOPO/HPA solution and the hexane is pulled off at 70° C. under vacuum prior to addition of the shell precursors).
Blue-Emitting Quantum Dot Preparation
A. Synthesis of CdZnS Semiconductor Nanocrystal Cores
0.050 g CdO (99.98% Puratronic) and 0.066 g of ZnO (99.99% Sigma Aldrich) is weighed out into a 100 mL three necked flask. 4 mL oleic acid (90% tech grade from Aldrich) and 32 mL octadecene (ODE) (90% tech grade from Aldrich) are added to the flask. The flask is set clamped on a heating mantle. One of the necks of the flask is fitted with a condenser connected to a Schlenck line through a vacuum adaptor. A temperature probe connected to a digital temperature controller is fitted to one of the two remaining flask necks. The third neck of the flask is then fitted with a septum cap. The contents of the flask are degassed at 80° C. for 20 minutes in vacuo (200 millitorr).
Separately 0.035 g of sulfur (99.99% Strem) is weighed into a septum capped vial including a stir bar. 10 mL ODE (tech grade) is added to the vial. The vial is heated in an oil bath (connected to the Schlenck line) under vacuum to 80° C., and degassed for 20 minutes. After 20 minutes, vacuum lines are closed, the vial is back-filled with nitrogen and the temperature is raised to 130° C. to dissolve sulfur in ODE. When all the sulfur is dissolved into ODE, the vial is removed from the oil bath and allowed to cool to room temperature under nitrogen atmosphere.
When the degassing time is completed, the contents of the three necked flask is stirred at a low stir rate (e.g., a setting of 4) and heated to 290° C. and held for 20 minutes at that temperature. Then temperature is raised to 310° C. under nitrogen. When the temperature reaches 305° C., stir rate is increased (e.g., from a setting of 4 to a setting of 5) and the sample is allowed to heat to 310° C. until all the oxides have dissolved to give a clear solution. The temperature controller is then set to 300° C. Once the temperature falls to 300° C., approximately 8 mL of S in ODE is rapidly injected after which stir rate is maintained (e.g., at a setting of 5). The temperature of the solution is observed to fall to about 265-270° C. and climb back to 300 C in ˜5 minutes. After 3 hours, heating is stopped by removing the heating mantle and the flask is allowed to cool to room temperature. The contents of the flask are transferred to a degassed vial under nitrogen, which is transferred to an inert atmosphere box for further purification. Precipitation of dots may be observed, keep overnight in inert box.
The purification method is as follows:
    • The solution is divided in half, each half being added to a separate centrifuge tubes and centrifuged for 5 min, 4000 rpm. For each tube, the solvent is poured off and the solid retained in the tube. 20 mL butanol is added to each tube, followed by mixing, and then centrifuging. The supernatant butanol is decanted and discarded. 10 mL methanol is then added to each tube, followed by mixing and centrifuging. The supernatant methanol is decanted and discarded. 10 mL hexane is then added to each tube, followed by mixing and centrifuging. Each tube is centrifuged again The supernatant hexane collected from each tube is then poured into a clean tube. (The solids are discarded.) The nanoparticles in each vial are precipitated by the addition of 20 mL butanol. The vial is centrifuged and the liquid decanted and discarded. 10 mL methanol is then added to each tube, followed by mixing and centrifuging. The supernatant is discarded. The resulting solid is dispersed in anhydrous hexane and filtered through a 0.2 micron filter.
      B. Overcoating CdZnS Cores to Prepare CdZnS/ZnS Semiconductor Nanocrystals
5 mL oleylamine and 5 mL trioctylphosphine are added to a degassed 4 necked flask equipped with a condenser and temperature probe connected to a digital temperature controller. The condenser is connected to a Schlenck line. The contents of the flask are degassed at 100° C. for 2 hours.
In a glove box, precursor reagents are prepared as follows:
    • 28 mg diethyl zinc is added to a vial containing 4 mL TOP
    • 81 mg hexamethyl disilthiane is added to another vial containing 4 mL TOP.
      The contents of the two vials are drawn into two separate syringes and capped.
After 2 hours of degassing, the temperature in the flask is reduced to 70° C. Vacuum lines are closed and the flask is opened to a positive nitrogen atmosphere line. 3.3 mL cores (0.092 mmol) dispersed in hexane is drawn into a syringe in the glove box and injected into the flask. The nitrogen line is closed and the flask is slowly opened to the vacuum lines to extract hexane from the flask. Degassing is continued under vacuum until all of the hexane is removed. Once the degassing is completed, the vacuum lines are closed and positive nitrogen atmosphere is introduced into the flask.
The needles on the syringes containing the precursor reagents are removed and replaced with microcapillary tubes, the other end of which is in vials through syringe needle. Air bubbles are removed from the syringes and the syringes are set on a syringe pump ready for injection of the contents into the flask. The flow rate of the syringe pump is adjusted for a flow rate of 50 microliters per minute.
The temperature of the flask is raised to 170° C. The end of the microcapillary tube attached to the syringe containing hexamethyl disilthiane is introduced into the second septa of the flask using an 18 gauge needle and place in such a way that the type of the microcapillary tube is immersed into the contents of the flask. When the temperature reaches 170° C., the injection of hexamethyl disilthiane is started. After a delay of 2 minutes, the tip of the microcapillary tube of the other syringe containing the diethyl zinc precursor reagent is introduced into the flask with an 18 gauge needle through the other septum of the flask.
Once the addition of the two precursor reagents is completed, the temperature of the flask is allowed to drop to 90° C. and the contents of the flask is transferred into a degassed vial using a 20 mL syringe.
The vial containing the reaction mixture is then transferred into the glove box for isolation of the nanoparticles from the reaction mixture.
10 mL of [anhydrous] hexane is added to the vial in the glove box. The reaction mixture is then divided in half, each half being added to two separate centrifuge tubes. 20 mL 1:3 isopropanol:methanol solvent mixture is added to each of the tubes, after which each is mixed in the vortex and centrifuged. The supernatant is discarded. 5 mL hexane is added to each tube and 1:3 isopropanol:methanol solvent mixture is added dropwise to each tube to reprecipitate the nanoparticles. A slight excess of the solvent mixture is added. The contents of each tube is mixed and centrifuged. The supernatant is discarded and the precipitated nanoparticles are re-dispersed in 5 mL hexane.
For additional information concerning the preparation of quantum dots, see also International Application No. PCT/US2007/013152, filed Jun. 4, 2007, of Coe-Sullivan, et al., for “Light-Emitting Devices And Displays With Improved Performance” and International Application No. PCT/US2007/24305, filed Nov. 21, 2007, of Breen, et al., for “Blue Light Emitting Semiconductor Nanocrystal And Compositions And Devices Including Same”, each of which is hereby incorporated herein by reference in its entirety.
Yellow-Emitting Quantum Dot Preparation
A. Synthesis of CdSe Cores:
2 mmol cadmium acetate was dissolved in 35.8 mmol of tri-n-octylphosphine at 140° C. in a 20 mL vial and then dried and degassed for one hour. 62 mmol of trioctylphosphine oxide and 8 mmol of octadecylphosphonic acid were added to a 250 mL 3-neck flask and dried and degassed at 120° C. for one hour. After degassing, the Cd solution was added to the oxide/acid flask and the mixture was heated to 270° C. under nitrogen. Once the temperature reached 270° C., 32.3 mmol of tri-n-butylphosphine was injected into the flask. The temperature was brought back to 270° C. where 4.4 mL of 1.5 M TBP-Se was then rapidly injected. The heating mantle was immediately removed from the reaction flask and the temperature of the reaction was allowed to cool to room temperature. The first absorption peak of the nanocrystals reached 515 nm. The CdSe cores were precipitated out of the growth solution inside a nitrogen atmosphere glovebox by adding a 3:1 mixture of methanol and isopropanol. The isolated cores were then dispersed in hexane and used to make core-shell materials.
B. Overcoating of CdSe Cores to Synthesis of CdSe/CdZnS Core-Shell Nanocrystals:
25.86 mmol of trioctylphosphine oxide and 2.4 mmol of octadecylphosphonic acid were loaded into a 50 mL four-neck flask. The mixture was then dried and degassed in the reaction vessel by heating to 120° C. for about an hour. The flask was then cooled to 70° C. and the hexane solution containing isolated CdSe cores (0.1 mmol Cd content) was added to the reaction mixture. The hexane was removed under reduced pressure and then 2.4 mmol of decylamine was added to the reaction mixture. Dimethyl cadmium, diethyl zinc, and hexamethyldisilathiane were used as the Cd, Zn, and S precursors, respectively. The Cd and Zn were mixed in equimolar ratios while the S was in two-fold excess relative to the Cd and Zn. The Cd/Zn (0.37 mmol of dimethylcadmium and diethylzinc) and S (1.46 mmol of hexamethyldisilathiane) samples were each dissolved in 4 mL of trioctylphosphine inside a nitrogen atmosphere glove box. Once the precursor solutions were prepared, the reaction flask was heated to 155° C. under nitrogen. The precursor solutions were added dropwise over the course of 2 hours at 155° C. using a syringe pump. After the shell growth, the nanocrystals were transferred to a nitrogen atmosphere glovebox and precipitated out of the growth solution by adding a 3:1 mixture of methanol and isopropanol. The resulting precipitate was then dispersed in hexane and precipitated out of solution for a second time by adding a 3:1 mixture of methanol and isopropanol. The isolated core-shell nanocrystals were then dispersed in hexane and used to make light emitting devices including quantum dots as described below.
II. Test Devices of Table 1
A. Fabrication of Standard (Comparative) Test Device
A standard device was fabricated that includes R-SOP (CdSe/CdZnS core-shell semiconductor nanocrystals) and charge transport layers comprising organic materials.
The device was made as follows:
    • Glass (50 mm×50 mm) with patterned indium tin oxide (ITO) electrode on one surface (obtained from Osram Malaysia) is cleaned in an oxygen plasma for about 6 minutes to remove contaminants and oxygenate the surface. The cleaning takes place on 100% oxygen at about 20 psi. The glass is placed on a water cooled plate to help control the increase in temperature during cleaning.
    • A layer of hole injection material (PEDOT, obtained from H. C. Starck, GmbH) (HIL) is spun onto the surface of the glass including the patterned electrode at a speed of 4000 RPM, to a thickness of about 750 Angstroms. This step is carried out under ambient conditions (i.e., not in a glove box). The PEDOT coated glass is then heated on a 120° C. hot plate in a chamber (<20 ppm water & <10 ppm oxygen), in a HEPA filter environment (approx. Class 1), in a nitrogen atmosphere for >20 minutes to dry the PEDOT. The PEDOT coated glass is then allowed to cool to room temperature.
    • A layer of hole transport material (N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-spiro (spiro-TPD) (OLED grade, gradient sublimation purified) from Luminescent Technologies. Taiwan)) is then evaporated onto the PEDOT layer in a deposition chamber (an {acute over (Å)}MOD chamber, obtained from Angstrom Engineering, Ottowa, Canada) after the chamber is pumped down to 10−6 torr or better. (In Table 1 and Figures, spiro-TPD is referred to as E105.)
    • The spiro-TPD coated glass is then returned to the nitrogen environment and stamp-printed with an ink including the SOP CdSe/CdZnS core-shell semiconductor nanocrystals in hexane. The emissive layer has a thickness of approximately one monolayer of quantum dots. [OD=0.03]
    • After printing, the device was returned to the deposition chamber and pumped back down to 10−6 torr or better for evaporation of the next layer, which can be a hole blocking layer or an electron transport layer.
    • A layer of electron transport material of Alq3 (OLED grade, gradient sublimation purified) from Luminescent Technologies, Taiwan) is deposited.
    • Each of the vapor deposited layers are patterned with use of shadow masks. After deposition of the electron transport material layer, the mask is changed before deposition of the metal cathode.
      The details of the materials and layer thickness for the Standard device are summarized in Table 1 below.
      B. Fabrication of Other Test Devices Identified in Table 1
The devices identified in Table 1 (other than the above-described Standard device) were generally fabricated as set forth below. The details of each device (materials, thicknesses, etc) are set forth in Table 1 below.
    • Glass (50 mm×50 mm) with patterned indium tin oxide (ITO) electrode on one surface (obtained from Osram Malaysia) is cleaned in an oxygen plasma for about 6 minutes to remove contaminants and oxygenate the surface. The cleaning takes place on 100% oxygen at about 20 psi. The glass is placed on a water cooled plate to help control the increase in temperature during cleaning.
    • An electron transport layer comprising zinc oxide is prepared as follows. A zinc acetate [Zn(ac)] solution (157 g/L) in 96% 2-methoxy ethanol and 4% ethanolamine is spun coated at 2000 rpm onto the ITO. (The zinc acetate was obtained from Sigma Aldrich.)
    • Subsequent annealing at 300° C. on hot plate for 5 minutes in air converts Zn(ac) to Zinc oxide. Rinsing of the annealed Zn(ac) layer in de-ionized water, ethanol and acetone is expected to remove any residual organic material from the surface, leaving only crystalline ZnO film with nanoscale domain size. Then the nanoparticle film is baked at 200° C. to remove the solvent residue. The thickness of ZnO film is confirmed by profilometer, typically around 45 nm for single spin.
    • The metal oxide coated glass is then transferred into nitrogen-filled glove box, which normally has oxygen and water levels below 1 ppm. A coating formulation including quantum dots in hexane is spun coated on ZnO surface at 3000 rpm for 1 minute. The quantum dot film thickness is optimized by using various optical density solutions. Through the device performance optimization, the thickness of quantum dot film is kept around 25 nm, and is confirmed by atomic force microscopy (AFM).
    • After the quantum dots are deposited, the device is returned to the deposition chamber and pumped back down to 10−6 torr or better for evaporation of the next layer.
    • A 50 nm layer of hole transport material (N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-spiro (spiro-TPD) (OLED grade, gradient sublimation purified) from Luminescent Technologies, Taiwan)) is then evaporated onto the emissive layer in a deposition chamber (an {acute over (Å)}MOD chamber, obtained from Angstrom Engineering, Ottowa, Canada) after the chamber is pumped down to 10−6 torr or better. The hole transport material are typically (OLED grade, gradient sublimation purified) obtained from Luminescent Technologies, Taiwan)).
    • A hole injection layer (5% F4-TCNQ and E-105) (20 nm) is formed over the hole transport layer by co-evaporation techniques similar to those described above for preparing the hole transport layer.
    • Each of the vapor deposited layers are patterned with use of shadow masks. After deposition of the hole transport material layer and hole injection layer, the mask is changed before deposition of a 100 nm Al anode.
TABLE 1
Device Cathode ETL QD HTL HIL Anode
Standard LiF/Al Alq3 SOP E-105 PEDOT: PSS ITO
Device (5 Å/100 nm) (50 nm) (~1 monolayer) (50 nm)
Red ITO ZnO SOP E-105 5% F4-TCNQ Al
Device (OD 0.025) (50 nm) & E-105
(FIG. 4)
Green ITO ZnO GQD E-105 5% F4-TCNQ Al
Device (OD 0.025) (50 nm) & E-105
(FIG. 5A)
Blue ITO ZnO BQD E-105 5% F4-TCNQ Al
Device (OD 0.025) (50 nm) & E-105
(FIG. 5B)
Various performance data for the devices of Table 1 are graphically presented in FIGS. 3-6. FIGS. 3 and 4 graphically present performance data for the Red Device described in Table 1. FIG. 5 graphically presents performance data for the Green Device (A) and Blue Device (B) of the Examples. Lifetime improvements that can be achieved in certain embodiments of the invention are illustrated in FIG. 6, which graphically present lifetime data for the Red Device and the Standard Device of the Examples.
In certain embodiments, a device is preferably baked or heated after fabrication, but before encapsulation. In certain embodiments, baking (e.g., at 80° C. on a hot plate in a nitrogen atmosphere) can improve device performance.
III. Test Devices of Table 2
The devices identified in Table 2 were generally fabricated as set forth below. The details of each device (materials, thicknesses, etc) are set forth in Table 2 below. (Layer thicknesses for the test devices are listed in Table 2 parenthetically.)
A. Sol Gel Metal Oxide Synthesis:
TiOx Preparation:
The sol-gel procedure for producing TiOx is as follows: titanium(IV) isopropoxide (Ti[OCH(CH3)2]4, Aldrich, 99.999%, 10 mL) was prepared as a precursor and mixed with 2-methoxyethanol (CH3OCH2CH2OH. Aldrich, 99.9+%, 50 mL) and ethanolamine (H2NCH2CH2OH, Aldrich, 99+%, 5 mL) in a three-necked flask equipped with a condenser, a thermometer, and an argon-gas inlet/outlet. Then, the mixed solution was heated to 80° C. for 2 h in a silicon-oil bath under magnetic stirring, followed by heating to 120° C. for 1 h. The two-step heating (80 and 120° C.) was then repeated. The typical TiOx precursor solution was prepared in isopropyl alcohol.
ZnO Preparation:
Test devices identified in Table 2 that include a ZnO layer were fabricated on patterned ITO substrates that were sonicated in acetone and isopropyl alcohol for 10 minutes each, followed by 6 minutes O2 plasma treatment. A zinc acetate (99.999% grade from Sigma-Aldrich) [Zn(ac) solution (157 g/L) in 96% 2-methoxy ethanol (from Alfa) and 4% ethanolamine (from Sigma-Aldrich) was spin coated at 2000 rpm onto the ITO. This step is carried out under ambient conditions (i.e., not in a glove box). Subsequent annealing at 300° C. for 30 minutes in air converted the Zn(ac) to ZnO. The resulting film was rinsed in de-ionized water, methanol, acetone and methanol then dried in the glove box (<1 ppm water & <1 ppm oxygen) at 200° C. for 5 minutes on hot plate.
Mixed ZnO—TiOx Preparation:
The spin coating sol-gel formulations used to fabricate a mixed ZnO—TiOx layer utilized a mixture of a ZnO spin coating sol-gel formulation (prepared substantially as described above) and a TiOx spin coating sol-gel formulation (prepared substantially as described above). The ZnO and TiOx formulations are mixed in a predetermined proportion.
B. Device Fabrication Process
Glass (50 mm×50 mm) with patterned indium tin oxide (ITO) electrode on one surface (obtained from Thin Film Devices, Anaheim, Calif.) is cleaned in oxygen plasma for about 6 minutes to remove contaminants and oxygenate the surface. The cleaning takes place on 100% oxygen at about 20 psi. The glass is placed on a water cooled plate to help control the increase in temperature during cleaning.
An electron transport layer comprising a metal oxide was formed by sol-gel technique (ZnO and/or TiOx, as indicated in Table 2), prepared substantially as described above). The metal oxide coated glass is then returned to the nitrogen environment and spin-coated with an ink including quantum dots in hexane. In order to get rid of residual solvent trapped in the quantum dot layer, post-baking on partial finished device at 80° C. on hot plate (in glove box) is favorable. Then, the device is returned to the deposition chamber and pumped back down to 10−7 torr or better for evaporation of the next layer.
A layer of hole transport material is then evaporated onto the emissive layer in a deposition chamber (an {acute over (Å)}MOD chamber, obtained from Angstrom Engineering, Ottowa, Canada) after the chamber is pumped down to 10−7 torr or better. The hole transport material are typically (OLED grade, gradient sublimation purified) obtained from Luminescent Technologies, Taiwan).
If a hole injection layer is included in the device, it is formed over the hole transport layer. Each of the vapor deposited layers are patterned with use of shadow masks. After deposition of the hole transport material layer and hole injection layer, the mask is changed before deposition of the metal anode.
After device fabrication done in evaporation chamber, the finished device is encapsulated with glass lid and ready for testing.
TABLE II
Device Cathode ETL OP HTL HIL Anode
A ITO RQD spiro-NPB LG-101 Al
(~35 nm) (55 nm) (15 nm) (100 nm)
B ITO/Al(5 nm) RQD spiro-NPB LG-101 Al
(~35 nm) (55 nm) (15 nm) (100 nm)
C ITO/Al(5 nm) RQD spiro-NPB LG-101 Al
(35 nm) (55 nm) (15 nm) (100 nm)
E ITO ZnO RQD spiro-NPB LG-101 Al
(45 nm) (35 nm) (60 nm) (10 nm) (100 nm)
F ITO ZnO:TiOx RQD spiro-NPB LG-101 Al
(1:1) (45nm) (35 nm) (60 nm) (10 nm) (100 nm)
G ITO ZnO:TiOx RQD spiro-NPB LG-101 Al
(2:1) (45 nm) (35 nm) (60 nm) (10 nm) (100 nm)
H ITO TiOx RQD spiro-NPB LG-101 Al
(45 nm) (35 nm) (60 nm) (10 nm) (100 nm)
I ITO ZnO RQD spiro-NPB LG-101 Al
(45 nm) (35 nm) (55nm) (15 nm) (100 nm)
J ITO ZnO RQD spiro-NPB WO3 Al
(45 nm) (35 nm) (55nm) (100 nm)
K ITO ZnO RQD spiro-NPB Al
(45 nm) (35 nm) (55nm) (100 nm)
L ITO ZnO RQD spiro-NPB WO3 Al
(45nm) (35 nm) (55nm) (100 nm)
M (FIG. ITO ZnO RQD spiro-NPB LG-101 Al
11&12) (45 nm) (35 nm) (55 nm) (15 nm) (100 nm)
N (FIG. ITO ZnO YQD spiro-NPB LG-101 Al
13 & 14) (45 nm) (35 nm) (55 nm) (15 nm) (100 nm)
Various performance data for the devices of described in Table 2 are graphically presented in FIGS. 7-15.
FIG. 7 shows I-V curves of inverted structures with LG-101 and WO3 as hole injection layers respectively. Device K is inverted structure with no hole injection layer. From the data, device K has insufficient current injection through anode.
FIG. 8 shows device luminance efficiency in different device structures. The most efficient device is a device in accordance with an embodiment of the invention that includes small molecular material LG 101 as hole injection layer. Without a hole injection layer, luminance (see Device K) is not observable.
FIG. 9 shows the luminance efficiency of a device without an electron transport & injection layer and without a hole blocking layer.
FIG. 10 shows luminance of inverted device without an electron transport & injection layer and without a hole blocking layer.
FIG. 11 shows device performance for a device in accordance with an embodiment of the invention that includes an emissive layer including red-light emitting quantum dots. Peak external quantum efficiency (EQE) 2.1% reaches at 3.46 v with brightness of 9671 nits.
FIG. 12 shows a device in accordance with an embodiment of the invention that includes an emissive layer including red-light emitting quantum dots operating at very low voltage. Inset is EL spectrum of this device. It is noticed that the turn on voltage for this device is extremely low.
FIG. 13 shows a device in accordance with an embodiment of the invention that includes an emissive layer including yellow-light emitting quantum dots operating at very low voltage. The turn on voltage for this device is below the energy required to overcome band gap of yellow emitter, which is 2.1 V. Inset is EL spectrum of a yellow quantum dot light emitting device. Peak brightness 41300 cd/m2 is obtained at 8V.
FIG. 14 shows efficiency of Device N at certain luminance. The peak luminance efficiency 9.8 lm/W reaches at 3V with 2620 nits. The peak luminance efficiency 9.46 cd/A reaches at 3.5V with 6800 nits.
FIG. 15 shows examples of mixing ZnO with TiOx, which may improve the device efficiency by charge balance.
Light-emitting devices in accordance with various embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, a sign, lamps and various solid state lighting devices.
Other materials, techniques, methods, applications, and information that may be useful with the present invention are described in: International Application No. PCT/US2007/008873, filed Apr. 9, 2007, of Coe-Sullivan et al., for “Composition Including Material, Methods Of Depositing Material, Articles Including Same And Systems For Depositing Material”; International Application No. PCT/US2007/09255, filed Apr. 13, 2007, of Anc, et al., for “Methods Of Depositing Material, Methods Of Making A Device, And System”; International Application No. PCT/US2007/003411, filed Feb. 8, 2007, of Beatty, et al., for “Device Including Semiconductor Nanocrystals And A Layer Including A Doped Organic Material And Methods”; International Application No. PCT/US2007/14711, filed Jun. 25, 2007, of Coe-Sullivan, for “Methods For Depositing Nanomaterial. Methods For Fabricating A Device, And Methods For Fabricating An Array Of Devices”; International Application No. PCT/US2007/14705, filed Jun. 25, 2007, of Coe-Sullivan, et al., for “Methods For Depositing Nanomaterial, Methods For Fabricating A Device, Methods For Fabricating An Array Of Devices And Compositions”; International Application No. PCT/US2007/008705, filed Apr. 9, 2007, of Coe-Sullivan, et al., for “Methods And Articles Including Nanomaterial”; International Application No. PCT/US2007/014706, filed Jun. 25, 2007, of coe-sullivan, et al., for “Methods And Articles Including Nanomaterial”; International Application No. PCT/US2007/003525, filed Feb. 8, 2007, of Coe-Sullivan, et al., for “Displays Including Semiconductor Nanocrystals And Methods Of Making Same”; International Application No. PCT/US2007/008721, filed Apr. 9, 2007, of Cox, et al., for “Methods Of Depositing Nanomaterial & Methods Of Making A Device”; International Application No. PCT/US2007/019797, filed Sep. 12, 2007, of Coe-Sullivan, et al., for “A Composite Including Nanoparticles. Methods, And Products Including A Composite”: International Application No. PCT/US2007/019796, of Coe-Sullivan, et al., filed Sep. 12, 2007, for “Electroluminescent Display Useful For Displaying A Predetermined Pattern”; International Application No. PCT/US2007/24320, filed Nov. 21, 2007, of Clough, et al., for “Nanocrystals Including A Group IIIa Element And A Group Va Element, Method, Composition. Device And Other Products”; U.S. Patent Application No. 60/971,887, filed Sep. 12, 2007, of Breen, et al., for “Functionalized Semiconductor Nanocrystals And Method”; U.S. Patent Application No. 60/992,598, filed Dec. 5, 2007, of Breen, et al., “Functionalized Semiconductor Nanocrystals And Method”; International Application No. PCT/US2007/24305, filed Nov. 21, 2007, of Breen, et al., for “Blue Light Emitting Semiconductor Nanocrystal And Compositions And Devices Including Same”; International Application No. PCT/US2007/24306, filed Nov. 21, 2007, of Ramprasad, for “Semiconductor Nanocrystal And Compositions And Devices Including Same”; International Application No. PCT/US2007/013152, filed Jun. 4, 2007, of Coe-Sullivan, et al., for “Light-Emitting Devices And Displays With Improved Performance”; International Application No. PCT/US2007/24750, of Coe-Sullivan, et al., filed Dec. 3, 2007 “Improved Composites And Devices Including Nanoparticles”; International Application No. PCT/US2007/24310, filed Nov. 21, 2007, of Kazlas, et al., for “Light-Emitting Devices And Displays With Improved Performance”; International Application No. PCT/US2007/003677, filed Feb. 14, 2007, of Bulovic, et al., for “Solid State Lighting Devices Including Semiconductor Nanocrystals & Methods”, U.S. Patent Application No. 61/016,227, filed 21 Dec. 2007, of Coe-Sullivan et al., for “Compositions, Optical Component, System Including an Optical Component, and Devices”, U.S. Patent Application No. 60/949,306, filed 12 Jul. 2007, of Linton, et al., for “Compositions, Methods For Depositing Nanomaterial. Methods For Fabricating A Device, And Methods For Fabricating An Array Of Devices”, and U.S. Patent Application No. 60/992,598, filed 5 Dec. 2007. The disclosures of each of the foregoing listed patent documents are hereby incorporated herein by reference in their entireties.
As used herein, the singular forms “a”, “an” and “the” include plural unless the context clearly dictates otherwise. Thus, for example, reference to an emissive material includes reference to one or more of such materials.
As used herein, “top” and “bottom” are relative positional terms, based upon a location from a reference point. More particularly, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. For example, for a light-emitting device including two electrodes, the bottom electrode is the electrode closest to the substrate, and is generally the first electrode fabricated; the top electrode is the electrode that is more remote from the substrate, on the top side of the light-emitting material. The bottom electrode has two surfaces, a bottom surface closest to the substrate, and a top surface further away from the substrate. Where, e.g., a first layer is described as disposed or deposited “over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is otherwise specified. For example, a cathode may be described as “disposed over” an anode, even though there are various organic and/or inorganic layers in between.
The entire contents of all patent publications and other publications cited in this disclosure are hereby incorporated herein by reference in their entirety. Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the present specification and practice of the present invention disclosed herein. It is intended that the present specification and examples be considered as exemplary only with a true scope and spirit of the invention being indicated by the following claims and equivalents thereof.

