US10480869B2 - Heat exchanger and refrigeration cycle apparatus including the same - Google Patents

Heat exchanger and refrigeration cycle apparatus including the same Download PDF

Info

Publication number
US10480869B2
US10480869B2 US15/753,185 US201515753185A US10480869B2 US 10480869 B2 US10480869 B2 US 10480869B2 US 201515753185 A US201515753185 A US 201515753185A US 10480869 B2 US10480869 B2 US 10480869B2
Authority
US
United States
Prior art keywords
heat exchanging
heat
flat tubes
heat exchanger
exchanging portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/753,185
Other languages
English (en)
Other versions
US20180238637A1 (en
Inventor
Akira Ishibashi
Yuki UGAJIN
Daisuke Ito
Shin Nakamura
Satoshi Ueyama
Aya KAWASHIMA
Susumu Yoshimura
Takashi Matsumoto
Ryota AKAIWA
Yoji ONAKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIBASHI, AKIRA, UGAJIN, Yuki, AKAIWA, Ryota, ITO, DAISUKE, KAWASHIMA, Aya, NAKAMURA, SHIN, UEYAMA, SATOSHI, MATSUMOTO, TAKASHI, ONAKA, Yoji, YOSHIMURA, SUSUMU
Publication of US20180238637A1 publication Critical patent/US20180238637A1/en
Application granted granted Critical
Publication of US10480869B2 publication Critical patent/US10480869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle apparatus including the heat exchanger.
  • the total surface area of refrigerant flow paths formed in a heat exchange pipe of a heat exchanger can be increased in a manner in which the diameter of each refrigerant flow path formed is decreased and the number of the refrigerant flow paths is increased in accordance with the decrease in the diameter.
  • the decrease in the diameter of each refrigerant flow path enables the heat exchange performance of the heat exchanger to be improved, and the heat exchanger can have a certain level of heat exchange performance even when the heat exchanger includes no fins (finless heat exchanger). Since the finless heat exchanger includes no fins, the heat exchanger can be compact.
  • a finless heat exchanger including flat heat exchange pipes (heat exchanging portions) defining refrigerant flow paths, an entrance-side header to which an end of each heat exchange pipe is connected, and an exit-side header to which the other end of each heat exchange pipe is connected has been proposed as an existing finless heat exchanger (see, for example, Patent Literature 1).
  • the flat heat exchange pipes are connected to the entrance-side header and the exit-side header so as to be arranged in the longitudinal direction of the entrance-side header and the exit-side header.
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 2008-528943
  • the heat exchange performance of the finless heat exchanger is improved, for example, in a manner in which distances between the adjacent heat exchanging portions are decreased and the number of the heat exchange pipes is increased accordingly. Air passes through spaces formed between the adjacent heat exchange pipes. In this manner, however, the size of each of the spaces is decreased, and the spaces are likely to be filled. When the spaces are filled, air is unlikely to pass therethrough, and the heat exchange performance is impaired.
  • frost formation occurs between the heat exchange pipes in some cases.
  • the spaces between the adjacent heat exchange pipes are likely to be filled with frost.
  • the present invention has been accomplished to solve the above problems, and it is an object of the present invention to provide a heat exchanger that enables the heat exchange performance to be improved even when distances between flat tubes of the heat exchanging portions are not decreased, and a refrigeration cycle apparatus including the heat exchanger.
  • a heat exchanger includes a first heat exchanging portion including first and second flat tubes stacked in parallel with each other to allow fluid to pass between the first and second flat tubes; and a second heat exchanging portion including third and fourth flat tubes stacked in parallel with each other to allow fluid to pass between the third and fourth flat tubes, the third flat tube of the second heat exchanging portion being oriented crosswise to the first flat tube of the first heat exchanging portion in a cross-section perpendicular to a longitudinal direction of the third flat tube, the fourth flat tube of the second heat exchanging portion being oriented crosswise to the second flat tube of the first heat exchanging portion in a cross-section perpendicular to a longitudinal direction of the fourth flat tube.
  • the heat exchanger according to an embodiment of the present invention which has the above structure, enables the heat exchange performance to be improved even when the distances in the heat exchanging portions are not decreased.
  • FIG. 1 is an explanatory diagram illustrating the structure of a refrigerant circuit or other structures of a refrigeration cycle apparatus 200 including a heat exchanger 100 according to Embodiment of the present invention.
  • FIG. 2 illustrates explanatory diagrams of the heat exchanger 100 according to Embodiment of the present invention.
  • FIG. 3 illustrates explanatory diagrams of, for example, components of heat exchanging portions 1 A of the heat exchanger 100 according to Embodiment of the present invention.
  • FIG. 4 illustrates a first modification to the heat exchanger 100 according to Embodiment of the present invention.
  • FIG. 5 illustrates a second modification to the heat exchanger 100 according to Embodiment of the present invention.
  • FIG. 6 illustrates a third modification to the heat exchanger 100 according to Embodiment of the present invention.
  • FIG. 7 is a perspective view of an existing heat exchanger.
  • FIG. 1 is an explanatory diagram illustrating the structure of a refrigerant circuit or other structures of a refrigeration cycle apparatus 200 including a heat exchanger 100 according to Embodiment. The structure and other features of the refrigeration cycle apparatus 200 will be described with reference to FIG. 1 .
  • the heat exchanger 100 according to Embodiment has been improved upon to enable the heat exchange performance to be improved even when distances between flat tubes 1 a of heat exchanging portions 1 A are not decreased.
  • the refrigeration cycle apparatus 200 includes an outdoor unit 50 and an indoor unit 51 , for example, in the case where the refrigeration cycle apparatus 200 is an air-conditioning device.
  • the outdoor unit 50 and the indoor unit 51 are connected to each other with refrigerant pipes P interposed therebetween.
  • the outdoor unit 50 includes a compressor 33 that compresses refrigerant, an outdoor fan 37 that sends air and that supplies the air to the outdoor heat exchanger 100 A, an outdoor heat exchanger 100 A that functions as an evaporator, and an expansion device 35 that is connected to an indoor heat exchanger 100 B described later and the outdoor heat exchanger 100 A.
  • the indoor unit 51 includes the indoor heat exchanger 100 B that functions as a condenser (radiator) and an indoor fan 38 that supplies air to the indoor heat exchanger 100 B.
  • the outdoor heat exchanger 100 A and the indoor heat exchanger 100 B are each referred to as the heat exchanger 100 in some cases.
  • the compressor 33 compresses and discharges the refrigerant.
  • the compressor 33 is connected to the indoor heat exchanger 100 B on a refrigerant discharge side and is connected to the outdoor heat exchanger 100 A on a refrigerant suction side.
  • Various types of compressors such as a scroll compressor and a rotary compressor can be used as the compressor 33 .
  • the heat exchanger 100 includes flat tubes defining refrigerant flow paths through which the refrigerant flows.
  • the heat exchanger 100 does not include fins connected perpendicularly to the flat tubes. That is, the heat exchanger 100 is a so-called finless heat exchanger.