Claims (23)

The invention claimed is:
1. A light emitting device comprising:
a pair of electrodes comprising
an anode, and
a cathode, wherein at least one of the anode and the cathode comprises indium tin oxide;
a layer comprising a light emissive material comprising quantum dots provided between the electrodes;
a layer comprising an inorganic material provided between the emissive layer and the cathode, wherein the inorganic material comprises a zinc oxide;
a layer comprising a hole transporting material provided between the emissive layer and the anode; and
a layer comprising an organic hole-injection material provided between the anode and the layer comprising the hole transporting material,
wherein the layer comprising the inorganic material comprises a stratified structure comprising first and second horizontal zones having different conductivities from each other, and
wherein:
the first horizontal zone is at a lower portion of the layer more remote from the emissive layer, the first horizontal zone comprising an electron injecting material, and
the second horizontal zone is at an upper portion of the layer nearer the emissive layer, the second horizontal zone comprising an electron transporting material,
wherein the electron injecting material comprises a first n-doped inorganic material, and the electron transporting material comprises a second n-doped inorganic material having a lower concentration of n-type doping than the first n-doped inorganic material.
2. The light emitting device in accordance with claim 1, wherein the hole transporting material comprises an organic material and is different from the organic hole-injection material.
3. The light-emitting device in accordance with claim 1, wherein the zinc oxide is crystalline or amorphous.
4. The light emitting device in accordance with claim 1, wherein the layer comprising the inorganic material further comprises a second metal oxide.
5. The light emitting device in accordance with claim 1, wherein the layer comprising the inorganic material comprises a mixture of the zinc oxide and a titanium dioxide.
6. The light emitting device in accordance with claim 1, wherein the hole transporting material comprises an organic material comprising an organic chromophore.
7. The light emitting device in accordance with claim 1, wherein the first n-doped inorganic material comprises zinc oxide, titanium dioxide, or a combination thereof.
8. The light emitting device in accordance with claim 1, wherein the second n-doped inorganic material comprises zinc oxide, titanium dioxide, or a combination thereof.
9. The light emitting device in accordance with claim 1, wherein the quantum dots are capable of emitting visible light.
10. The light emitting device in accordance with claim 1, wherein the emissive layer comprises a quantum dots selected from a red-emitting quantum dot, a blue-emitting quantum dot, a green-emitting quantum dot, a yellow-emitting quantum dot, or a combination thereof.
11. The light emitting device in accordance with claim 1, wherein the zinc oxide is doped with a dopant species to enhance its electron transport characteristics.
12. The light emitting device in accordance with claim 1, wherein the layers are formed in the following sequential order: the cathode, the layer comprising the inorganic material comprising zinc oxide, the light emissive layer comprising quantum dots, the layer comprising the hole transporting material, the layer comprising the organic hole injection material, and the anode, and wherein the organic hole injection material is p-type doped.
13. The light emitting device in accordance with claim 1, wherein the light emitting device has a turn-on voltage that is less than or equal to 1240/λ, volts, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
14. A light emitting device comprising:
a pair of electrodes comprising
an anode, and
a cathode, wherein at least one of the anode and the cathode comprises indium tin oxide;
a layer comprising a light emissive material comprising quantum dots provided between the electrodes;
a layer comprising an inorganic material provided between the emissive layer and the cathode, wherein the inorganic material comprises a zinc oxide;
a layer comprising a hole transporting material provided between the emissive layer and the anode; and
a layer comprising a hole-injection material provided between the anode and the layer comprising the hole transporting material,
wherein the layer comprising the inorganic material comprises a stratified structure comprising first and second horizontal zones having different conductivities from each other,
wherein:
the first horizontal zone is at a lower portion of the layer more remote from the emissive layer, the first horizontal zone comprising an electron injecting material; and
the second horizontal zone is at an upper portion of the layer nearer the emissive layer, the second horizontal zone comprising an electron transporting material;
wherein the electron injecting material comprises a first n-doped inorganic material, and the electron transporting material comprises a second n-doped inorganic material having a lower concentration of n-type doping than the first n-doped inorganic material, and
wherein the light emitting device has a turn-on voltage that is less than or equal to 1240/λ volts, wherein λ represents the wavelength (nm) of light emitted by the emissive layer.
15. The light emitting device in accordance with claim 14, wherein the first n-doped inorganic material comprises zinc oxide, titanium dioxide, or a combination thereof.
16. The light emitting device in accordance with claim 14, wherein the second n-doped inorganic material comprises zinc oxide, titanium dioxide, or a combination thereof.
17. The light emitting device in accordance with claim 14, wherein the layer comprising the inorganic material comprises a mixture of the zinc oxide and a titanium oxide.
18. A light emitting device comprising, in combination,
a cathode,
a layer comprising a material capable of transporting and injecting electrons comprising a zinc oxide,
an emissive layer comprising quantum dots having a core/shell structure,
a layer comprising a material capable of transporting holes comprising an organic compound,
a layer comprising a hole injection material which is different from the organic compound, and
an anode, and
wherein the hole injection material comprises a p-type organic material capable of transporting holes,
wherein the device has a turn-on voltage that is less than 1240/λ volts,
wherein λ represents a wavelength (nm) of light emitted by the emissive layer.
19. The light emitting device in accordance with claim 18, wherein the p-type organic hole injection material comprises PEDOT:PSS, LG-101, 4, 4′, 4″-tris(diphenylamino)triphenylamine (TDATA) that is doped with tetrafluoro-tetracyano-quinodimethane (F4-TCNQ), a p-doped phthalocyanine, N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′biphenyl-4,4″diamine (alpha-NPD) doped with F4-TCNQ, or a combination thereof.
20. The light emitting device in accordance with claim 18, wherein the layer comprising the material capable of transporting and injecting electrons comprises
a first zone at a lower portion of the layer more remote from the emissive layer, the first zone comprising an electron injecting material, and
a second zone at an upper portion of the layer nearer the emissive layer, the second zone comprising an electron transporting material,
wherein the electron injecting material comprises a first n-doped inorganic material, and the electron transporting material comprises a second n-doped inorganic material having a lower concentration of n-type doping than the first n-doped inorganic material.
21. The light emitting device in accordance with claim 18, wherein the layer comprising the material capable of transporting and injecting electrons comprises an n-doped zinc oxide.
22. The light emitting device in accordance with claim 18, the cathode comprises indium tin oxide and
wherein the layers are in the following sequential order: the cathode, the layer comprising the material capable of transporting and injecting electrons comprising the zinc oxide, the emissive layer comprising quantum dots, the layer comprising the material capable of transporting holes, the layer comprising the hole injection material, and the anode.
23. The light emitting device in accordance with claim 18, wherein the layer comprising the material capable of transporting and injecting electrons comprises a mixture of the zinc oxide and a titanium oxide.
US16/445,875 2008-04-03 2019-06-19 Light-emitting device including quantum dots Active US11005058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/445,875 US11005058B2 (en) 2008-04-03 2019-06-19 Light-emitting device including quantum dots

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US4215408P 2008-04-03 2008-04-03
PCT/US2009/002123 WO2009123763A2 (en) 2008-04-03 2009-04-03 Light-emitting device including quantum dots
US12/896,856 US9793505B2 (en) 2008-04-03 2010-10-02 Light-emitting device including quantum dots
US15/650,214 US10333090B2 (en) 2008-04-03 2017-07-14 Light-emitting device including quantum dots
US16/445,875 US11005058B2 (en) 2008-04-03 2019-06-19 Light-emitting device including quantum dots

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/650,214 Continuation US10333090B2 (en) 2008-04-03 2017-07-14 Light-emitting device including quantum dots

Publications (2)

Publication Number Publication Date
US20190312222A1 US20190312222A1 (en) 2019-10-10
US11005058B2 true US11005058B2 (en) 2021-05-11

Family

ID=41136063

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/896,856 Active US9793505B2 (en) 2008-04-03 2010-10-02 Light-emitting device including quantum dots
US15/650,214 Active US10333090B2 (en) 2008-04-03 2017-07-14 Light-emitting device including quantum dots
US16/445,875 Active US11005058B2 (en) 2008-04-03 2019-06-19 Light-emitting device including quantum dots

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/896,856 Active US9793505B2 (en) 2008-04-03 2010-10-02 Light-emitting device including quantum dots
US15/650,214 Active US10333090B2 (en) 2008-04-03 2017-07-14 Light-emitting device including quantum dots

Country Status (5)

Country Link
US (3) US9793505B2 (en)
EP (1) EP2283342B1 (en)
KR (4) KR101995371B1 (en)
CN (2) CN105870345B (en)
WO (1) WO2009123763A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220187904A1 (en) * 2019-04-03 2022-06-16 The Johns Hopkins University Flexible transparent membrane light emitting diode array and systems containing the same

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
EP1999797A4 (en) * 2006-02-09 2010-11-24 Qd Vision Inc Device including semiconductor nanocrystals and a layer including a doped organic material and methods
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US9212056B2 (en) 2006-06-02 2015-12-15 Qd Vision, Inc. Nanoparticle including multi-functional ligand and method
KR101513311B1 (en) 2006-09-29 2015-04-22 유니버시티 오브 플로리다 리서치 파운데이션, 인크. Method and apparatus for infrared detection and display
US9136498B2 (en) * 2007-06-27 2015-09-15 Qd Vision, Inc. Apparatus and method for modulating photon output of a quantum dot light emitting device
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
KR101995371B1 (en) 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 Light-emitting device including quantum dots
KR101652789B1 (en) * 2009-02-23 2016-09-01 삼성전자주식회사 Quantum dot light emitting device having quantum dot multilayer
EP2430112B1 (en) 2009-04-23 2018-09-12 The University of Chicago Materials and methods for the preparation of nanocomposites
CN102473800B (en) * 2009-07-07 2015-09-23 佛罗里达大学研究基金会公司 Stable and the machinable light emitting diode with quantum dots of all solution
KR101924080B1 (en) 2009-11-11 2018-11-30 삼성 리서치 아메리카 인코포레이티드 Device including quantum dots
WO2011100023A1 (en) 2010-02-10 2011-08-18 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
JP5778261B2 (en) 2010-05-24 2015-09-16 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク.University Of Florida Reseatch Foundation,Inc. Method and apparatus for providing a charge blocking layer on an infrared upconversion device
KR101173105B1 (en) * 2010-05-24 2012-08-14 한국과학기술원 Organic light emitting element
KR101274068B1 (en) 2010-05-25 2013-06-12 서울대학교산학협력단 Quantum Dot Light Emitting Diode Device and Display Using the Same
JP2012033918A (en) * 2010-07-08 2012-02-16 Mitsubishi Chemicals Corp Organic electroluminescent element, organic electroluminescent device, organic el display device, and organic el lighting
RU2459316C2 (en) * 2010-09-24 2012-08-20 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН (ИНХ СО РАН) Method of growing cadmium sulphide nanoparticles on carbon nanotubes and method of making light source
WO2012040926A1 (en) 2010-09-30 2012-04-05 海洋王照明科技股份有限公司 Organic electroluminescence device and manufacturing method thereof
EP2643857B1 (en) * 2010-11-23 2019-03-06 University of Florida Research Foundation, Inc. Ir photodetectors with high detectivity at low drive voltage
WO2012071107A1 (en) * 2010-11-23 2012-05-31 Qd Vision, Inc. Device including semiconductor nanocrystals & method
US8961828B2 (en) 2010-11-24 2015-02-24 The Regents Of The University Of California Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals
WO2012099653A2 (en) 2010-12-08 2012-07-26 Qd Vision, Inc. Semiconductor nanocrystals and methods of preparation
DE11158693T8 (en) 2011-03-17 2013-04-25 Valoya Oy Plant lighting device and method
WO2012134629A1 (en) * 2011-04-01 2012-10-04 Qd Vision, Inc. Quantum dots, method, and devices
WO2012138410A1 (en) * 2011-04-02 2012-10-11 Qd Vision, Inc. Device including quantum dots
WO2012138409A2 (en) * 2011-04-02 2012-10-11 Qd Vision, Inc. Devices including quantum dots and method
WO2013019299A2 (en) 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
US9520573B2 (en) 2011-05-16 2016-12-13 Qd Vision, Inc. Device including quantum dots and method for making same
AU2012275060A1 (en) 2011-06-30 2014-01-30 Nanoholdings, Llc A method and apparatus for detecting infrared radiation with gain
CN102956830A (en) * 2011-08-29 2013-03-06 海洋王照明科技股份有限公司 Bottom-emitting organic electroluminescence device and preparation method thereof
US9054338B2 (en) * 2011-09-30 2015-06-09 General Electric Company OLED devices comprising hollow objects
CN103137877B (en) * 2011-11-28 2016-09-07 海洋王照明科技股份有限公司 Electroluminescent device and preparation method thereof
WO2013085611A1 (en) * 2011-12-08 2013-06-13 Qd Vision, Inc. Solution-processed sol-gel films, devices including same, and methods
WO2013103440A1 (en) 2012-01-06 2013-07-11 Qd Vision, Inc. Light emitting device including blue emitting quantum dots and method
WO2013122820A1 (en) 2012-02-15 2013-08-22 Qd Vision, Inc. Method of processing quantum dot inks
US10807865B2 (en) * 2012-03-15 2020-10-20 Massachusetts Institute Of Technology Semiconductor nanocrystals
WO2014088667A2 (en) * 2012-09-14 2014-06-12 Qd Vision, Inc. Light emitting device including tandem structure
US9935269B2 (en) 2012-10-10 2018-04-03 Konica Minolta, Inc. Electroluminescence element
US20150263203A1 (en) * 2012-10-26 2015-09-17 Research Triangle Institute Intermediate band semiconductors, heterojunctions, and optoelectronic devices utilizing solution processed quantum dots, and related methods
CN104756273B (en) 2012-11-20 2017-10-24 默克专利有限公司 The preparation in high-purity solvent for manufacturing electronic device
KR102113581B1 (en) * 2013-05-22 2020-05-22 삼성디스플레이 주식회사 Apparatus for deposition, method thereof and method for forming quntum-dot layer using the same
CN103346265B (en) * 2013-06-21 2016-01-06 深圳市华星光电技术有限公司 A kind of luminescent device, display floater and manufacture method thereof
KR101533619B1 (en) * 2013-10-28 2015-07-03 정선호 Methods for designing and manufacturing devices that force atoms to emit spectrums
JP6168372B2 (en) * 2014-01-09 2017-07-26 株式会社村田製作所 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
CN103911155B (en) * 2014-04-21 2016-01-20 巢湖学院 A kind of core-shell quanta dots of red-emitting and synthetic method thereof
CN104201293A (en) * 2014-09-15 2014-12-10 东华大学 All-inorganic quantum-dot light emitting diode
CN104409650A (en) * 2014-12-01 2015-03-11 京东方科技集团股份有限公司 Light emitting device and manufacturing method thereof as well as display device and optical detection device
KR102283501B1 (en) * 2014-12-26 2021-07-29 엘지디스플레이 주식회사 Organic Light Emitting Device and Method of manufacturing the same and Organic Light Emitting Display Device using the same
WO2017039774A2 (en) 2015-06-11 2017-03-09 University Of Florida Research Foundation, Incorporated Monodisperse, ir-absorbing nanoparticles and related methods and devices
CN105153807B (en) * 2015-07-21 2016-10-19 京东方科技集团股份有限公司 Quantum dot ink
CN105161637A (en) * 2015-08-17 2015-12-16 Tcl集团股份有限公司 Quantum dot light emitting diode containing doped hole injection layer and fabrication method of quantum dot light emitting diode
US20170062749A1 (en) * 2015-09-01 2017-03-02 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
KR102447309B1 (en) * 2015-12-24 2022-09-26 삼성디스플레이 주식회사 Light emitting diode and display device including the same
CN105552244B (en) * 2016-02-17 2018-09-11 京东方科技集团股份有限公司 A kind of luminescent device and preparation method thereof, display device
KR102480088B1 (en) 2016-03-17 2022-12-23 삼성디스플레이 주식회사 Quantum dot light emitting device
KR101936086B1 (en) * 2016-03-21 2019-04-03 정선호 Designing and Manufacturing Devices that Emit Desired Spectrums
TWI734754B (en) * 2016-03-24 2021-08-01 美商陶氏全球科技責任有限公司 Optoelectronic device and methods of use
PT3516710T (en) * 2016-09-20 2023-07-20 Inuru Gmbh Diffusion-limiting electroactive barrier layer for an optoelectronic component
CN106848085A (en) 2017-04-07 2017-06-13 京东方科技集团股份有限公司 QLED devices and preparation method thereof, QLED display panels and QLED display devices
EP3409813A1 (en) 2017-06-01 2018-12-05 Evonik Degussa GmbH Device containing metal oxide-containing layers
EP3410208A1 (en) 2017-06-01 2018-12-05 Evonik Degussa GmbH Device containing metal oxide-containing layers
CN107331781A (en) * 2017-06-28 2017-11-07 河南大学 A kind of light emitting diode with quantum dots and preparation method
CN109280548A (en) * 2017-07-20 2019-01-29 Tcl集团股份有限公司 The method for improving quantum dot size uniformity
CN107833976A (en) * 2017-10-24 2018-03-23 深圳市华星光电半导体显示技术有限公司 The preparation method and QLED devices of QLED devices
CN109713138B (en) * 2017-10-25 2020-11-17 Tcl科技集团股份有限公司 QLED device
KR102443644B1 (en) * 2017-11-20 2022-09-14 삼성전자주식회사 Quantum dot device and display device
CN107958961A (en) 2017-11-20 2018-04-24 深圳市华星光电半导体显示技术有限公司 Series connection quantum dot light emitting device, panel, that is, display
CN108269939A (en) * 2018-01-08 2018-07-10 北京科技大学 A kind of preparation method of near-infrared quantum point luminescent diode
CN110649168B (en) * 2018-06-27 2020-08-18 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
KR102649296B1 (en) 2018-07-24 2024-03-18 삼성전자주식회사 Quantum dot device and display device
CN113196881A (en) * 2018-12-17 2021-07-30 夏普株式会社 Electroluminescent element and display device
CN111384263B (en) * 2018-12-29 2021-11-19 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN111384306B (en) * 2018-12-29 2021-10-29 Tcl科技集团股份有限公司 Preparation method of quantum dot light-emitting diode
CN110165063A (en) * 2019-05-27 2019-08-23 深圳市华星光电技术有限公司 Quantum rod LED device
KR102304839B1 (en) * 2019-06-11 2021-09-24 경북대학교 산학협력단 Electro-luminescence diode and Method of manufacturing for the same
CN110289362B (en) * 2019-06-27 2023-05-23 京东方科技集团股份有限公司 Quantum dot display substrate, manufacturing method thereof and display device
CN110364634A (en) * 2019-07-12 2019-10-22 南方科技大学 Light emitting diode and preparation method
US11316135B2 (en) 2019-07-22 2022-04-26 Sharp Kabushiki Kaisha High-efficiency QLED structures
US10930888B2 (en) * 2019-07-22 2021-02-23 Sharp Kabushiki Kaisha High-efficiency QLED structures
CN112289936B (en) * 2019-07-25 2022-08-23 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
KR20210018567A (en) 2019-08-05 2021-02-18 삼성디스플레이 주식회사 Quantum dot composition, light emitting diode and display device including the same
CN112397673B (en) * 2019-08-19 2022-06-21 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN112397660B (en) * 2019-08-19 2023-03-03 Tcl科技集团股份有限公司 Nano material and preparation method and application thereof
CN112538163B (en) * 2019-09-23 2023-08-29 Tcl科技集团股份有限公司 Composite material, preparation method thereof and quantum dot light emitting diode
EP3809474B1 (en) 2019-10-18 2023-07-19 Samsung Electronics Co., Ltd. Quantum dot light-emitting device and electronic device
KR20210149974A (en) 2020-06-02 2021-12-10 삼성디스플레이 주식회사 Methods of producing light emitting diode including quantum dot
KR20210149956A (en) 2020-06-02 2021-12-10 삼성디스플레이 주식회사 Quantum dot composition, light emitting diode and manufacturing method of the same
CN114256429A (en) * 2020-09-25 2022-03-29 江苏三月科技股份有限公司 Sensitized fluorescent organic electroluminescent device and application thereof