  • the indoor heat exchanger 100 B is connected on one side to the discharge side of the compressor 33 and is connected on the other side to the expansion device 35 .
  • the outdoor heat exchanger 100 A is connected on one side to the suction side of the compressor 33 and is connected on the other side to the expansion device 35 .
  • the structure and other features of the heat exchanger 100 will be described later with reference to FIG. 2 .
  • the indoor fan 38 forcibly draws air into the indoor unit 51 to supply the air to the indoor heat exchanger 100 B.
  • the indoor fan 38 is used for heat exchange between the drawn air and the refrigerant passing through the indoor heat exchanger 100 B.
  • the indoor fan 38 is installed in the indoor heat exchanger 100 B.
  • the outdoor fan 37 forcibly draws air into the outdoor unit 50 to supply the air to the outdoor heat exchanger 100 A.
  • the outdoor fan 37 is used for heat exchange between the drawn air and the refrigerant passing through the outdoor heat exchanger 100 A.
  • the outdoor fan 37 is installed in the outdoor heat exchanger 100 A.
  • the indoor fan 38 and the outdoor fan 37 can each include, for example, an electric motor to which a shaft is connected, a boss that is rotated by the electric motor, and blades that are connected to an outer circumferential portion of the boss.
  • the expansion device 35 is used to decompress the refrigerant.
  • the expansion device 35 may be, for example, a capillary tube, or an electronic expansion valve that can control an opening degree.
  • a gas refrigerant compressed and discharged by the compressor 33 enters the indoor heat exchanger 100 B.
  • the gas refrigerant that has entered the indoor heat exchanger 100 B exchanges heat with the air supplied from the indoor fan 38 , is condensed, and exits the indoor heat exchanger 100 B.
  • the refrigerant that has exited the indoor heat exchanger 100 B enters the expansion device 35 , is expanded by the expansion device 35 , and is decompressed.
  • the decompressed refrigerant enters the outdoor heat exchanger 100 A, exchanges heat with outdoor air supplied from the outdoor fan 37 , is vaporized, and exits the outdoor heat exchanger 100 A.
  • the refrigerant that has exited the outdoor heat exchanger 100 A is sucked into the compressor 33 .
  • FIG. 2 illustrates explanatory diagrams of the heat exchanger 100 according to Embodiment.
  • FIG. 2( a ) is a front view of the heat exchanger 100 .
  • FIG. 2( b ) is a side view of the heat exchanger 100 .
  • FIG. 2( c ) is a sectional view of the heat exchanging portions 1 A in FIG. 2( b ) taken along line A-A.
  • the reduced scale of the width of each heat exchanging portion 1 A in the Y-direction illustrated in FIG. 2( b ) is increased for convenience of description.
  • FIG. 3 illustrates explanatory diagrams of, for example, components of the heat exchanging portions 1 A of the heat exchanger 100 according to Embodiment.
  • FIG. 3( a ) illustrates adjacent flat tubes 1 a of a heat exchanging portion 1 A 1 and adjacent flat tubes 1 a of a heat exchanging portion 1 A 2 that correspond to the flat tubes 1 a of the heat exchanging portion 1 A 1 .
  • four flat tubes 1 a represent a minimum configuration of the heat exchanger 100 .
  • FIG. 3( a ) illustrates two flat tubes 1 a of the heat exchanging portion 1 A 1 , and an illustration of the other four flat tubes 1 a of the heat exchanging portion 1 A 1 is omitted.
  • an illustration of the other four flat tubes 1 a of the heat exchanging portion 1 A 2 is omitted.
  • FIG. 3( b ) is an enlarged view of one of the heat exchanging portions 1 A illustrated in FIG. 2( c ) .
  • the structure of the heat exchanger 100 will be described with reference to FIG. 2 and FIG. 3 .
  • the X-direction in FIG. 2 corresponds to a direction in which the flat tubes 1 a are arranged.
  • the Y-direction corresponds to a direction in which air passes.
  • the Z-direction corresponds to the longitudinal direction of each flat tubes 1 a .
  • the X-direction in which the flat tubes 1 a of the heat exchanging portions are arranged and the Y-direction in which the air passes are perpendicular to the Z-direction corresponding to the longitudinal direction of each flat tubes 1 a .
  • the X-direction is perpendicular to the Y-direction.
  • the heat exchanger 100 is installed in the refrigeration cycle apparatus 200 such that the X-direction and the Y-direction are parallel with a horizontal plane, and the Z-direction is parallel with the gravity direction.
  • the four flat tubes 1 a represent the minimum configuration of the heat exchanger 100 . That is, the heat exchanger 100 includes the heat exchanging portion 1 A 1 including two flat tubes 1 a (corresponding to a first flat tube P 1 and a second flat tube P 2 ) that are stacked in parallel with each other, and the heat exchanging portion 1 A 2 including two flat tubes 1 a (corresponding to a third flat tube P 3 and a fourth flat tube P 4 ) that are stacked in parallel with each other.
  • the first flat tube P 1 and the third flat tube P 3 are connected to each other.
  • the second flat tube P 2 and the fourth flat tube P 4 are connected to each other.
  • the first flat tube P 1 and the third flat tube P 3 have a correlation therebetween in the Y-direction.
  • the second flat tube P 2 and the fourth flat tube P 4 have a correlation therebetween in the Y-direction.
  • the first flat tube P 1 and the second flat tube P 2 have a correlation therebetween in the X-direction.
  • the third flat tube P 3 and the fourth flat tube P 4 have a correlation therebetween in the X-direction.
  • the first flat tube P 1 , the second flat tube P 2 , the third flat tube P 3 , and the fourth flat tube P 4 are described herein to describe the minimum configuration.
  • the first flat tube P 1 , the second flat tube P 2 , the third flat tube P 3 , and the fourth flat tube P 4 correspond to the flat tubes 1 a in, for example, FIG. 2 .
  • the heat exchanger 100 includes a first header 4 defining a fluid flow path D 1 through which fluid flows, a second header 5 that defines a fluid flow path D 2 through which fluid flows and that is paired with the first header 4 , and the heat exchanging portions 1 A including the flat tubes 1 a each defining fluid flow paths F.
  • the heat exchanging portions 1 A represent the heat exchanging portion 1 A 1 , the heat exchanging portion 1 A 2 , a heat exchanging portion 1 A 3 , and a heat exchanging portion 1 A 4 .
  • the heat exchanger 100 is formed such that protruding portions (bulges) and recessed portions (depressions) alternate when viewed in a cross-section perpendicular to the fluid flow paths F.
  • the protruding portions when viewed from a surface side are recessed portions when viewed from the other surface side.
  • the first header 4 is an elongated tubular member extending in the X-direction and defines the fluid flow path D 1 through which fluid flows.
  • the lower end of each heat exchanging portion 1 A is connected to the first header 4 .
  • the first header 4 is an inflow-side header that fluid supplied from, for example, the compressor 33 enters.
  • the first header 4 is oriented, for example, in parallel with the horizontal direction.
  • the second header 5 is an elongated tubular member extending in the X-direction and defines the fluid flow path D 2 through which fluid flows.
  • the upper end of each heat exchanging portion 1 A is connected to the second header 5 .
  • the second header 5 is an outflow-side header to which the fluid that has passed through the first header 4 and the heat exchanging portions 1 A is supplied.
  • the second header 5 is oriented, for example, in parallel with the horizontal direction.
  • each heat exchanging portion 1 A the flat tubes 1 a are stacked in parallel with each other, and fluid (air) passes between the adjacent flat tubes 1 a .