Citations (365)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714339A (en) 1969-11-10 1973-01-30 Bdh Chemicals Ltd Method of preparing metallic selenides
US4907043A (en) 1985-03-22 1990-03-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polycrstalline electroluminescent device with Langmuir-Blodgett film
US5132051A (en) 1989-02-24 1992-07-21 E. I. Du Pont De Nemours And Company Iii-v semiconductors in rigid matrices
US5152229A (en) 1989-10-20 1992-10-06 Johnson Matthey Public Limited Company Zinc sulfide or selenosulfide material
US5162939A (en) 1989-02-24 1992-11-10 E. I. Du Pont De Nemours And Company Small-particle semiconductors in rigid matrices
US5200668A (en) 1988-11-21 1993-04-06 Mitsui Toatsu Chemicals, Inc. Luminescence element
US5238607A (en) 1992-02-28 1993-08-24 E. I. Du Pont De Nemours And Company Photoconductive polymer compositions and their use
US5244828A (en) 1991-08-27 1993-09-14 Matsushita Electric Industrial Co., Ltd. Method of fabricating a quantum device
US5262357A (en) 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5281543A (en) 1991-05-17 1994-01-25 International Business Machines Corporation Fabrication method for quantum devices in compound semiconductor layers
US5283132A (en) 1991-03-13 1994-02-01 Sharp Kabushiki Kaisha Organic electroluminescent device for white luminescence
US5434878A (en) 1994-03-18 1995-07-18 Brown University Research Foundation Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers
US5442254A (en) 1993-05-04 1995-08-15 Motorola, Inc. Fluorescent device with quantum contained particle screen
US5470910A (en) 1991-10-10 1995-11-28 Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Composite materials containing nanoscalar particles, process for producing them and their use for optical components
US5474591A (en) 1994-01-31 1995-12-12 Duke University Method of synthesizing III-V semiconductor nanocrystals
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5525377A (en) 1993-04-21 1996-06-11 U.S. Philips Corporation Method of manufacturing encapsulated doped particles
US5527386A (en) 1993-10-28 1996-06-18 Manfred R. Kuehnle Composite media with selectable radiation-transmission properties
US5532184A (en) 1992-12-24 1996-07-02 International Business Machines Corporation Method of fabricating a semiconductor device using quantum dots or wires
US5532486A (en) 1995-02-13 1996-07-02 Hughes Aircraft Company Heterojunction diode with low turn-on voltage
US5534056A (en) 1993-10-28 1996-07-09 Manfred R. Kuehnle Composite media with selectable radiation-transmission properties
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5559057A (en) 1994-03-24 1996-09-24 Starfire Electgronic Development & Marketing Ltd. Method for depositing and patterning thin films formed by fusing nanocrystalline precursors
US5578379A (en) 1991-12-03 1996-11-26 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Device comprising a luminescent material
US5586249A (en) 1992-02-10 1996-12-17 Fujitsu Limited Control information backup system
US5607876A (en) 1991-10-28 1997-03-04 Xerox Corporation Fabrication of quantum confinement semiconductor light-emitting devices
US5663573A (en) 1995-03-17 1997-09-02 The Ohio State University Bipolar electroluminescent device
US5736754A (en) 1995-11-17 1998-04-07 Motorola, Inc. Full color organic light emitting diode array
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
WO1998028767A1 (en) 1996-12-23 1998-07-02 The Trustees Of Princeton University An organic light emitting device containing a protection layer
US5783292A (en) 1994-09-29 1998-07-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Electroluminescent device with organic-inorganic composite thin film
US5866039A (en) 1995-01-13 1999-02-02 The United States Of America As Represented By The Secretary Of The Army Luminescent device for displays and lighting
JPH1140361A (en) 1997-07-23 1999-02-12 Mitsubishi Materials Corp El light emitting panel and manufacture thereof
US5874803A (en) 1997-09-09 1999-02-23 The Trustees Of Princeton University Light emitting device with stack of OLEDS and phosphor downconverter
US5882779A (en) 1994-11-08 1999-03-16 Spectra Science Corporation Semiconductor nanocrystal display materials and display apparatus employing same
US5906670A (en) 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
WO1999026299A1 (en) 1997-11-13 1999-05-27 Massachusetts Institute Of Technology Highly luminescent color-selective materials
US5908608A (en) 1996-11-08 1999-06-01 Spectra Science Corporation Synthesis of metal chalcogenide quantum
US5917279A (en) 1995-11-20 1999-06-29 Bayer Aktiengesllschaft Intermediate layer in electroluminescent arrangements containing finely divided inorganic particles
US5949089A (en) 1996-04-30 1999-09-07 Electronics And Telecommunications Research Institute Organic light emitting diode having thin insulating layer
US5958573A (en) 1997-02-10 1999-09-28 Quantum Energy Technologies Electroluminescent device having a structured particle electron conductor
US5965212A (en) 1995-07-27 1999-10-12 Isis Innovation Limited Method of producing metal quantum dots
US5981092A (en) 1996-03-25 1999-11-09 Tdk Corporation Organic El device
US5985173A (en) 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US5997958A (en) 1997-03-13 1999-12-07 Hitachi Europe Limited Method of depositing nanometer scale particles
US6023073A (en) 1995-11-28 2000-02-08 International Business Machines Corp. Organic/inorganic alloys used to improve organic electroluminescent devices
US6036886A (en) 1998-07-29 2000-03-14 Nanocrystals Technology L.P. Microemulsion method for producing activated metal oxide nanocrystals
US6046543A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University High reliability, high efficiency, integratable organic light emitting devices and methods of producing same
US6103868A (en) 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
US6111274A (en) 1999-05-27 2000-08-29 Tdk Corporation Inorganic light emitting diode
US6114038A (en) 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
US6129986A (en) 1997-03-06 2000-10-10 Sunstar Giken Kabushiki Kaisha Luminous composition and electroluminescent device comprising the same
US6157047A (en) 1997-08-29 2000-12-05 Kabushiki Kaisha Toshiba Light emitting semiconductor device using nanocrystals
US6179912B1 (en) 1999-12-20 2001-01-30 Biocrystal Ltd. Continuous flow process for production of semiconductor nanocrystals
US6180239B1 (en) 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US6194237B1 (en) 1997-12-16 2001-02-27 Hyundai Electronics Industries Co., Ltd. Method for forming quantum dot in semiconductor device and a semiconductor device resulting therefrom
CN1289525A (en) 1998-11-25 2001-03-28 Tdk株式会社 Organic el device
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US6235618B1 (en) 1998-11-17 2001-05-22 Electronics And Telecommunications Research Institute Method for forming nanometer-sized silicon quantum dots
US6239355B1 (en) 1998-10-09 2001-05-29 The Trustees Of Columbia University In The City Of New York Solid-state photoelectric device
US6242076B1 (en) 1999-02-08 2001-06-05 Michael D. Andriash Illuminated imageable vision control panels and methods of fabricating
US6241819B1 (en) 1993-04-20 2001-06-05 North American Philips Corp. Method of manufacturing quantum sized doped semiconductor particles
US6249372B1 (en) 1998-09-10 2001-06-19 Fuji Electric Co., Ltd. Fluorescent conversion filter and color display device using the same
US6251303B1 (en) 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6262129B1 (en) 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
US6287928B1 (en) 1997-05-30 2001-09-11 Matsushita Electric Industrial Co., Ltd. Two-dimensionally arrayed quantum device
US6294401B1 (en) 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US6306610B1 (en) 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6313261B1 (en) 1996-11-07 2001-11-06 University Of Durham Polymer light emitting diode
US6326144B1 (en) 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
US6329668B1 (en) 2000-07-27 2001-12-11 Mp Technologies L.L.C. Quantum dots for optoelecronic devices
US20010052752A1 (en) 2000-04-25 2001-12-20 Ghosh Amalkumar P. Thin film encapsulation of organic light emitting diode devices
US6333110B1 (en) 1998-11-10 2001-12-25 Bio-Pixels Ltd. Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
US20010055764A1 (en) 1999-05-07 2001-12-27 Empedocles Stephen A. Microarray methods utilizing semiconductor nanocrystals
US20020047551A1 (en) 2000-08-16 2002-04-25 Rubner Michael F. High efficiency soild state light-emitting device and method of generating light
US6379635B2 (en) 1995-09-15 2002-04-30 Imperial College Of Science, Technology & Medicine Process for preparing a nanocrystalline material
US20020055040A1 (en) 1996-05-22 2002-05-09 Mukherjee Shyama P. Novel composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US6391273B1 (en) 1999-08-05 2002-05-21 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Process and apparatus for producing oxidic nanocrystals
US20020071952A1 (en) 2000-12-08 2002-06-13 Moungi Bawendi Preparation of nanocrystallites
US6416888B1 (en) 1999-02-15 2002-07-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
US6440213B1 (en) 1999-10-28 2002-08-27 The Regents Of The University Of California Process for making surfactant capped nanocrystals
US6447698B1 (en) 1998-09-28 2002-09-10 Sony Corporation Method for producing light-emitting substance
US20020146590A1 (en) 2001-02-08 2002-10-10 Shinji Matsuo Organic electroluminescent material and device made therefrom
US6464898B1 (en) 1998-11-20 2002-10-15 Idemitsu Kosan Co., Ltd. Fluorescence conversion medium and display device comprising it
US6475886B2 (en) 2000-12-26 2002-11-05 Korea Institute Of Science And Technology Fabrication method of nanocrystals using a focused-ion beam
US20020180349A1 (en) 2001-03-08 2002-12-05 Xerox Corporation Display devices with organic-metal mixed layer
US20020182439A1 (en) * 2001-05-01 2002-12-05 Yu-Tai Tao Fluorene compounds
US20020179898A1 (en) 1996-06-25 2002-12-05 Tobin J. Marks Organic light-emitting diodes and methods for assembly and emission control
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US20030010987A1 (en) 2000-09-14 2003-01-16 Uri Banin Semiconductor nanocrystalline materials and their uses
US20030017264A1 (en) 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
US6512172B1 (en) 1997-11-11 2003-01-28 Universiteit Van Utrecht Polymer-nanocrystal photo device and method for making the same
US6515314B1 (en) 2000-11-16 2003-02-04 General Electric Company Light-emitting device with organic layer doped with photoluminescent material
US6518168B1 (en) 1995-08-18 2003-02-11 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
US20030035917A1 (en) 1999-06-11 2003-02-20 Sydney Hyman Image making medium
US20030034486A1 (en) 2001-07-02 2003-02-20 Korgel Brian A. Applications of light-emitting nanoparticles
US20030042850A1 (en) 2001-09-04 2003-03-06 Dietrich Bertram Electroluminescent device comprising quantum dots
US20030059635A1 (en) 2001-09-17 2003-03-27 Imad Naasani Nanocrystals
US6544870B2 (en) 2001-04-18 2003-04-08 Kwangju Institute Of Science And Technology Silicon nitride film comprising amorphous silicon quantum dots embedded therein, its fabrication method and light-emitting device using the same
US20030071794A1 (en) 2001-07-26 2003-04-17 Dai Nippon Printing Co., Ltd. Transparent conductive film
US20030106488A1 (en) 2001-12-10 2003-06-12 Wen-Chiang Huang Manufacturing method for semiconductor quantum particles
US6579422B1 (en) 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
WO2003050329A2 (en) 2001-07-30 2003-06-19 The Board Of Trustees Of The University Of Arkansas High quality colloidal nanocrystals and methods of preparation of the same in non-coordinating solvents
US6586785B2 (en) 2000-06-29 2003-07-01 California Institute Of Technology Aerosol silicon nanoparticles for use in semiconductor device fabrication
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US20030142944A1 (en) 2001-09-17 2003-07-31 Sundar Vikram C. Semiconductor nanocrystal composite
JP2003217861A (en) 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Electroluminescent element
US6608439B1 (en) 1998-09-22 2003-08-19 Emagin Corporation Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
US6617583B1 (en) 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US20030170927A1 (en) 2001-07-31 2003-09-11 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods
WO2003084292A1 (en) 2002-03-29 2003-10-09 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US6639354B1 (en) 1999-07-23 2003-10-28 Sony Corporation Light emitting device, production method thereof, and light emitting apparatus and display unit using the same
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US6656608B1 (en) 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
US20040000868A1 (en) 1996-07-29 2004-01-01 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light led and phosphor components
US6682596B2 (en) 2000-12-28 2004-01-27 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
US20040033359A1 (en) 1997-11-13 2004-02-19 Massachusetts Institute Of Technology, A Massachusetts Corporation Highly luminescnt color-selective nanocrystalline materials
US6697403B2 (en) 2001-04-17 2004-02-24 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting apparatus using the same
US6703781B2 (en) 2002-05-21 2004-03-09 Durel Corporation El lamp with light scattering particles in cascading layer
US6706551B2 (en) 2001-02-07 2004-03-16 Agfa-Gevaert Thin film inorganic light emitting diode
US6710366B1 (en) 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US6724141B2 (en) 2001-10-30 2004-04-20 Agfa-Gevaert Particular type of a thin layer inorganic light emitting device
US20040091710A1 (en) 2002-08-15 2004-05-13 Bawendi Moungi G. Stabilized semiconductor nanocrystals
US20040110002A1 (en) 2002-08-13 2004-06-10 Sungjee Kim Semiconductor nanocrystal heterostructures
US6753272B1 (en) 1998-04-27 2004-06-22 Cvc Products Inc High-performance energy transfer method for thermal processing applications
US6753273B2 (en) 2001-07-31 2004-06-22 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods
US20040137263A1 (en) 2001-02-20 2004-07-15 Burn Paul Leslie Metal-containing dendrimers
US6777706B1 (en) 1998-07-14 2004-08-17 Cambridge Display Technologies Optical devices
US6780242B2 (en) 2000-07-26 2004-08-24 Nec Laboratories America, Inc. Method for manufacturing high-quality manganese-doped semiconductor nanocrystals
US20040178414A1 (en) 2001-05-18 2004-09-16 Gitti Frey Electroluminescent device
US6797412B1 (en) 2000-04-11 2004-09-28 University Of Connecticut Full color display structures using pseudomorphic cladded quantum dot nanophosphor thin films
US20040202875A1 (en) 1998-03-27 2004-10-14 Yissum Res & Dev Co Of Hebrew Univ Of Jerusalem Molecular epitaxy method and compositions
US20040206942A1 (en) 2002-09-24 2004-10-21 Che-Hsiung Hsu Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
JP2004296950A (en) 2003-03-27 2004-10-21 Quantum 14:Kk Light emitting element and light emitting device as well as information display unit
US20040209115A1 (en) 2003-04-21 2004-10-21 Thompson Mark E. Organic light emitting devices with wide gap host materials
JP2004303592A (en) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp Electroluminescent element and manufacturing method of the same
US20040227703A1 (en) 2003-05-13 2004-11-18 Mcnc Research And Development Institute Visual display with increased field of view
US6821559B2 (en) 1997-10-02 2004-11-23 Chris Eberspacher Method of forming particulate materials for thin-film solar cells
CN1551697A (en) 2000-12-28 2004-12-01 ��ʽ����뵼����Դ�о��� Light emitting device
US20040241424A1 (en) 1998-11-10 2004-12-02 Emilio Barbera-Guillem Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
US20040265622A1 (en) 2003-06-24 2004-12-30 Eastman Kodak Company Light emitting display
US6838816B2 (en) 2002-05-28 2005-01-04 National Taiwan University Light emitting diode with nanoparticles
US6838743B2 (en) 1996-06-19 2005-01-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
US20050001538A1 (en) 2002-11-20 2005-01-06 Mihri Ozkan Multilayer polymer-quantum dot light emitting diodes and methods of making and using thereof
WO2005001889A2 (en) 2003-05-07 2005-01-06 Indiana University Research & Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
WO2005002007A2 (en) 2003-03-20 2005-01-06 The Research Foundation Of State University Of Newyork Process for producing semiconductor nanocrystal cores, core-shell, core-buffer-shell, and multiple layer systems in a non-coordinating solvent utilizing in situ surfactant generation
US20050014017A1 (en) 2001-10-31 2005-01-20 Chishio Hosokawa Novel soluble compound and organic electroluminescent devices
US20050012182A1 (en) 2003-07-19 2005-01-20 Samsung Electronics Co., Ltd. Alloy type semiconductor nanocrystals and method for preparing the same
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US6849862B2 (en) 1997-11-18 2005-02-01 Technologies And Devices International, Inc. III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US6853013B2 (en) 2002-02-28 2005-02-08 Fuji Photo Film Co., Ltd. Light-emitting element and method of producing the same
JP2005038634A (en) 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Current injection light-emitting element
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US6859477B2 (en) 2003-01-07 2005-02-22 University Of Texas Optoelectronic and electronic devices based on quantum dots having proximity-placed acceptor impurities, and methods therefor
US6861674B2 (en) 2002-01-11 2005-03-01 C.R.F. Societa Consortile Per Azioni Electroluminescent device
US20050051777A1 (en) 2003-09-08 2005-03-10 Hill Steven E. Solid state white light emitter and display using same
US20050051766A1 (en) 2003-09-05 2005-03-10 The University Of North Carolina Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture
US20050051769A1 (en) 2003-09-09 2005-03-10 Jang Eun Joo Luminescent efficiency of semiconductor nanocrystals by surface treatment
US6869545B2 (en) 2001-07-30 2005-03-22 The Board Of Trustees Of The University Of Arkansas Colloidal nanocrystals with high photoluminescence quantum yields and methods of preparing the same
US6869864B2 (en) 2003-06-27 2005-03-22 Samsung Electronics Co., Ltd. Method for producing quantum dot silicate thin film for light emitting device
US6872450B2 (en) 2002-10-23 2005-03-29 Evident Technologies Water-stable photoluminescent semiconductor nanocrystal complexes and method of making same
US6872249B2 (en) 2000-10-04 2005-03-29 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
WO2005031802A2 (en) 2003-09-24 2005-04-07 The Regents Of The University Of California Hybrid synthesis of core/shell nanocrystals
US20050072989A1 (en) 2003-10-06 2005-04-07 Bawendi Moungi G. Non-volatile memory device
US20050088380A1 (en) 2003-10-23 2005-04-28 Vladimir Bulovic LED array with photodetector
US20050112849A1 (en) 2003-08-26 2005-05-26 Stott Nathan E. Method of preparing nanocrystals
US20050116633A1 (en) 2003-12-02 2005-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device using the same
US20050116621A1 (en) 2003-11-18 2005-06-02 Erika Bellmann Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
US20050117868A1 (en) 2003-12-01 2005-06-02 Gang Chen Polymeric compositions comprising quantum dots, optical devices comprising these compositions and methods for preparing same
WO2005052996A2 (en) 2003-11-19 2005-06-09 William Marsh Rice University Methods and materials for cdse nanocrystal synthesis
US20050129947A1 (en) 2003-01-22 2005-06-16 Xiaogang Peng Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US20050126628A1 (en) 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US20050135079A1 (en) 2003-12-18 2005-06-23 Yin Chua Janet B. Flash module with quantum dot light conversion
US20050136258A1 (en) 2003-12-22 2005-06-23 Shuming Nie Bioconjugated nanostructures, methods of fabrication thereof, and methods of use thereof
WO2005067524A2 (en) 2004-01-15 2005-07-28 Nanosys, Inc. Nanocrystal doped matrixes
US20050189534A1 (en) 2000-10-19 2005-09-01 Arch Development Corporation Doped semiconductor nanocrystals
US6940087B2 (en) 2002-03-08 2005-09-06 Matsushita Electric Works, Ltd. Quantum device
WO2005086782A2 (en) 2004-03-08 2005-09-22 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
US20050206306A1 (en) 2004-03-18 2005-09-22 C.R.F. Societa Consortile Per Azioni Light-emitting device comprising porous alumina, and manufacturing process thereof
US6949879B1 (en) 1999-04-07 2005-09-27 Microemissive Displays Limited Optoelectronic display
US20050214536A1 (en) 2003-12-12 2005-09-29 Quantum Dot Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
US6955856B2 (en) 2002-12-30 2005-10-18 Samsung Sdi Co., Ltd. Biphenyl derivatives and organic electroluminescent device employing the same
US20050230673A1 (en) 2004-03-25 2005-10-20 Mueller Alexander H Colloidal quantum dot light emitting diodes
US20050236556A1 (en) 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US20050261400A1 (en) 2004-05-18 2005-11-24 Maizhi Yang Color-converting photoluminescent film
US20050276993A1 (en) 2003-10-29 2005-12-15 Byung-Hee Sohn Electroluminescent device using metal nanoparticles
US20050274944A1 (en) 2004-06-09 2005-12-15 Samsung Electronics Co., Ltd. Nanocrystal electroluminescence device and fabrication method thereof
US20050274994A1 (en) 2004-06-14 2005-12-15 Rhodes Howard E High dielectric constant spacer for imagers
US6977182B2 (en) 2002-07-23 2005-12-20 Hitachi Software Engineering Co., Ltd Semiconductor nanoparticles, method for producing the same, and fluorescence reagent comprising semiconductor nanoparticles
US20050279989A1 (en) 2004-06-16 2005-12-22 Exalos Ag Broadband light emitting device
US20050287691A1 (en) 2004-06-24 2005-12-29 Industrial Technology Research Institute Method for doping quantum dots
US20060001066A1 (en) 2001-03-29 2006-01-05 Er-Xuan Ping Semiconductor Constructions
US20060001119A1 (en) 2004-05-10 2006-01-05 Evident Technologies, Inc. III-V semiconductor nanocrystal complexes and methods of making same
US20060014315A1 (en) 2004-04-28 2006-01-19 Warren Chan Stable, water-soluble quantum dot, method of preparation and conjugates thereof
US20060019427A1 (en) 2004-07-23 2006-01-26 University Of Florida Research Foundation, Inc. One-pot synthesis of high-quality metal chalcogenide nanocrystals without precursor injection
US6995505B2 (en) 2003-04-30 2006-02-07 Korea Institute Of Science And Technology Polymeric electroluminescent device using an emitting layer of nanocomposites
US20060028882A1 (en) 2004-08-04 2006-02-09 Lianhua Qu Alloyed semiconductor nanocrystals
US20060034065A1 (en) 2004-08-10 2006-02-16 Innovalight, Inc. Light strips for lighting and backlighting applications
US7005669B1 (en) 2001-08-02 2006-02-28 Ultradots, Inc. Quantum dots, nanocomposite materials with quantum dots, devices with quantum dots, and related fabrication methods
US20060043361A1 (en) 2004-08-25 2006-03-02 Samsung Electronics Co., Ltd. White light-emitting organic-inorganic hybrid electroluminescence device comprising semiconductor nanocrystals
US20060046330A1 (en) 2004-08-23 2006-03-02 Industrial Technology Research Institute Method for manufacturing a quantum-dot element
US7008559B2 (en) 2001-06-06 2006-03-07 Nomadics, Inc. Manganese doped upconversion luminescence nanoparticles
WO2006027778A2 (en) 2004-09-09 2006-03-16 Technion Research & Development Foundation Ltd. Core-alloyed shell semiconductor nanocrystals
US7015640B2 (en) 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
US7015498B2 (en) 2002-09-19 2006-03-21 Fujitsu Limited Quantum optical semiconductor device
US20060062720A1 (en) 2004-05-28 2006-03-23 Samsung Electronics Co., Ltd. Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
US20060060862A1 (en) 2001-02-09 2006-03-23 Massachusetts Institute Of Technology Composite material including nanocrystals and methods of making
US20060062902A1 (en) 2004-09-18 2006-03-23 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US20060063029A1 (en) 2004-05-28 2006-03-23 Samsung Electronics Co., Ltd. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method
US20060105200A1 (en) 2004-11-17 2006-05-18 Dmytro Poplavskyy Organic electroluminescent device
US20060105199A1 (en) 2004-11-18 2006-05-18 3M Innovative Properties Company Electroluminescent devices containing trans-1,2-bis(acenyl)ethylene compounds
US20060114960A1 (en) 2004-11-30 2006-06-01 Snee Preston T Optical feedback structures and methods of making
US7056471B1 (en) 2002-12-16 2006-06-06 Agency For Science Technology & Research Ternary and quarternary nanocrystals, processes for their production and uses thereof
US20060119258A1 (en) 2004-12-06 2006-06-08 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US20060127562A1 (en) 2004-12-15 2006-06-15 General Electric Company Adhesion promoter, electroactive layer and electroactive device comprising same, and method
US20060131361A1 (en) 2004-12-16 2006-06-22 Eastman Paul S Quantum dot-encoded bead set for calibration and quantification of multiplexed assays, and methods for their use
JP2006186317A (en) 2004-11-11 2006-07-13 Samsung Electronics Co Ltd Nano crystal of multilayer structure and manufacturing method therefor
US20060157686A1 (en) 2005-01-20 2006-07-20 Samsung Electronics Co., Ltd. Quantum dot phosphor for light emitting diode and method of preparing the same
US20060158089A1 (en) 2004-09-14 2006-07-20 Sharp Kabushiki Kaisha Fluorescent material and light-emitting apparatus employing the same
US20060157720A1 (en) 2005-01-11 2006-07-20 Bawendi Moungi G Nanocrystals including III-V semiconductors
WO2006088877A1 (en) 2005-02-16 2006-08-24 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20060194075A1 (en) * 2005-02-25 2006-08-31 Seiko Epson Corporation Light emitting element, light emitting device, and electronic apparatus
US20060198128A1 (en) 2005-02-28 2006-09-07 Color Kinetics Incorporated Configurations and methods for embedding electronics or light emitters in manufactured materials
US20060196375A1 (en) 2004-10-22 2006-09-07 Seth Coe-Sullivan Method and system for transferring a patterned material
US20060197695A1 (en) 1997-09-02 2006-09-07 Kabushiki Kaisha Toshiba Noise suppression circuit, ASIC, navigation apparatus, communication circuit, and communication apparatus having the same
US20060204675A1 (en) 2005-03-08 2006-09-14 Eastman Kodak Company Display device with improved flexibility
WO2006098540A1 (en) 2005-03-17 2006-09-21 Samsung Electronics Co., Ltd Quantum dot light -emitting diode comprising inorganic electron transport layer
US20060216759A1 (en) 2004-10-29 2006-09-28 Imad Naasani Functionalized fluorescent nanocrystals, and methods for their preparation and use
US20060220528A1 (en) 2003-01-30 2006-10-05 Kai Engelhardt Light-emitting devices
US20060232194A1 (en) 2005-04-13 2006-10-19 Yeh-Jiun Tung Hybrid OLED having phosphorescent and fluorescent emitters
US20060244358A1 (en) 2005-05-02 2006-11-02 Samsung Electro-Mechanics Co., Ltd. White light emitting device
US20060273304A1 (en) 2005-06-07 2006-12-07 Eastman Kodak Company OLED device having curved viewing surface
US7147712B2 (en) 2001-10-02 2006-12-12 Invitrogen Corporation Method of semiconductor nanoparticle synthesis
US20070001581A1 (en) 2005-06-29 2007-01-04 Stasiak James W Nanostructure based light emitting devices and associated methods
KR20070013002A (en) 2005-07-25 2007-01-30 엘지전자 주식회사 Organic electroluminescence device and method for fabricating the same
US7175948B2 (en) 1999-08-26 2007-02-13 Dai Nippon Printing Co., Ltd. Coloring material and color filter
US20070034856A1 (en) 2005-08-11 2007-02-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electronic device
US20070057263A1 (en) 2005-09-14 2007-03-15 Eastman Kodak Company Quantum dot light emitting layer
US20070069202A1 (en) 2005-09-27 2007-03-29 Choi Byoung L Light-emitting device comprising semiconductor nanocrystal layer free of voids and method for producing the same
US7199393B2 (en) 2003-10-21 2007-04-03 Samsung Electronics Co., Ltd. Photosensitive semiconductor nanocrystals, photosensitive composition comprising semiconductor nanocrystals and method for forming semiconductor nanocrystal pattern using the same
US20070087219A1 (en) 2005-10-19 2007-04-19 Eastman Kodak Company Electroluminescent device
US7208768B2 (en) 2004-04-30 2007-04-24 Sharp Laboratories Of America, Inc. Electroluminescent device
CN1967898A (en) 2005-11-17 2007-05-23 群康科技(深圳)有限公司 Organic electroluminescence display device
US20070164661A1 (en) 1999-07-26 2007-07-19 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
US20070170446A1 (en) 2006-01-09 2007-07-26 Samsung Electronics Co., Ltd. Inorganic electroluminescent diode and method of fabricating the same
US20070190675A1 (en) 2006-02-10 2007-08-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of display device
US20070194694A1 (en) 2006-02-17 2007-08-23 Solexant Corp Nanostructured electroluminescent device and display
WO2007095173A2 (en) 2006-02-14 2007-08-23 Massachusetts Institute Of Technology White light emitting devices
US20070197003A1 (en) 2004-09-24 2007-08-23 Brian Yen Flow method and reactor for manufacturing nanocrystals
US20070215856A1 (en) 2006-02-16 2007-09-20 Samsung Electronics Co., Ltd. Quantum dot electroluminescence device and method of fabricating the same
EP1843411A1 (en) 2006-04-04 2007-10-10 Toppoly Optoelectronics Corp. System for displaying images including electroluminescent device and method for fabricating the same
US20070243382A1 (en) 2004-07-26 2007-10-18 Massachusetts Institute Of Technology Microspheres including nanoparticles
WO2007117672A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Methods of depositing nanomaterial & methods of making a device
US20070246734A1 (en) 2006-04-10 2007-10-25 Samsung Electro-Mechanics Co., Ltd. Multilayered white light emitting diode using quantum dots and method of fabricating the same
US20070257608A1 (en) 2006-05-05 2007-11-08 Eastman Kodak Company Electroluminescent device having improved light output
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US20070289491A1 (en) 2006-06-15 2007-12-20 Evident Technologies, Inc. Method of preparing semiconductor nanocrystal compositions
WO2008007124A1 (en) 2006-07-14 2008-01-17 Imperial Innovations Limited A hybrid organic light emitting device
US20080012031A1 (en) 2006-07-14 2008-01-17 Samsung Electronics Co., Ltd. White light-emitting diode using semiconductor nanocrystals and preparation method thereof
US20080038558A1 (en) 2006-04-05 2008-02-14 Evident Technologies, Inc. I-iii-vi semiconductor nanocrystals, i-iii-vi water stable semiconductor nanocrystals, and methods of making same
US7332211B1 (en) 2002-11-07 2008-02-19 Massachusetts Institute Of Technology Layered materials including nanoparticles
WO2008021962A2 (en) 2006-08-11 2008-02-21 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystals and devices
US20080041814A1 (en) 2004-07-07 2008-02-21 Nanosys, Inc. Systems and Methods for Harvesting and Integrating Nanowires
US20080061683A1 (en) 2004-09-27 2008-03-13 Koninklijke Philips Electronics, N.V. Illumination System
US20080074050A1 (en) 2006-05-21 2008-03-27 Jianglong Chen Light emitting device including semiconductor nanocrystals
US20080087882A1 (en) 2006-06-05 2008-04-17 Lecloux Daniel D Process for making contained layers and devices made with same
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
WO2008063657A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Light emitting devices and displays with improved performance
WO2008063658A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008073373A1 (en) 2006-12-11 2008-06-19 Evident Technologies Nanostructured layers, method of making nanostructured layers, and application thereof
US20080142075A1 (en) 2006-12-06 2008-06-19 Solexant Corporation Nanophotovoltaic Device with Improved Quantum Efficiency
US20080150425A1 (en) 2006-12-20 2008-06-26 Samsung Electronics Co., Ltd. Inorganic electroluminescent device comprising an insulating layer, method for fabricating the electroluminescent device and electronic device comprising the electroluminescent device
US20080169753A1 (en) 2007-01-11 2008-07-17 Motorola, Inc. Light emissive printed article printed with quantum dot ink
US20080172197A1 (en) 2007-01-11 2008-07-17 Motorola, Inc. Single laser multi-color projection display with quantum dot screen
US20080180020A1 (en) 2007-01-29 2008-07-31 Cok Ronald S Light-emitting display device having improved efficiency
US20080203899A1 (en) 2007-02-28 2008-08-28 Miller Michael E Electro-luminescent display with improved efficiency
US20080202383A1 (en) 2007-01-30 2008-08-28 Evident Technologies, Inc. Group ii alloyed i-iii-vi semiconductor nanocrystal compositions and methods of making same
US20080204366A1 (en) 2007-02-26 2008-08-28 Kane Paul J Broad color gamut display
US20080203895A1 (en) 2007-02-28 2008-08-28 Miller Michael E Electro-luminescent device with improved efficiency
US7422790B1 (en) 2003-09-04 2008-09-09 Nanosys, Inc. Methods of processing nanocrystals, and compositions, devices and systems including same
US20080218068A1 (en) 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
US20080216891A1 (en) 2007-03-05 2008-09-11 Seagate Technology Llc Quantum dot sensitized wide bandgap semiconductor photovoltaic devices & methods of fabricating same
US20080217602A1 (en) 2007-03-08 2008-09-11 Kahen Keith B Quantum dot light emitting device
US20080217608A1 (en) 2007-02-21 2008-09-11 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device and Quinoxaline Derivative
US20080238829A1 (en) 2007-03-30 2008-10-02 Kane Paul J Color electro-luminescent display with improved efficiency
US20080237612A1 (en) 2007-03-29 2008-10-02 Cok Ronald S Device having spacers
EP1980652A2 (en) 2007-03-26 2008-10-15 Samsung Electronics Co., Ltd. Multilayer nanocrystal structure and method for producing the same
US7442320B2 (en) 2004-06-18 2008-10-28 Ultradots, Inc. Nanostructured materials and photovoltaic devices including nanostructured materials
US20080278064A1 (en) 2004-09-30 2008-11-13 Daisuke Kumaki Light Emitting Element
US20080278069A1 (en) 2001-11-30 2008-11-13 Semiconductor Energy Laboratory Co., Ltd. Light Emitting Device
US20080278063A1 (en) 2007-05-07 2008-11-13 Cok Ronald S Electroluminescent device having improved power distribution
US7459850B2 (en) 2005-06-22 2008-12-02 Eastman Kodak Company OLED device having spacers
US20080297028A1 (en) 2007-05-30 2008-12-04 Kane Paul J White-light electro-luminescent device with improved efficiency
US20080297029A1 (en) 2007-05-31 2008-12-04 Cok Ronald S Electroluminescent device having improved light output
US20080309234A1 (en) 2007-06-15 2008-12-18 Samsung Electronics Co., Ltd. Alternating current driving type quantum dot electroluminescent device
US20090002349A1 (en) 2007-06-28 2009-01-01 Cok Ronald S Electroluminescent white light emitting device
US20090001349A1 (en) 2007-06-29 2009-01-01 Kahen Keith B Light-emitting nanocomposite particles
US20090001403A1 (en) 2007-06-29 2009-01-01 Motorola, Inc. Inductively excited quantum dot light emitting device
US20090001385A1 (en) 2007-06-27 2009-01-01 Motorola, Inc. Apparatus and method for modulating photon output of a quantum dot light emitting device
US20090002806A1 (en) 2007-06-26 2009-01-01 Motorola, Inc. Portable electronic device having an electro wetting display illuminated by quantum dots
US20090017268A1 (en) 2007-07-11 2009-01-15 Motorola, Inc. Method and apparatus for selectively patterning free standing quantum dot (fsqdt) polymer composites
US7491642B2 (en) 2000-07-12 2009-02-17 The California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
US20090059554A1 (en) 2007-08-28 2009-03-05 Motorola, Inc. Apparatus for selectively backlighting a material
US20090066223A1 (en) 2005-02-21 2009-03-12 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
US20090087792A1 (en) 2007-09-28 2009-04-02 Dai Nippon Printig Co., Ltd. Method for manufacturing electroluminescence element
US20090087546A1 (en) 2007-09-28 2009-04-02 Dai Nippon Printing Co., Ltd. Process for producing electroluminescent device
US20090152567A1 (en) 2006-03-07 2009-06-18 Mark Comerford Article including semiconductor nanocrystals
US20090162011A1 (en) 2006-03-07 2009-06-25 Seth Coe-Sullivan Compositions, optical component, system including an optical component, devices, and other products
US20090174022A1 (en) 2006-03-24 2009-07-09 Seth Coe-Sullivan Hyperspectral imaging device
US20090188558A1 (en) 2008-01-25 2009-07-30 University Of Washington Photovoltaic devices having metal oxide electron-transport layers
US20090215209A1 (en) 2006-04-14 2009-08-27 Anc Maria J Methods of depositing material, methods of making a device, and systems and articles for use in depositing material
US7592618B2 (en) 2005-02-24 2009-09-22 Samsung Electronics Co., Ltd. Nanoparticle electroluminescence and method of manufacturing the same
US20090251759A1 (en) 2006-06-10 2009-10-08 Domash Lawrence H Materials, thin films, optical filters, and devices including same
WO2009123763A2 (en) 2008-04-03 2009-10-08 Qd Vision, Inc. Light-emitting device including quantum dots
US20090280586A1 (en) 2006-06-24 2009-11-12 Seth Coe-Sullivan Methods for depositing nanomaterial, methods for fabricating a device, and methods for fabricating an array of devices
US20090283778A1 (en) 2006-09-12 2009-11-19 Seth Coe-Sullivan Electroluminescent display useful for displaying a predetermined pattern
US20090283742A1 (en) 2006-06-24 2009-11-19 Seth Coe-Sullivan Methods and articles including nanomaterial
US20090286338A1 (en) 2006-06-24 2009-11-19 Seth Coe-Sullivan Methods for depositing nanomaterial, methods for fabricating a device, methods for fabricating an array of devices and compositions
US20090283743A1 (en) 2006-09-12 2009-11-19 Seth Coe-Sullivan Composite including nanoparticles, methods, and products including a composite
US7632428B2 (en) 2005-04-25 2009-12-15 The Board Of Trustees Of The University Of Arkansas Doped semiconductor nanocrystals and methods of making same
US20090320909A1 (en) 2007-06-25 2009-12-31 Alexi Arango Electro-optical device
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
US20100012178A1 (en) 2008-07-17 2010-01-21 The Regents Of The University Of California Solution processable material for electronic and electro-optic applications
US20100014799A1 (en) 2006-05-21 2010-01-21 Massachusetts Institute Of Technology Optical structures including nanocrystals
US20100025595A1 (en) 2006-07-31 2010-02-04 Moungi Bawendi Electro-optical device
US20100052512A1 (en) 2006-11-21 2010-03-04 Clough Christopher R Nanocrytals including a Group IIIA element and a Group VA element, method, composition, device and other products
US20100068468A1 (en) 2006-12-01 2010-03-18 Seth Coe-Sullivan Composites and devices including nanoparticles
US7687800B1 (en) 2007-11-23 2010-03-30 University Of Central Florida Research Foundation, Inc. Excitation band-gap tuning of dopant based quantum dots with core-inner shell-outer shell
KR20100052926A (en) 2008-11-11 2010-05-20 광주과학기술원 Light emitting diode and method for fabricating the same
US20100132770A1 (en) 2006-02-09 2010-06-03 Beatty Paul H J Device including semiconductor nanocrystals and a layer including a doped organic material and methods
US20100134520A1 (en) 2006-02-09 2010-06-03 Seth Coe-Sullivan Displays including semiconductor nanocrystals and methods of making same
US7732237B2 (en) 2005-06-27 2010-06-08 The Regents Of The University Of California Quantum dot based optoelectronic device and method of making same
US7777233B2 (en) 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
US20100237323A1 (en) 2007-09-28 2010-09-23 Dai Nippon Printing Co., Ltd. Electroluminescent device
US20100243053A1 (en) 2007-06-26 2010-09-30 Seth Coe-Sullivan Photovoltaic devices including quantum dot down-conversion materials useful for solar cells and materials including quantum dots
US20100265307A1 (en) 2007-06-25 2010-10-21 Linton John R Compositions and methods including depositing nanomaterial
US20100264371A1 (en) 2009-03-19 2010-10-21 Nick Robert J Composition including quantum dots, uses of the foregoing, and methods
US20100283036A1 (en) 2007-07-23 2010-11-11 Seth Coe-Sullivan Quantum dot light enhancement substrate and lighting device including same
US20100283014A1 (en) 2006-06-02 2010-11-11 Craig Breen Functionalized nanoparticles and method
US20100283072A1 (en) 2007-07-18 2010-11-11 Kazlas Peter T Quantum dot-based light sheets useful for solid-state lighting
US20100289003A1 (en) 2007-10-29 2010-11-18 Kahen Keith B Making colloidal ternary nanocrystals
US20100314646A1 (en) 2006-03-07 2010-12-16 Craig Breen Compositions, optical component, system including an optical component, devices, and other products
WO2011005859A2 (en) 2009-07-07 2011-01-13 University Of Florida Research Foundation, Inc. Stable and all solution processable quantum dot light-emitting diodes
US7880377B2 (en) 2004-01-23 2011-02-01 Hoya Corporation Quantum dot-dispersed light emitting device, and manufacturing method thereof
US20110025224A1 (en) 2009-05-07 2011-02-03 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20110080090A1 (en) 2009-05-07 2011-04-07 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20110081538A1 (en) 2008-03-04 2011-04-07 Linton John R Particles including nanoparticles, uses thereof, and methods
US20110095261A1 (en) 2008-02-07 2011-04-28 Kazlas Peter T Flexible devices including semiconductor nanocrystals, arrays, and methods
US7935419B1 (en) 2008-02-07 2011-05-03 Los Alamos National Security, Llc Thick-shell nanocrystal quantum dots
US20110101479A1 (en) 2007-06-25 2011-05-05 Massachusetts Institute Of Technology Photovoltaic device including semiconductor nanocrystals
US7964278B2 (en) 2005-06-15 2011-06-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem III-V semiconductor core-heteroshell nanocrystals
US8003010B2 (en) 2004-05-10 2011-08-23 Samsung Electronics Co., Ltd. Water-stable III-V semiconductor nanocrystal complexes and methods of making same
US8012604B2 (en) 2004-02-14 2011-09-06 Merck Patent Gmbh Electroluminescent materials and devices
US20110233483A1 (en) 2005-06-05 2011-09-29 Craig Breen Compositions, optical component, system including an optical component, devices, and other products
US20110245533A1 (en) 2006-06-02 2011-10-06 Craig Breen Nanoparticle including multi-functional ligand and method
US20110284819A1 (en) 2010-05-20 2011-11-24 Ho-Cheol Kang Quantum dot light emitting element and method for manufacturing the same
US20110291071A1 (en) 2010-05-25 2011-12-01 Young-Mi Kim Quantum dot light emitting diode device and display device therewith
WO2012138409A2 (en) 2011-04-02 2012-10-11 Qd Vision, Inc. Devices including quantum dots and method
WO2012158252A1 (en) 2011-05-16 2012-11-22 Qd Vision, Inc. Device including quantum dots and method for making same
US8334527B2 (en) 2007-09-28 2012-12-18 Dai Nippon Printing Co., Ltd. Electroluminescent device
US20130009131A1 (en) 2008-04-03 2013-01-10 Kazlas Peter T Device including quantum dots
US20130037778A1 (en) 2009-11-11 2013-02-14 Peter T. Kazlas Device including quantum dots
US20140027713A1 (en) 2011-04-02 2014-01-30 Qd Vision, Inc. Device including quantum dots

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US518406A (en) 1894-04-17 Wire-stretcher
US367707A (en) 1887-08-02 Ambeose duby
US352507A (en) 1886-11-16 Joseph b
US1315207A (en) 1919-09-09 Robert a
US872107A (en) 1907-04-25 1907-11-26 Frank E Van Duyne Hat, coat, and umbrella rack.
US1470607A (en) 1922-11-03 1923-10-16 Unchokeable Pump Ltd Impeller for centrifugal pumps
US1622707A (en) 1926-01-27 1927-03-29 Harry A Douglas Combined lighting and ignition switch
US1979607A (en) 1931-01-03 1934-11-06 American Meter Co Meter apparatus
US1979707A (en) 1933-05-12 1934-11-06 Skf Svenska Kullagerfab Ab Roller bushing
US2432007A (en) 1939-10-19 1947-12-02 Bolidens Gruv Ab Wood impregnating solutions containing heavy metal compounds with arsenic and chromic acids
US2431007A (en) 1943-12-17 1947-11-18 Charles E Wood Pumping apparatus
US2430507A (en) 1945-08-03 1947-11-11 United Shoe Machinery Corp Winding machine
US2430607A (en) 1947-03-24 1947-11-11 Walter S Gaskouitz Electric lighting novelty
US2475007A (en) 1948-02-27 1949-07-05 Smith Corp A O Hot-water tank fitting