  • six flat tubes 1 a are arranged in the X-direction.
  • Each heat exchanging portion 1 A is connected at an end thereof to the first header 4 and is connected at the other end thereof to the second header 5 .
  • the heat exchanger 100 is vertically oriented in the outdoor unit 50 . For this reason, the lower end of the heat exchanger 100 is connected to the first header 4 , and the upper end thereof is connected to the second header 5 . As illustrated in FIG. 2( a ) and FIG.
  • the heat exchanging portions 1 A are arranged in the Y-direction. That is, the heat exchanging portion 1 A 1 is arranged on the most upstream side in the direction of airflow, the heat exchanging portion 1 A 2 is arranged downstream of the heat exchanging portion 1 A 1 in the direction of airflow, the heat exchanging portion 1 A 3 is arranged downstream of the heat exchanging portion 1 A 2 in the direction of airflow, and the heat exchanging portion 1 A 4 is arranged downstream of the heat exchanging portion 1 A 3 in the direction of airflow.
  • each flat tube 1 a of the heat exchanging portions 1 A defines the fluid flow paths F through which fluid flows.
  • the flat tubes 1 a of one of the heat exchanging portions 1 A are oriented crosswise in the direction in which the flat tubes 1 a of the other heat exchanging portion 1 A are oriented.
  • the flat tubes 1 a of one of the heat exchanging portions and the flat tubes 1 a of the other heat exchanging portion represent the flat tubes 1 a of the adjacent heat exchanging portions 1 A.
  • the heat exchanging portion 1 A 1 is the one of the heat exchanging portions 1 A
  • the heat exchanging portion 1 A 2 is the other heat exchanging portion 1 A.
  • the flat tubes 1 a oriented crosswise will now be described.
  • the flat tubes 1 a of the heat exchanging portion 1 A 2 adjacent to the heat exchanging portion 1 A 1 are oriented crosswise in the direction in which the corresponding flat tubes 1 a of the heat exchanging portion 1 A 1 are oriented.
  • the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 1 is parallel with the direction in which the fluid flow paths F are arranged, and the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 1 intersects the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 2 . Because of the intersection, the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 1 is not parallel with the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 2 .
  • the same structure as the above structure of the heat exchanging portion 1 A 1 and the heat exchanging portion 1 A 2 can be described in the case of the heat exchanging portion 1 A 2 and the heat exchanging portion 1 A 3 and in the case of the heat exchanging portion 1 A 3 and the heat exchanging portion 1 A 4 . That is, the flat tubes 1 a of one of the adjacent heat exchanging portions 1 A are oriented crosswise in the direction in which the flat tubes 1 a of the other heat exchanging portion 1 A are oriented.
  • each flat tube 1 a of the heat exchanging portion 1 A 1 is parallel with the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 3
  • the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 2 is parallel with the transverse direction of each flat tube 1 a of the heat exchanging portion 1 A 4 .
  • the adjacent flat tubes 1 a are coupled with each other to integrally form the heat exchanging portions 1 A.
  • the first flat tube P 1 and the third flat tube P 3 are connected to (coupled with) each other, and the second flat tube P 2 and the fourth flat tube P 4 are connected to (coupled with) each other.
  • downstream end portions of the flat tubes 1 a of the heat exchanging portion 1 A 1 of the heat exchanger 100 are connected to (coupled with) upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 A 2 .
  • downstream end portions of the flat tubes 1 a of the heat exchanging portion 1 A 2 are connected to (coupled with) upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 A 3
  • downstream end portions of the flat tubes 1 a of the heat exchanging portion 1 A 3 are connected to (coupled with) upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 A 4 .
  • bent portions of the heat exchanger 100 correspond to parts of the heat exchanging portions 1 A that intersect each other.
  • the flat tubes 1 a of the adjacent heat exchanging portions 1 A correspond to the connected portions.
  • the parts of the heat exchanging portions 1 A that intersect each other correspond to tip portions T of the heat exchanger 100 .
  • the heat exchanger 100 includes a first heat exchanging portion including the first and second flat tubes P 1 and P 2 stacked in parallel with each other and spaced from each other to allow fluid to pass between the first and second flat tubes P 1 and P 2 , and a second heat exchanging portion including the third and fourth flat tubes P 3 and P 4 stacked in parallel with each other, spaced from each other to allow fluid to pass between the third and fourth flat tubes P 3 and P 4 , and oriented crosswise to the direction in which the first and second flat tubes P 1 and P 2 are oriented.
  • the second heat exchanging portion is arranged downstream of the first heat exchanging portion with respect to flow of the fluid.
  • the first heat exchanging portion and the second heat exchanging portion represent the adjacent heat exchanging portions. That is, the first heat exchanging portion and the second heat exchanging portion represent the heat exchanging portion 1 A 1 and the heat exchanging portion 1 A 2 . Moreover, the first heat exchanging portion and the second heat exchanging portion represent the heat exchanging portion 1 A 2 and the heat exchanging portion 1 A 3 . Furthermore, the first heat exchanging portion and the second heat exchanging portion represent the heat exchanging portion 1 A 3 and the heat exchanging portion 1 A 4 .
  • the heat exchanger 100 includes the first heat exchanging portion and the second heat exchanging portion as above, the area of heat exchange between the fluid flowing through the heat exchanging portions 1 A and the air passing through the heat exchanging portions 1 A can be larger than that in a heat exchanger including a single heat exchanging portion.
  • the air flowing through the heat exchanger 100 meanders while passing through the flat tubes 1 a of the heat exchanging portions 1 A, and is agitated while passing through the heat exchanging portions 1 A. This improves a heat transfer coefficient.
  • the heat exchanger 100 has an increased area of heat exchange and an improved heat transfer coefficient as above and thus enables the heat exchange performance to be improved without a measure of, for example, decreasing the distances between the flat tubes 1 a of each heat exchanging portion 1 A that are adjacent to each other in the X-direction.
  • FIG. 7 is a perspective view of an existing heat exchanger.
  • an existing heat exchanger 500 includes a single heat exchanging portion 1 A. Fluid flow paths are formed in the heat exchanging portion 1 A to improve the heat exchange performance.
  • the distances between the flat tubes 1 a included in the heat exchanging portion 1 A need to be decreased to further improve the heat exchange performance.
  • air is more unlikely to pass due to frost formation, and there is a possibility that the accuracy of assembly that is required in manufacturing increases and the manufacturing cost increases.
  • the heat exchanger 100 according to Embodiment can avoid these disadvantages.
  • the second header 5 on the side on which the fluid exits is disposed above the first header 4 on the side on which the fluid enters.
  • the heat exchanging portions 1 A are oriented in parallel with the gravity direction. For this reason, the fluid supplied to the heat exchanger 100 moves from the lower side to the upper side, the distribution of the fluid to the heat exchanging portions 1 A is likely to be uniform, and the heat exchange performance is improved.