Patent Citations (446)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714339A (en) 1969-11-10 1973-01-30 Bdh Chemicals Ltd Method of preparing metallic selenides
US4907043A (en) 1985-03-22 1990-03-06 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polycrstalline electroluminescent device with Langmuir-Blodgett film
US5200668A (en) 1988-11-21 1993-04-06 Mitsui Toatsu Chemicals, Inc. Luminescence element
US5162939A (en) 1989-02-24 1992-11-10 E. I. Du Pont De Nemours And Company Small-particle semiconductors in rigid matrices
US5132051A (en) 1989-02-24 1992-07-21 E. I. Du Pont De Nemours And Company Iii-v semiconductors in rigid matrices
US5152229A (en) 1989-10-20 1992-10-06 Johnson Matthey Public Limited Company Zinc sulfide or selenosulfide material
US5283132A (en) 1991-03-13 1994-02-01 Sharp Kabushiki Kaisha Organic electroluminescent device for white luminescence
US5281543A (en) 1991-05-17 1994-01-25 International Business Machines Corporation Fabrication method for quantum devices in compound semiconductor layers
US5244828A (en) 1991-08-27 1993-09-14 Matsushita Electric Industrial Co., Ltd. Method of fabricating a quantum device
US5470910A (en) 1991-10-10 1995-11-28 Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Composite materials containing nanoscalar particles, process for producing them and their use for optical components
US5607876A (en) 1991-10-28 1997-03-04 Xerox Corporation Fabrication of quantum confinement semiconductor light-emitting devices
US5262357A (en) 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
US5578379A (en) 1991-12-03 1996-11-26 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Device comprising a luminescent material
US5586249A (en) 1992-02-10 1996-12-17 Fujitsu Limited Control information backup system
US5238607A (en) 1992-02-28 1993-08-24 E. I. Du Pont De Nemours And Company Photoconductive polymer compositions and their use
US5532184A (en) 1992-12-24 1996-07-02 International Business Machines Corporation Method of fabricating a semiconductor device using quantum dots or wires
US6241819B1 (en) 1993-04-20 2001-06-05 North American Philips Corp. Method of manufacturing quantum sized doped semiconductor particles
US5525377A (en) 1993-04-21 1996-06-11 U.S. Philips Corporation Method of manufacturing encapsulated doped particles
US5442254A (en) 1993-05-04 1995-08-15 Motorola, Inc. Fluorescent device with quantum contained particle screen
US6180239B1 (en) 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5534056A (en) 1993-10-28 1996-07-09 Manfred R. Kuehnle Composite media with selectable radiation-transmission properties
US5527386A (en) 1993-10-28 1996-06-18 Manfred R. Kuehnle Composite media with selectable radiation-transmission properties
US5906670A (en) 1993-11-15 1999-05-25 Isis Innovation Limited Making particles of uniform size
US5474591A (en) 1994-01-31 1995-12-12 Duke University Method of synthesizing III-V semiconductor nanocrystals
US5434878A (en) 1994-03-18 1995-07-18 Brown University Research Foundation Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers
US5559057A (en) 1994-03-24 1996-09-24 Starfire Electgronic Development & Marketing Ltd. Method for depositing and patterning thin films formed by fusing nanocrystalline precursors
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5783292A (en) 1994-09-29 1998-07-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Electroluminescent device with organic-inorganic composite thin film
US5882779A (en) 1994-11-08 1999-03-16 Spectra Science Corporation Semiconductor nanocrystal display materials and display apparatus employing same
US5866039A (en) 1995-01-13 1999-02-02 The United States Of America As Represented By The Secretary Of The Army Luminescent device for displays and lighting
US5532486A (en) 1995-02-13 1996-07-02 Hughes Aircraft Company Heterojunction diode with low turn-on voltage
US5663573A (en) 1995-03-17 1997-09-02 The Ohio State University Bipolar electroluminescent device
US5965212A (en) 1995-07-27 1999-10-12 Isis Innovation Limited Method of producing metal quantum dots
US6518168B1 (en) 1995-08-18 2003-02-11 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
US6379635B2 (en) 1995-09-15 2002-04-30 Imperial College Of Science, Technology & Medicine Process for preparing a nanocrystalline material
US5736754A (en) 1995-11-17 1998-04-07 Motorola, Inc. Full color organic light emitting diode array
US5917279A (en) 1995-11-20 1999-06-29 Bayer Aktiengesllschaft Intermediate layer in electroluminescent arrangements containing finely divided inorganic particles
US6023073A (en) 1995-11-28 2000-02-08 International Business Machines Corp. Organic/inorganic alloys used to improve organic electroluminescent devices
US5981092A (en) 1996-03-25 1999-11-09 Tdk Corporation Organic El device
US5949089A (en) 1996-04-30 1999-09-07 Electronics And Telecommunications Research Institute Organic light emitting diode having thin insulating layer
US20020055040A1 (en) 1996-05-22 2002-05-09 Mukherjee Shyama P. Novel composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US6838743B2 (en) 1996-06-19 2005-01-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
US20020179898A1 (en) 1996-06-25 2002-12-05 Tobin J. Marks Organic light-emitting diodes and methods for assembly and emission control
US20040000868A1 (en) 1996-07-29 2004-01-01 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light led and phosphor components
US5766779A (en) 1996-08-20 1998-06-16 Eastman Kodak Company Electron transporting materials for organic electroluminescent devices
US6313261B1 (en) 1996-11-07 2001-11-06 University Of Durham Polymer light emitting diode
US5908608A (en) 1996-11-08 1999-06-01 Spectra Science Corporation Synthesis of metal chalcogenide quantum
US6046543A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University High reliability, high efficiency, integratable organic light emitting devices and methods of producing same
WO1998028767A1 (en) 1996-12-23 1998-07-02 The Trustees Of Princeton University An organic light emitting device containing a protection layer
CN1245581A (en) 1996-12-23 2000-02-23 普林斯顿大学理事会 Organic light emitting device containing protection layer
US6103868A (en) 1996-12-27 2000-08-15 The Regents Of The University Of California Organically-functionalized monodisperse nanocrystals of metals
US5958573A (en) 1997-02-10 1999-09-28 Quantum Energy Technologies Electroluminescent device having a structured particle electron conductor
US6129986A (en) 1997-03-06 2000-10-10 Sunstar Giken Kabushiki Kaisha Luminous composition and electroluminescent device comprising the same
US5997958A (en) 1997-03-13 1999-12-07 Hitachi Europe Limited Method of depositing nanometer scale particles
US7015139B2 (en) 1997-05-30 2006-03-21 Matsushita Electric Industrial Co., Ltd. Two-dimensionally arrayed quantum device
US6287928B1 (en) 1997-05-30 2001-09-11 Matsushita Electric Industrial Co., Ltd. Two-dimensionally arrayed quantum device
JPH1140361A (en) 1997-07-23 1999-02-12 Mitsubishi Materials Corp El light emitting panel and manufacture thereof
US6157047A (en) 1997-08-29 2000-12-05 Kabushiki Kaisha Toshiba Light emitting semiconductor device using nanocrystals
US20060197695A1 (en) 1997-09-02 2006-09-07 Kabushiki Kaisha Toshiba Noise suppression circuit, ASIC, navigation apparatus, communication circuit, and communication apparatus having the same
US5874803A (en) 1997-09-09 1999-02-23 The Trustees Of Princeton University Light emitting device with stack of OLEDS and phosphor downconverter
US6821559B2 (en) 1997-10-02 2004-11-23 Chris Eberspacher Method of forming particulate materials for thin-film solar cells
US6512172B1 (en) 1997-11-11 2003-01-28 Universiteit Van Utrecht Polymer-nanocrystal photo device and method for making the same
WO1999026299A1 (en) 1997-11-13 1999-05-27 Massachusetts Institute Of Technology Highly luminescent color-selective materials
US6861155B2 (en) 1997-11-13 2005-03-01 Massachusetts Institute Of Technology Highly luminescent color selective nanocrystalline materials
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US20050031888A1 (en) 1997-11-13 2005-02-10 Massachusetts Institute Of Technology, A Delaware Corporation Tellurium-containing nanocrystalline materials
US6207229B1 (en) 1997-11-13 2001-03-27 Massachusetts Institute Of Technology Highly luminescent color-selective materials and method of making thereof
US20040033359A1 (en) 1997-11-13 2004-02-19 Massachusetts Institute Of Technology, A Massachusetts Corporation Highly luminescnt color-selective nanocrystalline materials
US6849862B2 (en) 1997-11-18 2005-02-01 Technologies And Devices International, Inc. III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US5985173A (en) 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US6194237B1 (en) 1997-12-16 2001-02-27 Hyundai Electronics Industries Co., Ltd. Method for forming quantum dot in semiconductor device and a semiconductor device resulting therefrom
US20040202875A1 (en) 1998-03-27 2004-10-14 Yissum Res & Dev Co Of Hebrew Univ Of Jerusalem Molecular epitaxy method and compositions
US6890777B2 (en) 1998-04-01 2005-05-10 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6803719B1 (en) 1998-04-01 2004-10-12 Massachusetts Institute Of Technology Quantum dot white and colored light-emitting devices
US20030127659A1 (en) 1998-04-01 2003-07-10 Bawendi Moungi G. Quantum dot white and colored light emitting diodes
US6501091B1 (en) 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
US6753272B1 (en) 1998-04-27 2004-06-22 Cvc Products Inc High-performance energy transfer method for thermal processing applications
US6777706B1 (en) 1998-07-14 2004-08-17 Cambridge Display Technologies Optical devices
US6036886A (en) 1998-07-29 2000-03-14 Nanocrystals Technology L.P. Microemulsion method for producing activated metal oxide nanocrystals
US6262129B1 (en) 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
US6294401B1 (en) 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
US6249372B1 (en) 1998-09-10 2001-06-19 Fuji Electric Co., Ltd. Fluorescent conversion filter and color display device using the same
US20010040232A1 (en) 1998-09-18 2001-11-15 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6326144B1 (en) 1998-09-18 2001-12-04 Massachusetts Institute Of Technology Biological applications of quantum dots
US6306610B1 (en) 1998-09-18 2001-10-23 Massachusetts Institute Of Technology Biological applications of quantum dots
US6251303B1 (en) 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
US6617583B1 (en) 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US6608439B1 (en) 1998-09-22 2003-08-19 Emagin Corporation Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
US6447698B1 (en) 1998-09-28 2002-09-10 Sony Corporation Method for producing light-emitting substance
US6239355B1 (en) 1998-10-09 2001-05-29 The Trustees Of Columbia University In The City Of New York Solid-state photoelectric device
US6333110B1 (en) 1998-11-10 2001-12-25 Bio-Pixels Ltd. Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
US20040241424A1 (en) 1998-11-10 2004-12-02 Emilio Barbera-Guillem Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
US6114038A (en) 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
US6235618B1 (en) 1998-11-17 2001-05-22 Electronics And Telecommunications Research Institute Method for forming nanometer-sized silicon quantum dots
US6464898B1 (en) 1998-11-20 2002-10-15 Idemitsu Kosan Co., Ltd. Fluorescence conversion medium and display device comprising it
US6404126B1 (en) 1998-11-25 2002-06-11 Tdk Corporation Organic electroluminescent device having a conjugated polymer and an inorganic insulative electron injecting and transporting layer
CN1289525A (en) 1998-11-25 2001-03-28 Tdk株式会社 Organic el device
US6656608B1 (en) 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
US6242076B1 (en) 1999-02-08 2001-06-05 Michael D. Andriash Illuminated imageable vision control panels and methods of fabricating
US6416888B1 (en) 1999-02-15 2002-07-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
US6949879B1 (en) 1999-04-07 2005-09-27 Microemissive Displays Limited Optoelectronic display
US20010055764A1 (en) 1999-05-07 2001-12-27 Empedocles Stephen A. Microarray methods utilizing semiconductor nanocrystals
US6111274A (en) 1999-05-27 2000-08-29 Tdk Corporation Inorganic light emitting diode
US20030035917A1 (en) 1999-06-11 2003-02-20 Sydney Hyman Image making medium
US6579422B1 (en) 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
US6639354B1 (en) 1999-07-23 2003-10-28 Sony Corporation Light emitting device, production method thereof, and light emitting apparatus and display unit using the same
US20070164661A1 (en) 1999-07-26 2007-07-19 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
US6391273B1 (en) 1999-08-05 2002-05-21 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Process and apparatus for producing oxidic nanocrystals
US7175948B2 (en) 1999-08-26 2007-02-13 Dai Nippon Printing Co., Ltd. Coloring material and color filter
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6440213B1 (en) 1999-10-28 2002-08-27 The Regents Of The University Of California Process for making surfactant capped nanocrystals
US6179912B1 (en) 1999-12-20 2001-01-30 Biocrystal Ltd. Continuous flow process for production of semiconductor nanocrystals
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US20050006656A1 (en) 2000-04-11 2005-01-13 Jain Faquir C. Full color display structures using pseudomorphic cladded quantum dot nanophosphor thin films
US6992317B2 (en) 2000-04-11 2006-01-31 University Of Connecticut Full color display structures using pseudomorphic cladded quantum dot nanophosphor thin films
US6797412B1 (en) 2000-04-11 2004-09-28 University Of Connecticut Full color display structures using pseudomorphic cladded quantum dot nanophosphor thin films
US20010052752A1 (en) 2000-04-25 2001-12-20 Ghosh Amalkumar P. Thin film encapsulation of organic light emitting diode devices
US6586785B2 (en) 2000-06-29 2003-07-01 California Institute Of Technology Aerosol silicon nanoparticles for use in semiconductor device fabrication
US7491642B2 (en) 2000-07-12 2009-02-17 The California Institute Of Technology Electrical passivation of silicon-containing surfaces using organic layers
US6780242B2 (en) 2000-07-26 2004-08-24 Nec Laboratories America, Inc. Method for manufacturing high-quality manganese-doped semiconductor nanocrystals
US6329668B1 (en) 2000-07-27 2001-12-11 Mp Technologies L.L.C. Quantum dots for optoelecronic devices
US20020047551A1 (en) 2000-08-16 2002-04-25 Rubner Michael F. High efficiency soild state light-emitting device and method of generating light
US20030010987A1 (en) 2000-09-14 2003-01-16 Uri Banin Semiconductor nanocrystalline materials and their uses
US6872249B2 (en) 2000-10-04 2005-03-29 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US20050189534A1 (en) 2000-10-19 2005-09-01 Arch Development Corporation Doped semiconductor nanocrystals
US6939604B1 (en) 2000-10-19 2005-09-06 Arch Development Corporation Doped semiconductor nanocrystals
US6515314B1 (en) 2000-11-16 2003-02-04 General Electric Company Light-emitting device with organic layer doped with photoluminescent material
US20020071952A1 (en) 2000-12-08 2002-06-13 Moungi Bawendi Preparation of nanocrystallites
US6576291B2 (en) 2000-12-08 2003-06-10 Massachusetts Institute Of Technology Preparation of nanocrystallites
US6475886B2 (en) 2000-12-26 2002-11-05 Korea Institute Of Science And Technology Fabrication method of nanocrystals using a focused-ion beam
CN1551697A (en) 2000-12-28 2004-12-01 ��ʽ����뵼����Դ�о��� Light emitting device
US20050260440A1 (en) 2000-12-28 2005-11-24 Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation Luminescent device
US6682596B2 (en) 2000-12-28 2004-01-27 Quantum Dot Corporation Flow synthesis of quantum dot nanocrystals
US6706551B2 (en) 2001-02-07 2004-03-16 Agfa-Gevaert Thin film inorganic light emitting diode
US20020146590A1 (en) 2001-02-08 2002-10-10 Shinji Matsuo Organic electroluminescent material and device made therefrom
US20060060862A1 (en) 2001-02-09 2006-03-23 Massachusetts Institute Of Technology Composite material including nanocrystals and methods of making
US20040137263A1 (en) 2001-02-20 2004-07-15 Burn Paul Leslie Metal-containing dendrimers
US20020180349A1 (en) 2001-03-08 2002-12-05 Xerox Corporation Display devices with organic-metal mixed layer
US20060205142A1 (en) 2001-03-29 2006-09-14 Micron Technology, Inc. Methods of forming semiconductor constructions
US20060001066A1 (en) 2001-03-29 2006-01-05 Er-Xuan Ping Semiconductor Constructions
US6697403B2 (en) 2001-04-17 2004-02-24 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting apparatus using the same
US6544870B2 (en) 2001-04-18 2003-04-08 Kwangju Institute Of Science And Technology Silicon nitride film comprising amorphous silicon quantum dots embedded therein, its fabrication method and light-emitting device using the same
US20020182439A1 (en) * 2001-05-01 2002-12-05 Yu-Tai Tao Fluorene compounds
US20040178414A1 (en) 2001-05-18 2004-09-16 Gitti Frey Electroluminescent device
US7008559B2 (en) 2001-06-06 2006-03-07 Nomadics, Inc. Manganese doped upconversion luminescence nanoparticles
US6918946B2 (en) 2001-07-02 2005-07-19 Board Of Regents, The University Of Texas System Applications of light-emitting nanoparticles
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US20030034486A1 (en) 2001-07-02 2003-02-20 Korgel Brian A. Applications of light-emitting nanoparticles
US6815064B2 (en) 2001-07-20 2004-11-09 Quantum Dot Corporation Luminescent nanoparticles and methods for their preparation
US7172791B2 (en) 2001-07-20 2007-02-06 Invitrogen Corp. Luminescent nanoparticles and methods for their preparation
US20030017264A1 (en) 2001-07-20 2003-01-23 Treadway Joseph A. Luminescent nanoparticles and methods for their preparation
US20030071794A1 (en) 2001-07-26 2003-04-17 Dai Nippon Printing Co., Ltd. Transparent conductive film
US6869545B2 (en) 2001-07-30 2005-03-22 The Board Of Trustees Of The University Of Arkansas Colloidal nanocrystals with high photoluminescence quantum yields and methods of preparing the same
WO2003050329A2 (en) 2001-07-30 2003-06-19 The Board Of Trustees Of The University Of Arkansas High quality colloidal nanocrystals and methods of preparation of the same in non-coordinating solvents
US6753273B2 (en) 2001-07-31 2004-06-22 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods
US20030170927A1 (en) 2001-07-31 2003-09-11 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods
US6710366B1 (en) 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US7005669B1 (en) 2001-08-02 2006-02-28 Ultradots, Inc. Quantum dots, nanocomposite materials with quantum dots, devices with quantum dots, and related fabrication methods
US20030042850A1 (en) 2001-09-04 2003-03-06 Dietrich Bertram Electroluminescent device comprising quantum dots
US20030142944A1 (en) 2001-09-17 2003-07-31 Sundar Vikram C. Semiconductor nanocrystal composite
US20030059635A1 (en) 2001-09-17 2003-03-27 Imad Naasani Nanocrystals
US7147712B2 (en) 2001-10-02 2006-12-12 Invitrogen Corporation Method of semiconductor nanoparticle synthesis
US6724141B2 (en) 2001-10-30 2004-04-20 Agfa-Gevaert Particular type of a thin layer inorganic light emitting device
US20050014017A1 (en) 2001-10-31 2005-01-20 Chishio Hosokawa Novel soluble compound and organic electroluminescent devices
US6855202B2 (en) 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US20080278069A1 (en) 2001-11-30 2008-11-13 Semiconductor Energy Laboratory Co., Ltd. Light Emitting Device
US20030106488A1 (en) 2001-12-10 2003-06-12 Wen-Chiang Huang Manufacturing method for semiconductor quantum particles
US6861674B2 (en) 2002-01-11 2005-03-01 C.R.F. Societa Consortile Per Azioni Electroluminescent device
JP2003217861A (en) 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Electroluminescent element
US6853013B2 (en) 2002-02-28 2005-02-08 Fuji Photo Film Co., Ltd. Light-emitting element and method of producing the same
US6940087B2 (en) 2002-03-08 2005-09-06 Matsushita Electric Works, Ltd. Quantum device
US20040023010A1 (en) 2002-03-29 2004-02-05 Vladimir Bulovic Light emitting device including semiconductor nanocrystals
US7700200B2 (en) 2002-03-29 2010-04-20 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
WO2003084292A1 (en) 2002-03-29 2003-10-09 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US6703781B2 (en) 2002-05-21 2004-03-09 Durel Corporation El lamp with light scattering particles in cascading layer
US6838816B2 (en) 2002-05-28 2005-01-04 National Taiwan University Light emitting diode with nanoparticles
US6977182B2 (en) 2002-07-23 2005-12-20 Hitachi Software Engineering Co., Ltd Semiconductor nanoparticles, method for producing the same, and fluorescence reagent comprising semiconductor nanoparticles
US20040110002A1 (en) 2002-08-13 2004-06-10 Sungjee Kim Semiconductor nanocrystal heterostructures
US20040091710A1 (en) 2002-08-15 2004-05-13 Bawendi Moungi G. Stabilized semiconductor nanocrystals
US7160613B2 (en) 2002-08-15 2007-01-09 Massachusetts Institute Of Technology Stabilized semiconductor nanocrystals
US20050126628A1 (en) 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7015640B2 (en) 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
US7015498B2 (en) 2002-09-19 2006-03-21 Fujitsu Limited Quantum optical semiconductor device
US20040206942A1 (en) 2002-09-24 2004-10-21 Che-Hsiung Hsu Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US6872450B2 (en) 2002-10-23 2005-03-29 Evident Technologies Water-stable photoluminescent semiconductor nanocrystal complexes and method of making same
US7332211B1 (en) 2002-11-07 2008-02-19 Massachusetts Institute Of Technology Layered materials including nanoparticles
US8535758B2 (en) 2002-11-07 2013-09-17 Massachusetts Institute Of Technology Materials including semiconductor nanocrystals
US20050001538A1 (en) 2002-11-20 2005-01-06 Mihri Ozkan Multilayer polymer-quantum dot light emitting diodes and methods of making and using thereof
US7056471B1 (en) 2002-12-16 2006-06-06 Agency For Science Technology & Research Ternary and quarternary nanocrystals, processes for their production and uses thereof
US6955856B2 (en) 2002-12-30 2005-10-18 Samsung Sdi Co., Ltd. Biphenyl derivatives and organic electroluminescent device employing the same
US6859477B2 (en) 2003-01-07 2005-02-22 University Of Texas Optoelectronic and electronic devices based on quantum dots having proximity-placed acceptor impurities, and methods therefor
US7919012B2 (en) 2003-01-22 2011-04-05 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US20050129947A1 (en) 2003-01-22 2005-06-16 Xiaogang Peng Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US20060220528A1 (en) 2003-01-30 2006-10-05 Kai Engelhardt Light-emitting devices
WO2005002007A2 (en) 2003-03-20 2005-01-06 The Research Foundation Of State University Of Newyork Process for producing semiconductor nanocrystal cores, core-shell, core-buffer-shell, and multiple layer systems in a non-coordinating solvent utilizing in situ surfactant generation
JP2004296950A (en) 2003-03-27 2004-10-21 Quantum 14:Kk Light emitting element and light emitting device as well as information display unit
JP2004303592A (en) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp Electroluminescent element and manufacturing method of the same
US20040209115A1 (en) 2003-04-21 2004-10-21 Thompson Mark E. Organic light emitting devices with wide gap host materials
US6995505B2 (en) 2003-04-30 2006-02-07 Korea Institute Of Science And Technology Polymeric electroluminescent device using an emitting layer of nanocomposites
US20070111324A1 (en) 2003-05-07 2007-05-17 Indiana University Research And Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
WO2005001889A2 (en) 2003-05-07 2005-01-06 Indiana University Research & Technology Corporation Alloyed semiconductor quantum dots and concentration-gradient alloyed quantum dots, series comprising the same and methods related thereto
US20040227703A1 (en) 2003-05-13 2004-11-18 Mcnc Research And Development Institute Visual display with increased field of view
US20040265622A1 (en) 2003-06-24 2004-12-30 Eastman Kodak Company Light emitting display
US6869864B2 (en) 2003-06-27 2005-03-22 Samsung Electronics Co., Ltd. Method for producing quantum dot silicate thin film for light emitting device
JP2005038634A (en) 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Current injection light-emitting element
US20050012182A1 (en) 2003-07-19 2005-01-20 Samsung Electronics Co., Ltd. Alloy type semiconductor nanocrystals and method for preparing the same
US7250082B2 (en) 2003-07-19 2007-07-31 Samsung Electronics Co., Ltd. Alloy type semiconductor nanocrystals and method for preparing the same
US20050112849A1 (en) 2003-08-26 2005-05-26 Stott Nathan E. Method of preparing nanocrystals
US7422790B1 (en) 2003-09-04 2008-09-09 Nanosys, Inc. Methods of processing nanocrystals, and compositions, devices and systems including same
US20050051766A1 (en) 2003-09-05 2005-03-10 The University Of North Carolina Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture
US20050051777A1 (en) 2003-09-08 2005-03-10 Hill Steven E. Solid state white light emitter and display using same
US20050051769A1 (en) 2003-09-09 2005-03-10 Jang Eun Joo Luminescent efficiency of semiconductor nanocrystals by surface treatment
WO2005031802A2 (en) 2003-09-24 2005-04-07 The Regents Of The University Of California Hybrid synthesis of core/shell nanocrystals
US20050072989A1 (en) 2003-10-06 2005-04-07 Bawendi Moungi G. Non-volatile memory device
US7199393B2 (en) 2003-10-21 2007-04-03 Samsung Electronics Co., Ltd. Photosensitive semiconductor nanocrystals, photosensitive composition comprising semiconductor nanocrystals and method for forming semiconductor nanocrystal pattern using the same
US20050088380A1 (en) 2003-10-23 2005-04-28 Vladimir Bulovic LED array with photodetector
US20050276993A1 (en) 2003-10-29 2005-12-15 Byung-Hee Sohn Electroluminescent device using metal nanoparticles
US20050116621A1 (en) 2003-11-18 2005-06-02 Erika Bellmann Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
WO2005052996A2 (en) 2003-11-19 2005-06-09 William Marsh Rice University Methods and materials for cdse nanocrystal synthesis
US20050117868A1 (en) 2003-12-01 2005-06-02 Gang Chen Polymeric compositions comprising quantum dots, optical devices comprising these compositions and methods for preparing same
US20050116633A1 (en) 2003-12-02 2005-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device using the same
US20050214536A1 (en) 2003-12-12 2005-09-29 Quantum Dot Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
US20050135079A1 (en) 2003-12-18 2005-06-23 Yin Chua Janet B. Flash module with quantum dot light conversion
US20050136258A1 (en) 2003-12-22 2005-06-23 Shuming Nie Bioconjugated nanostructures, methods of fabrication thereof, and methods of use thereof
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
WO2005067524A2 (en) 2004-01-15 2005-07-28 Nanosys, Inc. Nanocrystal doped matrixes
US20060068154A1 (en) 2004-01-15 2006-03-30 Nanosys, Inc. Nanocrystal doped matrixes
US7880377B2 (en) 2004-01-23 2011-02-01 Hoya Corporation Quantum dot-dispersed light emitting device, and manufacturing method thereof
US8012604B2 (en) 2004-02-14 2011-09-06 Merck Patent Gmbh Electroluminescent materials and devices
US7253452B2 (en) 2004-03-08 2007-08-07 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
US8080437B2 (en) 2004-03-08 2011-12-20 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
WO2005086782A2 (en) 2004-03-08 2005-09-22 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
US20050258418A1 (en) 2004-03-08 2005-11-24 Steckel Jonathan S Blue light emitting semiconductor nanocrystal materials
US20050206306A1 (en) 2004-03-18 2005-09-22 C.R.F. Societa Consortile Per Azioni Light-emitting device comprising porous alumina, and manufacturing process thereof
US20050230673A1 (en) 2004-03-25 2005-10-20 Mueller Alexander H Colloidal quantum dot light emitting diodes
US20080087899A1 (en) 2004-04-19 2008-04-17 Edward Sargent Optically-Regulated Optical Emission Using Colloidal Quantum Dot Nanocrystals
US20050236556A1 (en) 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7326908B2 (en) 2004-04-19 2008-02-05 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US20060014315A1 (en) 2004-04-28 2006-01-19 Warren Chan Stable, water-soluble quantum dot, method of preparation and conjugates thereof
US7208768B2 (en) 2004-04-30 2007-04-24 Sharp Laboratories Of America, Inc. Electroluminescent device
US20060014040A1 (en) 2004-05-10 2006-01-19 Evident Technologies, Inc. Semiconductor nanocrystal complexes and methods of making same
US8003010B2 (en) 2004-05-10 2011-08-23 Samsung Electronics Co., Ltd. Water-stable III-V semiconductor nanocrystal complexes and methods of making same
US20060001119A1 (en) 2004-05-10 2006-01-05 Evident Technologies, Inc. III-V semiconductor nanocrystal complexes and methods of making same
US7399429B2 (en) 2004-05-10 2008-07-15 Evident Technologies, Inc. III-V semiconductor nanocrystal complexes and methods of making same
US20050261400A1 (en) 2004-05-18 2005-11-24 Maizhi Yang Color-converting photoluminescent film
US7569248B2 (en) 2004-05-28 2009-08-04 Samsung Electronics Co., Ltd. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method
US20060063029A1 (en) 2004-05-28 2006-03-23 Samsung Electronics Co., Ltd. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method
US20060062720A1 (en) 2004-05-28 2006-03-23 Samsung Electronics Co., Ltd. Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
US20110287566A1 (en) 2004-06-09 2011-11-24 Samsung Electronics Co., Ltd. Method for fabricating an electroluminescence device
US20050274944A1 (en) 2004-06-09 2005-12-15 Samsung Electronics Co., Ltd. Nanocrystal electroluminescence device and fabrication method thereof
US20050274994A1 (en) 2004-06-14 2005-12-15 Rhodes Howard E High dielectric constant spacer for imagers
US20050279989A1 (en) 2004-06-16 2005-12-22 Exalos Ag Broadband light emitting device
US7442320B2 (en) 2004-06-18 2008-10-28 Ultradots, Inc. Nanostructured materials and photovoltaic devices including nanostructured materials
US20050287691A1 (en) 2004-06-24 2005-12-29 Industrial Technology Research Institute Method for doping quantum dots
US20080041814A1 (en) 2004-07-07 2008-02-21 Nanosys, Inc. Systems and Methods for Harvesting and Integrating Nanowires
US20060019427A1 (en) 2004-07-23 2006-01-26 University Of Florida Research Foundation, Inc. One-pot synthesis of high-quality metal chalcogenide nanocrystals without precursor injection
US20070243382A1 (en) 2004-07-26 2007-10-18 Massachusetts Institute Of Technology Microspheres including nanoparticles
US20060028882A1 (en) 2004-08-04 2006-02-09 Lianhua Qu Alloyed semiconductor nanocrystals
US20060034065A1 (en) 2004-08-10 2006-02-16 Innovalight, Inc. Light strips for lighting and backlighting applications
US20060046330A1 (en) 2004-08-23 2006-03-02 Industrial Technology Research Institute Method for manufacturing a quantum-dot element
US20060043361A1 (en) 2004-08-25 2006-03-02 Samsung Electronics Co., Ltd. White light-emitting organic-inorganic hybrid electroluminescence device comprising semiconductor nanocrystals
WO2006027778A2 (en) 2004-09-09 2006-03-16 Technion Research & Development Foundation Ltd. Core-alloyed shell semiconductor nanocrystals
US20060158089A1 (en) 2004-09-14 2006-07-20 Sharp Kabushiki Kaisha Fluorescent material and light-emitting apparatus employing the same
US20060062902A1 (en) 2004-09-18 2006-03-23 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US20070197003A1 (en) 2004-09-24 2007-08-23 Brian Yen Flow method and reactor for manufacturing nanocrystals
US20080061683A1 (en) 2004-09-27 2008-03-13 Koninklijke Philips Electronics, N.V. Illumination System
US20080278064A1 (en) 2004-09-30 2008-11-13 Daisuke Kumaki Light Emitting Element
US20080001167A1 (en) 2004-10-22 2008-01-03 Seth Coe-Sullivan Light emitting device including semiconductor nanocrystals
US20060196375A1 (en) 2004-10-22 2006-09-07 Seth Coe-Sullivan Method and system for transferring a patterned material
US20060216759A1 (en) 2004-10-29 2006-09-28 Imad Naasani Functionalized fluorescent nanocrystals, and methods for their preparation and use
US20060236918A1 (en) 2004-11-11 2006-10-26 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
JP2006186317A (en) 2004-11-11 2006-07-13 Samsung Electronics Co Ltd Nano crystal of multilayer structure and manufacturing method therefor
US20080029760A1 (en) 2004-11-11 2008-02-07 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
US20060105200A1 (en) 2004-11-17 2006-05-18 Dmytro Poplavskyy Organic electroluminescent device
US20060105199A1 (en) 2004-11-18 2006-05-18 3M Innovative Properties Company Electroluminescent devices containing trans-1,2-bis(acenyl)ethylene compounds
US20060114960A1 (en) 2004-11-30 2006-06-01 Snee Preston T Optical feedback structures and methods of making
US20060119258A1 (en) 2004-12-06 2006-06-08 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US20060127562A1 (en) 2004-12-15 2006-06-15 General Electric Company Adhesion promoter, electroactive layer and electroactive device comprising same, and method
US20060131361A1 (en) 2004-12-16 2006-06-22 Eastman Paul S Quantum dot-encoded bead set for calibration and quantification of multiplexed assays, and methods for their use
US20060157720A1 (en) 2005-01-11 2006-07-20 Bawendi Moungi G Nanocrystals including III-V semiconductors
US20060157686A1 (en) 2005-01-20 2006-07-20 Samsung Electronics Co., Ltd. Quantum dot phosphor for light emitting diode and method of preparing the same
US20070103068A1 (en) 2005-02-16 2007-05-10 Bawendi Moungi G Light emitting devices including semiconductor nanocrystals
US20120292595A1 (en) 2005-02-16 2012-11-22 Bawendi Moungi G Light emitting device including semiconductor nanocrystals
WO2006088877A1 (en) 2005-02-16 2006-08-24 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20120238047A1 (en) 2005-02-16 2012-09-20 Bawendi Moungi G Light emitting device including semiconductor nanocrystals
US8232722B2 (en) 2005-02-16 2012-07-31 Massachusetts Institute Of Technology Light emitting devices including semiconductor nanocrystals
US20090066223A1 (en) 2005-02-21 2009-03-12 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
US7592618B2 (en) 2005-02-24 2009-09-22 Samsung Electronics Co., Ltd. Nanoparticle electroluminescence and method of manufacturing the same
US20060194075A1 (en) * 2005-02-25 2006-08-31 Seiko Epson Corporation Light emitting element, light emitting device, and electronic apparatus
US20060198128A1 (en) 2005-02-28 2006-09-07 Color Kinetics Incorporated Configurations and methods for embedding electronics or light emitters in manufactured materials
US20060204675A1 (en) 2005-03-08 2006-09-14 Eastman Kodak Company Display device with improved flexibility
WO2006098540A1 (en) 2005-03-17 2006-09-21 Samsung Electronics Co., Ltd Quantum dot light -emitting diode comprising inorganic electron transport layer
US20090039764A1 (en) 2005-03-17 2009-02-12 Cho Kyung Sang Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer
KR20060101184A (en) 2005-03-17 2006-09-22 삼성전자주식회사 Quantum dot light emitting diode comprising inorganic electron transport layer
US20060232194A1 (en) 2005-04-13 2006-10-19 Yeh-Jiun Tung Hybrid OLED having phosphorescent and fluorescent emitters
US7632428B2 (en) 2005-04-25 2009-12-15 The Board Of Trustees Of The University Of Arkansas Doped semiconductor nanocrystals and methods of making same
US20060244358A1 (en) 2005-05-02 2006-11-02 Samsung Electro-Mechanics Co., Ltd. White light emitting device
US20110233483A1 (en) 2005-06-05 2011-09-29 Craig Breen Compositions, optical component, system including an optical component, devices, and other products
US20060273304A1 (en) 2005-06-07 2006-12-07 Eastman Kodak Company OLED device having curved viewing surface
US7964278B2 (en) 2005-06-15 2011-06-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem III-V semiconductor core-heteroshell nanocrystals
US7459850B2 (en) 2005-06-22 2008-12-02 Eastman Kodak Company OLED device having spacers
US7732237B2 (en) 2005-06-27 2010-06-08 The Regents Of The University Of California Quantum dot based optoelectronic device and method of making same
US20070001581A1 (en) 2005-06-29 2007-01-04 Stasiak James W Nanostructure based light emitting devices and associated methods
US8563143B2 (en) 2005-07-25 2013-10-22 Lg Display Co., Ltd. Organic electroluminescence device and method for fabricating the same
KR20070013002A (en) 2005-07-25 2007-01-30 엘지전자 주식회사 Organic electroluminescence device and method for fabricating the same
US20070034856A1 (en) 2005-08-11 2007-02-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electronic device
US20070057263A1 (en) 2005-09-14 2007-03-15 Eastman Kodak Company Quantum dot light emitting layer
WO2007037882A1 (en) 2005-09-14 2007-04-05 Eastman Kodak Company Quantum dot light emitting layer
US7615800B2 (en) 2005-09-14 2009-11-10 Eastman Kodak Company Quantum dot light emitting layer
US20110101303A1 (en) 2005-09-27 2011-05-05 Samsung Electronics Co., Ltd Light-emitting device comprising semiconductor nanocrystal layer free of voids and method for producing the same
US20070069202A1 (en) 2005-09-27 2007-03-29 Choi Byoung L Light-emitting device comprising semiconductor nanocrystal layer free of voids and method for producing the same
US20070087219A1 (en) 2005-10-19 2007-04-19 Eastman Kodak Company Electroluminescent device
CN1967898A (en) 2005-11-17 2007-05-23 群康科技(深圳)有限公司 Organic electroluminescence display device
US20070170446A1 (en) 2006-01-09 2007-07-26 Samsung Electronics Co., Ltd. Inorganic electroluminescent diode and method of fabricating the same
US20100134520A1 (en) 2006-02-09 2010-06-03 Seth Coe-Sullivan Displays including semiconductor nanocrystals and methods of making same
US20100132770A1 (en) 2006-02-09 2010-06-03 Beatty Paul H J Device including semiconductor nanocrystals and a layer including a doped organic material and methods
US20070190675A1 (en) 2006-02-10 2007-08-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of display device
US20100001256A1 (en) 2006-02-14 2010-01-07 Massachusetts Institute Of Technology White light emitting devices
WO2007095173A2 (en) 2006-02-14 2007-08-23 Massachusetts Institute Of Technology White light emitting devices
US7910400B2 (en) 2006-02-16 2011-03-22 Samsung Electronics Co., Ltd. Quantum dot electroluminescence device and method of fabricating the same
US20070215856A1 (en) 2006-02-16 2007-09-20 Samsung Electronics Co., Ltd. Quantum dot electroluminescence device and method of fabricating the same
US20070194694A1 (en) 2006-02-17 2007-08-23 Solexant Corp Nanostructured electroluminescent device and display
US20090162011A1 (en) 2006-03-07 2009-06-25 Seth Coe-Sullivan Compositions, optical component, system including an optical component, devices, and other products
US20100314646A1 (en) 2006-03-07 2010-12-16 Craig Breen Compositions, optical component, system including an optical component, devices, and other products
US20090152567A1 (en) 2006-03-07 2009-06-18 Mark Comerford Article including semiconductor nanocrystals
US8610232B2 (en) 2006-03-24 2013-12-17 Qd Vision, Inc. Hyperspectral imaging device
US20090174022A1 (en) 2006-03-24 2009-07-09 Seth Coe-Sullivan Hyperspectral imaging device
EP1843411A1 (en) 2006-04-04 2007-10-10 Toppoly Optoelectronics Corp. System for displaying images including electroluminescent device and method for fabricating the same
US20080038558A1 (en) 2006-04-05 2008-02-14 Evident Technologies, Inc. I-iii-vi semiconductor nanocrystals, i-iii-vi water stable semiconductor nanocrystals, and methods of making same
US8470617B2 (en) 2006-04-07 2013-06-25 Qd Vision, Inc. Composition including material, methods of depositing material, articles including same and systems for depositing material
US20090215208A1 (en) 2006-04-07 2009-08-27 Seth Coe-Sullivan Composition including material, methods of depositing material, articles including same and systems for depositing material
US20090181478A1 (en) 2006-04-07 2009-07-16 Marshall Cox Methods of depositing nanomaterial & methods of making a device
US20090208753A1 (en) 2006-04-07 2009-08-20 Seth Coe-Sullivan Methods and articles including nanomaterial
WO2007117672A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Methods of depositing nanomaterial & methods of making a device
US20070246734A1 (en) 2006-04-10 2007-10-25 Samsung Electro-Mechanics Co., Ltd. Multilayered white light emitting diode using quantum dots and method of fabricating the same
US20090215209A1 (en) 2006-04-14 2009-08-27 Anc Maria J Methods of depositing material, methods of making a device, and systems and articles for use in depositing material
US20070257608A1 (en) 2006-05-05 2007-11-08 Eastman Kodak Company Electroluminescent device having improved light output
US20100014799A1 (en) 2006-05-21 2010-01-21 Massachusetts Institute Of Technology Optical structures including nanocrystals
US20080074050A1 (en) 2006-05-21 2008-03-27 Jianglong Chen Light emitting device including semiconductor nanocrystals
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US9054329B2 (en) 2006-06-02 2015-06-09 Qd Vision, Inc. Light-emitting devices and displays with improved performance
US20100283014A1 (en) 2006-06-02 2010-11-11 Craig Breen Functionalized nanoparticles and method
US20090278141A1 (en) 2006-06-02 2009-11-12 Seth Coe-Sullivan Light-emitting devices and displays with improved performance
US20110245533A1 (en) 2006-06-02 2011-10-06 Craig Breen Nanoparticle including multi-functional ligand and method
US20080087882A1 (en) 2006-06-05 2008-04-17 Lecloux Daniel D Process for making contained layers and devices made with same
US20090251759A1 (en) 2006-06-10 2009-10-08 Domash Lawrence H Materials, thin films, optical filters, and devices including same
US20070289491A1 (en) 2006-06-15 2007-12-20 Evident Technologies, Inc. Method of preparing semiconductor nanocrystal compositions
US20090283742A1 (en) 2006-06-24 2009-11-19 Seth Coe-Sullivan Methods and articles including nanomaterial
US20090280586A1 (en) 2006-06-24 2009-11-12 Seth Coe-Sullivan Methods for depositing nanomaterial, methods for fabricating a device, and methods for fabricating an array of devices
US20090286338A1 (en) 2006-06-24 2009-11-19 Seth Coe-Sullivan Methods for depositing nanomaterial, methods for fabricating a device, methods for fabricating an array of devices and compositions
US20080012031A1 (en) 2006-07-14 2008-01-17 Samsung Electronics Co., Ltd. White light-emitting diode using semiconductor nanocrystals and preparation method thereof
WO2008007124A1 (en) 2006-07-14 2008-01-17 Imperial Innovations Limited A hybrid organic light emitting device
US20100025595A1 (en) 2006-07-31 2010-02-04 Moungi Bawendi Electro-optical device
WO2008021962A2 (en) 2006-08-11 2008-02-21 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystals and devices
US20110127932A1 (en) 2006-08-11 2011-06-02 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystals and devices
US20090283778A1 (en) 2006-09-12 2009-11-19 Seth Coe-Sullivan Electroluminescent display useful for displaying a predetermined pattern
US20090283743A1 (en) 2006-09-12 2009-11-19 Seth Coe-Sullivan Composite including nanoparticles, methods, and products including a composite
US20100044636A1 (en) 2006-11-21 2010-02-25 Dorai Ramprasad Semiconductor nanocrystals and compositions and devices including same
WO2008063657A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Light emitting devices and displays with improved performance
US20100052512A1 (en) 2006-11-21 2010-03-04 Clough Christopher R Nanocrytals including a Group IIIA element and a Group VA element, method, composition, device and other products
US8980133B2 (en) 2006-11-21 2015-03-17 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063658A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US8691114B2 (en) 2006-11-21 2014-04-08 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US20130234109A1 (en) 2006-11-21 2013-09-12 Qd Vision, Inc. Blue Emitting Semiconductor Nanocrystals And Compositions And Devices Including Same
US20130221291A1 (en) 2006-11-21 2013-08-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US20100051870A1 (en) 2006-11-21 2010-03-04 Dorai Ramprasad Semiconductor nanocrytals and compositions and devices including same
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US8404154B2 (en) 2006-11-21 2013-03-26 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
US8377333B2 (en) 2006-11-21 2013-02-19 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
US20100044635A1 (en) 2006-11-21 2010-02-25 Craig Breen Blue emitting semiconductor nanocrystals and compositions and devices including same
US20100051901A1 (en) 2006-11-21 2010-03-04 Kazlas Peter T Light emitting devices and displays with improved performance
US20100068468A1 (en) 2006-12-01 2010-03-18 Seth Coe-Sullivan Composites and devices including nanoparticles
US20080142075A1 (en) 2006-12-06 2008-06-19 Solexant Corporation Nanophotovoltaic Device with Improved Quantum Efficiency
WO2008073373A1 (en) 2006-12-11 2008-06-19 Evident Technologies Nanostructured layers, method of making nanostructured layers, and application thereof
US8368048B2 (en) 2006-12-11 2013-02-05 Nanoco Technologies, Ltd. Nanostructured layers, methods of making nanostructured layers, and application thereof
US20100270511A1 (en) 2006-12-11 2010-10-28 Locascio Michael Nanostructured layers, methods of making nanostructured layers, and application thereof
US20080150425A1 (en) 2006-12-20 2008-06-26 Samsung Electronics Co., Ltd. Inorganic electroluminescent device comprising an insulating layer, method for fabricating the electroluminescent device and electronic device comprising the electroluminescent device
US20080169753A1 (en) 2007-01-11 2008-07-17 Motorola, Inc. Light emissive printed article printed with quantum dot ink
US20080172197A1 (en) 2007-01-11 2008-07-17 Motorola, Inc. Single laser multi-color projection display with quantum dot screen
US20080180020A1 (en) 2007-01-29 2008-07-31 Cok Ronald S Light-emitting display device having improved efficiency
US20080202383A1 (en) 2007-01-30 2008-08-28 Evident Technologies, Inc. Group ii alloyed i-iii-vi semiconductor nanocrystal compositions and methods of making same
US20080217608A1 (en) 2007-02-21 2008-09-11 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Light-Emitting Device, Electronic Device and Quinoxaline Derivative
US20080204366A1 (en) 2007-02-26 2008-08-28 Kane Paul J Broad color gamut display
US20080203899A1 (en) 2007-02-28 2008-08-28 Miller Michael E Electro-luminescent display with improved efficiency
US20080203895A1 (en) 2007-02-28 2008-08-28 Miller Michael E Electro-luminescent device with improved efficiency
US20080216891A1 (en) 2007-03-05 2008-09-11 Seagate Technology Llc Quantum dot sensitized wide bandgap semiconductor photovoltaic devices & methods of fabricating same
US20080218068A1 (en) 2007-03-05 2008-09-11 Cok Ronald S Patterned inorganic led device
US20080217602A1 (en) 2007-03-08 2008-09-11 Kahen Keith B Quantum dot light emitting device
EP1980652A2 (en) 2007-03-26 2008-10-15 Samsung Electronics Co., Ltd. Multilayer nanocrystal structure and method for producing the same
US20080237612A1 (en) 2007-03-29 2008-10-02 Cok Ronald S Device having spacers
US20080238829A1 (en) 2007-03-30 2008-10-02 Kane Paul J Color electro-luminescent display with improved efficiency
US20080278063A1 (en) 2007-05-07 2008-11-13 Cok Ronald S Electroluminescent device having improved power distribution
US20080297028A1 (en) 2007-05-30 2008-12-04 Kane Paul J White-light electro-luminescent device with improved efficiency
US20080297029A1 (en) 2007-05-31 2008-12-04 Cok Ronald S Electroluminescent device having improved light output
US20080309234A1 (en) 2007-06-15 2008-12-18 Samsung Electronics Co., Ltd. Alternating current driving type quantum dot electroluminescent device
US20110101479A1 (en) 2007-06-25 2011-05-05 Massachusetts Institute Of Technology Photovoltaic device including semiconductor nanocrystals
US20100265307A1 (en) 2007-06-25 2010-10-21 Linton John R Compositions and methods including depositing nanomaterial
US20090320909A1 (en) 2007-06-25 2009-12-31 Alexi Arango Electro-optical device
US20100243053A1 (en) 2007-06-26 2010-09-30 Seth Coe-Sullivan Photovoltaic devices including quantum dot down-conversion materials useful for solar cells and materials including quantum dots
US20090002806A1 (en) 2007-06-26 2009-01-01 Motorola, Inc. Portable electronic device having an electro wetting display illuminated by quantum dots
US20090001385A1 (en) 2007-06-27 2009-01-01 Motorola, Inc. Apparatus and method for modulating photon output of a quantum dot light emitting device
US20090002349A1 (en) 2007-06-28 2009-01-01 Cok Ronald S Electroluminescent white light emitting device
US20090001403A1 (en) 2007-06-29 2009-01-01 Motorola, Inc. Inductively excited quantum dot light emitting device
US20090001349A1 (en) 2007-06-29 2009-01-01 Kahen Keith B Light-emitting nanocomposite particles
US20090017268A1 (en) 2007-07-11 2009-01-15 Motorola, Inc. Method and apparatus for selectively patterning free standing quantum dot (fsqdt) polymer composites
US20100283072A1 (en) 2007-07-18 2010-11-11 Kazlas Peter T Quantum dot-based light sheets useful for solid-state lighting
US20100283036A1 (en) 2007-07-23 2010-11-11 Seth Coe-Sullivan Quantum dot light enhancement substrate and lighting device including same
US20090059554A1 (en) 2007-08-28 2009-03-05 Motorola, Inc. Apparatus for selectively backlighting a material
US20090087792A1 (en) 2007-09-28 2009-04-02 Dai Nippon Printig Co., Ltd. Method for manufacturing electroluminescence element
US8334527B2 (en) 2007-09-28 2012-12-18 Dai Nippon Printing Co., Ltd. Electroluminescent device
US20090087546A1 (en) 2007-09-28 2009-04-02 Dai Nippon Printing Co., Ltd. Process for producing electroluminescent device
US20100237323A1 (en) 2007-09-28 2010-09-23 Dai Nippon Printing Co., Ltd. Electroluminescent device
US20100289003A1 (en) 2007-10-29 2010-11-18 Kahen Keith B Making colloidal ternary nanocrystals
US20100289001A1 (en) 2007-10-30 2010-11-18 Kahen Keith B Device containing non-blinking quantum dots
US7777233B2 (en) 2007-10-30 2010-08-17 Eastman Kodak Company Device containing non-blinking quantum dots
US7776630B1 (en) 2007-11-23 2010-08-17 University Of Central Florida Research Foundation, Inc. Excitation band-gap tuning of dopant based quantum dots with core-inner shell outer shell
US7687800B1 (en) 2007-11-23 2010-03-30 University Of Central Florida Research Foundation, Inc. Excitation band-gap tuning of dopant based quantum dots with core-inner shell-outer shell
US7855091B1 (en) 2007-11-23 2010-12-21 University Of Central Florida Research Foundation, Inc. Excitation band-gap tuning of dopant based quantum dots with core-inner shell-outer shell
US20090188558A1 (en) 2008-01-25 2009-07-30 University Of Washington Photovoltaic devices having metal oxide electron-transport layers
US20110095261A1 (en) 2008-02-07 2011-04-28 Kazlas Peter T Flexible devices including semiconductor nanocrystals, arrays, and methods
US7935419B1 (en) 2008-02-07 2011-05-03 Los Alamos National Security, Llc Thick-shell nanocrystal quantum dots
US20110081538A1 (en) 2008-03-04 2011-04-07 Linton John R Particles including nanoparticles, uses thereof, and methods
US9755172B2 (en) 2008-04-03 2017-09-05 Qd Vision, Inc. Device including quantum dots
US20130009131A1 (en) 2008-04-03 2013-01-10 Kazlas Peter T Device including quantum dots
WO2009123763A2 (en) 2008-04-03 2009-10-08 Qd Vision, Inc. Light-emitting device including quantum dots
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
US20110140075A1 (en) 2008-04-03 2011-06-16 Zhou Zhaoqun Light-emitting device including quantum dots
US9793505B2 (en) 2008-04-03 2017-10-17 Qd Vision, Inc. Light-emitting device including quantum dots
US20100012178A1 (en) 2008-07-17 2010-01-21 The Regents Of The University Of California Solution processable material for electronic and electro-optic applications
KR20100052926A (en) 2008-11-11 2010-05-20 광주과학기술원 Light emitting diode and method for fabricating the same
US20100264371A1 (en) 2009-03-19 2010-10-21 Nick Robert J Composition including quantum dots, uses of the foregoing, and methods
US20110080090A1 (en) 2009-05-07 2011-04-07 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20110025224A1 (en) 2009-05-07 2011-02-03 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
WO2011005859A2 (en) 2009-07-07 2011-01-13 University Of Florida Research Foundation, Inc. Stable and all solution processable quantum dot light-emitting diodes
US20120138894A1 (en) 2009-07-07 2012-06-07 University Of Florida Research Foundation Inc. Stable and all solution processable quantum dot light-emitting diodes
US20130037778A1 (en) 2009-11-11 2013-02-14 Peter T. Kazlas Device including quantum dots
US20110284819A1 (en) 2010-05-20 2011-11-24 Ho-Cheol Kang Quantum dot light emitting element and method for manufacturing the same
US20110291071A1 (en) 2010-05-25 2011-12-01 Young-Mi Kim Quantum dot light emitting diode device and display device therewith
US20140027713A1 (en) 2011-04-02 2014-01-30 Qd Vision, Inc. Device including quantum dots
WO2012138409A2 (en) 2011-04-02 2012-10-11 Qd Vision, Inc. Devices including quantum dots and method
US20120292594A1 (en) 2011-05-16 2012-11-22 Zhou Zhaoqun Device including quantum dots and method for making same
WO2012158252A1 (en) 2011-05-16 2012-11-22 Qd Vision, Inc. Device including quantum dots and method for making same