  • the fluid flows down preferentially from the flat tube 1 a near a fluid inlet of the first header 4 but is unlikely to flow to the flat tube 1 a far from the fluid inlet.
  • the distribution of the fluid to the heat exchanging portions 1 A is non-uniform, and there is a possibility that the heat exchange performance is impaired.
  • the refrigeration cycle apparatus 200 including the heat exchanger 100 according to Embodiment avoids these disadvantages, and the heat exchange performance is improved.
  • the heat exchanger 100 according to Embodiment is a finless heat exchanger that does not include fins connected perpendicularly to the heat exchanging portions 1 A (heat exchange pipes).
  • a heat exchanger including fins has thermal contact resistance between the heat exchange pipes and the fins and the resistance of the fins due to heat conduction.
  • the heat exchanger 100 according to Embodiment is the finless heat exchanger, which does not have the above thermal contact resistance between the heat exchange pipes and the fins and the resistance of the fins due to heat conduction, the heat exchange performance is improved.
  • the heat exchanger 100 In the case where the heat exchanger 100 is used as the evaporator, condensed water flows down along the heat exchanging portions 1 A oriented in parallel with the gravity direction.
  • the heat exchanger 100 according to Embodiment can thus increase a drainage capacity.
  • the heat exchanger 100 has an increased drainage capacity and can inhibit an ice layer to be formed on a lower portion of the heat exchanger 100 , for example, during defrosting operation.
  • the adjacent heat exchanging portions 1 A of the heat exchanger 100 according to Embodiment are arranged such that the transverse directions of the flat tubes 1 a intersect each other, and the strength thereof increases accordingly.
  • the second header 5 is disposed on the upper side of the heat exchanging portions 1 A, and the weight of the second header 5 is applied to the heat exchanging portions 1 A.
  • the adjacent heat exchanging portions 1 A of the heat exchanger 100 according to Embodiment are oriented crosswise, buckling due to the weight of the second header, for example, can be avoided.
  • the refrigeration cycle apparatus 200 including the heat exchanger 100 according to Embodiment described by way of example is an air-conditioning device.
  • the refrigeration cycle apparatus is not limited thereto and may be, for example, a refrigerator.
  • a refrigerant such as R410A, R32, or HFO1234yf can be used as a working fluid.
  • refrigerant is used as the fluid.
  • the fluid is not limited thereto and may be, for example, a fluid such as water or brine.
  • air and refrigerant are used as the fluid. That is, refrigerant is a first fluid, and air is a second fluid.
  • the first fluid and the second fluid are not limited thereto and may be other gases, liquids, or gas-liquid mixture fluids.
  • any refrigerating machine oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorinated oil can be used irrespective of the solubility of the oil in refrigerant.
  • the refrigeration cycle apparatus 200 including the heat exchanger 100 according to Embodiment includes no four-way valve and is used for heating only, but may include a four-way valve to switch cooling and heating.
  • the heat exchanger 100 is used as, but not limited to, the outdoor heat exchanger 100 A and the indoor heat exchanger 100 B.
  • the same effects can be achieved even when the heat exchanger 100 is used as either the outdoor heat exchanger or the indoor heat exchanger. That is, the refrigeration cycle apparatus 200 including the heat exchanger 100 according to Embodiment has improved energy efficiency because of the heat exchanger 100 .
  • FIG. 4 illustrates a first modification to the heat exchanger 100 according to Embodiment.
  • angles at which the adjacent heat exchanging portions 1 B are oriented crosswise may differ between the upstream side and the downstream side in the direction of airflow.
  • the lengths of the flat tubes 1 a in the transverse direction that are included in the heat exchanging portions 1 B may differ from each other.
  • the heat exchanger 100 according to the first modification includes a plurality of heat exchanging bodies.
  • the heat exchanger 100 includes a heat exchanging body 10 B, a heat exchanging body 20 B, and a heat exchanging body 30 B.
  • the heat exchanging body 20 B is arranged downstream of the heat exchanging body 10 B in the direction of airflow.
  • the heat exchanging body 30 B is arranged downstream of the heat exchanging body 20 B in the direction of airflow.
  • the heat exchanging body 10 B includes heat exchanging portions 1 B.
  • the heat exchanging body 10 B includes a heat exchanging portion 1 B 1 and a heat exchanging portion 1 B 2 according to the first modification.
  • the heat exchanging body 20 B includes heat exchanging portions 1 B and includes a heat exchanging portion 1 B 3 and a heat exchanging portion 1 B 4 according to the first modification.
  • the heat exchanging body 30 B includes heat exchanging portions 1 B and includes a heat exchanging portion 1 B 5 and a heat exchanging portion 1 B 6 according to the first modification.
  • the heat exchanging body 10 B and the heat exchanging body 20 B correspond to a first heat exchanging body and a second heat exchanging body.
  • the heat exchanging body 20 B and the heat exchanging body 30 B correspond to a first heat exchanging body and a second heat exchanging body.
  • the heat exchanging body 10 B and the heat exchanging body 30 B correspond to a first heat exchanging body and a second heat exchanging body.
  • the heat exchanger 100 according to the first modification includes, for example, the six heat exchanging portions 1 B.
  • the heat exchanger 100 according to the first modification includes tip portions T corresponding to parts of the heat exchanging portions 1 B that intersect each other when viewed in a section perpendicular to the fluid flow paths F.
  • the lengths of the flat tubes 1 a in the transverse direction that are included in the heat exchanging portions 1 B located on the side (downstream side in the direction of airflow) on which air exits are larger than those in the heat exchanging portions 1 B located on the side (upstream side in the direction of airflow) on which the air that exchanges heat with the fluid enters.
  • angles formed between the Y-direction and the flat tubes 1 a differ from each other.
  • the heat exchanging portion 1 B 1 , the heat exchanging portion 1 B 2 , the heat exchanging portion 1 B 3 , and the heat exchanging portion 1 B 4 are nearer than the heat exchanging portion 1 B 5 and the heat exchanging portion 1 B 6 to the upstream side in the direction of airflow.
  • the heat exchanging portion 1 B 1 , the heat exchanging portion 1 B 2 , the heat exchanging portion 1 B 3 , and the heat exchanging portion 1 B 4 are referred to as upstream heat exchanging portions, and the heat exchanging portion 1 B 5 and the heat exchanging portion 1 B 6 are referred to as downstream heat exchanging portions.
  • the upstream heat exchanging portions include the heat exchanging body 10 B and the heat exchanging body 20 B.
  • the downstream heat exchanging portions include the heat exchanging body 30 B.
  • angles formed between the Y-direction and the flat tubes 1 a of the upstream heat exchanging portions are larger than the angles formed between the Y-direction and the flat tubes 1 a of the downstream heat exchanging portions.
  • angles formed between the Y-direction and the flat tubes 1 a are also referred to simply as angles.