Non-Patent Citations (142)

* Cited by examiner, † Cited by third party
Title
Adachi, C., et al., "High-efficiency red electrophosphorescence devices," Applied Physics Letters, vol. 78, No. 11, Mar. 12, 2001, pp. 1622-1624.
Allen, M.W., et al., "Bulk transport measurements in ZnO: The effect of surface electron layers," Physical Review B, 81, 2010, 075211-1-075211-6.
Anikeeva, P.O., et al., "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chemical Physics. Letters, vol. 424, 2006, pp. 120-125.
Arango, A.C., Thesis entitled "A Quantum Dot Heterojunction Photodetector," Submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, Feb. 2005, 117 pages.
Bae, W.K., et al., "Multicolored Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films Using Layer-by-Layer Assembly Method," Nano Lett., 2010, 10, pp. 2368-2373.
Bailey, R.E., et al., "Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties Without Changing the Particle Size," J. Am. Chem. Soc., vol. 125, No. 23, 2003, pp. 7100-7106.
Bera, D., et al., "Quantum Dots and Their Multimodal Applications: A Review," Materials 2010, 3, pp. 2260-2345.
Blochwitz, J., et al., "Interface electronic structure of organic semiconductors with controlled doping levels," Organic Electronics 2, 2001, pp. 97-104.
Bolink, H.J., et al., "Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes," Adv. Mater., 20, 2008, pp. 1-4.
Bulovic, V., et al., "Molecular Organic Light-Emitting Devices," Electroluminescence I, Semiconductors and Semimetals, vol. 64, 2000, p. 255-307.
Bulovic, V., et al., "Transparent light-emitting devices," Nature, vol. 380, Mar. 7, 1996, p. 29.
Cao, Y-W, et al., "Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores," J. Am. Chem. Soc., vol. 122, No. 40, 2000, pp. 9692-9702.
Carlson, B., et al., "Valence Band Alignment at Cadmium Selenide Quantum Dot and Zinc Oxide (1010) Interfaces," J. Phys. Chem. C, 2008, 112, pp. 8419-8423.
Carter, S.A., et al., "Enhanced luminance in polymer composite light emitting devices," Appl. Phys. Lett., vol. 71 (9), Sep. 1997, pp. 1145-1147.
Caruge, J.M., et al., "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers," Nature Publishing Group, published online Mar. 16, 2008, Nature Photonics, vol. 2, Apr. 2008, pp. 247-250.
Caruge, J-M, et al., "NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices," Nano Letters, 2006, vol. 6, No. 12, pp. 2991-2994.
Chan, C., et al., "Contact potential difference measurements of doped organic molecular thin films," J. Vac. Sci. Technol. A, 22(4), Jul./Aug. 2004, pp. 1488-1492.
Chan, I-M, et al., "Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tim oxide anode," Thin Solid Films, 450, 2004, pp. 304-311.
Chen, H-S, et al., "Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS Quantum Dots Synthesized from ZnO," J. Phys. Chem. B, vol. 108, No. 44, 2004, pp. 17119-17123.
Cherniavskaya, O., et al., "Photoionization of Individual CdSe/CdS Core/Shell Nanocrystals on Silicon with 2-nm Oxide Depends on Surface Band Bending," Nano Letters, vol. 3, No. 4, 2003, pp. 497-501.
Chinese Office Action dated Apr. 16, 2018, in Chinese Patent Application No. 201610206693.9 with English Summary, 12 pages.
Chittofrati, A., et al., "Uniform Particles of Zinc Oxide of Different Morphologies," Colloids and Surfaces 48, 1990, pp. 65-78.
Cho, K-S, et al., "High-performance crosslinked colloidal quantum-dot light-emitting diodes," Nature Photonics, Advance Online Publication, published online May 24, 2009, DOI: 10.1038/NPHOTON2009.92, pp. 1-5.
Cizeron, et al., "Solid Solution of CdyZn1-yS Nanosized Particles: Photophysical Properties", J. Phys. Chem. B, vol. 101, No. 44, 1997, pp. 8887-8891.
Coe, S., et al., "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature Publishing Group, Nature, vol. 420, 19, Dec. 26, 2002, pp. 800-803.
Coe-Sullivan, S., "The Application of Quantum Dots in Display Technology," Material Matters, vol. 2, No. 1, 2007, pp. 13-14.
Coe-Sullivan, S., et al., "Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting," Adv. Funct. Mater., 2005; vol. 15, pp. 1117-1124.
Coe-Sullivan, S., et al., "Method for fabrication of saturated RGB quantum dot light emitting devices," Light Emitting Diodes: Research, Manufacturing, and Applications IX, Proc. of SPIE, vol. 5739, pp. 108-115, 2005.
Coe-Sullivan, S., et al., "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices," Organic Electronics, 4, 2003, pp. 123-130.
Coe-Sullivan, S., Thesis entitled "Hybrid Organic/Quantum Dot Thin Film Structures and Devices", Submitted to the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, Jun. 2005, 169 pages.
Dabbousi, B.O., et al., "(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites," J. Phys. Chem B., 1997, 101, pp. 9463-9475.
D'Andrade, B., et al., "Bright White Electrophosphorescent Triple-Emissive Layer Oranic Light Emitting Device," Abstract on p. 3, Symposium BB, Organic Optoelectronic Materials, Processing, and Devices, Session BB62, Nov. 25-30, 2001.
Decision of Rejection in Chinese Patent Application No. 200980120363.6, dated Feb. 6, 2015, with English translation, 15 pages.
Dirr, S., et al., "Organic Light Emitting Diodes with Reduced Spectral and Spacial Halfwidths," Jpn. J. Appl. Phys., vol. 37, Pt. 1, No. 3B, 1998, pp. 1457-1461.
Donega, C., et al., "Single-Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals," J. Phys. Chem. B, vol. 107, No. 2, 2003, pp. 489-496.
Eason, D.B., et al., "High-brightness blue and green light-emitting diodes," Appl. Phys. Lett., vol. 66, No. 2, Jan. 9, 1995, pp. 115-117.
Empedocles, S.A., et al., "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Physical Review Letters, vol. 77, No. 18, Oct. 28, 1996, pp. 3873-3876.
European Office Action dated Jul. 12, 2012, in European Patent Application No. 09727880.8, 5 pages.
European Supplemental Search Report dated Jul. 22, 2011, in European Patent Application No. 09727880.8, 9 pages.
Fifth Chinese Office Action dated Jul. 25, 2014, in Chinese Patent Application No. 200980120363.6, with English translation, 7 pages.
Final Office Action for U.S. Appl. No. 12/454,705, filed May 21, 2009; dated Aug. 27, 2013; 14 pages.
First Chinese Office Action dated Apr. 14, 2017, in Chinese Patent Application No. 201610206693.9, with English translation, 18 pages.
First Chinese Office Action dated Dec. 7, 2011, in Chinese Patent Application No. 200980120363.6, with English translation, 7 pages.
Forrest, S., et al., "Measuring the Efficiency of Organic Light-Emitting Diodes," Adv. Mater., vol. 15, No. 13, Jul. 4, 2003, pp. 1043-1048.
Fourth Chinese Office Action dated Dec. 26, 2013, in Chinese Patent Application No. 200980120361.6, with English translation, 21 pages.
Gu, G., et al., "Transparent organic light emitting devices," Appl. Phys. Lett., vol. 68, Issue 19, May 6, 1996, pp. 2606-2608.
Harrison, M.T., et al., "Wet chemical synthesis and spectroscopic study of CdhgTe nanocrystals with strong near-infrared luminescence," Materials Science and Engineering, B69-70, 2000, pp. 355-360.
Hines M.A., et al., "Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals," J. Phys. Chem., vol. 100, No. 2, 1996, pp. 468-471.
Hines, M.A., et al., "Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals," The Journal of Physical Chemistry B, vol. 102, No. 19, May 7, 1998, pp. 3655-3657.
Hoyer, P., et al., "Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films," J. Phys. Chem., vol. 99, No. 38, 1995, pp. 14096-14100.
Huang, H., et al., "Bias-Induced Photoluminescence Quenching of Single Collodidal Quantum Dots Embedded in Organic Semiconductors," Nano Letters, vol. 7, No. 12, 2007, pp. 3781-3786.
Ichikawa, M., et al., "Bipyridyl oxadiazoles as efficient and durable electron-transporting and hole-blocking molecuar materials," J. Mater. Chem., 2006, 16, pp. 221-225.
International Search Report for International Application No. PCT/US2009/02123; International Filing Date Apr. 3, 2009; dated Aug. 21, 2009; 5 pages.
Ivanov, S.A., et al., "Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime," J. Phys. Chem. B, vol. 108, No. 30, 2004, pp. 10625-10630.
Jang, E., et al., "High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence," Chem. Commun., 2003, pp. 2964-2965.
Jasieniak, J., et al., "Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals," ACS Nano, vol. 5, No. 7, pp. 5888-5902, 2011.
Jiang, W., et al., "Optimizing the Synthesis of Red- to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Biomedical Imaging," Chem. Mater., vol. 18, No. 20, 2006, pp. 4845,4854.
Jun S., et al., "Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence," Chem. Commun., 2005, pp. 4616-4618.
Kim, H-M, et al., "Semi-transparent quantum-dot light emitting diodes with an inverted structure," J. Mater. Chem. C, 2014, 2, 2259-2265.
Kim, S-W, et al., "Engineering InAsxP1-x/InP/ZnSe III-V Alloyed Core/Shell Quantum Dots for the Near-Infrared," J. Am. Chem. Soc., vol. 127, No. 30, 2005, pp. 10526-10532.
Korean Notice of Final Rejection dated Dec. 23, 2015, in Korean Patent Application No. 10-20107024680, with English translation, 6 pages.
Korean Notice of Final Rejection dated May 29, 2017, in Korean Patent Application No. 10-2016-7010666, with English translation, 6 pages.
Korean Notice of Preliminary Rejection dated Aug. 16, 2016, in Korean Patent Application No. 10-2016-7010666, with English translation, 9 pages.
Korean Notice of Preliminary Rejection dated Feb. 3, 2015, in Korean Patent Application No. 10-20107024680, with English translation, 9 pages.
Korean Notice of Preliminary Rejection dated May 23, 2016, in Korean Patent Application No. 10-2010-7024680, with English translation, 9 pages.
Korgel, B.A., et al., "Controlled Synthesis of Mixed Core and Layered (Zn,Cd)S and (Hg,Cd)S Nanocrystals within Phosphatidylcholine Vesicles," Langmuir, vol. 16, No. 8, 2000, pp. 3588-3594.
Kwak, J. et al., Supporting Information (12 pages) for "Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure," Nano Lett., 2012, 12, (5), pp. 2362-2366.
Kwak, J., et al., "Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure," Nano Lett., 2012, 12, (5), pp. 2362-2366.
Kwon, S-J, et al., "Soft-chemistry Route to P—I—N Heterostructured Quantum Dot Electroluminescence Device: All Solution-Processed Polymer-Inorganic Hybrid QD-EL Device," Mater. Res. Soc. Symp. Proc., vol. 959, 2007, 5 pages.
Lai, J. H., et al., "Stabilization of ZnO polar plane with charged surface nanodefects," Physical Review B, 82, 2010, pp. 155406-1-155406-5.
Lee, C. et al.' "Full-color light-emitting diodes based on colloidal quantum dots," 218th ECS Meeting, Abstract #1590, 2010, 1 page.
Lee, D. et al., "Demonstration of Full Color and White Quantum Dot Light-Emitting Diodes with a Simple Inverted Structure," undated, from intemet, 59 pages, filed with IDS dated Aug. 16, 2016 in U.S. Appl. No. 12/896,856.
Lee, W.Y., et al., "High-current-density ITOx/NiOx thin-film diodes," Applied Physics Letters, vol. 72, No. 13, Mar. 30, 1998, pp. 1584-1586.
Lee, Y-L et al., "Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe," Adv. Funct. Mater., 2009, vol. 19, pp. 604-609.
Li et al., "High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors", Nano Letters, 2004, vol. 4, No. 11, 2261-2264.
Li, S. et al., "Surface States in the Photoionization of High-Quality CdSe Core/Shell Nanocrystals," ACS Nano. vol. 3, No. 5, 2009, pp. 1267-1273.
Lim, J. et al., "Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes," Adv. Mater, 19, 2007, pp. 1927-1932.
Lin, X.M., et al. "Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates," J. Phys. Chem. B, vol. 105, No. 17, 2001, pp. 3353-3357.
Lipovskii, A., et al., "Synthesis and characterization of PbSe quantum dots in phosphate glass," Appl. Phys. Lett., vol. 71, No. 23, Dec. 8, 1997, pp. 3406-3408.
Liu, H., et al., "Mechanistic Study of Precursor Evolution in Colloidal Group II-VI Semiconductor Nanocrystal Synthesis," J. Am. Chem. Soc., vol. 129, No. 2, 2007, pp. 305-312.
Luther, B.P., et al., "Analysis of a thin AIN interfacial layer in Ti/AI and Pd/AI ohmic contacts to n-type GaN," Appl. Phys. Lett., vol. 71, No. 26, Dec. 29, 1997, pp. 3859-3861.
Mahler, B., et al., "Towards non-blinking colloidal quantum dots," Nature Materials, vol. 7, Aug. 2008, pp. 659-664.
Mashford, B., et al., "All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing," J. Mater. Chem., 2010, 20, pp. 167-172.
Mashford, B., et al., "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photonics, vol. 7, May 2013, pp. 407-412.
Matijevic, E., "Preparation and characterization of monodispersed metal hydrous oxide sols," Progr. Colloid & Polymer Sci., vol. 61, pp. 24-35 (1976).
Miller, J.B., et al., "Microstructural evolution of sol-gel derived ZnO thin films," Thin Solid Films, 518, 2010, pp. 6792-6798.
Moeller, G., et al., "Quantum-Dot Light-Emitting Devices for Displays," OLED materials, Information Display, Feb. 2006, pp. 2-6.
Murray, C.B., "Synthesis and Characterization of II-VI Quantum Dots and Their Assembly into 3D Quantum Dot Superlattices," Thesis submitted to the Department of Chemistry at the Massachusetts Institute of Technology, Sep. 1995, 166 pages.
Murray, C.B., et al., "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies," Annu. ev. Mater. Sci., 2000, 30, pp. 545-610.
Murray, C.B., et al., "Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites," J. Am. Chem. Soc., vol. 115, No. 19, 1993, pp. 8706-8715.
Nayak, M., et al., "Passivation of CdTe Nanoparticles by Silane Coupling Agent Assisted Silica Encapsulation," 26th Annual Conf. on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Eng. and Sci. Proceedings, 2008, vol. 23, Issue 4.
Non-Final Office Action for U.S. Appl. No. 12/454,705, filed May 21, 2009; dated Mar. 25, 2014; 14 pages.
Non-Final Office Action for U.S. Appl. No. 13/441,394, filed Apr. 6, 2012; dated Dec. 15, 2015; 15 pages.
Oertel, D.C., et al., Photodetectors based on treated CdSe quantum-dot films, Applied Physics Letters, 2005, vol. 87, pp. 213505-1-213505-3.
Ohmori, Y., et al., "Photovoltaic properties of phthalocyanine based p—n diode evaporated onto titanium dioxide," Thin Solid Films, 2006, vol. 499, pp. 369-373.
Park, Ji Sun, et al., "Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides", Appl. Phys. Lett. 96 (2010) 243306 (1-3).
PCT Search Report and Written Opinion for International Application PCT/US10/051867, dated Dec. 9, 2010, 16 pages.
PCT Search Report for International Application PCT/US2007/024310, dated May 27, 2008, 4 pages.
Petrov, D.V., et al., "Size and Band-Gap Dependences of the First Hyperpolarizability of CdxZn1-xS Nanocrystals," J. Phys. Chem. B, vol. 106, No. 21, 2002, pp. 5325-5334.
Protiere, M., et al., "Highly Luminescent Cd1-xZnxSe/ZnS Core/Shell Nanocrystals Emitting in the Blue-Green Spectral Range," Luminescent Materials, Small, 2007, 3, No. 3, pp. 399-403.
Qian, L., et al., "Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages," Nano Today, 2010, 5, pp. 384-389.
Qu, L., et al., "Control of Photoluminescence Properties of CdSe Nanocrystals in Growth," J. Am. Chem. Soc., vol. 124, No. 9, 2002, pp. 2049-2055.
Salafsky, J.S., "Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites," Physical Review B, vol. 59, No. 16, Apr. 15, 1999, pp. 885-894.
Santhanam, V., et al., "Self-Assembly of Uniform Monolayer Arrays of Nanoparticles," Langmuir, vol. 19, No. 19, 2003, pp. 7881-7887.
Sato, H., et al., "Transparent conducting p-type NiO thin films prepared by magnetron sputtering," Thin Solid Films, 236, 1993, pp. 27-31.
Schlamp, M.C., et al., "Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer," J. Appl. Phys., vol. 82, No. 11, Dec. 1, 1997, pp. 5837-5482.
Schmechel, R., "A theoretical approach to the hopping transport in p-doped zinc-phthalocyanine," 48, Internationales Wissenschaftliches Kolloquium, Technische Universtaat Ilmenau, Sep. 22-25, 2003, 2 pages.
Second Chinese Office Action dated Oct. 30, 2012, in Chinese Patent Application No. 200980120363.6, with English translation, 23 pages.
Seedorf, T., et al., "Comparative study of molecular beam and migration-enhanced epitaxy of ZnCdSe quantum wells: influence on interface and composition fluctuations," Journal of Crystal Growth, 214/215, 2000, pp. 602-605.
Shan, et al., "Growth and evolution of ZnCdSe quantum dots", J. Vac. Sci. Technol. B, 20 (3), May/Jun. 2002, pp. 1102-1106.
Shih, et al., "Thotoluminescence of ZnSexTe1-s/ZnTe multiple-quantum-well structures grown by molecular-beam apitaxy", Journal of Applied Physics, 2004, vol. 96, No. 12, 7267-7271.
Sixth Chinese Office Action dated Jul. 17, 2015, in Chinese Patent Application No. 200980120363.6, with English translation, 6 pages.
Steckel, et al., "1.3 um to 1.55 um Tunable Electronluminescence from PbSe Quantum Dots Embedded within an Organic Device", Advanced Materials, vol. 15, No. 21, (2003), 1862-1866.
Steckel, et al., "Color-Saturated Green-Emitting QD-LEDs", Angew. Chem. Int. Ed., 2006, vol. 45, 5796-5799.
Steckel, J.S., et al., "Blue Luminescence from (CdS)ZnS Core-Shell Nanocrystals," Angew. Chem. Int. Ed., 2004, 43, pp. 2154-2158.
Steckel, J.S., Thesis entitled "The Synthesis of Inorganic Semiconductor Nanocrystalline Materials For the Purpose of Creating Hybrid Organic/Inorganic Light-Emitting Devices," Submitted to the Dept. of Chemistry at MIT, Feb. 2006, 213 pages.
Stossel, M., et al., "Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices," Appl. Phys. A, Apr. 1999, vol. 68, Issue 4, pp. 387-390.
Stouwdam, J.W., et al., "Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal alectron injection layers," Journal of Materials Chemistry, 2008, vol. 18, pp. 1889-1894, published online Mar. 5, 2008.
Suga, K., et al., "Gas-sensing characteristics of ZnO—NiO junction structures with intervening ultrathin SiO2 layer," Sensors and Actuators B, 13-14, 1993, pp. 598-599.
Supran, et al, "QLEDs for displays and sold-state lighting", MRS Bulletin, vol. 38 (2013), pp. 703-711.
Talapin, D., et al., "Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications," Chem. Reviews, 2010, vol. 110, pp. 389-458.
Talapin, et al., "Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture", Nano Letters, 2001, vol. 1, No. 4; pp. 207-211.
Third Chinese Office Action dated Jun. 3, 2013, in Chinese Patent Application No. 200980120363.6, with English translation, 15 pages.
United States Statutory Invention Registration, Registration No. H429, Publsihed Feb. 2, 1988, to Harris et al., 4 pages.
Van Dijken, A., et al., "Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles," J. Phys. Chem. B, vol. 104, No. 18, 2000, pp. 4355-4360.
Vogel, R., et al., "Quantum-Sized PbS, CdS, Ag2S, Sb2S2 and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors," The Journal of Physical Chemistry, vol. 98, No. 12, 1994, pp. 3183-3188.
Wang et al., "Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1—xS", Chem. Mater. 2002, vol. 14, 3028-3033.
Woo, W-K, et al., "Reversible Charging of CdSe Nanocrystals in a Simple Solid-State Device," Advanced Materials, 2002, vol. 14, No. 15, Aug. 5, pp. 1068-1071.
Wood, V., et al., "Efficient All-Inorganic Colloidal Quantum Dot LEDs," Optical Soc. of America, conference paper from Conference on Lasers and Electro Optics, Baltimore, MD, May 6, 2007, 2 pages.
Wood, V., et al., "Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs," ACS Nano, 2009, vol. 3, No. 11, pp. 3581-3586.
Wu, X., et al., "Charge-transfer processes in single CdSe/ZnS quantum dots with p-type NiO nanoparticles," Chem. Commun., 46, 2010, pp. 4390-4392.
Xie, et al., "Preparation and Characterization of Overcoated II-VI Quatum Dots", J. Nanosci. and Nanotech., vol. 5, No. 6, Jun. 2005, pp. 880-886.
Xie, et al., "Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals", J. Amer. Chem. Soc., 2005, vol. 127, 7480-7488.
Xing, et al., "Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry", Nature Protocols, 2007, vol. 2, No. 5, 1152-1165.
Xu, Y., et al., "The absolute energy positions of conduction and valence bands of selected semiconducting minerals," American Mineralogist, vol. 85, pp. 543-556, 2000.
Yamasaki, et al., "Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium", Applied Physics Letters, vol. 76, No. 10, pp. 1243-1245 (2000).
Yoshida, T., et al., "A New Near-Infrared-Light Emitting Diode of Monodispersed Nanocrystallite Silicon," International Electron Devices Meeting 2001, IEDM, Technical Digest, IEEE, Dec. 2, 2001, pp. 175-178.
Yu et al.,, "Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers", Agnew Chem. Int. Ed., 2002, 41 No. 13, 2368-2371.
Zhong, et al., "Alloyed ZnxCd1—xS Nanocrystals with Highly Narrow Luminescence Spectral Width", J. Am. Chem. Soc. 2003, vol. 125, 13559-13563.
Zhong, et al., "Composition-Tunable ZnxCd1—xSe Nanocrystals with High Luminescence and Stability", J. Am. Chem. Soc., 2003, vol. 125, 8589-8594.
Zhong, et al., "Embryonic Nuclei-Induced Alloying Process for Reproducible Synthesis of Blue-Emitting ZnxCd1—xSe Nanocrystals with Long-Time Thermal Stability in Size Distribution and Emission Wavelength", J. Phys. Chem. B, 2004, 108, 1552-15559.
Zhong, et al., "High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals", Chem. Mater. 2005, vol. 17, 4038-4042.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220187904A1 (en) * 2019-04-03 2022-06-16 The Johns Hopkins University Flexible transparent membrane light emitting diode array and systems containing the same
US11893149B2 (en) * 2019-04-03 2024-02-06 The Johns Hopkins University Flexible transparent membrane light emitting diode array and systems containing the same