  • the heat exchanger 100 functions as the evaporator, and frost formation occurs in the heat exchanger 100 , defrosting operation, in which the direction of the flow of the refrigerant through the refrigerant circuit is reversed to supply the heated refrigerant to the heat exchanger 100 , enables frost attached on the heat exchanging portions 1 B on the upstream side in the direction of airflow to be efficiently removed.
  • the angles ⁇ 2 formed between the Y-direction and the flat tubes 1 a of the downstream heat exchanging portions are smaller than the angles ⁇ 1 formed between the Y-direction and the flat tubes 1 a of the upstream heat exchanging portions, an increase in airflow resistance can be avoided. That is, in the case where the number of the heat exchanging portions 1 B is increased, and the number of the tip portions T of the heat exchanger 100 is increased, the airflow resistance increases although the area of heat exchange can be increased. In view of this, in the heat exchanger 100 according to the first modification, the angles on the downstream side in the direction of airflow are made smaller to avoid the increase in the airflow resistance.
  • the heat exchanger 100 according to the first modification enables frost to be efficiently removed and enables an increase in the airflow resistance to be avoided as above.
  • the distances between the adjacent flat tubes 1 a of the heat exchanging portions 1 B of the upstream heat exchanging portions are larger than the distances between the flat tubes 1 a of the heat exchanging portions 1 B of the downstream heat exchanging portions.
  • the distances W 1 in the heat exchanging portion 1 B 6 located on the side on which air enters are larger than the distances W 2 in the heat exchanging portion 1 B 1 located on the side on which the air exits. This increases the area of contact between each heat exchanging portion 1 B and frost on the upstream side in the direction of airflow, where frost is particularly likely to form, and enables the frost to be efficiently removed in the heat exchanger 100 according to the first modification.
  • the lengths of the first flat tube P 1 and the second flat tube P 2 of the second heat exchanging body in the transverse direction are larger than the lengths of the first flat tube P 1 and the second flat tube P 2 of the first heat exchanging body
  • the lengths of the third flat tube P 3 and the fourth flat tube P 4 of the second heat exchanging body in the transverse direction are larger than the lengths of the third flat tube P 3 and the fourth flat tube P 4 of the first heat exchanging body.
  • angles formed between the Y-direction and the flat tubes 1 a of the heat exchanging portions 1 B on the upstream side in the direction of airflow are larger than the angles formed between the Y-direction and the flat tubes 1 a of the heat exchanging portions 1 B on the downstream side in the direction of airflow, and the number of the tip portions T is increased.
  • the heat exchanger 100 according to the first modification enables frost to be efficiently removed and enables an increase in the airflow resistance to be avoided.
  • the distances (intervals) between the adjacent flat tubes 1 a of the heat exchanging portions 1 B on the upstream side in the direction of airflow are larger than those in the heat exchanging portions 1 B on the downstream side in the direction of airflow. For this reason, the area of contact between each heat exchanging portion 1 B and frost can be increased, and the frost can be efficiently removed.
  • FIG. 5 illustrates a second modification to the heat exchanger 100 according to Embodiment.
  • adjacent heat exchanging portions 10 are not coupled with each other, and the heat exchanging portions 10 are separate from each other. That is, regarding the minimum configuration of the heat exchanger 100 , the first flat tube P 1 and the third flat tube P 3 are separate from each other, and the second flat tube P 2 and the fourth flat tube P 4 are separate from each other.
  • the second modification will now be described in detail.
  • the heat exchanger 100 includes heat exchanging bodies.
  • the heat exchanger 100 includes a first heat exchanging body 10 C and a second heat exchanging body 20 C.
  • the second heat exchanging body 20 C is arranged downstream of the first heat exchanging body 10 C in the direction of airflow.
  • the first heat exchanging body 10 C includes heat exchanging portions 1 C and includes a heat exchanging portion 1 C 1 and a heat exchanging portion 1 C 2 according to the second modification.
  • the second heat exchanging body 20 C includes heat exchanging portions 1 C and includes a heat exchanging portion 1 C 3 and a heat exchanging portion 1 C 4 according to the second modification.
  • the heat exchanger 100 according to the second modification includes the (four) heat exchanging portions 1 C that are separate from each other. Each heat exchanging portion 1 C includes seven flat tubes 1 a that are stacked in parallel with each other.
  • the heat exchanger 100 according to the second modification includes the heat exchanging portion 1 C 1 , the heat exchanging portion 1 C 2 arranged downstream of the heat exchanging portion 1 C 1 in the direction of airflow, the heat exchanging portion 1 C 3 arranged downstream of the heat exchanging portion 1 C 2 in the direction of airflow, and the heat exchanging portion 1 C 4 arranged downstream of the heat exchanging portion 1 C 3 in the direction of airflow.
  • the adjacent heat exchanging portions 1 C are arranged at predetermined intervals. That is, the heat exchanging portions 1 C are spaced from each other to allow air to pass therebetween.
  • the flat tubes 1 a adjacent to each other in the Y-direction are arranged at predetermined intervals. That is, spaces S 1 are formed between the flat tubes 1 a of the heat exchanging portion 1 C 1 and the flat tubes 1 a of the heat exchanging portion 1 C 2 .
  • Spaces S 2 are formed between the flat tubes 1 a of the heat exchanging portion 1 C 2 and the flat tubes 1 a of the heat exchanging portion 1 C 3 .
  • Spaces S 3 are formed between the flat tubes 1 a of the heat exchanging portion 1 C 3 and the flat tubes 1 a of the heat exchanging portion 1 C 4 .
  • spaces S 1 , the spaces S 2 , and the spaces S 3 are also referred to simply as spaces S.
  • the spaces S 1 are formed between the flat tubes 1 a of the heat exchanging portion 1 C 1 and the flat tubes 1 a of the heat exchanging portion 1 C 2 in the following manner.
  • Upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 C 2 in the direction of airflow are shifted so as to cover downstream end portions of the flat tubes 1 a of the heat exchanging portion 1 C 1 .
  • the upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 C 2 in the direction of airflow are shifted in the X-direction based on the positions of the downstream end portions of the flat tubes 1 a of the heat exchanging portion 1 C 1 and are shifted in a direction toward the flat tubes 1 a of the heat exchanging portion 1 C 1 .
  • the direction toward the flat tubes 1 a of the heat exchanging portion 1 C 1 is parallel with the Y-direction.
  • the spaces S 1 are thus formed between the end portions of the flat tubes 1 a of the heat exchanging portion 1 C 1 and the end portions of the flat tubes 1 a of the heat exchanging portion 1 C 2 .
  • the heat exchanging portions 1 C are arranged such that the spaces S located on the downstream side in the direction of airflow are larger than the spaces S located on the upstream side in the direction of airflow. That is, in the heat exchanger 100 according to the second modification, the heat exchanging portion 1 C 1 , the heat exchanging portion 1 C 2 , and the heat exchanging portion 1 C 3 are arranged such that the spaces S 2 are larger than the spaces S 1 , and the heat exchanging portion 1 C 2 , the heat exchanging portion 1 C 3 , and the heat exchanging portion 1 C 4 are arranged such that the spaces S 3 are larger than the spaces S 2 .
  • the relation of spaces S 1 ⁇ spaces S 2 ⁇ spaces S 3 holds.
  • the heat exchanging bodies of the heat exchanger 100 according to the second modification include the first heat exchanging body 10 C having the spaces S 1 , and the second heat exchanging body 20 C that has the spaces S 3 larger than the spaces S 1 of the first heat exchanging body 10 C and that is arranged downstream of the first heat exchanging body 10 C in the direction of the flow of the fluid.
  • the spaces S 2 that are larger than the spaces S 1 and smaller than the spaces S 3 are formed between the first heat exchanging body 10 C and the second heat exchanging body 20 C.
  • the air that has entered the flat tubes 1 a of the heat exchanging portion 1 C 1 exchanges heat with the fluid flowing through the flat tubes 1 a , is heated, and exchanges heat with, for example, the fluid flowing through the flat tubes 1 a of the heat exchanging portion 1 C 2 on the downstream side. That is, heat is exchanged between the heated air and the fluid flowing through the flat tubes 1 a of the heat exchanging portion 1 C 2 , and this results in a reduction in the heat-exchange efficiency.
  • air that is not heated enters the flat tubes 1 a of the heat exchanging portion 1 C 2 from the spaces S 1 , and this inhibits the heat-exchange efficiency from being reduced.
  • the spaces S 3 are formed on the downstream side in the direction of airflow, and thus, the airflow resistance of the air passing through the heat exchanger 100 can be decreased.
  • the spaces S 1 are formed in the heat exchanging portions 1 C on the upstream side in the direction of airflow.
  • the spaces S 1 are likely to be blocked due to the frost.
  • the spaces S 3 which are larger than the spaces S 1 , are unlikely to be blocked. Consequently, the airflow resistance can be inhibited from increasing even when the heat exchanger 100 functions as the evaporator.
  • the velocity Q 2 of the air flowing along a middle position between the adjacent heat exchanging portions 1 C is higher than the velocity Q 1 of the air flowing near each heat exchanging portion 1 C.
  • the flat tubes 1 a are arranged such that the spaces S, such as the spaces S 1 , are formed.
  • the upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 C 4 in the direction of airflow are located between the downstream end portions of the adjacent flat tubes 1 a of the heat exchanging portion 1 C 3 in the direction of airflow.
  • the upstream end portions of the flat tubes 1 a of the heat exchanging portion 1 C 4 in the direction of airflow are arranged at positions at which the flow velocity of the air is high, and the efficiency of heat-exchange between the air and the fluid flowing through the flat tubes 1 a of the heat exchanging portion 1 C 4 is improved accordingly.
  • the same is true for the relationship between the flat tubes 1 a of the heat exchanging portion 1 C 1 and the flat tubes 1 a of the heat exchanging portion 1 C 2 , and for the relationship between the flat tubes 1 a of the heat exchanging portion 1 C 2 and the flat tubes 1 a of the heat exchanging portion 1 C 3 , and likewise, the heat-exchange efficiency of the heat exchanger 100 is improved.
  • the heat exchanger 100 according to the second modification thus enables the heat-exchange efficiency to be improved.
  • FIG. 6 illustrates a third modification to the heat exchanger 100 according to Embodiment.
  • the third modification corresponds to a combination of Embodiment and the second modification.
  • the heat exchanger 100 according to the third modification includes heat exchanging bodies.
  • the heat exchanger 100 includes a first heat exchanging body 10 D and a second heat exchanging body 20 D.
  • the second heat exchanging body 20 D is arranged downstream of the first heat exchanging body 10 D in the direction of airflow.
  • the first heat exchanging body 10 D includes heat exchanging portions 1 D and includes a heat exchanging portion 1 D 1 and a heat exchanging portion 1 D 2 according to the third modification.
  • the second heat exchanging body 20 D includes heat exchanging portions 1 D and includes a heat exchanging portion 1 D 3 and a heat exchanging portion 1 D 4 according to the third modification.
  • the heat exchanger 100 includes the first heat exchanging body 10 D that is integrally formed such that the heat exchanging portion 1 D 1 and the heat exchanging portion 1 D 2 are coupled with each other, and the second heat exchanging body 20 D including the heat exchanging portion 1 D 3 and the heat exchanging portion 1 D 4 .
  • the heat exchanging portion 1 D 3 and the heat exchanging portion 1 D 4 are separate from each other.
  • the first heat exchanging body 10 D is integrally formed such that the flat tubes 1 a adjacent to each other in the Y-direction are coupled with each other.
  • spaces S are formed between the flat tubes 1 a adjacent to each other in the Y-direction.
  • spaces S 2 are formed between the first heat exchanging body 10 D and the second heat exchanging body 20 D.
  • Spaces S 3 larger than the spaces S 2 are formed between the flat tubes 1 a of the second heat exchanging body 20 D. That is, the heat exchanging portion 1 D 3 forming a part of the second heat exchanging body 20 D is arranged such that the spaces S 2 are formed between the heat exchanging portion 1 D 3 and the heat exchanging portion 1 D 2 .
  • the heat exchanging portion 1 D 4 forming the other part of the second heat exchanging body 20 D is arranged such that the spaces S 3 larger than the spaces S 2 are formed between the heat exchanging portion 1 D 4 and the heat exchanging portion 1 D 3 .
  • the first heat exchanging body 10 D is not limited to the structure in which two flat tubes 1 a (two heat exchanging portions 1 D) are coupled with each other and may include three or more flat tubes 1 a (three or more heat exchanging portions 1 D) that are coupled with each other.
  • the heat exchanger 100 according to the third modification includes the first heat exchanging body 10 D including the first flat tube P 1 and the third flat tube P 3 that are coupled with each other and the second flat tube P 2 and the fourth flat tube P 4 that are coupled with each other, and the second heat exchanging body 20 D that is arranged downstream of the first heat exchanging body 10 D in the direction of the flow of the fluid and that includes the first flat tube P 1 and the third flat tube P 3 that are separate from each other and the second flat tube P 2 and the fourth flat tube P 4 that are separate from each other.
  • the effects of the heat exchanger 100 according to Embodiment and the effects of the heat exchanger 100 according to the second modification are thus achieved.
  • the spaces S 2 may be formed between the first heat exchanging body 10 D and the second heat exchanging body 20 D.
  • the spaces S 3 larger than the spaces S 2 may be formed between the heat exchanging portion 1 D 3 and the heat exchanging portion 1 D 4 of the second heat exchanging body 20 D. This enables the airflow resistance on the downstream side in the direction of airflow to be decreased.
  • the heat exchanging portions are arranged such that all the adjacent heat exchanging portions are oriented crosswise.
  • the heat exchanger 100 is not limited thereto.
  • the heat exchanger 100 may include two heat exchanging portions that are not oriented crosswise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
US15/753,185 2015-09-30 2015-09-30 Heat exchanger and refrigeration cycle apparatus including the same Active US10480869B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077788 WO2017056250A1 (ja) 2015-09-30 2015-09-30 熱交換器及びそれを備えた冷凍サイクル装置

Publications (2)

Publication Number Publication Date
US20180238637A1 US20180238637A1 (en) 2018-08-23
US10480869B2 true US10480869B2 (en) 2019-11-19

Family

ID=58423015

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/753,185 Active US10480869B2 (en) 2015-09-30 2015-09-30 Heat exchanger and refrigeration cycle apparatus including the same

Country Status (5)

Country Link
US (1) US10480869B2 (de)
EP (1) EP3358287B1 (de)
JP (1) JP6403898B2 (de)
CN (1) CN108139178B (de)
WO (1) WO2017056250A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6615316B2 (ja) * 2016-03-16 2019-12-04 三菱電機株式会社 フィンレス型の熱交換器、そのフィンレス型の熱交換器を備えた空気調和機の室外機、及びそのフィンレス型の熱交換器を備えた空気調和機の室内機
CN107806777B (zh) * 2016-09-09 2020-12-04 丹佛斯微通道换热器(嘉兴)有限公司 无翅片换热器
WO2018189892A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
WO2020012548A1 (ja) * 2018-07-10 2020-01-16 三菱電機株式会社 熱交換器、熱交換器ユニット及び冷凍サイクル装置
JP7023366B2 (ja) * 2018-08-23 2022-02-21 三菱電機株式会社 熱交換器ユニット及び冷凍サイクル装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835923A (en) * 1972-09-13 1974-09-17 Saab Scania Ab Heat exchanger for fluid media having unequal surface conductances
US4836276A (en) * 1987-03-09 1989-06-06 Nippondenso Co., Ltd. Heat exchanger for engine oil
JPH0599454A (ja) 1991-10-11 1993-04-20 Hitachi Ltd 空気調和機
US5236336A (en) * 1990-12-05 1993-08-17 Sanden Corporation Heat exchanger
JP2001201077A (ja) 2000-01-20 2001-07-27 Fujitsu General Ltd 空気調和機
US20040069472A1 (en) * 2002-08-29 2004-04-15 Masahiro Shimoya Heat exchanger
US6988538B2 (en) * 2004-01-22 2006-01-24 Hussmann Corporation Microchannel condenser assembly
US7036568B2 (en) * 2002-04-16 2006-05-02 Denso Corporation Heat exchanger having projecting fluid passage
JP2006284123A (ja) 2005-04-01 2006-10-19 Calsonic Kansei Corp 熱交換器
JP2007187381A (ja) 2006-01-12 2007-07-26 Denso Corp 熱交換器
US20070256823A1 (en) * 2004-01-12 2007-11-08 Behr Gmbh & Co. Kg Heat Exchanger, in Particular for an Over Critical Cooling Circuit
US7293604B2 (en) * 2003-02-13 2007-11-13 Calsonic Kansei Corporation Heat exchanger
US20080092587A1 (en) 2005-02-02 2008-04-24 Carrier Corporation Heat Exchanger with Fluid Expansion in Header
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
US20100012307A1 (en) * 2007-02-27 2010-01-21 Carrier Corporation Multi-channel flat tube evaporator with improved condensate drainage
US20110094257A1 (en) * 2008-03-20 2011-04-28 Carrier Corporation Micro-channel heat exchanger suitable for bending

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166476U (de) * 1986-04-02 1987-10-22
US6364008B1 (en) * 1999-01-22 2002-04-02 E. I. Du Pont De Nemours And Company Heat exchanger with tube plates
AU2001286552A1 (en) * 2000-08-21 2002-03-04 Engineered Dynamics Corporation Heat exchanger assembly and a method for efficiently transferring heat
KR20020032815A (ko) * 2000-10-27 2002-05-04 구자홍 냉장고의 열교환기
JP4952196B2 (ja) * 2005-12-07 2012-06-13 パナソニック株式会社 熱交換器
DE102007023361A1 (de) * 2007-05-18 2008-11-20 Modine Manufacturing Co., Racine Wärmetauscherkern, Herstellungsverfahren, Walzenstraße
US20100116481A1 (en) * 2008-11-12 2010-05-13 Evans Timothy V Heat Exchanger
GB0921279D0 (en) * 2009-12-04 2010-01-20 Universal Heat Transfer Ltd Heat exchanger
CN102829576B (zh) * 2012-08-01 2014-01-22 浙江盾安热工科技有限公司 一种微通道换热器
CN203100483U (zh) * 2013-01-07 2013-07-31 广东美的电器股份有限公司 换热器

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835923A (en) * 1972-09-13 1974-09-17 Saab Scania Ab Heat exchanger for fluid media having unequal surface conductances
US4836276A (en) * 1987-03-09 1989-06-06 Nippondenso Co., Ltd. Heat exchanger for engine oil
US5236336A (en) * 1990-12-05 1993-08-17 Sanden Corporation Heat exchanger
JPH0599454A (ja) 1991-10-11 1993-04-20 Hitachi Ltd 空気調和機
JP2001201077A (ja) 2000-01-20 2001-07-27 Fujitsu General Ltd 空気調和機
US7036568B2 (en) * 2002-04-16 2006-05-02 Denso Corporation Heat exchanger having projecting fluid passage
US20040069472A1 (en) * 2002-08-29 2004-04-15 Masahiro Shimoya Heat exchanger
US7293604B2 (en) * 2003-02-13 2007-11-13 Calsonic Kansei Corporation Heat exchanger
US20070256823A1 (en) * 2004-01-12 2007-11-08 Behr Gmbh & Co. Kg Heat Exchanger, in Particular for an Over Critical Cooling Circuit
US6988538B2 (en) * 2004-01-22 2006-01-24 Hussmann Corporation Microchannel condenser assembly
US20080092587A1 (en) 2005-02-02 2008-04-24 Carrier Corporation Heat Exchanger with Fluid Expansion in Header
JP2008528943A (ja) 2005-02-02 2008-07-31 キャリア コーポレイション ヘッダ内で流体を膨張させる熱交換器
JP2006284123A (ja) 2005-04-01 2006-10-19 Calsonic Kansei Corp 熱交換器
JP2007187381A (ja) 2006-01-12 2007-07-26 Denso Corp 熱交換器
US20100012307A1 (en) * 2007-02-27 2010-01-21 Carrier Corporation Multi-channel flat tube evaporator with improved condensate drainage
US20110094257A1 (en) * 2008-03-20 2011-04-28 Carrier Corporation Micro-channel heat exchanger suitable for bending
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report of the International Searching Authority dated Dec. 28, 2015 for the corresponding international application No. PCT/JP2015/077788 (and English translation).

Also Published As

Publication number Publication date
WO2017056250A1 (ja) 2017-04-06
JP6403898B2 (ja) 2018-10-10
CN108139178A (zh) 2018-06-08
EP3358287A4 (de) 2018-09-26
EP3358287B1 (de) 2019-08-28
JPWO2017056250A1 (ja) 2018-04-26
CN108139178B (zh) 2019-12-06
EP3358287A1 (de) 2018-08-08
US20180238637A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
US20130306285A1 (en) Heat exchanger and air conditioner
JP6400257B1 (ja) 熱交換器および空気調和機
US20130292098A1 (en) Heat exchanger and air conditioner
US20150319885A1 (en) Outdoor unit and refrigeration cycle apparatus
JP6847229B2 (ja) 熱交換器、及び冷凍サイクル装置
US11262132B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2011005986A2 (en) Multichannel heat exchanger with differing fin spacing
WO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
JPWO2018225252A1 (ja) 熱交換器及び冷凍サイクル装置
JP6765528B2 (ja) 熱交換器、冷凍サイクル装置および空気調和機
CN110595111B (zh) 换热器和多制冷系统空调机组
CN116134282B (zh) 热交换器
WO2017068723A1 (ja) 熱交換器及び冷凍サイクル装置
EP3524915B1 (de) Kältekreislaufvorrichtung
JP6318371B2 (ja) 室外ユニットおよびそれを用いた冷凍サイクル装置
JP2003090691A (ja) フィンチューブ型熱交換器およびこれを用いた冷凍サイクル
JPWO2017208419A1 (ja) フィンチューブ型熱交換器、および、このフィンチューブ型熱交換器を備えたヒートポンプ装置
JP7381909B2 (ja) 伝熱管、及び、熱交換器
JP6563115B2 (ja) 熱交換器及び冷凍サイクル装置
CN111448423B (zh) 空气调节机
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JP4813534B2 (ja) 空気調和装置
JP7112168B2 (ja) 熱交換器及び冷凍サイクル装置
WO2020012524A1 (ja) 熱交換器ユニット及び冷凍サイクル装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIBASHI, AKIRA;UGAJIN, YUKI;ITO, DAISUKE;AND OTHERS;SIGNING DATES FROM 20180125 TO 20180129;REEL/FRAME:045356/0216

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4