Also Published As

Publication number Publication date
US20110140075A1 (en) 2011-06-16
US20190312222A1 (en) 2019-10-10
KR20110008206A (en) 2011-01-26
CN105870345A (en) 2016-08-17
KR101995370B1 (en) 2019-07-02
KR20160052764A (en) 2016-05-12
CN105870345B (en) 2019-01-01
WO2009123763A2 (en) 2009-10-08
EP2283342A4 (en) 2011-08-24
US20180013088A1 (en) 2018-01-11
KR20170121271A (en) 2017-11-01
EP2283342B1 (en) 2018-07-11
EP2283342A2 (en) 2011-02-16
US10333090B2 (en) 2019-06-25
KR101995369B1 (en) 2019-07-02
CN102047098B (en) 2016-05-04
WO2009123763A3 (en) 2009-12-30
CN102047098A (en) 2011-05-04
KR101995371B1 (en) 2019-07-02
US9793505B2 (en) 2017-10-17
KR20190000941A (en) 2019-01-03

Similar Documents

Publication Publication Date Title
US11005058B2 (en) Light-emitting device including quantum dots
US10164205B2 (en) Device including quantum dots
US10403690B2 (en) Light emitting device including tandem structure with quantum dots and nanoparticles
US9887375B2 (en) Device including quantum dots and method for making same
US10297713B2 (en) Light-emitting devices and displays with improved performance
KR101728575B1 (en) Device including quantum dots
US10741793B2 (en) Light emitting device including blue emitting quantum dots and method
US9722133B2 (en) Methods for processing quantum dots and devices including quantum dots
US20140027713A1 (en) Device including quantum dots
US20100051901A1 (en) Light emitting devices and displays with improved performance

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE