US10222469B1 - Radar-based contextual sensing - Google Patents

Radar-based contextual sensing Download PDF

Info

Publication number
US10222469B1
US10222469B1 US15/287,200 US201615287200A US10222469B1 US 10222469 B1 US10222469 B1 US 10222469B1 US 201615287200 A US201615287200 A US 201615287200A US 10222469 B1 US10222469 B1 US 10222469B1
Authority
US
United States
Prior art keywords
sensor
radar
3d
space
apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/287,200
Inventor
Nicholas Edward Gillian
Carsten C. Schwesig
Jaime Lien
Patrick M. Amihood
Ivan Poupyrev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201562237975P priority Critical
Application filed by Google LLC filed Critical Google LLC
Priority to US15/287,200 priority patent/US10222469B1/en
Assigned to GOOGLE INC. reassignment GOOGLE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIEN, JAIME, POUPYREV, IVAN, AMIHOOD, Patrick M., GILLIAN, NICHOLAS EDWARD, SCHWESIG, CARSTEN C.
Assigned to GOOGLE LLC reassignment GOOGLE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: GOOGLE INC.
Application granted granted Critical
Publication of US10222469B1 publication Critical patent/US10222469B1/en
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems where the wavelength or the kind of wave is irrelevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • G01S7/412Identification of targets based on measurements of radar reflectivity based on a comparison between measured values and known or stored values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6245Protecting personal data, e.g. for financial or medical purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00201Recognising three-dimensional objects, e.g. using range or tactile information
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6288Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6288Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
    • G06K9/629Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/8082Virtual reality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes between land vehicles; between land vehicles and fixed obstacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes between land vehicles; between land vehicles and fixed obstacles
    • G01S2013/9357Radar or analogous systems specially adapted for specific applications for anti-collision purposes between land vehicles; between land vehicles and fixed obstacles using additional data, e.g. driver condition, road state, weather data
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/038Indexing scheme relating to G06F3/038
    • G06F2203/0384Wireless input, i.e. hardware and software details of wireless interface arrangements for pointing devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object or an image, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • G06T7/0046
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/90Additional features
    • G08C2201/93Remote control using other portable devices, e.g. mobile phone, PDA, laptop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode

Abstract

This document describes apparatuses and techniques for radar-based contextual sensing. In some aspects, a radar sensor of a device is activated to obtain radar data for a space of interest. Three-dimensional (3D) radar features are extracted from the radar data and positional data is received from sensors. Based on the positional data, spatial relation of the 3D radar features is determined to generate a set of 3D landmarks for the space. This set of 3D landmarks is then compared with known 3D context models to identify a 3D context model that matches the 3D landmarks. Based on a matching 3D context model, a context for the space is retrieved and used to configure contextual settings of the device. By so doing, contextual settings of the device be dynamically configured to address changes in context or for different device environments.

Description

PRIORITY

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/237,975 filed on Oct. 6, 2015, the disclosure of which is incorporated by reference herein in its entirety.

BACKGROUND

Many computing devices and electronic devices include sensors to provide a seamless and intuitive user experience based on a device's surroundings. For example, a device may exit a sleep state responsive to an accelerometer indicating device movement or a touch screen of the device can be disabled responsive to a proximity sensor that indicates proximity with the user's face. Most of these sensors, however, have limited accuracy, range, or functionality, and are only able to sense a coarse or drastic change of the device's surroundings. Thus, without accurate sensor input, the device is often left to infer different types of user interaction or whether the user is even present, which results in incorrect user input, false or non-detection of the user, and user frustration.

Examples of sensor inaccuracy in the above context include a device that incorrectly exits the sleep state responsive to an accelerometer sensing non-user-related movement (e.g., a moving vehicle) and disabling a touch screen in response to a user holding a device incorrectly and partially obstructing the proximity sensor. In such cases, a device's battery can be run down due to inadvertent power state transitions and user input through the touch screen is disrupted until the user moves his hand. These are just a few examples of sensor inaccuracy that can disrupt the user's interactive experience with the device. By so doing, contextual settings of the device be dynamically configured to address changes in context or for different device surroundings

SUMMARY

This disclosure describes apparatuses and techniques for radar-based contextual sensing. In some embodiments, a radar field is provided and reflection signals that correspond to a target in the radar field are received. The reflection signals are transformed to provide radar data, from which a radar feature indicating a physical characteristic of the target is extracted. Based on the radar features, a sensor is activated to provide supplemental sensor data associated with the physical characteristic. The radar feature is then augmented with the supplemental sensor data to enhance the radar feature, such as by increasing an accuracy or resolution of the radar feature. By so doing, performance of sensor-based applications, which rely on the enhanced radar features, can be improved.

In other aspects, a radar sensor of a device is activated to obtain radar data for a space of interest. Three-dimensional (3D) radar features are extracted from the radar data and positional data is received from sensors. Based on the positional data, spatial relation of the 3D radar features is determined to generate a set of 3D landmarks for the space. This set of 3D landmarks is compared with known 3D context models to identify a 3D context model that matches the 3D landmarks. Based on the matching 3D context model, a context for the space is retrieved and used to configure contextual settings of the device. By so doing, contextual settings of the device be dynamically configured to address changes in context or for different device surroundings.

This summary is provided to introduce simplified concepts concerning radar-based contextual sensing, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of radar-based contextual sensing are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:

FIG. 1 illustrates an example environment that includes a computing device having a radar sensor and additional sensors.

FIG. 2 illustrates example types and configurations of the sensors shown in FIG. 1.

FIG. 3 illustrates example implementations of the radar sensor shown in FIG. 1 and corresponding radar fields.

FIG. 4 illustrates another example implementation of the radar sensor shown in FIG. 1 and a penetrating radar field.

FIG. 5 illustrates an example of configuration of components capable of implementing radar-based contextual sensing.

FIG. 6 illustrates an example method for augmenting radar data with supplemental sensor data.

FIG. 7 illustrates an example of implementation of motion tracking with enhanced radar features.

FIG. 8 illustrates an example method for low-power sensor fusion in accordance with one or more embodiments.

FIG. 9 illustrates an example of low-power sensor fusion implemented by smart-television that includes a sensor fusion engine.

FIG. 10 illustrates an example method for verifying a radar feature with complimentary sensor data.

FIG. 11 illustrates an example method for generating a context model for a space of interest.

FIG. 12 illustrates an example of a room being contextually mapped in accordance with one or more embodiments.

FIG. 13 illustrates an example method for configuring context settings based on a context associated with a space

FIG. 14 illustrates an example method of changing contextual settings in response to a context of a space being altered.

FIG. 15 illustrates an example of changing contextual settings of a computing device in response to a change in context.

FIG. 16 illustrates an example computing system in which techniques of radar-based contextual sensing may be implemented.

DETAILED DESCRIPTION Overview

Conventional sensor techniques are often limited and inaccurate due to inherent weaknesses associated with a given type of sensor. For example, motion can be sensed through data provided by an accelerometer, yet the accelerometer data may not be useful to determine a source of the motion. In other cases, a proximity sensor may provide data sufficient to detect proximity with an object, but an identity of the object may not be determinable from the proximity data. As such, conventional sensors have weaknesses or blind spots that can result in inaccurate or incomplete sensing of a device's surrounding, including the device's relation to a user.

Apparatuses and techniques are described herein that implement radar-based contextual sensing. In some embodiments, respective strengths of sensors are combined with a radar to mitigate a respective weakness of each sensor. For example, a surface radar feature of a user's face can be combined with imagery of a red-green-blue (RGB) camera to improve accuracy of facial recognition application. In other cases, a radar motion feature, which is able to track fast motion, is combined with imagery of an RGB sensor, which excels at capturing spatial information, to provide an application that is capable of detecting fast spatial movements.

In yet other cases, radar surface features can be augmented with orientation or directional information from an accelerometer to enable mapping of a device's environment (e.g., rooms or spaces). In such cases, the device may learn or detect contexts in which the device is operating thereby enabling various contextual features and settings of the device. These are but a few examples of ways in which radar can be leveraged for sensor fusion or contextual sensing, which are described herein. The following discussion first describes an operating environment, followed by techniques that may be employed in this environment, and ends with example systems.

Operating Environment

FIG. 1 illustrates a computing device through which radar-based contextual sensing can be enabled. Computing device 102 is illustrated with various non-limiting example devices, smart-glasses 102-1, a smart-watch 102-2, a smartphone 102-3, a tablet 102-4, a laptop computer 102-5, and a gaming system 102-6, though other devices may also be used, such as home automation and control systems, entertainment systems, audio systems, other home appliances, security systems, netbooks, automobiles, smart-appliances, and e-readers. Note that the computing device 102 can be wearable, non-wearable but mobile, or relatively immobile (e.g., desktops and appliances).

The computing device 102 includes one or more computer processors 104 and computer-readable media 106, which includes memory media and storage media. Applications and/or an operating system (not shown) embodied as computer-readable instructions on computer-readable media 106 can be executed by processors 104 to provide some of the functionalities described herein. The computer-readable media 106 also includes sensor-based applications 108, a sensor fusion engine 110, and a context manager 112, which are described below.

The computing device 102 may also include one or more network interfaces 114 for communicating data over wired, wireless, or optical networks and a display 116. The network interface 114 may communicate data over a local-area-network (LAN), a wireless local-area-network (WLAN), a personal-area-network (PAN), a wide-area-network (WAN), an intranet, the Internet, a peer-to-peer network, point-to-point network, a mesh network, and the like. The display 116 can be integral with the computing device 102 or associated with it, such as with the gaming system 102-6.

The computing device 102 includes one or more sensors 118, which enable the computing device 102 to sense various properties, variances, stimuli, or characteristics of an environment in which computing device 102 operates. For example, the sensors 118 may include various motion sensors, light sensors, acoustic sensors, and magnetic sensors. Alternately or additionally, sensors 118 enable interaction with, or receive input from, a user of computing device 102. The use and implementation of the sensors 118 varies and is described below.

The computing device 102 may also be associated with or include a radar sensor 120. The radar sensor 120 represents functionality that wirelessly detects targets through the transmission and reception of radio frequency (RF) or radar signals. The radar sensor 120 can be implemented as a system and/or radar-enabled component embedded within the computing device 102, such as a System-on-Chip (SoC) or sensor-on-chip. It is to be appreciated, however, that the radar sensor 120 can be implemented in any other suitable manner, such as one or more Integrated Circuits (ICs), as a processor with embedded processor instructions or configured to access a memory having processor instructions stored thereon, as hardware with embedded firmware, a printed circuit board assembly with various hardware components, or any combination thereof. Here, the radar sensor 120 includes radar-emitting element 122, antenna(s) 124, and digital signal processor 126, which can be used in concert to wirelessly detect various types of targets in the environment of the computing device 102.

Generally, radar-emitting element 122 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off one or more target objects. In some cases, the target objects include device users or other people present in the environment of the computing device 102. In other cases, the target objects include physical features of the user, such as hand motion, breathing rates, or other physiological features. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand

A radar field provided by the radar-emitting element 122 can be a small size, such as zero or one millimeters to 1.5 meters, or an intermediate size, such as one to 30 meters. It is to be appreciated that these sizes are merely for discussion purposes, and that any other suitable size or range of radar field can be used. For example, when the radar field has an intermediate size, the radar sensor 120 can be configured to receive and process reflections of the radar field to provide large-body gestures based on reflections from human tissue caused by body, arm, or leg movements.

In some aspects, the radar field can be configured to enable the radar sensor 120 to detect smaller and more-precise gestures, such as micro-gestures. Example intermediate-sized radar fields include those in which a user makes gestures to control a television from a couch, change a song or volume from a stereo across a room, turn off an oven or oven timer (a near field would also be useful here), turn lights on or off in a room, and so forth. The radar sensor 120, or emitter thereof, can be configured to emit continuously modulated radiation, ultra-wideband radiation, or sub-millimeter-frequency radiation.

The antenna(s) 124 transmit and receive RF signals of the radar sensor 120. In some cases, the radar-emitting element 122 is coupled with the antennas 124 to transmit a radar field. As one skilled in the art will appreciate, this is achieved by converting electrical signals into electromagnetic waves for transmission, and vice versa for reception. The radar sensor 120 can include one or an array of any suitable number of antennas in any suitable configuration. For instance, any of the antennas 124 can be configured as a dipole antenna, a parabolic antenna, a helical antenna, a planar antenna, an inverted-F antenna, a monopole antenna, and so forth. In some embodiments, the antennas 124 are constructed or formed on-chip (e.g., as part of a SoC), while in other embodiments, the antennas 124 are separate components, metal, dielectrics, hardware, etc. that attach to, or are included within, radar sensor 120.

A first antenna 124 can be single-purpose (e.g., a first antenna can be directed towards transmitting signals, and a second antenna 124 can be directed towards receiving signals), or multi-purpose (e.g., an antenna is directed towards transmitting and receiving signals). Thus, some embodiments utilized varying combinations of antennas, such as an embodiment that utilizes two single-purpose antennas configured for transmission in combination with four single-purpose antennas configured for reception. The placement, size, and/or shape of the antennas 124 can be chosen to enhance a specific transmission pattern or diversity scheme, such as a pattern or scheme designed to capture information about the environment, as further described herein.

In some cases, the antennas 124 can be physically separated from one another by a distance that allows the radar sensor 120 to collectively transmit and receive signals directed to a target object over different channels, different radio frequencies, and different distances. In some cases, the antennas 124 are spatially distributed to support triangulation techniques, while in others the antennas are collocated to support beamforming techniques. While not illustrated, each antenna can correspond to a respective transceiver path that physically routes and manages the outgoing signals for transmission and the incoming signals for capture and analysis.

The digital signal processor 126 ((DSP) or digital signal processing component) generally represents operations related to digitally capturing and processing a signal. For instance, the digital signal processor 126 samples analog RF signals received by the antenna(s) 124 to generate radar data (e.g., digital samples) that represents the RF signals, and then processes this radar data to extract information about the target object. In some cases, the digital signal processor 126 performs a transform on the radar data to provide a radar feature that describes target characteristics, position, or dynamics. Alternately or additionally, the digital signal processor 126 controls the configuration of signals generated and transmitted by the radar-emitting element 122 and/or antennas 124, such as configuring a plurality of signals to form a specific diversity or beamforming scheme.

In some cases, the digital signal processor 126 receives input configuration parameters that control an RF signal's transmission parameters (e.g., frequency channel, power level, etc.), such as through the sensor-based applications 108, sensor fusion engine 110, or context manager 112. In turn, the digital signal processor 126 modifies the RF signal based upon the input configuration parameter. At times, the signal processing functions of the digital signal processor 126 are included in a library of signal processing functions or algorithms that are also accessible and/or configurable via the sensor-based applications 108 or application programming interfaces (APIs). The digital signal processor 126 can be implemented in hardware, software, firmware, or any combination thereof.

FIG. 2 illustrates example types and configurations of the sensors 118 that can be used to implement embodiments of radar-based contextual sensing generally at 200. These sensors 118 enable the computing device 102 to sense various properties, variances, stimuli, or characteristics of an environment in which computing device 102 operates. Data provided by the sensors 118 is accessible to other entities of the computing device, such as the sensor fusion engine 110 or the context manager 112. Although not shown, the sensors 118 may also include global-positioning modules, micro-electromechanical systems (MEMS), resistive touch sensors, and so on. Alternately or additionally, the sensors 118 can enable interaction with, or receive input from, a user of the computing device 102. In such a case, the sensors 118 may include piezoelectric sensors, touch sensors, or input sensing-logic associated with hardware switches (e.g., keyboards, snap-domes, or dial-pads), and so on.

In this particular example, the sensors 118 include an accelerometer 202 and gyroscope 204. These and other motion and positional sensors, such as motion sensitive MEMS or global positioning systems (GPSs) (not shown), are configured to sense movement or orientation of the computing device 102. The accelerometer 202 or gyroscope 204 can sense movement or orientation of the device in any suitable aspect, such as in one-dimension, two-dimensions, three-dimensions, multi-axis, combined multi-axis, and the like. Alternately or additionally, positional sensor, such as a GPS, may indicate a distance traveled, rate of travel, or an absolute or relative position of the computing device 102. In some embodiments, the accelerometer 202 or gyroscope 204 enable computing device 102 to sense gesture inputs (e.g., a series of position and/or orientation changes) made when a user moves the computing device 102 in a particular way.

The computing device 102 also includes a hall effect sensor 206 and magnetometer 208. Although not shown, the computing device 102 may also include a magneto-diode, magneto-transistor, magnetic sensitive MEMS, and the like. These magnetic field-based sensors are configured to sense magnetic field characteristics around computing device 102. For example, the magnetometer 208 may sense a change in magnetic field strength, magnetic field direction, or magnetic field orientation. In some embodiments, computing device 102 determines proximity with a user or another device based on input received from the magnetic field-based sensors.

A temperature sensor 210 of the computing device 102 can sense a temperature of a housing of the device or ambient temperature of the device's environment. Although not shown, the temperature sensor 210 may also be implemented in conjunction with a humidity sensor that enables moisture levels to be determined. In some cases, the temperature sensor can sense a temperature of a user that is holding, wearing, or carrying, the computing device 102. Alternately or additionally, the computing device may include an infrared thermal sensor that can sense temperature remotely or without having physical contact with an object of interest.

The computing device 102 also includes one or more acoustic sensors 212. The acoustic sensors can be implemented as microphones or acoustic wave sensors configured to monitor sound of an environment that computing device 102 operates. The acoustic sensors 212 are capable of receiving voice input of a user, which can then be processed by a DSP or processor of computing device 102. Sound captured by the acoustic sensors 212 may be analyzed or measured for any suitable component, such as pitch, timbre, harmonics, loudness, rhythm, envelope characteristics (e.g., attack, sustain, decay), and so on. In some embodiments, the computing device 102 identifies or differentiates a user based on data received from the acoustic sensors 212.

Capacitive sensors 214 enable the computing device 102 to sense changes in capacitance. In some cases, the capacitance sensors 214 are configured as touch sensors that can receive touch input or determine proximity with a user. In other cases, the capacitance sensors 214 are configured to sense properties of materials proximate a housing of the computing device 102. For example, the capacitance sensors 214 may provide data indicative of the devices proximity with respect to a surface (e.g., table or desk), body of a user, or the user's clothing (e.g., clothing pocket or sleeve). Alternately or additionally, the capacitive sensors may be configured as a touch screen or other input sensor of the computing device 102 through which touch input is received.

The computing device 102 may also include proximity sensors 216 that sense proximity with objects. The proximity sensors may be implemented with any suitable type of sensor, such as capacitive or infrared (IR) sensors. In some cases, the proximity sensor is configured as a short-range IR emitter and receiver. In such cases, the proximity sensor may be located within a housing or screen of the computing device 102 to detect proximity with a user's face or hand. For example, a proximity sensor 216 of a smart-phone may enable detection of a user's face, such as during a voice call, in order to disable a touch screen of the smart-phone to prevent the reception of inadvertent user input.

An ambient light sensor 218 of the computing device 102 may include a photo-diode or other optical sensors configured to sense an intensity, quality, or changes in light of the environment. The light sensors are capable of sensing ambient light or directed light, which can then be processed by the computing device 102 (e.g., via a DSP) to determine aspects of the device's environment. For example, changes in ambient light may indicate that a user has picked up the computing device 102 or removed the computing device 102 from his or her pocket.

In this example, the computing device also includes a red-green-blue sensor 220 (RGB sensor 220) and an infrared sensor 222. The RGB sensor 220 may be implemented as a camera sensor configured to capture imagery in the form of images or video. In some cases, the RGB sensor 220 is associated with a light-emitting diode (LED) flash increase luminosity of the imagery in low-light environments. In at least some embodiments, the RGB sensor 220 can be implemented to capture imagery associated with a user, such as a user's face or other physical features that enable identification of the user.

The infrared sensor 222 is configured to capture data in the infrared frequency spectrum, and may be configured to sense thermal variations or as an infrared (IR) camera. For example, the infrared sensor 222 may be configured to sense thermal data associated with a user or other people in the device's environment. Alternately or additionally, the infrared sensor may be associated with an IR LED and configured to sense proximity with or distance to an object.

In some embodiments, the computing device includes a depth sensor 224, which may be implemented in conjunction with the RGB sensor 220 to provide RGB-enhanced depth information. The depth sensor 222 may be implemented as a single module or separate components, such as an IR emitter, IR camera, and depth processor. When implemented separately, the IR emitter emits IR light that is received by the IR camera, which provides IR imagery data to the depth processor. Based on known variables, such as the speed of light, the depth processor of the depth sensor 224 can resolve distance to a target (e.g., time-of-flight camera). Alternately or additionally, the depth sensor 224 may resolve a three-dimensional depth map of the object's surface or environment of the computing device.

From a power consumption viewpoint, each of the sensors 118 may consume a different respective amount of power while operating. For example, the magnetometer 208 or acoustic sensor 212 may consume tens of milliamps to operate while the RGB sensor, infrared sensor 222, or depth sensor 224 may consume hundreds of milliamps to operate. In some embodiments, power consumption of one or more of the sensors 118 is known or predefined such that lower power sensors can be activated in lieu of other sensors to obtain particular types of data while conserving power. In many cases, the radar sensor 120 can operate, either continuously or intermittently, to obtain various data while consuming less power than the sensors 118. In such cases, the radar sensor 120 may operate while all or most of the sensors 118 are powered-down to conserve power of the computing device 102. Alternately or additionally, a determination can be made, based on data provided by the radar sensor 120, to activate one of the sensors 118 to obtain additional sensor data.

FIG. 3 illustrates example configurations of the radar sensor 120 and radar fields provided thereby generally at 300. In the context of FIG. 3, two example configurations of the radar sensor 120 are illustrated, a first in which a radar sensor 302-1 is embedded in a gaming system 304 and a second in which a radar sensor 302-2 is embedded in a television 306. The radar sensors 302-1 and 302-2 may be implemented similarly to or differently from each other or the radar sensors described elsewhere herein. In the first example, the radar sensor 302-1 provides a near radar field to interact with the gaming system 304, and in the second, the radar sensor 302-2 provides an intermediate radar field (e.g., a room size) to interact with the television 306. These radar sensors 302-1 and 302-2 provide near radar field 308-1 and intermediate radar field 308-2, respectively, and are described below.

The gaming system 304 includes, or is associated with, the radar sensor 302-1. These devices work together to improve user interaction with the gaming system 304. Assume, for example, that the gaming system 304 includes a touch screen 310 through which content display and user interaction can be performed. This touch screen 310 can present some challenges to users, such as needing a person to sit in a particular orientation, such as upright and forward, to be able to touch the screen. Further, the size for selecting controls through touch screen 310 can make interaction difficult and time-consuming for some users. Consider, however, the radar sensor 302-1, which provides near radar field 308-1 enabling a user's hands to interact with desktop computer 304, such as with small or large, simple or complex gestures, including those with one or two hands, and in three dimensions. As is readily apparent, a large volume through which a user may make selections can be substantially easier and provide a better experience over a flat surface, such as that of touch screen 310.

Similarly, consider the radar sensor 302-2, which provides the intermediate radar field 308-2. Providing a radar-field enables a variety of interactions with a user positioned in front of the television. For example, the user may interact with the television 306 from a distance and through various gestures, ranging from hand gestures, to arm gestures, to full-body gestures. By so doing, user selections can be made simpler and easier than a flat surface (e.g., touch screen 310), a remote control (e.g., a gaming or television remote), and other conventional control mechanisms. Alternately or additionally, the television 306 may determine, via the radar sensor 302-2, an identity of the user, which can be provided to sensor-based applications to implement other functions (e.g., content control).

FIG. 4 illustrates another example configuration of the radar sensor and a penetrating radar field provided thereby at 400. In this particular example, a surface to which the radar field is applied human tissue. As shown, a hand 402 having a surface radar field 404 provided by the radar sensor 120 (of FIG. 1) that is included in a laptop 406. A radar-emitting element 122 (not shown) provides the surface radar field 404 that penetrates a chair 408 and is applied to the hand 402. In this case, the antennas 124 are configured to receive a reflection caused by an interaction on the surface of the hand 402 that penetrates (e.g., reflects back through) the chair 408. Alternately, the radar sensor 120 can be configured to provide and receive reflections through fabric, such as when a smart-phone is placed in a user's pocket. Thus, the radar sensor 120 may map or scan spaces through an optical occlusion, such as fabric, clothing, and other non-transparent material.

In some embodiments, the digital signal processor 126 is configured to process the received reflection signal from the surface sufficient to provide radar data usable to identify the hand 402 and/or determine a gesture made thereby. Note that with the surface radar field 404, another hand may by identified or interact to perform gestures, such as to tap on the surface on the hand 402, thereby interacting with the surface radar field 404. Example gestures include single and multi-finger swipe, spread, squeeze, non-linear movements, and so forth. Or the hand 402 may simply move or change shape to cause reflections, thereby also performing an occluded gesture.

With respect to human-tissue reflection, reflecting radar fields can process these fields to determine identifying indicia based on the human-tissue reflection, and confirm that the identifying indicia matches recorded identifying indicia for a person, such as authentication for a person permitted to control a corresponding computing device. These identifying indicia can include various biometric identifiers, such as a size, shape, ratio of sizes, cartilage structure, and bone structure for the person or a portion of the person, such as the person's hand. These identify indicia may also be associated with a device worn by the person permitted to control the mobile computing device, such as device having a unique or difficult-to-copy reflection (e.g., a wedding ring of 14 carat gold and three diamonds, which reflects radar in a particular manner).

In addition, the radar sensor systems can be configured so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.

FIG. 5 illustrates an example configuration of components capable of implementing radar-based contextual sensing generally at 500, including the sensor fusion engine 110 and context manager 112. Although shown as separate entities, the radar sensor 120, sensor fusion engine 110, context manager 112, and other entities may be combined with one another, organized differently, or communicate directly or indirectly through interconnections or data buses not shown. Accordingly, the implementation of the sensor fusion engine 110 and context manager 112 shown in FIG. 5 is intended to provide a non-limiting example of ways in which these entities and others described herein may interact to implement radar-based contextual sensing.

In this example, the sensor fusion engine includes a radar signal transformer 502 (signal transformer 502) and a radar feature extractor 504 (feature extractor 504). Although shown as separate entities embodied on the sensor fusion engine 110, the signal transformer 502 and feature abstractor 504 may also be implemented by, or within, the digital signal processor 126 of the radar sensor 120. The sensor fusion engine 110 is communicably coupled with the sensors 118, from which sensor data 506 is received. The sensor data 506 may include any suitable type of raw or pre-processed sensor data, such as data corresponding to any type of the sensors described herein. The sensor fusion engine 110 is also operably coupled with the radar sensor 120, which provides radar data 508 to the sensor fusion engine 110. Alternately or additionally, the radar data 508 provided by the radar sensor 120 may comprise real-time radar data, such as raw data representing reflection signals of a radar field as they are received by the radar sensor 120.

In some embodiments, the signal transformer 502 transforms the raw radar data representing reflection signals into radar data representations. In some cases, this includes performing signal pre-processing on the raw radar data. For example, as an antenna receives reflected signals, some embodiments sample the signals to generate a digital representation of the raw incoming signals. Once the raw data is generated, the signal transformer 502 pre-processes the raw data to clean up the signals or generate versions of the signals in a desired frequency band or desired data format. Alternately or additionally, pre-processing the raw data may include filtering the raw data to reduce a noise floor or remove aliasing, resampling the data to obtain to a different sample rate, generating a complex representation of the signals, and so on. The signal transformer 502 can pre-process the raw data based on default parameters, while in other cases the type and parameters of the pre-processing is configurable, such as by the sensor fusion engine 110 or the context manager 112.

The signal transformer 502 transforms the received signal data into one or more different data representations or data transforms. In some cases, the signal transformer 502 combines data from multiple paths and corresponding antennas. The combined data may include data from various combinations of transmit paths, receive paths, or combined transceiver paths of the radar sensor 120. Any suitable type of data fusion technique can be used, such as weighted integration to optimize a heuristic (e.g., signal-to-noise (SNR) ratio or minimum mean square error (MMSE)), beamforming, triangulation, and the like.

The signal transformer 502 may also generate multiple combinations of signal data for different types of feature extraction, and/or transforms the signal data into another representation as a precursor to feature extraction. For example, the signal transformer 502 can process the combined signal data to generate a three-dimensional (3D) spatial profile of the target object. However, any suitable type of algorithm or transform can be used to generate a view, abstraction, or version of the raw data, such as an I/Q transformation that yields a complex vector containing phase and amplitude information related to the target object, a beamforming transformation that yields a spatial representation of target objects within range of a gesture sensor device, or a range-Doppler algorithm that yields target velocity and direction. Other types of algorithms and transforms may include a range profile algorithm that yields target recognition information, a micro-Doppler algorithm that yields high-resolution target recognition information, and a spectrogram algorithm that yields a visual representation of the corresponding frequencies, and so forth.

As described herein, the raw radar data can be processed in several ways to generate respective transformations or combined signal data. In some cases, the same raw data can be analyzed or transformed in multiple ways. For instance, a same capture of raw data can be processed to generate a 3D profile, target velocity information, and target directional movement information. In addition to generating transformations of the raw data, the radar signal transformer can perform basic classification of the target object, such as identifying information about its presence, a shape, a size, an orientation, a velocity over time, and so forth. For example, some embodiments use the signal transformer 502 to identify a basic orientation of a hand by measuring an amount of reflected energy off of the hand over time.

These transformations and basic classifications can be performed in hardware, software, firmware, or any suitable combination. At times, the transformations and basic classifications are performed by digital signal processor 126 and/or the sensor fusion engine 110. In some cases, the signal transformer 502 transforms the raw radar data or performs a basic classification based upon default parameters, while in other cases the transformations or classifications are configurable, such as through the sensor fusion engine 110 or context manager 112.

The feature abstractor 504 receives the transformed representations of the radar data from the signal transformer 502. From these data transforms, the feature abstractor 504 resolves, extracts, or identifies one or more radar features 510. These radar features 510 may indicate various properties, dynamics, or characteristics of a target and, in this example, include detection features 512, reflection features 514, motion features 516, position features 518, and shape features 520. These features are described by way of example only, and are not intended to limit ways in which the sensor fusion engine extracts feature or gesture information from raw or transformed radar data. For example, the radar feature extractor 504 may extract alternate radar features, such as range features or image features, from radar data representations provided by the signal transformer 502.

The detection features 512 may enable the sensor fusion engine 110 to detect a presence of a user, other people, or objects in an environment of the computing device 102. In some cases, a detection feature indicates a number of targets in a radar field or a number of targets in a room or space that is swept by a radar field. The reflection features 514 may indicate a profile of energy reflected by the target, such as reflected energy over time. This can be effective to enable velocity of a target's motion to be tracked over time. Alternately or additionally, the reflection feature may indicate an energy of a strongest component or a total energy of a moving target.

The motion features 516 may enable the fusion engine 110 to track movement or motion of a target in or through a radar field. In some cases, the motion feature 516 includes a velocity centroid in one or three dimensions, or a phase-based fine target displacement in one dimension. Alternately or additionally, the motion feature may include a target velocity or a 1D velocity dispersion. In some embodiments, the position features 518 include spatial 2D or 3D coordinates of a target object. The position features 518 may also be useful to range or determine distance to a target object.

The shape features 520 indicate a shape of a target or surface, and may include a spatial dispersion. In some cases, the sensor fusion engine 110 can scan or beam form different radar fields to build a 3D representation of a target or environment of the computing device 102. For example, the shape features 520 and other of the radar features 510 can be combined by the sensor fusion engine 110 to construct a unique identifier (e.g., a fingerprint) of a particular room or space.

In some embodiments, the feature abstractor 504 builds on a basic classification identified by the signal transformer 502 for feature extraction or abstraction. Consider the above example in which the signal transformer 502 classifies a target object as a hand. The feature abstractor 504 can build from this basic classification to extract lower resolution features of the hand. In other words, if the feature abstractor 504 is provided information identifying the target object as a hand, then the feature abstractor 504 uses this information to look for hand-related features (e.g., finger tapping, shape gestures, or swipe movements) instead of head-related features, (e.g., an eye blink, mouthing a word, or head-shaking movement).

As another example, consider a scenario in which the signal transformer 502 transforms the raw radar data into a measure of the target object's velocity over time. In turn, the feature abstractor 504 uses this information to identify a finger fast-tap motion by using a threshold value to compare the target object's velocity of acceleration to the threshold value, a slow-tap feature, and so forth. Any suitable type of algorithm can be used to extract a feature, such as machine-learning algorithms implemented by a machine-learning component (not shown) of the digital signal processor 126.

In various embodiments, the sensor fusion engine 110 combines or augments the radar features 510 with sensor data 506 from the sensors 118. For example, the sensor fusion engine 110 may apply a single algorithm to extract, identify, or classify a feature, or apply multiple algorithms to extract a single feature or multiple features. Thus, different algorithms can be applied to extract different types of features on a same set of data, or different sets of data. Based on the radar feature, the sensor fusion engine 110 can activate a particular sensor to provide data that is complimentary or supplemental to the radar feature. By so doing, an accuracy or validity of the radar features can be improved with the sensor data.

The sensor fusion engine 110 provides or exposes the sensor data 506, radar data 508, or various combinations thereof to sensor-based applications 108 and the context manager 112. For example, the sensor fusion engine 110 may provide, to the sensor-based applications 108, radar data augmented with sensor data or radar data that is verified based on sensor data. The sensor-based applications 108 may include any suitable application, function, utility, or algorithm that leverages information or knowledge about the computing device 102's environment or relation thereto in order to provide device functionalities or to alter device operations.

In this particular example, the sensor-based applications 108 include proximity detection 522, user detection 524, and activity detection 526. The proximity detection application 522 may detect, based on sensor data or radar data, proximity with a user or other objects. For example, the proximity detection application 522 may use detection radar features 512 to detect an approaching object and then switch to proximity sensor data to confirm proximity with a user. Alternately or additionally, the application may leverage a shape radar feature 520 to verify that the approaching object is a user's face, and not another similar sized large body object.

The user detection application 524 may detect, based on sensor data or radar data, presence of a user. In some cases, the user detection application 524 also tracks the user when the user is detected in the environment. For example, the user detection application 524 may detect the presence based on a detection radar feature 512 and shape radar feature 520 that matches a known 3D profile of the user. The user detection application 524 can also verify detection of the user through image data provided by the RGB sensor 220 or voice data provided by the acoustic sensors 212.

In some embodiments, the activity detection application 526 uses the sensor data and the radar data to detect activity in the computing device 102's environment. The activity detection application 526 may monitor radar for detection features 512 and motion features 516. Alternately or additionally, the activity detection application 526 can use the acoustic sensors 212 to detect noise, and the RGB sensor 220 or depth sensor 224 to monitor movement.

The sensor-based applications also include biometric recognition 528, physiologic monitor 530, and motion identification 532. The biometric recognition application 528 may use sensor data and radar data to capture or obtain biometric characteristics of a user that are useful to identify that user, such as to implement facial recognition. For example, the biometric recognition application 528 can use a shape radar feature 520 to obtain a 3D map of skeletal structure of the user's face and a color image from the RGB sensor 220 to confirm the user's identity. Thus, even if an imposter was able to forge an appearance of the user, the imposter would not be able to replicate the exact facial structure of the user and thus fail identification through the biometric recognition application 528.

The physiological monitor application 530 can detect or monitor medical aspects of a user, such as breathing, heart rate, reflexes, fine motor skills, and the like. To do so, the physiological monitor application 530 may use radar data, such as to track motion of user's chest, monitor arterial flow, subdermal muscle contraction, and the like. The physiological monitor application 530 can monitor other sensors of the device for supplemental data, such as acoustic, thermal (e.g., temperature), image (e.g., skin or eye color), and motion (e.g., tremors) data. For example, the physiological monitor application 530 may monitor a user's breathing patterns with radar motion features 516, breath noises recorded by the acoustic sensors 212, and heat signatures of exhaled air captured by the infrared sensor 222.

The motion identification application 532 can use the radar data and sensor data to identify various motion signatures. In some cases, the motion radar features 516 or other radar features are useful for track motion. In such cases, the motions may be too fast for accurate capture by the RGB sensor 220 or the depth sensor 224. By using the radar features, which are able to track very fast motion, the motion identification application 532 can track motion and leverage image data from the RGB sensor 220 to provide additional spatial information. Thus, the sensor fusion engine 110 and the motion identification application 532 are able to track a fast moving object with corresponding spatial information.

The gesture detection application 534 of the sensor-based applications 108 performs gesture recognition and mapping. For instance, consider a case where a finger tap motion feature has been extracted. The gesture detection application 534 can use this information, sound data from the acoustic sensors 212, or image data from the RGB sensor 220 to identify the feature as a double-click gesture. The gesture detection application 534 may use a probabilistic determination of which gesture has most likely occurred based upon the radar data and sensor data provided by the sensor fusion engine 110, and how this information relates to one or more previously learned characteristics or features of various gestures. For example, a machine-learning algorithm can be used to determine how to weight various received characteristics to determine a likelihood these characteristics correspond to particular gestures (or components of the gestures).

The context manager 112 may access the sensor-based applications 108, sensor data 506, or the radar features 510 of the sensor fusion engine 110 to implement radar-based contextual sensing. In some embodiments, the radar data 508 can be combined with sensor data 506 to provide maps of spaces or rooms in which the computing device 102 operates. For example, position and inertial sensor data can be leveraged to implement synthetic aperture techniques for capturing and meshing 3D radar imagery. Thus, as the device moves through an environment, the context manager 112 can construct detailed or high resolution 3D maps of various spaces and rooms. Alternately or additionally, the 3D imagery can be captured through optical occlusions or be used in combination with other techniques of sensor fusion to improve activity recognition.

In this particular example, the context manager 112 includes context models 536, device contexts 538, and context settings 540. The context models 536 include physical models of various spaces, such as dimensions, geometry, or features of a particular room. In other words, a context model can be considered to describe the unique character of particular space, like a 3D fingerprint. In some cases, building the context models 536 is implemented via machine learning techniques and may be performed passively as a device enters or passes through a particular space. Device contexts 538 include and may describe multiple contexts in which the computing device 102 may operate. These contexts may include a standard set of work contexts, such as “meeting,” “do not disturb,” “available,” “secure,” “private,” and the like. For example, the “meeting” context may be associated with the device being in a conference room, with multiple other coworkers and customers. Alternately or additionally, the device contexts 538 may be user programmable or custom, such as contexts for different rooms of a house, with each context indicating a respective level of privacy or security associated with that context.

Context settings 540 include various device or system settings that are configurable based on context or other environmental properties. The context settings 540 may include any suitable type of device setting, such as ringer volume, ringer mode, display modes, connectivity to networks or other devices, and the like. Alternately or additionally, the context settings 540 may include any suitable type of system settings, such as security settings, privacy settings, network or device connection settings, remote control features, and the like. For example, if a user walks into her home theater, the context manager 112 may recognize this context (e.g., “home theater”) and configure context settings by muting a device's alerts and configuring a wireless interface of the device to control audio/video equipment in the home theater. This is just but one example of how context manager 112 can determine and configure a device based on context.

Having described respective examples of a computing device 102, a sensor fusion engine 110, and a context manager 112 in accordance with one or more embodiments, now consider a discussion of techniques that can be performed by those and other entities described herein to implement radar-based contextual sensing.

Example Methods

FIGS. 6, 8, 10, 11, 13, and 14 depict methods for implementing radar-based contextual sensing and/or radar-based contextual sensing. These method is shown as sets of blocks that specify operations performed but are not necessarily limited to the order or combinations shown for performing the operations by the respective blocks. For example, operations of different methods may be combined, in any order, to implement alternate methods without departing from the concepts described herein. In portions of the following discussion, the techniques may be described in reference may be made to FIGS. 1-5, reference to which is made for example only. The techniques are not limited to performance by one entity or multiple entities operating on one device, or those described in these figures.

FIG. 6 depicts an example method 600 for augmenting radar data with supplemental sensor data, including operations performed by the radar sensor 120, sensor fusion engine 110, or context manager 112.

At 602, a radar field is provided, such as one of the radar fields shown in FIG. 2 or 3. The radar field can be provided by a radar system or radar sensor, which may be implemented similar to or differently from the radar sensor 120 and radar-emitting element 122 of FIG. 1. The radar field provided may comprise a broad beam, full contiguous radar field or a directed narrow beam, scanned radar field. In some cases, the radar field is provided at a frequency approximate a 60 GHz band, such as 57-64 GHz or 59-61 GHz, though other frequency bands can be used.

By way of example, consider FIG. 7 in which a laptop computer 102-5 includes a radar sensor 120 at 700 and is capable of implementing radar-enabled sensor fusion. Here, assume that a user 702 is using a gesture driven control menu of the laptop 102-5 to play a first person shooter (FPS) video game. The radar sensor 120 provides radar field 704 to capture movement of the user 702 to enable game control.

At 604, one or more reflection signals are received that correspond to a target in the radar field. The radar reflection signals may be received as a superposition of multiple points of a target object in the radar field, such as a person or object within or passing through the radar field. In the context of the present example, reflection signals from the user's hand are received by the radar sensor 120.

At 606, the one or more reflection signals are transformed into radar data representations. The reflection signals may be transformed using any suitable signal processing, such as by performing a range-Doppler transform, range profile transform, micro-Doppler transform, I/Q transform, or spectrogram transform. Continuing the ongoing example, the radar sensor performs a range-Doppler transform to provide target velocity and direction information for the user's hand.

At 608, a radar feature indicative of a characteristic of the target is extracted from the radar data. The radar feature may provide a real-time measurement of the characteristic of the target, position of the target, or dynamics of the target. The radar feature may include any suitable type of feature, such as a detection feature, reflection feature, motion feature, position feature, or shape feature, examples of which are described herein. In the context of the present example, reflection radar features and motion radar features of the user's hand are extracted from the radar data.

At 610, a sensor is activated based on the radar feature. The sensor can be activated to provide supplemental data. In some cases, a sensor is selected for activation based on the radar feature or a type of the radar feature. For example, an RGB or infrared sensor can be activated to provide supplemental sensor data for a surface feature or motion feature. In other cases, an accelerometer or gyroscope can be activated to obtain supplemental data for a motion feature or position feature. In yet other cases, data may be received from a microphone or depth sensor to improve a detection feature. Continuing the ongoing example, the sensor fusion engine 110 activates the RGB sensor 220 of the laptop 102-5 to capture spatial information.

At 612, the radar feature is augmented with the supplemental sensor data. This may include combining, or fusing, the radar feature and sensor data to provide a more-accurate or more-precise radar feature. Augmenting the radar feature may include improving an accuracy or resolution of the radar feature based on supplemental or complimentary sensor data. Examples of this sensor fusion may include using sensor data to increase a positional accuracy of the radar feature, mitigate a false detection attributed to the radar feature, increase a spatial resolution of the radar feature, increase a surface resolution of the radar feature, or improve a classification precision of the radar feature. In the context of the present example, the sensor fusion engine 110 combines the motion radar features 516 and RGB information to provide sensor information that spatially captures a very fast movement. In some cases, the RGB sensor 220 would not be able to detect or capture such motion due to inherent limitations of the sensor.

At 614, the augmented radar feature is provided to a sensor-based application. This can be effective to increase performance of the sensor-based application. In some cases, the augmented radar feature increases accuracy of detection applications, such as proximity detection, user detection, activity detection, gesture detection, and the like. In such cases, sensor data may be used to eliminate false detection, such as by confirming or disproving detection of the target. In other cases, the augmented radar feature may improve consistency of the application. Concluding the present example, the fused radar data features are passed to the gesture detection application 534, which passes a gesture to the FPS video game as game control input.

FIG. 8 illustrates an example method for low-power sensor fusion, including operations performed by the radar sensor 120, sensor fusion engine 110, or context manager 112.

At 802, a radar sensor of a device is monitored for changes in reflected signals of a radar field. The radar sensor may provide a continuous or intermittent radar field from which the reflected signals are received. In some cases, the radar sensor is a lower-power sensor of a device, which consumes less power while operating than other sensors of the device. The changes in the reflected signals may be caused by movement of the device or movement of a target within the device's environment. By way of example, consider environment 900 of FIG. 9 in which a radar-enabled television 902 is being watched by a first user 904 in a living room. Here, assume that user 904 begins reading a magazine and that a second user 906 enters the living room. A radar sensor 120 of the television detects changes in reflected radar signals caused by these actions of the first and second users.

At 804, the reflected signals are transformed to detect a target in the radar field. In some cases, detection features are extracted from the transformed radar data to confirm detection of the target in the radar field. In other cases, shape features or motion features are extracted from the transformed radar data to identity physical characteristics the target or movement of the target in the radar field. In the context of the present example, detection radar features for the first and second users are extracted from the reflected radar signals.

At 806, responsive to detection of the target in the reflected signals, a higher-power sensor is activated from a low-power state to obtain target-related sensor data. For example, if a radar detection feature indicates movement or presence of a user in the radar field, an RGB sensor can be activated to capture imagery of the user. In other cases, a GPS module of the device may be activated in response to position radar features or reflection radar features that indicate the device is moving. Continuing the ongoing example, the sensor fusion engine 110 activates the RGB sensor 220 of the television 902. The RGB sensor 220 obtains face image data 908 of the first user 904 and face image data 910 of the second user 906. This image data may be static images or video of the user's faces, such as to enable eye tracking or other dynamic facial recognition features.

At 808, the target-related sensor data is passed to a sensor-based application. The sensor-based application may include any suitable application, such as those described herein. In some cases, execution of the sensor-based application is initiated or resumed in response to detecting a particular activity or target in the radar field. For example, a surveillance application may be resumed in response to sensing activity features that indicate an unauthorized person entering a controlled area. An RGB sensor can then pass image data to the surveillance application. In the context of the present example in FIG. 9, the RGB sensor passes the face image data 908 and face image data 910 to a biometric recognition application 528.

Optionally at 810, radar features extracted from the transformed radar data are passed to the sensor-based application. In some cases, the radar features provide additional context for the sensor data passed to the sensor-based application. For example, a position radar feature can be passed to an application receiving RGB imagery to enable the application to tag targets in the imagery with respective location information.

Continuing the ongoing example, the sensor fusion engine 110 passes respective radar surface features of the user's faces to the biometric recognition application 528. Here, the application may determine that the first user 904 is not watching the television (e.g., eye tracking), and determine that the second user 906 is interested in watching the television 902. Using the face image data 910, the sensor fusion engine 110 can identify the second user 906 and retrieve, based on his identity, a viewing history associated with this identity. The context manager 112 leverages this viewing history to change a channel of the television to a last channel viewed by the second user 906.

At 812, the higher-power sensor is returned to a low-power state. Once the sensor data is passed to the sensor-based application, the higher-power sensor can be returned to the low-power state to conserve power of the device. Because the radar sensor consumes relatively little power while providing an array of capabilities, the other sensors can be left in low-power states until more sensor-specific data needs to be obtained. By so doing, power consumption of the device can be reduced, which is effective to increase run times for battery operated devices. From operation 812, the method 800 may return to operation 802 to monitor the radar sensor for subsequent changes in the reflected signals of the radar field. Concluding the present example, the RGB sensor 220 is returned to a low-power state after changing the channel of the television and may reside in the low-power state until further activity is detected by the radar sensor 120.

FIG. 10 illustrates an example method for enhancing sensor data with radar features, including operations performed by the radar sensor 120, sensor fusion engine 110, or context manager 112.

At 1002, a sensor of a device is monitored for environmental variances. The sensor may include any suitable type of sensor, such as those described in reference to FIG. 2 and elsewhere herein. The sensors may be configured to monitor variances of a physical state of the device, such as device motion, or variance remote from the device, such as ambient noise or light. In some cases, the sensor is monitored while the device is in a low-power state or by a low-power processor of the device to conserve device power.

At 1004, an environmental variance is detected via the sensor. The environmental variance may include any suitable type of variance, such as a user's voice, ambient noise, device motion, user proximity, temperature change, change in ambient light, and so on. The detected environmental variance may be associated with a particular context, activity, user, and the like. For example, the environmental variance may include a voice command from a user to wake the device from a sleep state and unlock the device for use.

At 1006, responsive to detecting the environmental variance, a radar sensor is activated to provide a radar field. The radar sensor of the device may be activated to provide radar data that is supplemental or complimentary to data provided by the sensor. In some cases, the radar field is configured based on a type of sensor that detects the environmental variance or sensor data that characterizes the environmental variance. For example, if user proximity is detected, the radar sensor is configured to provide a short-range radar field suitable for identifying the user. In other cases, the radar sensor can be configured to provide a sweeping long-range radar field in response to detecting ambient noise or vibrations. In such cases, the long-range radar field can be used to detect activity or a location associated with the source of the noise.

At 1008, reflection signals from the radar field are transformed to provide radar data. The reflection signals may be transformed using any suitable signal processing, such as by performing a range-Doppler transform, range profile transform, micro-Doppler transform, I/Q transform, or spectrogram transform. In some cases, a type of transform used to provide the radar data is selected based on a type of sensor that detects the environmental variance or the data provided by the sensor.

At 1010, a radar feature is extracted from the radar data. The radar feature can be extracted based on the environmental variance. In some cases, a type of radar feature is selected based on the environmental variance or a type of the environmental variance. For example, a detection feature or motion feature can be selected in response to an acoustic sensor detecting ambient noise. In other cases, the radar sensor can extract a position feature or shape feature in response to an accelerometer sensing movement of the device.

At 1012, the sensor data is augmented with the radar feature to provide enhanced sensor data. This can be effective to increase an accuracy or confidence rate associated with the sensor data. In other words, if the sensor has a weakness with respect to accuracy, range, or another measurement, the radar data may compensate for this shortcomings and improve the quality of the sensor data. For example, a surface feature of a user's face may confirm an identity of the user and a validity of a voice command received to unlock the device.

At 1014, the enhanced sensor data is exposed to a sensor-based application. This can be effective to improve performance of the sensor-based application by improving an accuracy of the application, reducing an amount of sensor data used by the application, expanding functionality of the application, and the like. For example, a motion-based power state application that awakes the device in response to movement may also authenticate a user and unlock the device based on enhanced sensor data that includes motion data and a surface feature of the user's facial structure.

FIG. 11 illustrates an example method for creating a 3D context model for a space of interest, including operations performed by the radar sensor 120, sensor fusion engine 110, or context manager 112.

At 1102, a radar sensor of a device is activated to obtain radar data for a space or area of interest. The radar sensor may be activated responsive to movement of the device, such as inertial data or GPS data indicating that the device is moving into the space or area. In some cases, the radar sensor is activated responsive to detecting unknown devices, such as wireless access points, wireless appliances, or other wireless devices in the space transmitting data detectable by a wireless interface of the device.

By way of example, consider environment 1200 of FIG. 12 in which a user 1202 has entered a living room with his smart-phone 102-3 in his pocket. Here, assume that the user 1202 has not been in this space before and therefore the smart-phone 102-2 has no previous context information associated with this space. Responsive to sensing an open area or wireless data transmissions of a television 1204, a radar sensor 120 of the smart-phone 102-3 begins scanning, through the radar-transparent pocket material, the room and obtaining radar data. As the user changes orientation in the room, the radar sensor 120 continues to scan the room to obtain additional radar data.

At 1104, 3D radar features are extracted from the radar data. The 3D radar features may include 3D radar features or a combination of 1D and 2D features that are useful to construct 3D radar features. The 3D radar features may include radar reflection features, motion features, or shape features that capture physical aspects of the space or area of interest. For example, the 3D radar features may include ranging, position, or shape information for targets in the space, such as furniture, walls, appliances, floor coverings, architectural features, and the like. In the context of the present example, the context manager 112 extracts position and surface radar features of targets in the room, such as the television 1204, plant 1206, door 1208, lamp 1210, picture 1212, and sofa 1214. The radar shapes may indicate an approximate shape, surface texture, or position (absolute or relative to other targets) of each target in the room.

At 1106, positional data is received from sensors of the device. The positional data may include orientation data, inertial data, motion data, directional data, and the like. In some cases, the positional data is useful to implement synthetic aperture techniques for radar scanning or radar imaging. Alternately or additionally, other sensors of the device can provide data indicative of the environment of the space. For example, an acoustic sensor may provide data useful to identify an ambient noise (e.g., fan noise or machinery hum) present in the space. Continuing the ongoing example, an accelerometer 202 of the smart-phone 102-3 provides inertial and orientation data to the sensor fusion engine 110 as the user moves throughout the room.

At 1108, a spatial relation of the 3D radar features is determined based on the positional data. As noted, the positional data can be leveraged to provide a synthetic aperture through which the radar sensor can scan the area of interest. In other words, as a device moves through a space, the radar sensor can capture physical characteristics of the room as multiple 3D radar features. The positional data received from the sensor can then be used to determine spatial relations between the multiple 3D features or how these features fit together in a 3D space. In the context of the present example, the context manager 112 determines spatial relations between the targets in room by using the inertial and orientation data of the accelerometer 202.

At 1110, a portion of a 3D map is generated based on the 3D radar features and spatial relations thereof. A 3D map can be generated for a portion of the space or room based on landmarks captured by the radar features. These landmarks may include identifiable physical characteristics of the space, such as furniture, basic shape and geometry of the space, reflectivity of surfaces, and the like. From operation 1110, the method 1100 may return to operation 1102 to generate another portion of the 3D map of the space or proceed to operation 1112. Continuing the ongoing example and assuming the sensor fusion engine has scanned most of the room, the context manager 112 generates multiple portions of a 3D map of the room based on the radar features of the targets 1204 through 1214 in the room and/or overall dimensions of the room.

At 1112, the portions of the 3D map are combined to create a 3D model of the space. In some cases, the portions of the 3D map may be assembled or meshed by overlapping respective edges. In other cases, the portions of the 3D map are combined based on the previously obtained positional data. The 3D map of the space may be complete or partial depending on a number of viable 3D radar features extracted from the radar data. In the context of the present example, the context manager 112 meshes the previously generated portions to provide a 3D model of the living room.

At 1114, the 3D model of the space is associated with a context of the space. This can be effective to create a 3D context model of the space. The context can be any suitable type of context, such as a type of room, a security level, privacy level, device operating mode, and the like. In some cases, the context is user defined, which may include prompting the user to select from a list of predefined contexts. In other cases, machine learning tools may implement the mapping operations and assign a context based on physical characteristics of the space. Continuing the ongoing example, the context manager 112 associates, based on the presence of the television 1204 and sofa 1214, a “living room” context to the space. This context indicates that the area is private, security risks are low, and that television 1204 is media capable and can be controlled through wireless or gesture-driven control functions. For instance, media playback on the smart-phone 102-3 may be transferred to the television 1204 upon entry into the living room.

At 1116, the 3D context model of the space is stored by the device. The 3D context model can be stored to local memory or uploaded to the Cloud to enable access by the device or other devices. In some cases, storing the 3D context model enables subsequent identification of the space via the radar sensor. For example, the device may maintain a library of 3D context models that enables the device to learn and remember spaces and contexts associated therewith. Concluding the present example, the context manager 112 stores the 3D context model of the living room to enable subsequent access and device configuration, an example of which is described herein.

FIG. 13 illustrates an example method for configuring context settings of a device based on a 3D context model, including operations performed by the radar sensor 120, sensor fusion engine 110, or context manager 112.

At 1302, a radar sensor of a device is activated to obtain radar data for a space or area of interest. The radar sensor may be activated responsive to movement of the device, such as inertial data or GPS data indicating that the device is moving into the space or area. In some cases, the radar sensor is activated responsive to detecting known devices, such as wireless access points, wireless appliances, or other wireless devices in the space with which the device has previously been associated.

At 1304, 3D radar features are extracted from the radar data. The 3D radar features may include 3D radar features or a combination of 1D and 2D features that are useful to construct 3D radar features. The 3D radar features may include radar reflection features, motion features, or shape features that capture physical aspects of the space or area of interest. For example, the 3D radar features may include ranging, position, or shape information for targets in the space, such as furniture, walls, appliances, floor coverings, architectural features, and the like.

At 1306, positional data is received from sensors of the device. The positional data may include orientation data, inertial data, motion data, directional data, and the like. In some cases, the positional data is useful to implement synthetic aperture techniques for radar scanning or radar imaging. Alternately or additionally, other sensors of the device can provide data indicative of the environment of the space. For example, an acoustic sensor may provide data useful to identify an ambient noise (e.g., fan noise or machinery hum) present in the space.

At 1308, a spatial relation of the 3D radar features is determined based on the positional data provided by the sensors. As noted, the positional data can be leveraged to provide a synthetic aperture through which the radar sensor can scan the area of interest. In other words, as a device moves through a space, the radar sensor can capture physical characteristics of the room as multiple 3D radar features. The positional data received from the sensor can then be used to determine spatial relations between the multiple 3D features or how these features fit together in a 3D space.

At 1310, a set of 3D landmarks of the space is generated based on the 3D radar features and the spatial orientation thereof. These landmarks may include identifiable physical characteristics of the space, such as furniture, basic shape and geometry of the space, reflectivity of surfaces, and the like. For example, 3D landmarks of a conference room may include a table having legs of a particular shape and an overhead projector mounted to a mast that protrudes from the ceiling.

At 1312, the set of 3D landmarks is compared to known 3D context models. This can be effective to identify the space in which the device is operating based on a known 3D context model. In some cases, a match to a known 3D context model is determined when the set of the 3D landmarks correspond to those of the 3D context model. To account for variability over time, such as moving or replacing furniture, a match may be determined when enough of the 3D landmarks match to meet a predefined confidence threshold. In such cases, static 3D landmarks, which may include room geometry and fixed architecture (e.g., staircases), can be weighted heavier to minimize an effect that dynamic landmarks have on model matching rates.

At 1314, a context associated with the space is retrieved based on the matching 3D context model. Once a match for the space is determined, a context to apply to the device can be retrieved or accessed by the device. The context may be any suitable type of context, such as a privacy, meeting, appointment, or security context. Alternately or additionally, if a context of the 3D context model is incompatible with current device settings or out-of-date, the user may be prompted to select a context, create a context, or update a context for the space.

At 1316, context settings are configured based on the context associated with the space. The context settings configured may include any suitable type of setting, such as ringer volume, ringer mode, display modes, connectivity to networks or other devices, and the like. Further, security settings or privacy settings, of the device can be configured to enable or limit the display of secure or private content.

FIG. 14 illustrates an example method for altering context settings in response to a change in context, including operations performed by the radar sensor 120, sensor fusion engine 110, or context manager 112.

At 1402, a radar sensor of a device is activated to obtain radar data for an area of interest. The radar sensor may emit a continuous or directional radar field from which signals are reflected by targets in the area. The targets in the area may include any suitable type of object, such as walls, furniture, windows, floor coverings, appliances, room geometry, and the like. By way of example, consider environment 1500 of FIG. 15 in which a user 1502 is reading digital content displayed by a tablet computer 102-4. Here, context manager 112 activates a radar sensor 120 of the tablet computer 102-4 to obtain radar data for the room in which the table computer is operating.

At 1404, radar features are extracted from the radar data. The 3D radar features may include 3D radar features or a combination of 1D and 2D features that are useful to construct 3D radar features. The 3D radar features may include radar reflection features, motion features, or shape features that capture physical aspects of the space or area of interest. For example, the 3D radar features may include ranging, position, or shape information for targets in the space. In the context of the present example, a sensor fusion engine 110 of the tablet computer 102-4 extracts radar features useful to identify targets within and a geometry of the living room of environment 1500.

Optionally at 1406, data is received from a sensor of the device. In some cases, sensor data is useful to determine context for a space. For example, an acoustic sensor may provide data associated with an identifiable ambient noise in the space, such as running water of a fountain or a specific frequency of fan noise. In other cases, appliances or electronic devices may emit a particular whine, hum, or ultrasonic noise that can be detected by the acoustic sensors to provide identification data for a particular space.

At 1408, a context for the space is determined based on at least the radar features. In some cases, the context for the device is determined based on geometries and occupancies derived from the radar features. For example, the context manager may determine a size of the space, number of other occupants, and distances to those occupants in order to set a privacy bubble around the device. In other cases, a set of landmarks in the radar features is compared to known 3D context models. This can be effective to identify the space in which the device is operating based on a known 3D context model.

Although described as known, the 3D context models may also be accessed or downloaded to the device, such as based on device location (e.g., GPS). Alternately or additionally, other types of sensor data can be compared with that of known 3D context models. For example, sounds and wireless networks detected by the device can be compared to acoustic and network data of the known 3D context models. Continuing the ongoing example, the context manager 112 of the tablet computer 102-4 determines a context of environment 1500 as “living room,” a private, semi-secure context.

At 1410, context settings of the device are configured based on the determined context. The context settings configured may include any suitable type of setting, such as ringer volume, ringer mode, display modes, connectivity to networks or other devices, and the like. Further, security settings or privacy settings of the device can be configured to enable or limit the display of secure or private content. In the context of the present example, assume that before an unknown person 1504 enters the room, the context manager 112 configures display, security, and alerts settings of the tablet computer 102-4 for a private context in which these settings are fully enabled or open.

At 1412, the space is monitored for activity via the radar sensor. The radar sensor may provide a continuous or intermittent radar field from which the reflected signals are received. In some cases, the radar sensor detects activity or targets in the radar field responsive to changes in the reflected signals. Continuing the ongoing example, the radar sensor 120 monitors environment 1500 for any activity or detection events that may indicate a change in context.

At 1414, radar features are extracted from radar data to identify the source of the activity in the space. This may include extracting detection, motion, or shape radar features to identify targets in the space. In some cases, the source of activity is a target leaving the space, such as someone leaving a room. In other cases, the source of activity may include people or objects entering the space. In the context of the present example, assume that the unknown person 1504 enters the room and approaches the user 1502. In response to this, the radar sensor 120 provides detection and shape radar features 1506 to facilitate identification of the unknown person 1504.

At 1416, it is determined that the source of the activity changes the context of the space. In some cases, other people leaving a space increases user privacy or reduces noise constraints on a device, thus resulting in a more-open context. In other cases, people entering a space or moving closer to the device can decrease user privacy or increase security concerns for the device and user. With this reduction in privacy or increased need for security, the context of the device can become more private and security oriented. Continuing the ongoing example, shape radar features 1506 are used in an attempt identify, via facial recognition, the unknown person 1504. Here, assume that that facial recognition fails, and that the context manager 112 determines that the presence of an unknown entity changes the context of the space with respect to privacy and security.

At 1418, the context settings of the device are altered based on the change in context of the space. In response to the change in context, the context settings of the device can be altered to compensate for the context changes. When the context of the device increases in privacy or security, altering the context settings may include limiting content exposed by the device, such as by dimming a display, disabling particular applications, affecting display polarization, limiting wireless connectivity of the device, or reducing audio playback volume. Concluding the present example, in response to detecting a change in context, the context manager 112 increases privacy and security settings of the tablet computer 102-4, such as by closing secure applications, reducing volume of alerts and device audio, or reducing a font size of displayed content such that the unknown person would be unable to discern the tablet's content.

Example Computing System

FIG. 16 illustrates various components of an example computing system 1600 that can be implemented as any type of client, server, and/or computing device as described with reference to the previous FIGS. 1-15 to implement radar-based contextual sensing.

The computing system 1600 includes communication devices 1602 that enable wired and/or wireless communication of device data 1604 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data 1604 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device (e.g., an identity of an actor performing a gesture). Media content stored on the computing system 1600 can include any type of audio, video, and/or image data. The computing system 1600 includes one or more data inputs 1606 via which any type of data, media content, and/or inputs can be received, such as human utterances, interactions with a radar field, user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.

The computing system 1600 also includes communication interfaces 1608, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 1608 provide a connection and/or communication links between the computing system 1600 and a communication network by which other electronic, computing, and communication devices communicate data with the computing system 1600.

The computing system 1600 includes one or more processors 1610 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of the computing system 1600 and to enable techniques for, or in which can be embodied, radar-based contextual sensing. Alternatively or in addition, the computing system 1600 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits, which are generally identified at 1612. Although not shown, the computing system 1600 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.

The computing system 1600 also includes computer-readable media 1614, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. The computing system 1600 can also include a mass storage media device (storage media) 1616.

The computer-readable media 1614 provides data storage mechanisms to store the device data 1604, as well as various device applications 1618 and any other types of information and/or data related to operational aspects of the computing system 1600. For example, an operating system 1620 can be maintained as a computer application with the computer-readable media 1614 and executed on the processors 1610. The device applications 1618 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, an abstraction module or gesture module and so on. The device applications 1618 also include system components, engines, or managers to implement radar-based contextual sensing, such as the sensor-based applications 108, sensor fusion engine 110, and context manager 112.

The computing system 1600 may also include, or have access to, one or more of radar systems or sensors, such as a radar sensor chip 1622 having the radar-emitting element 122, a radar-receiving element, and the antennas 124. While not shown, one or more elements of the sensor fusion engine 110 or context manager 112 may be implemented, in whole or in part, through hardware or firmware.

CONCLUSION

Although techniques using, and apparatuses including, radar-based contextual sensing have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example ways in which radar-based contextual sensing can be implemented.

Claims (38)

We claim:
1. A computer-implemented method comprising:
activating a radar sensor of a device to obtain radar data for a space of interest;
extracting, from the radar data, three-dimensional (3D) radar features of the space of interest;
receiving, from a sensor of the device, positional data, the sensor comprising an accelerometer, a gyroscope, a hall effect sensor, a magnetometer, a temperature sensor, an acoustic sensor, a capacitive sensor, a proximity sensor, an ambient light sensor, a red-green-blue (RGB) sensor, an infrared sensor, or a depth sensor;
determining, based on the positional data, a spatial relation of the 3D radar features;
generating, based on the spatial relation and the 3D radar features, a set of 3D landmarks of the space of interest;
comparing the set of 3D landmarks to known 3D context models;
retrieving, based on a matching 3D context model, a context associated with the space of interest; and
configuring context settings of the device based on the context associated with the space of interest.
2. The computer-implemented method of claim 1, wherein the 3D radar features comprise one or more of a radar reflection feature, a radar detection feature, a radar position feature, or a radar shape feature.
3. The computer-implemented method of claim 2, wherein the 3D radar features indicate a number of targets, total reflected energy, two-dimensional spatial coordinates, three-dimensional spatial coordinates, or a one-dimensional spatial dispersion.
4. The computer-implemented method of claim 1, wherein determining the spatial relation of the 3D radar features includes using the positional data to implement a synthetic aperture through which the 3D radar features are captured or processed.
5. The computer-implemented method of claim 1, wherein the context associated with the space of interest indicates a level of privacy associated with the space, a level of security associated with the space, a type of activities associated with the space, or functionalities provided by other devices in the space.
6. The computer-implemented method of claim 1, wherein the context settings of the device comprise a ringer volume setting, audio playback setting, ringer mode setting, display mode setting, network connectivity setting, remote control functionalities, security setting, or privacy setting.
7. The computer-implemented method of claim 1, wherein the sensor is the accelerometer or the gyroscope and the positional data represents motion of the device.
8. The computer-implemented method of claim 1, wherein the sensor is the hall effect sensor or the magnetometer and the positional data represents a magnetic field proximate the device.
9. The computer-implemented method of claim 1, wherein the sensor is the temperature sensor and the positional data represents a temperature proximate the device.
10. The computer-implemented method of claim 1, wherein the sensor is the acoustic sensor and the positional data represents sound proximate the device.
11. The computer-implemented method of claim 1, wherein the sensor is the capacitive sensor and the positional data represents a touch input, proximity with a user or object, or a property of a material proximate the device.
12. The computer-implemented method of claim 1, wherein the sensor is the proximity sensor and the positional data represents a presence of a user or object proximate the device.
13. The computer-implemented method of claim 1, wherein the sensor is the ambient light sensor and the positional data represents an amount of light proximate the device.
14. The computer-implemented method of claim 1, wherein the sensor is the RGB sensor and the positional data represents a visual representation of a user or an object proximate the device.
15. The computer-implemented method of claim 1, wherein the sensor is the infrared sensor and the positional data represents thermal information about a user or an object proximate the device.
16. The computer-implemented method of claim 1, wherein the sensor is the depth sensor and the positional data represents a distance to a user or an object proximate the device.
17. An apparatus comprising:
one or more computer processors;
a radar sensor comprising:
a radar-emitting element configured to provide a radar field;
a radar-receiving element configured to receive one or more reflection signals that correspond to the radar field;
a sensor configured to sense position-related aspects of the apparatus, the sensor comprising an accelerometer, a gyroscope, a hall effect sensor, a magnetometer, a temperature sensor, an acoustic sensor, a capacitive sensor, a proximity sensor, an ambient light sensor, a red-green-blue (RGB) sensor, an infrared sensor, or a depth sensor;
one or more computer-readable storage media having instructions stored thereon that, responsive to execution by the one or more computer processors, implement a context manager to:
activate the radar sensor of a device to obtain radar data for a space in which the apparatus operates;
extract, from the radar data, three-dimensional (3D) radar features of the space;
receive, from the sensor, positional data indicating the position-related aspects of the apparatus;
determine, based on the positional data, a spatial relation of the 3D radar features;
generate, based on the spatial relation and the 3D radar features, a set of 3D landmarks of the space;
compare the set of 3D landmarks to known 3D context models;
retrieve, based on a matching 3D context model, a context associated with the space; and
configure context settings of the apparatus based on the context associated with the space in which the apparatus operates.
18. The apparatus of claim 17, wherein the 3D radar features comprise one or more of a radar reflection feature, a radar detection feature, a radar position feature, or a radar shape feature.
19. The apparatus of claim 17, wherein determining the spatial relation of the 3D radar features includes using the positional data to implement a synthetic aperture through which the 3D radar features are captured or processed.
20. The apparatus of claim 17, wherein the radar sensor further comprises an antenna array through which the radar-emitting element provides the radar field and the radar-receiving element receives the one or more reflection signals.
21. The apparatus of claim 17, wherein the context associated with the space of interest indicates a level of privacy associated with the space, a level of security associated with the space, a type of activities associated with the space, or functionalities provided by devices in the space.
22. The apparatus of claim 17, wherein the apparatus is embodied as a smart-phone, smart-glasses, smart-watch, tablet computer, laptop computer, set-top box, smart-appliance, home automation controller, or television.
23. The apparatus of claim 17, wherein the sensor is the accelerometer or the gyroscope and the position-related aspects of the apparatus represent motion of the apparatus.
24. The apparatus of claim 17, wherein the sensor is the hall effect sensor or the magnetometer and the position-related aspects of the apparatus represent a magnetic field proximate the apparatus.
25. The apparatus of claim 17, wherein the sensor is the temperature sensor and the position-related aspects of the apparatus represent a temperature proximate the apparatus.
26. The apparatus of claim 17, wherein the sensor is the acoustic sensor and the position-related aspects of the apparatus represent sound proximate the apparatus.
27. The apparatus of claim 17, wherein the sensor is the capacitive sensor and the position-related aspects of the apparatus represent a touch input, proximity with a user or object, or a property of a material proximate the apparatus.
28. The apparatus of claim 17, wherein the sensor is the proximity sensor and the position-related aspects of the apparatus represent a presence of a user or object proximate the apparatus.
29. The apparatus of claim 17, wherein the sensor is the ambient light sensor and the position-related aspects of the apparatus represent an amount of light proximate the apparatus.
30. The apparatus of claim 17, wherein the sensor is the RGB sensor and the position-related aspects of the apparatus represent a visual representation of a user or an object proximate the apparatus.
31. The apparatus of claim 17, wherein the sensor is the infrared sensor the position-related aspects of the apparatus represent thermal information about a user or an object proximate the apparatus.
32. The apparatus of claim 17, wherein the sensor is the depth sensor the position-related aspects of the apparatus represent a distance to a user or an object proximate the apparatus.
33. A system-on-chip comprising:
a radar-emitting element configured to provide a radar field;
a radar-receiving element configured to receive reflection signals;
an antenna array through which the radar field is provided and through which the reflection signals are received;
a data interface configured to enable communication with one or more sensors; a processor; and
a computer-readable storage media having instructions stored thereon that, responsive to execution by the computer processor, implement a context manager to:
activate the radar sensor to obtain radar data for a space of interest;
extract, from the radar data, three-dimensional (3D) radar features of the space of interest;
receive, from the data interface, positional data from a sensor, the sensor comprising an accelerometer, a gyroscope, a hall effect sensor, a magnetometer, a temperature sensor, an acoustic sensor, a capacitive sensor, a proximity sensor, an ambient light sensor, a red-green-blue (RGB) sensor, an infrared sensor, or a depth sensor;
determine, based on the positional data, a spatial relation of the 3D radar features;
generate, based on the spatial relation and the 3D radar features, a set of 3D landmarks of the space of interest;
compare the set of 3D landmarks to known 3D context models;
retrieve, based on a matching 3D context model, a context associated with the space of interest; and
configure context settings of a device in which the system-on-chip is implemented based on the context associated with the space of interest.
34. The system-on-chip of claim 33, further comprising a memory storing the known 3D context models or a data interface through which the known 3D context models are accessible.
35. The system-on-chip of claim 33, wherein the 3D radar features comprise one or more of a radar reflection feature, a radar detection feature, a radar position feature, or a radar shape feature.
36. The system-on-chip of claim 33, wherein the context associated with the space of interest indicates a level of privacy associated with the space, a level of security associated with the space, a type of activities associated with the space, or functionalities provided by other devices in the space.
37. The system-on-chip of claim 33, wherein the antenna array comprises at least two on-chip antennas operably connected to the radar-emitting element and at least two on-chip antennas operably connected to the radar-receiving element.
38. The system-on-chip of claim 37, wherein the radar-emitting element configured to provide a radar field, radar-receiving element, and antenna array are further configured to provide reflected signals suitable for transformation into at least four channels of radar data.
US15/287,200 2015-10-06 2016-10-06 Radar-based contextual sensing Active 2037-08-20 US10222469B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201562237975P true 2015-10-06 2015-10-06
US15/287,200 US10222469B1 (en) 2015-10-06 2016-10-06 Radar-based contextual sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/287,200 US10222469B1 (en) 2015-10-06 2016-10-06 Radar-based contextual sensing

Publications (1)

Publication Number Publication Date
US10222469B1 true US10222469B1 (en) 2019-03-05

Family

ID=58446760

Family Applications (9)

Application Number Title Priority Date Filing Date
US15/286,152 Active US10379621B2 (en) 2015-10-06 2016-10-05 Gesture component with gesture library
US15/286,512 Active 2037-03-09 US10401490B2 (en) 2015-10-06 2016-10-05 Radar-enabled sensor fusion
US15/286,495 Active 2037-06-14 US10300370B1 (en) 2015-10-06 2016-10-05 Advanced gaming and virtual reality control using radar
US15/286,837 Active 2037-07-14 US10310621B1 (en) 2015-10-06 2016-10-06 Radar gesture sensing using existing data protocols
US15/287,155 Active 2037-09-20 US10459080B1 (en) 2015-10-06 2016-10-06 Radar-based object detection for vehicles
US15/287,200 Active 2037-08-20 US10222469B1 (en) 2015-10-06 2016-10-06 Radar-based contextual sensing
US16/380,245 Pending US20190232156A1 (en) 2015-10-06 2019-04-10 Advanced Gaming and Virtual Reality Control Using Radar
US16/401,611 Pending US20190257939A1 (en) 2015-10-06 2019-05-02 Gesture Component with Gesture Library
US16/503,234 Pending US20190321719A1 (en) 2015-10-06 2019-07-03 Radar-Enabled Sensor Fusion

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US15/286,152 Active US10379621B2 (en) 2015-10-06 2016-10-05 Gesture component with gesture library
US15/286,512 Active 2037-03-09 US10401490B2 (en) 2015-10-06 2016-10-05 Radar-enabled sensor fusion
US15/286,495 Active 2037-06-14 US10300370B1 (en) 2015-10-06 2016-10-05 Advanced gaming and virtual reality control using radar
US15/286,837 Active 2037-07-14 US10310621B1 (en) 2015-10-06 2016-10-06 Radar gesture sensing using existing data protocols
US15/287,155 Active 2037-09-20 US10459080B1 (en) 2015-10-06 2016-10-06 Radar-based object detection for vehicles

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/380,245 Pending US20190232156A1 (en) 2015-10-06 2019-04-10 Advanced Gaming and Virtual Reality Control Using Radar
US16/401,611 Pending US20190257939A1 (en) 2015-10-06 2019-05-02 Gesture Component with Gesture Library
US16/503,234 Pending US20190321719A1 (en) 2015-10-06 2019-07-03 Radar-Enabled Sensor Fusion

Country Status (6)

Country Link
US (9) US10379621B2 (en)
EP (1) EP3359976A1 (en)
JP (1) JP2018527558A (en)
KR (1) KR20180030123A (en)
CN (1) CN107710012A (en)
WO (1) WO2017062566A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10285456B2 (en) 2016-05-16 2019-05-14 Google Llc Interactive fabric
US10300370B1 (en) 2015-10-06 2019-05-28 Google Llc Advanced gaming and virtual reality control using radar
US10310620B2 (en) 2015-04-30 2019-06-04 Google Llc Type-agnostic RF signal representations
US10409385B2 (en) 2014-08-22 2019-09-10 Google Llc Occluded gesture recognition

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
CN107430443A (en) 2015-04-30 2017-12-01 谷歌公司 Gesture identification based on wide field radar
KR20190087647A (en) 2015-04-30 2019-07-24 구글 엘엘씨 Rf-based micro-motion tracking for gesture tracking and recognition
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
EP3371855A1 (en) 2015-11-04 2018-09-12 Google LLC Connectors for connecting electronics embedded in garments to external devices
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
US20180329050A1 (en) * 2017-05-10 2018-11-15 Google Llc Power Management Using a Low-Power Radar
WO2019005936A1 (en) * 2017-06-27 2019-01-03 Intel Corporation Gesture recognition radar systems and methods
EP3431002A1 (en) * 2017-07-20 2019-01-23 Nokia Technologies Oy Rf based monitoring of user activity
WO2019117833A2 (en) * 2017-08-25 2019-06-20 Radarsan Radar Teknolojileri San Tic A.S A modular electronic control system
US20190187265A1 (en) * 2017-12-15 2019-06-20 Google Llc Seamless Authentication Using Radar
US10423964B2 (en) * 2017-12-29 2019-09-24 Scott Kimmel User controlled event record system
US10432779B2 (en) * 2018-02-23 2019-10-01 Motorola Mobility Llc Communication session modifications based on a proximity context
EP3460507A1 (en) * 2018-09-25 2019-03-27 Infineon Technologies AG System and method for occupancy detection using a millimeterwave radar sensor

Citations (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752017A (en) 1971-04-08 1973-08-14 Pace Inc Thermal hand tools
US4104012A (en) 1976-10-12 1978-08-01 Ferrante Michael R Improved wire stripping apparatus
GB2070469A (en) 1980-02-29 1981-09-09 Raychem Gmbh Electrical interconnection
US4654967A (en) 1984-09-06 1987-04-07 U.S. Philips Corporation Method and device for aligning and straightening flexible, insulated conductors
US4795998A (en) 1984-05-04 1989-01-03 Raychem Limited Sensor array
US4838797A (en) 1987-06-19 1989-06-13 The United States Of America As Represented By The Secretary Of The Navy Underwater connect and disconnect plug and receptacle
US5016500A (en) 1990-04-10 1991-05-21 Teledyne Kinetics Battery powered temperature-controlled wire stripper
US5468917A (en) 1994-03-23 1995-11-21 International Business Machines Corporation Circuitized structure including flexible circuit with elastomeric member bonded thereto
US5564571A (en) 1993-07-19 1996-10-15 Cembre S.P.A. Strip for electrical connectors
US5656798A (en) 1992-09-21 1997-08-12 Matsushita Electric Works, Ltd. Terminal-carrying circuit board
US5724707A (en) 1996-06-17 1998-03-10 The United States Of America As Represented By The Secretary Of The Army Interlock attaching strap system
US6101431A (en) 1997-08-28 2000-08-08 Kawasaki Jukogyo Kabushiki Kaisha Flight system and system for forming virtual images for aircraft
WO2001030123A1 (en) 1999-10-18 2001-04-26 Massachusetts Institute Of Technology Flexible electronic circuitry and method of making same
US20010035836A1 (en) 1999-12-22 2001-11-01 Gilbert Miceli Method and system for identification of subterranean objects
US20020009972A1 (en) 2000-07-06 2002-01-24 Brian Amento Bioacoustic control system, method and apparatus
US20020080156A1 (en) 1998-12-18 2002-06-27 Abbott Kenneth H. Supplying notifications related to supply and consumption of user context data
US6440593B2 (en) 2000-02-16 2002-08-27 The University Of Massachusetts Molded article
US6513833B2 (en) 1992-05-05 2003-02-04 Automotive Technologies International, Inc. Vehicular occupant motion analysis system
JP2003280049A (en) 2002-03-26 2003-10-02 Tdk Corp Functional fiber and textile using the same
US6711354B2 (en) 2001-03-05 2004-03-23 Yazaki Corporation Auxiliary module use relaying component and auxiliary module
US6717065B2 (en) 2001-03-30 2004-04-06 J.S.T. Mfg. Co., Ltd. Electric contact and an electric connector both using resin solder and a method of connecting them to a printed circuit board
US6802720B2 (en) 1999-12-16 2004-10-12 Paricon Technologies Corporation Pin-array, separable, compliant electrical contact member
US6833807B2 (en) 2000-10-26 2004-12-21 Automotive Distance Control Systems Gmbh Method for adaptive target processing in a motor vehicle radar system
US20040259391A1 (en) 2001-12-14 2004-12-23 Infineon Technologies Ag Construction and connection technique in textile structures
US6835898B2 (en) 1993-11-16 2004-12-28 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
US6854985B1 (en) 1998-12-16 2005-02-15 Paricon Technologies Corporation Elastomeric interconnection device and methods for making same
US20050128124A1 (en) 2003-12-12 2005-06-16 Greneker Eugene F.Iii Radar detection device employing a scanning antenna system
US20050148876A1 (en) 2002-09-03 2005-07-07 Fujitsu Limited Individual identification device
US6929484B2 (en) 2003-01-09 2005-08-16 Roger E. Weiss Apparatus for applying a mechanically-releasable balanced compressive load to an assembly such as a compliant anisotropic conductive elastomer electrical connector
US20060047386A1 (en) 2004-08-31 2006-03-02 International Business Machines Corporation Touch gesture based interface for motor vehicle
US20060061504A1 (en) 2004-09-23 2006-03-23 The Regents Of The University Of California Through wall detection and tracking system
US20060125803A1 (en) 2001-02-10 2006-06-15 Wayne Westerman System and method for packing multitouch gestures onto a hand
US20060136997A1 (en) 2004-12-21 2006-06-22 Eastman Kodak Company Authentication system and method
US20060139162A1 (en) 2004-12-10 2006-06-29 Honeywell International Inc. Surveillance system
US20060148351A1 (en) 2005-01-06 2006-07-06 Xiaoming Tao Patterned conductive textile sensors and devices
US20060157734A1 (en) 2005-01-17 2006-07-20 Koji Onodera Semiconductor device and method of manufacturing semiconductor device
US20060170584A1 (en) 2004-03-05 2006-08-03 The Regents Of The University Of California Obstacle penetrating dynamic radar imaging system
US20060209021A1 (en) 2005-03-19 2006-09-21 Jang Hee Yoo Virtual mouse driving apparatus and method using two-handed gestures
US7134879B2 (en) 2003-06-05 2006-11-14 Sharp Kabushiki Kaisha Anisotropic conductive material body, display apparatus, method for producing the display apparatus, and conductive member
US7164820B2 (en) 2002-12-17 2007-01-16 Koninklijke Philips Electronics, N.V. Electro-optic filament or fibre
US20070026695A1 (en) 2005-07-27 2007-02-01 Physical Optics Corporation Electrical connector configured as a fastening element
US20070024488A1 (en) 2004-01-20 2007-02-01 Zemany Paul D Method and apparatus for through-the-wall motion detection utilizing cw radar
US20070027369A1 (en) 2005-07-28 2007-02-01 Guido Pagnacco Apparatus and methods for assessing human physical performance
US7223105B2 (en) 1999-12-16 2007-05-29 Paricon Technologies Corporation Cable connector incorporating anisotropically conductive elastomer
US7230610B2 (en) 2001-12-14 2007-06-12 Future-Shape Gmbh Keypad in textiles with capacitive read-out circuit
US7249954B2 (en) 2002-02-26 2007-07-31 Paricon Technologies Corporation Separable electrical interconnect with anisotropic conductive elastomer for translating footprint
EP1815788A1 (en) 2006-01-31 2007-08-08 Polar Electro Oy Connector mechanism
US20070192647A1 (en) 2003-09-24 2007-08-16 Rupert Glaser Process array, fabric structure, surface-covering structure and method of transmitting electricity
US20070197115A1 (en) 2003-12-20 2007-08-23 Koninklijke Philips Electronic, N.V. Woven material and display device constructed therefrom
US20070237423A1 (en) 2006-04-10 2007-10-11 Nokia Corporation Constructing image panorama using frame selection
WO2007125298A1 (en) 2006-04-27 2007-11-08 Peratech Limited Manually operable position sensor
US7310236B2 (en) 2003-07-30 2007-12-18 Sony Corporation Electronic device
US20080002027A1 (en) 2002-10-18 2008-01-03 Sony Corporation Information processing system and method, information processing apparatus, image-capturing device and method, recording medium, and program
US7317416B2 (en) 2005-12-22 2008-01-08 Leonard Flom Skeletal topography imaging radar for unique individual identification
US20080024438A1 (en) 2006-07-28 2008-01-31 Eleksen Limited Interfacing an electronic device to a controller
US20080065291A1 (en) 2002-11-04 2008-03-13 Automotive Technologies International, Inc. Gesture-Based Control of Vehicular Components
US7348285B2 (en) 2002-06-28 2008-03-25 North Carolina State University Fabric and yarn structures for improving signal integrity in fabric-based electrical circuits
US20080134102A1 (en) 2006-12-05 2008-06-05 Sony Ericsson Mobile Communications Ab Method and system for detecting movement of an object
US20080168396A1 (en) 2007-01-07 2008-07-10 Michael Matas Portable Multifunction Device, Method, and Graphical User Interface for Providing Maps and Directions
US20080211766A1 (en) 2007-01-07 2008-09-04 Apple Inc. Multitouch data fusion
US20080303800A1 (en) 2007-05-22 2008-12-11 Elwell James K Touch-based input device providing a reconfigurable user interface
US20080316085A1 (en) 2007-06-22 2008-12-25 Broadcom Corporation Apparatus for position detection using multiple hcf transmissions
US20080320419A1 (en) 2007-06-22 2008-12-25 Michael Matas Touch Screen Device, Method, and Graphical User Interface for Providing Maps, Directions, and Location-Based Information
US20090018428A1 (en) 2003-05-19 2009-01-15 Umist Ventures Limited Knitted transducer devices
US20090058820A1 (en) 2007-09-04 2009-03-05 Microsoft Corporation Flick-based in situ search from ink, text, or an empty selection region
US20090113298A1 (en) 2007-10-24 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method of selecting a second content based on a user's reaction to a first content
US7528082B2 (en) 2004-02-25 2009-05-05 Koninklijke Philips Electronics N.V. Fabric
US20090115617A1 (en) 2007-10-17 2009-05-07 Sony Corporation Information provision system, information provision device, information provision method, terminal device, and display method
US20090118648A1 (en) 2007-11-04 2009-05-07 Akihiko Kandori Living body inspection system, living body inspection apparatus, and living body inspection method
US7544627B2 (en) 2005-05-12 2009-06-09 The Hong Kong Polytechnic University Pressure sensing fabric
WO2009083467A1 (en) 2007-12-28 2009-07-09 Nokia Corporation A controller
US20090177068A1 (en) 2002-10-09 2009-07-09 Stivoric John M Method and apparatus for providing derived glucose information utilizing physiological and/or contextual parameters
US20090203244A1 (en) 2004-04-17 2009-08-13 Koninklijke Philips Electronics, N.V. Electrical Connector Abstract
US20090278915A1 (en) 2006-02-08 2009-11-12 Oblong Industries, Inc. Gesture-Based Control System For Vehicle Interfaces
US20090295712A1 (en) 2008-05-29 2009-12-03 Sony Ericsson Mobile Communications Ab Portable projector and method of operating a portable projector
US20090319181A1 (en) 2008-06-20 2009-12-24 Microsoft Corporation Data services based on gesture and location information of device
US7644488B2 (en) 2001-02-15 2010-01-12 Integral Technologies Method to form a conductive device
US20100050133A1 (en) 2008-08-22 2010-02-25 Nishihara H Keith Compound Gesture Recognition
US7670144B2 (en) 2005-11-28 2010-03-02 Hoya Corporation Conductive layer, manufacturing method of the same, and signal transmission substrate
US20100053151A1 (en) 2008-09-02 2010-03-04 Samsung Electronics Co., Ltd In-line mediation for manipulating three-dimensional content on a display device
US7791700B2 (en) 2005-09-16 2010-09-07 Kent Displays Incorporated Liquid crystal display on a printed circuit board
US20100225562A1 (en) 2009-01-15 2010-09-09 Smith David R Broadband metamaterial apparatus, methods, systems, and computer readable media
US20100234094A1 (en) 2007-11-09 2010-09-16 Wms Gaming Inc. Interaction with 3d space in a gaming system
US20100241009A1 (en) 2009-03-20 2010-09-23 Wright State University Systems and Methods for Detecting Movement of a Target
US7834276B2 (en) 2005-12-16 2010-11-16 Unitech Printed Circuit Board Corp. Structure for connecting a USB communication interface in a flash memory card by the height difference of a rigid flexible board
US20100306713A1 (en) 2009-05-29 2010-12-02 Microsoft Corporation Gesture Tool
US20110003664A1 (en) 2009-07-02 2011-01-06 Richard Maertz J Exercise and communications system and associated methods
US20110010014A1 (en) 2008-02-25 2011-01-13 Kingsdown, Inc. Systems and methods for controlling a bedroom environment and for providing sleep data
US7952512B1 (en) 2008-10-14 2011-05-31 Sprint Communications Company L.P. Mobile device enabled radar tags
US20110166940A1 (en) 2010-01-05 2011-07-07 Searete Llc Micro-impulse radar detection of a human demographic and delivery of targeted media content
US20110197263A1 (en) 2010-02-11 2011-08-11 Verizon Patent And Licensing, Inc. Systems and methods for providing a spatial-input-based multi-user shared display experience
US20110234492A1 (en) 2010-03-29 2011-09-29 Ajmera Rahul Gesture processing
US20110279303A1 (en) 2010-05-13 2011-11-17 The United States Of America As Represented By The Secretary Of The Navy Active-radar-assisted passive composite imagery for aiding navigation or detecting threats
US20110286585A1 (en) 2002-08-08 2011-11-24 Stephen Lee Hodge Telecommunication Call Management And Monitoring System With Voiceprint Verification
US20110307842A1 (en) 2010-06-14 2011-12-15 I-Jen Chiang Electronic reading device
US20120001875A1 (en) 2010-06-29 2012-01-05 Qualcomm Incorporated Touchless sensing and gesture recognition using continuous wave ultrasound signals
US20120019168A1 (en) 2010-07-20 2012-01-26 Shuhei Noda Illumination control system and method for controlling illumination
US8169404B1 (en) 2006-08-15 2012-05-01 Navisense Method and device for planary sensory detection
US8179604B1 (en) 2011-07-13 2012-05-15 Google Inc. Wearable marker for passive interaction
US20120150493A1 (en) 2010-12-13 2012-06-14 Southwest Research Institute Sensor Array Processor with Multichannel Reconstruction from Random Array Sampling
US20120154313A1 (en) 2010-12-17 2012-06-21 The Hong Kong University Of Science And Technology Multi-touch finger registration and its applications
US20120156926A1 (en) 2010-12-15 2012-06-21 Toyota Boshoku Kabushiki Kaisha Connection member, method of manufacturing the same and connection structure
US20120174299A1 (en) 2008-03-21 2012-07-12 Alfiero Balzano Safety vest assembly including a high reliability communication system
US20120254810A1 (en) 2011-03-31 2012-10-04 Microsoft Corporation Combined Activation for Natural User Interface Systems
US8282232B2 (en) 2009-04-08 2012-10-09 Fu-biau Hsu Illuminating textile article
US20120280900A1 (en) 2011-05-06 2012-11-08 Nokia Corporation Gesture recognition using plural sensors
US8314732B2 (en) 2007-01-31 2012-11-20 Cambridge Consultants Ltd. Adaptive radar
US20120298748A1 (en) 2011-05-24 2012-11-29 Bird Aerosystems Ltd System, device and method of protecting aircrafts against incoming missiles and threats
US8344949B2 (en) 2008-03-31 2013-01-01 Golba Llc Wireless positioning approach using time-delay of signals with a known transmission pattern
US20130027218A1 (en) 2011-07-25 2013-01-31 Ips Group Inc. Low Power Vehicle Detection
US8367942B2 (en) 2009-10-27 2013-02-05 Hon Hai Precision Ind. Co., Ltd. Low profile electrical interposer of woven structure and method of making same
US20130046544A1 (en) 2010-03-12 2013-02-21 Nuance Communications, Inc. Multimodal text input system, such as for use with touch screens on mobile phones
US20130078624A1 (en) 2011-09-25 2013-03-28 Theranos, Inc., a Delaware Corporation Systems and methods for multi-purpose analysis
US20130082922A1 (en) 2011-09-29 2013-04-04 Samuel A. Miller Tactile glove for human-computer interaction
US20130083173A1 (en) 2011-09-30 2013-04-04 Kevin A. Geisner Virtual spectator experience with a personal audio/visual apparatus
US20130104084A1 (en) 2011-10-21 2013-04-25 Digital Artforms, Inc. Systems and methods for human-computer interaction using a two handed interface
US20130117377A1 (en) 2011-10-28 2013-05-09 Samuel A. Miller System and Method for Augmented and Virtual Reality
WO2013084108A1 (en) 2011-12-07 2013-06-13 Koninklijke Philips Electronics N.V. Electronic textile with means for facilitating waste sorting
US20130147833A1 (en) 2011-12-09 2013-06-13 Ident Technology Ag Electronic Device with a User Interface that has more than Two Degrees of Freedom, the User Interface Comprising a Touch-Sensitive Surface and Contact-Free Detection Means
US20130161078A1 (en) 2010-09-03 2013-06-27 Hui Hong Jim Kery Li Rigid-flex circuit board and manufacturing method
US20130169471A1 (en) 2011-12-28 2013-07-04 Hrl Laboratories, Llc Coded aperture beam analysis method and apparatus
US20130195330A1 (en) 2012-01-31 2013-08-01 Electronics And Telecommunications Research Institute Apparatus and method for estimating joint structure of human body
US20130194173A1 (en) 2012-02-01 2013-08-01 Ingeonix Corporation Touch free control of electronic systems and associated methods
US8505474B2 (en) 2007-07-31 2013-08-13 Snu R&Db Foundation Electrically conductive metal composite embroidery yarn and embroidered circuit using thereof
US8514221B2 (en) 2010-01-05 2013-08-20 Apple Inc. Working with 3D objects
US8527146B1 (en) 2012-01-30 2013-09-03 Google Inc. Systems and methods for updating vehicle behavior and settings based on the locations of vehicle passengers
US20130253029A1 (en) 2010-09-28 2013-09-26 Panacea Biotec Ltd Novel bicyclic compounds
US20130260630A1 (en) 2012-03-28 2013-10-03 Toyota Boshoku Kabushiki Kaisha Woven fabric
US8549829B2 (en) 2009-05-20 2013-10-08 Amogreentech Co., Ltd. Silver yarn, plied yarn silver yarn, functional fabric using same, and method for producing same
US8560972B2 (en) 2004-08-10 2013-10-15 Microsoft Corporation Surface UI for gesture-based interaction
US20130278501A1 (en) 2012-04-18 2013-10-24 Arb Labs Inc. Systems and methods of identifying a gesture using gesture data compressed by principal joint variable analysis
US8569189B2 (en) 2008-06-10 2013-10-29 Koninklijke Philips N.V. Electronic textile
US20130332438A1 (en) 2012-06-12 2013-12-12 Microsoft Corporation Disambiguating Intents Within Search Engine Result Pages
US8614689B2 (en) 2005-01-24 2013-12-24 Nissha Printing Co., Ltd. Lead wire connection method for touch panel
US20140028539A1 (en) 2012-07-29 2014-01-30 Adam E. Newham Anatomical gestures detection system using radio signals
US20140050354A1 (en) 2012-08-16 2014-02-20 Microchip Technology Incorporated Automatic Gesture Recognition For A Sensor System
US20140049487A1 (en) 2012-08-17 2014-02-20 Qualcomm Incorporated Interactive user interface for clothing displays
US20140070957A1 (en) 2012-09-11 2014-03-13 Gianluigi LONGINOTTI-BUITONI Wearable communication platform
US20140095480A1 (en) 2012-10-01 2014-04-03 Microsoft Corporation Semantic zoom for related content
US20140135631A1 (en) 2012-06-22 2014-05-15 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US20140139422A1 (en) 2012-11-20 2014-05-22 Samsung Electronics Company, Ltd. User Gesture Input to Wearable Electronic Device Involving Outward-Facing Sensor of Device
US20140143678A1 (en) 2012-11-20 2014-05-22 Samsung Electronics Company, Ltd. GUI Transitions on Wearable Electronic Device
US20140184499A1 (en) 2011-07-11 2014-07-03 VTouch Co., Ltd. Remote manipulation device and method using a virtual touch of a three-dimensionally modeled electronic device
US20140201690A1 (en) 2013-01-15 2014-07-17 Leap Motion, Inc. Dynamic user interactions for display control and scaling responsiveness of display objects
US8785778B2 (en) 2010-08-23 2014-07-22 Foster-Miller, Inc. PALS compliant routing system
US20140208275A1 (en) 2011-12-23 2014-07-24 Rajiv Mongia Computing system utilizing coordinated two-hand command gestures
US20140215389A1 (en) 2013-01-31 2014-07-31 Hewlett-Packard Development Company, L.P. Graphical element placement on a display surface
US8814574B2 (en) 2012-12-31 2014-08-26 Suunto Oy Male end of a telemetric transceiver
US20140250515A1 (en) 2013-03-01 2014-09-04 Bjorn Markus Jakobsson Systems and methods for authenticating a user based on a biometric model associated with the user
US20140247212A1 (en) 2011-05-31 2014-09-04 Microsoft Corporation Gesture Recognition Techniques
US20140253431A1 (en) 2013-03-08 2014-09-11 Google Inc. Providing a gesture-based interface
US20140281975A1 (en) 2013-03-15 2014-09-18 Glen J. Anderson System for adaptive selection and presentation of context-based media in communications
US20140282877A1 (en) 2013-03-13 2014-09-18 Lookout, Inc. System and method for changing security behavior of a device based on proximity to another device
US20140280295A1 (en) 2013-03-14 2014-09-18 Microsoft Corporation Multi-language information retrieval and advertising
US20140262478A1 (en) 2013-03-13 2014-09-18 Federal-Mogul Powertrain, Inc. EMI Shielding Textile Fabric, Wrappable Sleeve Constructed Therefrom and Method of Construction Thereof
US20140298266A1 (en) 2011-11-09 2014-10-02 Joseph T. LAPP Finger-mapped character entry systems
US20140309855A1 (en) * 2013-04-12 2014-10-16 Bao Tran Smart car with automatic signalling
US20140316261A1 (en) 2013-04-18 2014-10-23 California Institute Of Technology Life Detecting Radars
US20140324888A1 (en) * 2011-12-09 2014-10-30 Nokia Corporation Method and Apparatus for Identifying a Gesture Based Upon Fusion of Multiple Sensor Signals
US20140318699A1 (en) 2012-09-11 2014-10-30 Gianluigi LONGINOTTI-BUITONI Methods of making garments having stretchable and conductive ink
US20140329567A1 (en) * 2013-05-01 2014-11-06 Elwha Llc Mobile device with automatic volume control
US20140333467A1 (en) 2012-01-16 2014-11-13 Toyota Jidosha Kabushiki Kaisha Object detection device
US20140343392A1 (en) 2011-11-25 2014-11-20 Chang-Ming Yang Object, method, and system for detecting heartbeat or whether or not electrodes are in proper contact
JP2014532332A (en) 2011-09-21 2014-12-04 モバイル ジュース、インコーポレイテッド Assembly
US20140368441A1 (en) 2013-06-12 2014-12-18 Amazon Technologies, Inc. Motion-based gestures for a computing device
US8921473B1 (en) 2004-04-30 2014-12-30 Sydney Hyman Image making medium
US20150002391A1 (en) 2013-06-28 2015-01-01 Chia Ming Chen Systems and methods for controlling device operation according to hand gestures
US20150030256A1 (en) 2012-05-09 2015-01-29 Duke University Multi-sensor compressive imaging
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
US20150040040A1 (en) 2013-08-05 2015-02-05 Alexandru Balan Two-hand interaction with natural user interface
WO2015017931A1 (en) 2013-08-07 2015-02-12 Blackberry Limited Determining the distance of an object to an electronic device
US20150062033A1 (en) 2012-04-26 2015-03-05 Panasonic Intellectual Property Corporation Of America Input device, input assistance method, and program
US20150091820A1 (en) 2013-09-27 2015-04-02 Sensel, Inc. Touch Sensor Detector System and Method
US20150091859A1 (en) 2013-09-27 2015-04-02 Sensel, Inc. Capacitive Touch Sensor System and Method
US20150109164A1 (en) * 2013-10-17 2015-04-23 Denso Corporation Target detection apparatus
US20150145805A1 (en) 2013-09-12 2015-05-28 Min Liu Detecting gestures on the side of a computing device
US9055879B2 (en) 2013-06-14 2015-06-16 Suunto Oy Device and method for assembling an electronic device and a flexible element for facilitating assembly of electronic components
US20150177866A1 (en) 2013-12-23 2015-06-25 Microsoft Corporation Multiple Hover Point Gestures
US20150185314A1 (en) 2013-12-26 2015-07-02 International Business Machines Corporation Radar integration with handheld electronic devices
US9093289B2 (en) 2010-02-03 2015-07-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for assembling at least one chip using a fabric, and fabric including a chip device
US20150229885A1 (en) 2012-08-21 2015-08-13 Robert Bosch Gmbh Method for supplementing a piece of object information assigned to an object and method for selecting objects in surroundings of a vehicle
US20150226004A1 (en) 2014-02-10 2015-08-13 Michael C. Thompson Technique to verify underground targets utilizing virtual reality imaging and controlled excavation
US20150256763A1 (en) 2012-11-06 2015-09-10 Nokia Technologies Oy Method and apparatus for creating motion effect for image
US9141194B1 (en) 2012-01-04 2015-09-22 Google Inc. Magnetometer-based gesture sensing with a wearable device
US20150268027A1 (en) 2013-03-15 2015-09-24 Medusa Scientific Llc Electric field sensing and e field visualization
US9148949B2 (en) 2010-09-21 2015-09-29 Koninklijke Philips N.V. Electronic textile and method of manufacturing an electronic textile
US20150280102A1 (en) 2012-10-12 2015-10-01 Kansai University Piezoelectric element
US20150285906A1 (en) 2012-10-04 2015-10-08 Technology Service Corporation Proximity sensor
US20150312041A1 (en) 2009-11-17 2015-10-29 Unho Choi Authentication in ubiquitous environment
US20150317518A1 (en) 2014-05-01 2015-11-05 Seiko Epson Corporation Head-mount type display device, control system, method of controlling head-mount type display device, and computer program
US20150323993A1 (en) 2014-05-12 2015-11-12 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
US20150332075A1 (en) 2014-05-15 2015-11-19 Fedex Corporate Services, Inc. Wearable devices for courier processing and methods of use thereof
US20150341550A1 (en) 2014-05-21 2015-11-26 Motorola Mobility Llc Enhanced image capture
US9230160B1 (en) 2012-08-27 2016-01-05 Amazon Technologies, Inc. Method, medium, and system for online ordering using sign language
US20160026253A1 (en) 2014-03-11 2016-01-28 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US20160042169A1 (en) 2014-08-07 2016-02-11 Verizon Patent And Licensing Inc. Methods and Systems for Determining a User Identity by Analysis of Reflected Radio Frequency Signals Received by an Antenna Array
US20160038083A1 (en) 2014-08-08 2016-02-11 Orn, Inc. Garment including integrated sensor components and feedback components
US20160048672A1 (en) 2014-08-15 2016-02-18 California Institute Of Technology HERMA - Heartbeat Microwave Authentication
US20160090839A1 (en) 2014-11-26 2016-03-31 Larry G. Stolarczyk Method of protecting the health and well-being of coal mine machine operators
WO2016053624A1 (en) 2014-09-30 2016-04-07 Arimtax Technologies Llc Fabric sensing device
US20160100166A1 (en) 2014-10-03 2016-04-07 Microsoft Technology Licensing, Llc Adapting Quantization
US20160103500A1 (en) 2013-05-21 2016-04-14 Stanley Innovation, Inc. System and method for a human machine interface utilizing near-field quasi-state electrical field sensing technology
US9331422B2 (en) 2014-06-09 2016-05-03 Apple Inc. Electronic device with hidden connector
US9335825B2 (en) 2010-01-26 2016-05-10 Nokia Technologies Oy Gesture control
US20160140872A1 (en) * 2014-11-13 2016-05-19 Smartdrive Systems, Inc. System and method for detecting a vehicle event and generating review criteria
US9354709B1 (en) 2014-06-17 2016-05-31 Amazon Technologies, Inc. Tilt gesture detection
US20160171293A1 (en) 2013-03-28 2016-06-16 The University Of Warwick Gesture tracking and classification
US20160170491A1 (en) 2014-12-12 2016-06-16 Alpine Electronics, Inc. Gesture assistive zoomable selector for screen
US20160186366A1 (en) 2013-08-16 2016-06-30 Footfalls And Heartbeats Limited Method for making electrically conductive textiles and textile sensor
US20160216825A1 (en) 2015-01-28 2016-07-28 Qualcomm Incorporated Techniques for discerning between intended and unintended gestures on wearable touch-sensitive fabric
US20160253044A1 (en) 2013-10-10 2016-09-01 Eyesight Mobile Technologies Ltd. Systems, devices, and methods for touch-free typing
US20160252607A1 (en) 2015-02-27 2016-09-01 Texas Instruments Incorporated Gesture Recognition using Frequency Modulated Continuous Wave (FMCW) Radar with Low Angle Resolution
US20160259037A1 (en) 2015-03-03 2016-09-08 Nvidia Corporation Radar based user interface
US20160262685A1 (en) 2013-11-12 2016-09-15 Highland Instruments, Inc. Motion analysis systemsand methods of use thereof
US20160299526A1 (en) 2013-09-10 2016-10-13 Polyera Corporation Attachable article with signaling, split display and messaging features
US20160320852A1 (en) 2015-04-30 2016-11-03 Google Inc. Wide-Field Radar-Based Gesture Recognition
US20160320853A1 (en) 2015-04-30 2016-11-03 Google Inc. RF-Based Micro-Motion Tracking for Gesture Tracking and Recognition
US20160320854A1 (en) 2015-04-30 2016-11-03 Google Inc. Type-Agnostic RF Signal Representations
US20160349790A1 (en) 2014-02-25 2016-12-01 Medibotics Llc Wearable Computer Display Devices for the Forearm, Wrist, and/or Hand
US20160349845A1 (en) 2015-05-28 2016-12-01 Google Inc. Gesture Detection Haptics and Virtual Tools
US20160345638A1 (en) 2015-05-27 2016-12-01 Google Inc. Attaching Electronic Components to Interactive Textiles
US20160377712A1 (en) 2015-06-24 2016-12-29 Htc Corporation Handheld device, object positioning method and computer-readable recording medium
US9569001B2 (en) 2009-02-03 2017-02-14 Massachusetts Institute Of Technology Wearable gestural interface
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US20170052618A1 (en) 2014-04-30 2017-02-23 Lg Innotek Co., Ltd. Touch device, wearable device having the same and touch recognition method
US20170060298A1 (en) 2015-08-26 2017-03-02 Futureplay, Inc. Smart Interaction Device
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US9594443B2 (en) 2014-02-26 2017-03-14 Lenovo (Singapore) Pte. Ltd. Wearable device authentication and operation
US20170075481A1 (en) 2015-09-15 2017-03-16 Touchplus Information Corp. Wearable device exhibiting capacitive sensing function
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US20170097413A1 (en) 2015-10-06 2017-04-06 Google Inc. Radar-Enabled Sensor Fusion
US20170097684A1 (en) 2015-10-06 2017-04-06 Google, Inc. Compressed Sensing for Gesture Tracking and Recognition with Radar
US20170124407A1 (en) 2015-11-04 2017-05-04 Ford Global Technologies, Llc Predicting vehicle movements based on driver body language
US20170125940A1 (en) 2015-11-04 2017-05-04 Google Inc. Connectors for Connecting Electronics Embedded in Garments to External Devices
US20170196513A1 (en) 2012-09-11 2017-07-13 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US20170233903A1 (en) 2010-01-14 2017-08-17 Byung-Ok Jeon Electrically conductive fabric and manufacturing method and apparatus thereof
US9766742B2 (en) 2012-12-05 2017-09-19 R&D Core Limited Contact sensor
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US20170322633A1 (en) 2013-05-14 2017-11-09 Empire Technology Development Llc Detection of user gestures
US20170325337A1 (en) 2016-05-03 2017-11-09 Google Inc. Connecting an Electronic Component to an Interactive Textile
US20170325518A1 (en) 2016-05-16 2017-11-16 Google Inc. Interactive Fabric
US20170329425A1 (en) 2016-05-16 2017-11-16 Google Inc. Interactive Object with Multiple Electronics Modules
US20180005766A1 (en) 2016-07-01 2018-01-04 Wisconsin Alumni Research Foundation Conductive textiles and related devices
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9971414B2 (en) 2013-04-01 2018-05-15 University Of Washington Through Its Center For Commercialization Devices, systems, and methods for detecting gestures using wireless communication signals
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US20180157330A1 (en) 2016-12-05 2018-06-07 Google Inc. Concurrent Detection of Absolute Distance and Relative Movement for Sensing Action Gestures
US9994233B2 (en) 2014-09-30 2018-06-12 Continental Automotive Systems, Inc. Hands accelerating control system
US20180160943A1 (en) 2013-12-10 2018-06-14 4Iiii Innovations Inc. Signature based monitoring systems and methods
US10034630B2 (en) 2015-11-16 2018-07-31 Samsung Electronics Co., Ltd. Apparatus and method to train autonomous driving model, and autonomous driving apparatus
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions

Family Cites Families (297)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610874A (en) 1969-11-21 1971-10-05 Western Electric Co Laser welding technique
US3953706A (en) 1974-03-29 1976-04-27 Martin Marietta Corporation Laser bent beam controlled dwell wire stripper
US4700044A (en) 1986-07-31 1987-10-13 Hutchinson Technology Inc. Laser soldering apparatus and method
US4986277A (en) 1988-08-24 1991-01-22 Sackner Marvin A Method and apparatus for non-invasive monitoring of central venous pressure
US5121124A (en) 1991-05-01 1992-06-09 Thermo Electron Technologies Corp. Microwave camera
JP3144030B2 (en) 1992-02-24 2001-03-07 東陶機器株式会社 Health management network system
US5298715A (en) 1992-04-27 1994-03-29 International Business Machines Corporation Lasersonic soldering of fine insulated wires to heat-sensitive substrates
US5341979A (en) 1993-09-03 1994-08-30 Motorola, Inc. Method of bonding a semiconductor substrate to a support substrate and structure therefore
US5517251A (en) 1994-04-28 1996-05-14 The Regents Of The University Of California Acquisition of video images simultaneously with analog signals
CH690686A5 (en) 1996-07-01 2000-12-15 Spoerry & Co Ag Process for the preparation of an electrically conductive yarn, electrically conductive yarn and use of the electrically conductive yarn.
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
EP1304555B1 (en) 1997-07-16 2007-05-23 Terumo Kabushiki Kaisha Ear type clinical thermometer
US6210771B1 (en) 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
WO1999028811A1 (en) 1997-12-04 1999-06-10 Northern Telecom Limited Contextual gesture interface
JP3176580B2 (en) 1998-04-09 2001-06-18 太陽誘電株式会社 Mounting method and apparatus for mounting electronic components
US6080690A (en) 1998-04-29 2000-06-27 Motorola, Inc. Textile fabric with integrated sensing device and clothing fabricated thereof
JP2982792B2 (en) 1998-05-22 1999-11-29 セイコーエプソン株式会社 A method of manufacturing a thin film transistor
US6037893A (en) 1998-07-31 2000-03-14 Litton Systems, Inc. Enhanced motion compensation technique in synthetic aperture radar systems
US6369804B1 (en) 1998-09-26 2002-04-09 Eleksen Limited Detector constructed from fabric having non-uniform conductivity
EP1123685B1 (en) 1998-10-20 2006-12-20 Omron Healthcare Co., Ltd. Infrared thermometer
US6313825B1 (en) 1998-12-28 2001-11-06 Gateway, Inc. Virtual input device
JP2000333910A (en) 1999-05-25 2000-12-05 Nippon Colin Co Ltd Cardiac function monitoring device
WO2001027855A2 (en) 1999-10-12 2001-04-19 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services, Centers For Disease Control And Prevention Image-synchronized multichannel biomedical data acquisition system
US6524239B1 (en) 1999-11-05 2003-02-25 Wcr Company Apparatus for non-instrusively measuring health parameters of a subject and method of use thereof
US7194371B1 (en) 2000-03-27 2007-03-20 Cardiobeat.Com Medical testing system and method
WO2001075778A1 (en) 2000-04-03 2001-10-11 Brunel University Conductive pressure sensitive textile
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US7698154B2 (en) 2000-07-20 2010-04-13 Marfly 1, LP Patient-controlled automated medical record, diagnosis, and treatment system and method
US6608585B2 (en) 2001-03-02 2003-08-19 Massachusetts Institute Of Technology High-definition imaging apparatus and method
WO2002082999A1 (en) 2001-04-10 2002-10-24 Battelle Memorial Institute Image analysis system and method for discriminating movements of an individual
EP1428108B1 (en) 2001-05-14 2013-02-13 Koninklijke Philips Electronics N.V. Device for interacting with real-time streams of content
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US7266532B2 (en) 2001-06-01 2007-09-04 The General Hospital Corporation Reconfigurable autonomous device networks
US7348963B2 (en) 2002-05-28 2008-03-25 Reactrix Systems, Inc. Interactive video display system
JP3731071B2 (en) 2001-07-02 2006-01-05 関西ティー・エル・オー株式会社 Hemodynamic measurement method
WO2003034300A2 (en) 2001-09-04 2003-04-24 Ramon Van Der Riet Marketing communication and transaction/distribution services platform for building and managing personalized customer relationships
AU2002350237A1 (en) 2001-11-24 2003-06-10 Delphi Technologies, Inc. Improvements in wire harnesses
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US7845022B1 (en) 2002-02-14 2010-12-07 Nike, Inc. Deposition of electronic circuits on fibers and other materials
US7592276B2 (en) 2002-05-10 2009-09-22 Sarnoff Corporation Woven electronic textile, yarn and article
AUPS335302A0 (en) 2002-07-03 2002-07-25 Uscom Pty Ltd Intergrated pressure and volume measurement method and apparatus
AU2002342592A1 (en) 2002-11-07 2004-06-07 Personics A/S Control system including an adaptive motion detector
US7280864B2 (en) 2002-11-27 2007-10-09 Ge Medical Systems Information Technologies, Inc. Method and apparatus for automated selection of correct image for quantitative analysis
DE10307505B4 (en) 2003-02-21 2005-03-03 Infineon Technologies Ag Textile fabric structure, surface covering structure and method for determining a distance of microelectronic elements of the textile fabric structure to at least one reference position
US20040249250A1 (en) 2003-06-04 2004-12-09 Mcgee Michael D. System and apparatus for monitoring and prompting medical self-care events and communicating medical self-care status
CN100435723C (en) 2003-08-20 2008-11-26 纽卡迪奥公司 Apparatus and method for cordless recording and telecommunication transmission of three special ecg leads
WO2005033387A2 (en) 2003-09-30 2005-04-14 Milliken & Company Wrapped conductive yarn
US7299964B2 (en) 2004-01-15 2007-11-27 Georgia Tech Research Corp. Method and apparatus to create electrical junctions for information routing in textile structures
US7307575B2 (en) 2004-09-14 2007-12-11 Bae Systems Information And Electronic Systems Integration Inc. Through-the-wall frequency stepped imaging system utilizing near field multiple antenna positions, clutter rejection and corrections for frequency dependent wall effects
US7205932B2 (en) 2004-01-29 2007-04-17 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for improved determination of range and angle of arrival utilizing a two tone CW radar
DE102004004604B4 (en) 2004-01-29 2016-12-29 Siemens Healthcare Gmbh Method and imaging system for compensating patient motion during continuous shooting in medical imaging
US7961909B2 (en) 2006-03-08 2011-06-14 Electronic Scripting Products, Inc. Computer interface employing a manipulated object with absolute pose detection component and a display
GB0404419D0 (en) 2004-02-27 2004-03-31 Intelligent Textiles Ltd Electrical components and circuits constructed as textiles
US7129887B2 (en) 2004-04-15 2006-10-31 Lockheed Martin Ms2 Augmented reality traffic control center
JP4299189B2 (en) 2004-05-27 2009-07-22 アロカ株式会社 Ultrasonic diagnostic apparatus and image processing method
KR101134027B1 (en) 2004-06-29 2012-04-13 코닌클리케 필립스 일렉트로닉스 엔.브이. A method and device for preventing staining of a display device
WO2006006159A1 (en) 2004-07-09 2006-01-19 Aerotel Medical Systems (1998) Ltd. A wearable device, system and method for monitoring physiological and/or environmental parameters
US7942744B2 (en) 2004-08-19 2011-05-17 Igt Virtual input system
US7158076B2 (en) 2004-10-01 2007-01-02 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for correcting velocity-induced range estimate phase errors in a two-tone monopulse CW radar
US6970128B1 (en) 2004-10-06 2005-11-29 Raytheon Company Motion compensated synthetic aperture imaging system and methods for imaging
WO2006050691A2 (en) 2004-11-02 2006-05-18 Imasys Ag Laying device, contacting device, advancing system, laying and contacting unit, production system, method for the production and a transponder unit
US7809171B2 (en) 2005-01-10 2010-10-05 Battelle Memorial Institute Facial feature evaluation based on eye location
DE102005003370A1 (en) 2005-01-24 2006-07-27 Juma Pcb Gmbh Method for the continuous laying of a conductor wire on a printed circuit board and apparatus for carrying out the method
US8531396B2 (en) 2006-02-08 2013-09-10 Oblong Industries, Inc. Control system for navigating a principal dimension of a data space
JP2006234716A (en) 2005-02-28 2006-09-07 Aichi Prefecture Sheet-like sensor device
US7019682B1 (en) 2005-04-12 2006-03-28 Trex Enterprises Corp. Imaging millimeter wave radar system
EP1727408A1 (en) 2005-05-13 2006-11-29 Eidgenössische Technische Hochschule Zürich Textile with conductor pattern and method for its production
EP1885925B1 (en) 2005-06-02 2010-10-06 NV Bekaert SA Electrically conductive elastic composite yarn
JP2007011873A (en) 2005-07-01 2007-01-18 Toshiba Corp Interface device and interface method
US7674231B2 (en) 2005-08-22 2010-03-09 Massachusetts Institute Of Technology Wearable pulse wave velocity blood pressure sensor and methods of calibration thereof
IL170689A (en) 2005-09-06 2011-08-31 Camero Tech Ltd Through-wall imaging device
JP2007132768A (en) 2005-11-10 2007-05-31 Hitachi Ltd Vehicle-mounted radar system having communications function
US20070118043A1 (en) 2005-11-23 2007-05-24 Microsoft Corporation Algorithms for computing heart rate and movement speed of a user from sensor data
CA2631675A1 (en) 2005-11-30 2007-06-21 The University Of North Carolina At Chapel Hill Identification of genetic polymorphic variants associated with somatosensory disorders and methods of using the same
US20080015422A1 (en) 2005-12-29 2008-01-17 Guidance Interactive Healthcare, Inc. Combined peripheral and health monitoring devices
US20070161921A1 (en) 2006-01-07 2007-07-12 Rausch Jeffrey L Bio-accurate temperature measurement device and method of quantitatively normalizing a body temperature measurement to determine a physiologically significant temperature event
US7395717B2 (en) 2006-02-10 2008-07-08 Milliken & Company Flexible capacitive sensor
KR100729676B1 (en) 2006-02-17 2007-06-12 한국생산기술연구원 Process and apparatus for producing digital yarns using metal filaments for info-communications and digital yarns produced by said process
AT435584T (en) 2006-02-24 2009-07-15 Sefar Ag Floor heating element and method for producing a flat heating element
CA2883977A1 (en) 2006-03-23 2007-10-04 Becton, Dickinson And Company System and methods for improved diabetes data management and use employing wireless connectivity between patients and healthcare providers and repository of diabetes management information
DE102006018445B4 (en) 2006-04-18 2008-04-24 Imedos Gmbh Apparatus and method for determining arterio-venous ratio values by quantitative analysis of retinal vessels
US9814425B2 (en) 2006-05-12 2017-11-14 Koninklijke Philips N.V. Health monitoring appliance
EP2018628A1 (en) 2006-05-15 2009-01-28 Telefonaktiebolaget LM Ericsson (PUBL) A method and system for automatic classification of objects
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
AU2007256872B2 (en) 2006-06-01 2013-03-14 Resmed Sensor Technologies Limited Apparatus, system, and method for monitoring physiological signs
US7691067B2 (en) 2006-06-14 2010-04-06 Advanced Brain Monitoring, Inc. Method for measuring central venous pressure or respiratory effort
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US7725547B2 (en) 2006-09-06 2010-05-25 International Business Machines Corporation Informing a user of gestures made by others out of the user's line of sight
GB2443208A (en) 2006-10-27 2008-04-30 Studio 1 Ventures Ltd Textile pressure sensor
WO2008061385A2 (en) 2006-11-20 2008-05-29 Gerhard Staufert Conductive textile material
NZ551819A (en) 2006-12-04 2009-03-31 Zephyr Technology Ltd Impact detection system
US20100065320A1 (en) 2006-12-07 2010-03-18 Nec Corporation Wiring board and method for manufacturing the same
US20080136775A1 (en) 2006-12-08 2008-06-12 Conant Carson V Virtual input device for computing
US8229506B2 (en) 2007-01-04 2012-07-24 At&T Intellectual Property I, L.P. Enhanced connection acquisition using an array antenna
US7846104B2 (en) 2007-02-08 2010-12-07 Heart Force Medical Inc. Monitoring physiological condition and detecting abnormalities
US8918153B2 (en) 2007-02-16 2014-12-23 Mespere Lifesciences Inc. Method and device for measuring parameters of cardiac function
WO2014124520A1 (en) 2013-02-13 2014-08-21 Mespere Lifesciences Inc. Method and device for measuring venous blood oxygenation
US8639309B2 (en) 2007-07-31 2014-01-28 J&M Shuler, Inc. Method and system for monitoring oxygenation levels of compartments and tissue
JP5255623B2 (en) 2007-04-20 2013-08-07 ソフトキネティック エス.エイ. Volume recognition method and system
WO2008140780A1 (en) 2007-05-10 2008-11-20 Grigore Burdea Periodic evaluation and telerehabilitation systems and methods
KR100888864B1 (en) 2007-05-21 2009-03-17 한국과학기술원 User Input Device using BIO Radar and Tilt Sensor
US20080294012A1 (en) 2007-05-22 2008-11-27 Kurtz Andrew F Monitoring physiological conditions
US20120029369A1 (en) 2007-10-31 2012-02-02 Icove David J Passive Microwave Assessment of Human Body Core to Surface Temperature Gradients and Basal Metabolic Rate
JP5060186B2 (en) 2007-07-05 2012-10-31 株式会社東芝 Pulse wave processing apparatus and method
JP5207513B2 (en) 2007-08-02 2013-06-12 公立大学法人首都大学東京 Control device operation gesture recognition device, control device operation gesture recognition system, and control device operation gesture recognition program
WO2009032073A1 (en) 2007-08-28 2009-03-12 Woolsthorpe, Llc Non-invasive method and system for determining physiological characteristics
US8790257B2 (en) 2007-09-14 2014-07-29 Corventis, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
US9569003B2 (en) 2010-09-30 2017-02-14 Broadcom Corporation Portable computing device including a three-dimensional touch screen
US8483617B2 (en) 2010-09-30 2013-07-09 Broadcom Corporation Portable computing device with high-speed data communication
US8655004B2 (en) 2007-10-16 2014-02-18 Apple Inc. Sports monitoring system for headphones, earbuds and/or headsets
US8193929B1 (en) 2007-11-09 2012-06-05 Oceanit Laboratories, Inc. Integrated adaptive wireless mesh sensor platform and energy visualization and management system
KR100982533B1 (en) 2008-02-26 2010-09-16 한국생산기술연구원 Digital garment using digital band and fabricating method thereof
US8218871B2 (en) 2008-03-05 2012-07-10 International Business Machines Corporation Detecting behavioral deviations by measuring respiratory patterns in cohort groups
US20100152600A1 (en) 2008-04-03 2010-06-17 Kai Sensors, Inc. Non-contact physiologic motion sensors and methods for use
US20090270690A1 (en) 2008-04-29 2009-10-29 University Of Miami System and method for using interactive voice-recognition to automate a patient-centered best practice approach to disease evaluation and management
WO2009144678A2 (en) 2008-05-29 2009-12-03 Kimberly-Clark Worldwide, Inc. Conductive webs containing electrical pathways and method for making same
EP2314210B1 (en) 2008-07-11 2014-09-10 University of Tsukuba Blood vessel characteristics measurement device and method for measuring blood vessel characteristics
US8154435B2 (en) 2008-08-22 2012-04-10 Microsoft Corporation Stability monitoring using synthetic aperture radar
KR20110056420A (en) 2008-09-19 2011-05-27 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Electronic textile and method for determining a functional area of an electronic textile
US9758907B2 (en) 2008-09-22 2017-09-12 Intel Corporation Method and apparatus for attaching chip to a textile
US20100094141A1 (en) 2008-10-14 2010-04-15 Amal Lesly Puswella Jugular venous pressure ruler
DE102008060862B4 (en) 2008-12-09 2010-10-28 Werthschützky, Roland, Prof. Dr.-Ing.habil. Method for miniaturizable contacting of insulated wires
US20120123232A1 (en) 2008-12-16 2012-05-17 Kayvan Najarian Method and apparatus for determining heart rate variability using wavelet transformation
CN101751126A (en) 2008-12-17 2010-06-23 孙骏恭;吴中明 Hand-free interface based on gesture using a plurality of sensor spaces
US8688467B2 (en) 2009-01-09 2014-04-01 Cerner Innovation, Inc. Automated analysis of data collected by in-vivo devices
US20130035563A1 (en) 2010-01-26 2013-02-07 Angelides Kimon J Progressively Personalized Wireless-Based Interactive Diabetes Treatment
US8444564B2 (en) 2009-02-02 2013-05-21 Jointvue, Llc Noninvasive diagnostic system
US9526429B2 (en) 2009-02-06 2016-12-27 Resmed Sensor Technologies Limited Apparatus, system and method for chronic disease monitoring
AU2010221722A1 (en) 2009-02-06 2011-08-18 Oculis Labs, Inc. Video-based privacy supporting system
EP2216866A3 (en) 2009-02-06 2011-07-13 HID Global GmbH Method to strip a portion of an insulated wire
US9498718B2 (en) 2009-05-01 2016-11-22 Microsoft Technology Licensing, Llc Altering a view perspective within a display environment
US8289185B2 (en) 2009-05-05 2012-10-16 Advanced Technologies Group, LLC Sports telemetry system for collecting performance metrics and data
JP5374642B2 (en) 2009-06-03 2013-12-25 ジーエルティー テクノヴェーションズ、エルエルシー Materials used with capacitive touch screens
US8020290B2 (en) 2009-06-14 2011-09-20 Jayna Sheats Processes for IC fabrication
US8759713B2 (en) 2009-06-14 2014-06-24 Terepac Corporation Methods for interconnecting bonding pads between components
US9596999B2 (en) 2009-06-17 2017-03-21 Sotera Wireless, Inc. Body-worn pulse oximeter
KR20110010906A (en) 2009-07-27 2011-02-08 삼성전자주식회사 Apparatus and method for controlling of electronic machine using user interaction
US8346354B2 (en) 2009-07-28 2013-01-01 The Invention Science Fund I, Llc Determining a neuromodulation treatment regimen in response to contactlessly acquired information
US20110073353A1 (en) 2009-09-29 2011-03-31 Tex-Ray Industrial Co., Ltd. Conductive fabric and method for forming the same
US8457651B2 (en) 2009-10-02 2013-06-04 Qualcomm Incorporated Device movement user interface gestures for file sharing functionality
JP5668966B2 (en) 2009-10-15 2015-02-12 株式会社槌屋 Conductive fabric and touch sensor device using conductive fabric
US9400548B2 (en) 2009-10-19 2016-07-26 Microsoft Technology Licensing, Llc Gesture personalization and profile roaming
US8843857B2 (en) 2009-11-19 2014-09-23 Microsoft Corporation Distance scalable no touch computing
WO2011066343A2 (en) 2009-11-24 2011-06-03 Next Holdings Limited Methods and apparatus for gesture recognition mode control
US20110213218A1 (en) 2009-12-17 2011-09-01 Weiner Bert A Patient healthcare monitoring/maintenance system
US20150301167A1 (en) 2009-12-18 2015-10-22 Christopher Gary Sentelle Detection of movable objects
US9229102B1 (en) 2009-12-18 2016-01-05 L-3 Communications Security And Detection Systems, Inc. Detection of movable objects
EP2947476B1 (en) 2009-12-18 2018-08-15 L-3 Communications Cyterra Corporation Moving entity detection
CN102893327B (en) 2010-03-19 2015-05-27 数字标记公司 Intuitive computing methods and systems
KR101325817B1 (en) 2010-01-14 2013-11-05 실버레이 주식회사 Electric conduction woven-stuff, manufacturing method thereof and manufacturing apparatus thereof
US20110181510A1 (en) 2010-01-26 2011-07-28 Nokia Corporation Gesture Control
US8659658B2 (en) 2010-02-09 2014-02-25 Microsoft Corporation Physical interaction zone for gesture-based user interfaces
US20140297006A1 (en) 2010-03-12 2014-10-02 Rajendra Padma Sadhu System and method for providing physiological feedback and rewards for engaging user and retention of customer
JP2011204019A (en) 2010-03-25 2011-10-13 Sony Corp Gesture input device, gesture input method, and program
US20110245688A1 (en) 2010-03-31 2011-10-06 General Electric Company System and method of performing electrocardiography with motion detection
US9642536B2 (en) 2010-06-07 2017-05-09 Affectiva, Inc. Mental state analysis using heart rate collection based on video imagery
US8301232B2 (en) 2010-06-08 2012-10-30 Alivecor, Inc. Wireless, ultrasonic personal health monitoring system
US8509882B2 (en) 2010-06-08 2013-08-13 Alivecor, Inc. Heart monitoring system usable with a smartphone or computer
US20110318985A1 (en) 2010-06-23 2011-12-29 Mcdermid William James Touch Sensor Fabric
US20110316888A1 (en) 2010-06-28 2011-12-29 Invensense, Inc. Mobile device user interface combining input from motion sensors and other controls
JP5726446B2 (en) 2010-07-01 2015-06-03 京セラ株式会社 Portable electronic devices
JP2012018583A (en) 2010-07-08 2012-01-26 Canon Inc Software development support device and processing method thereof
EP2417908A1 (en) 2010-08-12 2012-02-15 Philips Intellectual Property & Standards GmbH Device, system and method for measuring vital signs
US9075434B2 (en) 2010-08-20 2015-07-07 Microsoft Technology Licensing, Llc Translating user motion into multiple object responses
WO2012026013A1 (en) 2010-08-26 2012-03-01 京セミ株式会社 Method of manufacturing woven mesh substrate with semiconductors, device for manufacturing same, and woven mesh substrate with semiconductors
EP2428814A1 (en) 2010-09-13 2012-03-14 France Telecom Object detection method, device and system
US9069067B2 (en) 2010-09-17 2015-06-30 The Invention Science Fund I, Llc Control of an electronic apparatus using micro-impulse radar
EP2587347A3 (en) 2011-10-25 2016-01-20 Broadcom Corporation Portable computing device including a three-dimensional touch screen
US8772621B2 (en) 2010-11-09 2014-07-08 Smule, Inc. System and method for capture and rendering of performance on synthetic string instrument
CN103827779B (en) 2010-11-20 2017-06-20 纽昂斯通信有限公司 The system and method for accessing and processing contextual information using the text of input
US9557413B2 (en) 2010-12-06 2017-01-31 The University Of Memphis Research Foundation Surveillance and tracking system and method
US8475367B1 (en) 2011-01-09 2013-07-02 Fitbit, Inc. Biometric monitoring device having a body weight sensor, and methods of operating same
US8730190B2 (en) 2011-01-13 2014-05-20 Qualcomm Incorporated Detect motion generated from gestures used to execute functionality associated with a computer system
DE102011009577A1 (en) 2011-01-27 2012-08-02 Texas Instruments Deutschland Gmbh RFID transponder and method for connecting a semiconductor die to an antenna
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
US20120220835A1 (en) 2011-02-14 2012-08-30 Wayne Chung Wireless physiological sensor system and method
JP5889539B2 (en) * 2011-03-28 2016-03-22 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons
US9318884B2 (en) 2011-03-30 2016-04-19 Illinois Tool Works Inc. Induction heating wire insulation heating and removal
US8681122B2 (en) 2011-04-19 2014-03-25 Cypress Semiconductor Corporation Capacitive sensing with programmable logic for touch sense arrays
DE102011075725A1 (en) 2011-05-12 2012-11-15 Robert Bosch Gmbh Method for recognizing gestures
US20120310665A1 (en) 2011-06-01 2012-12-06 Xerox Corporation Personalized medical record
US8854433B1 (en) 2012-02-03 2014-10-07 Aquifi, Inc. Method and system enabling natural user interface gestures with an electronic system
US9069164B2 (en) 2011-07-12 2015-06-30 Google Inc. Methods and systems for a virtual input device
US8851372B2 (en) 2011-07-18 2014-10-07 Tiger T G Zhou Wearable personal digital device with changeable bendable battery and expandable display used as standalone electronic payment card
US8740793B2 (en) 2011-08-29 2014-06-03 General Electric Company Radar based systems and methods for monitoring a subject
CN103843314B (en) 2011-09-16 2016-11-16 高通股份有限公司 The mobile device is detected by the vehicle along the line
CN103917704A (en) 2011-10-06 2014-07-09 Iee国际电子工程股份公司 Electrically conductive textiles for occupant sensing and/or heating applications
TW201315438A (en) 2011-10-14 2013-04-16 Ind Tech Res Inst Method of contact-free heart rate estimation and system thereof
CN102660988B (en) 2011-10-18 2014-03-12 北京盈胜泰科技术有限公司 Intelligent toilet
JP2013101526A (en) 2011-11-09 2013-05-23 Sony Corp Information processing apparatus, display control method, and program
CN104067201B (en) 2011-11-23 2018-02-16 英特尔公司 Posture input with multiple views, display and physics
US8869115B2 (en) 2011-11-23 2014-10-21 General Electric Company Systems and methods for emotive software usability
US20130147933A1 (en) 2011-12-09 2013-06-13 Charles J. Kulas User image insertion into a text message
WO2013141923A2 (en) 2011-12-20 2013-09-26 Sadar 3D, Inc. Scanners, targets, and methods for surveying
US8682395B2 (en) 2012-01-27 2014-03-25 Blackberry Limited Communications device and method having non-touch based input screen
US20130207962A1 (en) 2012-02-10 2013-08-15 Float Hybrid Entertainment Inc. User interactive kiosk with three-dimensional display
US9389690B2 (en) 2012-03-01 2016-07-12 Qualcomm Incorporated Gesture detection based on information from multiple types of sensors
JP2013196047A (en) 2012-03-15 2013-09-30 Omron Corp Gesture input apparatus, control program, computer-readable recording medium, electronic device, gesture input system, and control method of gesture input apparatus
US9125456B2 (en) 2012-03-26 2015-09-08 Chong Sun CHOW Object-containing button
WO2013148659A1 (en) 2012-03-30 2013-10-03 Invista Technologies S.À R.L. Stretch wovens with a control yarn system
US20130283203A1 (en) 2012-04-24 2013-10-24 Yahoo! Inc. Method and system for displaying search results
US20140121540A1 (en) 2012-05-09 2014-05-01 Aliphcom System and method for monitoring the health of a user
US8897522B2 (en) 2012-05-30 2014-11-25 Xerox Corporation Processing a video for vascular pattern detection and cardiac function analysis
MX2014015052A (en) 2012-06-12 2015-03-03 Koninkl Philips Nv System for camera-based vital sign measurement.
US20130338460A1 (en) 2012-06-18 2013-12-19 David Da He Wearable Device for Continuous Cardiac Monitoring
SG10201610627QA (en) 2012-06-19 2017-01-27 Univ Singapore System and method for remote encounter and status assessment using parallel data and voice communication paths
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US8768438B2 (en) 2012-06-25 2014-07-01 Xerox Corporation Determining cardiac arrhythmia from a video of a subject being monitored for cardiac function
US20140005810A1 (en) 2012-06-27 2014-01-02 Ubiquiti Networks, Inc. Method and apparatus for monitoring and processing sensor data using a sensor-interfacing device
JP5915414B2 (en) * 2012-06-29 2016-05-11 ブラザー工業株式会社 Programs and mobile devices
FR2992784B1 (en) 2012-06-29 2015-08-07 Laselec Device for stripping electric cables using violet or blue laser diodes
US9140782B2 (en) 2012-07-23 2015-09-22 Google Technology Holdings LLC Inter-vehicle alert system with nagable video look ahead
US9223494B1 (en) 2012-07-27 2015-12-29 Rockwell Collins, Inc. User interfaces for wearable computers
WO2014019085A1 (en) 2012-08-01 2014-02-06 Whirlscape, Inc. One-dimensional input system and method
US8819812B1 (en) 2012-08-16 2014-08-26 Amazon Technologies, Inc. Gesture recognition for device input
US20140051941A1 (en) 2012-08-17 2014-02-20 Rare Light, Inc. Obtaining physiological measurements using a portable device
US8700137B2 (en) 2012-08-30 2014-04-15 Alivecor, Inc. Cardiac performance monitoring system for use with mobile communications devices
WO2014039567A1 (en) 2012-09-04 2014-03-13 Bobo Analytics, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
US9811901B2 (en) 2012-09-07 2017-11-07 Massachusetts Institute Of Technology Linear-based Eulerian motion modulation
US20140073969A1 (en) 2012-09-12 2014-03-13 Neurosky, Inc. Mobile cardiac health monitoring
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
WO2014055755A1 (en) 2012-10-05 2014-04-10 TransRobotics, Inc. Systems and methods for high resolution distance sensing and applications
US8860602B2 (en) 2012-10-09 2014-10-14 Accipiter Radar Technologies Inc. Device and method for cognitive radar information network
CN202887794U (en) 2012-10-12 2013-04-17 上海斯麟特种设备工程有限公司 Rubber-coated cotton-yarn braided cable
US9632574B2 (en) 2012-10-31 2017-04-25 Sony Corporation Device and method for authenticating a user
EP2916724A1 (en) 2012-11-11 2015-09-16 Kenkou GmbH Method and device for determining vital parameters
US9529439B2 (en) 2012-11-27 2016-12-27 Qualcomm Incorporated Multi device pairing and sharing via gestures
TW201425974A (en) 2012-12-17 2014-07-01 Ind Tech Res Inst Apparatus and method for gesture detecting
EP2951811A4 (en) 2013-01-03 2016-08-17 Meta Company Extramissive spatial imaging digital eye glass for virtual or augmediated vision
US20140191939A1 (en) 2013-01-09 2014-07-10 Microsoft Corporation Using nonverbal communication in determining actions
WO2014107769A1 (en) 2013-01-14 2014-07-17 Uscom Limited Combined blood flow and pressure monitoring system and method
CA2897791A1 (en) 2013-01-25 2014-07-31 Vanderbilt Universtiy Smart mobile health monitoring system and related methods
DE102013201359A1 (en) 2013-01-29 2014-07-31 Robert Bosch Gmbh Method and device for controlling a workshop device
US10261612B2 (en) 2013-02-22 2019-04-16 Samsung Electronics Co., Ltd. Apparatus and method for recognizing proximity motion using sensors
IN2013CH00818A (en) 2013-02-25 2015-08-14 Cognizant Technology Solutions India Pvt. Ltd. System and method for real-time monitoring and management of patients from a remote location
US20160012198A1 (en) 2013-03-05 2016-01-14 Vtm, Llc Medical Telecommunications System
JP6389831B2 (en) 2013-03-06 2018-09-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for determining vital sign information
CN104035552B (en) 2013-03-08 2017-08-25 广州三星通信技术研究有限公司 Three-dimensional manipulating method and three-dimensional manipulating device
WO2014144269A1 (en) 2013-03-15 2014-09-18 Mary Hogue Barrett Managing and accounting for privacy settings through tiered cookie set access
US20140364711A1 (en) 2013-03-27 2014-12-11 AkibaH Health Corporation All-in-one analyte sensor in a detachable external mobile device case
US9170324B2 (en) 2013-04-04 2015-10-27 Raytheon Company Statistical movement analysis
GB201306475D0 (en) 2013-04-10 2013-05-22 Elliptic Laboratories As Touchless interaction devices
KR101373633B1 (en) 2013-04-23 2014-03-13 상명대학교서울산학협력단 Manufacturing method of metal composite yarn with enhanced yield strength, electrically conductive metal composite yarn with enhanced yield strength and embroidered circuit using thereof
KR101999958B1 (en) 2013-05-22 2019-07-15 엘지전자 주식회사 Mobile terminal and control method thereof
US20140357369A1 (en) 2013-06-04 2014-12-04 Microsoft Corporation Group inputs via image sensor system
WO2014204323A1 (en) 2013-06-17 2014-12-24 Stretchsense Limited Stretchable fabric sensors
US9436984B2 (en) 2013-06-21 2016-09-06 Xerox Corporation Compensating for motion induced artifacts in a physiological signal extracted from a single video
KR20150006195A (en) 2013-07-08 2015-01-16 엘지전자 주식회사 Wearable device and the method for controlling the same
US20150029050A1 (en) 2013-07-25 2015-01-29 Elwha Llc Wearable radar reflectors
US20150068069A1 (en) 2013-07-27 2015-03-12 Alexander Bach Tran Personally powered appliance
US20150046183A1 (en) 2013-08-12 2015-02-12 James V. Cireddu Remote, virtual physical exam acquisition and distribution
FI126008B (en) 2013-09-13 2016-05-31 Murata Manufacturing Co Cardiac monitoring system
JP2016539434A (en) 2013-09-17 2016-12-15 ノキア テクノロジーズ オサケユイチア Operation decision
US9383426B2 (en) 2013-09-17 2016-07-05 Farrokh Mohamadi Real-time, two dimensional (2-D) tracking of first responders with identification inside premises
US20150085060A1 (en) 2013-09-20 2015-03-26 Microsoft Corporation User experience for conferencing with a touch screen display
US9224237B2 (en) 2013-09-27 2015-12-29 Amazon Technologies, Inc. Simulating three-dimensional views using planes of content
US20150095987A1 (en) 2013-10-01 2015-04-02 Certify Global LLC Systems and methods of verifying an authentication using dynamic scoring
US10152761B2 (en) 2013-10-04 2018-12-11 Iqvia Inc. Facilitating transactions for health applications designed for mobile devices
US9588591B2 (en) 2013-10-10 2017-03-07 Google Technology Holdings, LLC Primary device that interfaces with a secondary device based on gesture commands
US9396642B2 (en) 2013-10-23 2016-07-19 Quanttus, Inc. Control using connected biometric devices
US10228801B2 (en) 2013-10-24 2019-03-12 University Of Maryland, Baltimore County System and method for proximity-based position, movement and gesture detection using capacitive sensor arrays
US20150205358A1 (en) 2014-01-20 2015-07-23 Philip Scott Lyren Electronic Device with Touchless User Interface
FR3017722A1 (en) 2014-02-17 2015-08-21 Tounwendsida Ulysse Philippe Semde Device enabling all valid, engine or disabled persons, or mute editor, to modify and publish computer software, in an autonomous way, without prior knowledge in computing and without physical contact with the terminal
EP2923642B1 (en) 2014-03-25 2017-03-15 Ulrich Scholten Application agnostic sensor, control computer and methods for operating
US9921657B2 (en) 2014-03-28 2018-03-20 Intel Corporation Radar-based gesture recognition
US20170029985A1 (en) 2014-04-16 2017-02-02 Teijin Limited Transducer including fibers and outputting and inputting an electric signal
US9346167B2 (en) 2014-04-29 2016-05-24 Brain Corporation Trainable convolutional network apparatus and methods for operating a robotic vehicle
US9365213B2 (en) 2014-04-30 2016-06-14 Here Global B.V. Mode transition for an autonomous vehicle
US9485267B2 (en) 2014-06-02 2016-11-01 Bastille Networks, Inc. Anomalous behavior detection using radio frequency fingerprints and access credentials
US10099315B2 (en) 2014-06-27 2018-10-16 Jabil Inc. System, apparatus and method for hybrid function micro welding
KR20160004073A (en) * 2014-07-02 2016-01-12 삼성전자주식회사 non volatile memory device and operating method thereof
JP6282188B2 (en) 2014-07-04 2018-02-21 クラリオン株式会社 Information processing device
GB2528044B (en) 2014-07-04 2018-08-22 Arc Devices Ni Ltd Non-touch optical detection of vital signs
US10234952B2 (en) 2014-07-18 2019-03-19 Maxim Integrated Products, Inc. Wearable device for using human body as input mechanism
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US20160054792A1 (en) * 2014-08-22 2016-02-25 Google Inc. Radar-Based Biometric Recognition
US20160055201A1 (en) 2014-08-22 2016-02-25 Google Inc. Radar Recognition-Aided Searches
US10073590B2 (en) 2014-09-02 2018-09-11 Apple Inc. Reduced size user interface
US20160106328A1 (en) 2014-10-16 2016-04-21 Xerox Corporation Determining arterial pulse transit time from time-series signals obtained at proximal and distal arterial sites
KR20160055590A (en) 2014-11-10 2016-05-18 한국전자통신연구원 Apparatus and method for forming beam for radar signal processing
US9733340B2 (en) 2014-11-21 2017-08-15 Texas Instruments Incorporated Techniques for high arrival angle resolution using multiple nano-radars
US10064582B2 (en) 2015-01-19 2018-09-04 Google Llc Noninvasive determination of cardiac health and other functional states and trends for human physiological systems
US20160249698A1 (en) 2015-02-27 2016-09-01 Omsignal Inc. Apparatus, systems and methods for optimizing and masking compression in a biosensing garment
KR101560282B1 (en) 2015-03-06 2015-10-14 주식회사 휴이노 Mobile device having functions of measuring bio-signals and realtime-monitoring blood pressure estimation based on measured bio-signals
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US20160283101A1 (en) 2015-03-26 2016-09-29 Google Inc. Gestures for Interactive Textiles
US20160284436A1 (en) 2015-03-26 2016-09-29 Google Inc. Conductive Thread for Interactive Textiles
US20160287172A1 (en) 2015-04-02 2016-10-06 Microsoft Technology Licensing, Llc Wrist-worn pulse transit time sensor
US9848780B1 (en) 2015-04-08 2017-12-26 Google Inc. Assessing cardiovascular function using an optical sensor
JP2018517448A (en) 2015-04-20 2018-07-05 レスメッド センサー テクノロジーズ リミテッド Human detection and identification from characteristic signals
US20160321428A1 (en) 2015-04-29 2016-11-03 Google, Inc. Customizable Health Monitoring
US10080528B2 (en) 2015-05-19 2018-09-25 Google Llc Optical central venous pressure measurement
US20160338599A1 (en) 2015-05-22 2016-11-24 Google, Inc. Synchronizing Cardiovascular Sensors for Cardiovascular Monitoring
US20180296163A1 (en) 2015-07-27 2018-10-18 Google Inc. Altering Physiological Signals Based On Patient Movement
US20170329412A1 (en) 2016-05-16 2017-11-16 Google Inc. Systems and Methods of Gesture-Based Control
WO2017200571A1 (en) 2016-05-16 2017-11-23 Google Llc Gesture-based control of a user interface
US20180113032A1 (en) 2016-10-11 2018-04-26 North Carolina State University Flexible stretchable capacitive sensor

Patent Citations (278)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752017A (en) 1971-04-08 1973-08-14 Pace Inc Thermal hand tools
US4104012A (en) 1976-10-12 1978-08-01 Ferrante Michael R Improved wire stripping apparatus
GB2070469A (en) 1980-02-29 1981-09-09 Raychem Gmbh Electrical interconnection
US4795998A (en) 1984-05-04 1989-01-03 Raychem Limited Sensor array
US4654967A (en) 1984-09-06 1987-04-07 U.S. Philips Corporation Method and device for aligning and straightening flexible, insulated conductors
US4838797A (en) 1987-06-19 1989-06-13 The United States Of America As Represented By The Secretary Of The Navy Underwater connect and disconnect plug and receptacle
US5016500A (en) 1990-04-10 1991-05-21 Teledyne Kinetics Battery powered temperature-controlled wire stripper
US6513833B2 (en) 1992-05-05 2003-02-04 Automotive Technologies International, Inc. Vehicular occupant motion analysis system
US5656798A (en) 1992-09-21 1997-08-12 Matsushita Electric Works, Ltd. Terminal-carrying circuit board
US5564571A (en) 1993-07-19 1996-10-15 Cembre S.P.A. Strip for electrical connectors
US6835898B2 (en) 1993-11-16 2004-12-28 Formfactor, Inc. Electrical contact structures formed by configuring a flexible wire to have a springable shape and overcoating the wire with at least one layer of a resilient conductive material, methods of mounting the contact structures to electronic components, and applications for employing the contact structures
US5468917A (en) 1994-03-23 1995-11-21 International Business Machines Corporation Circuitized structure including flexible circuit with elastomeric member bonded thereto
US5724707A (en) 1996-06-17 1998-03-10 The United States Of America As Represented By The Secretary Of The Army Interlock attaching strap system
US6101431A (en) 1997-08-28 2000-08-08 Kawasaki Jukogyo Kabushiki Kaisha Flight system and system for forming virtual images for aircraft
US6854985B1 (en) 1998-12-16 2005-02-15 Paricon Technologies Corporation Elastomeric interconnection device and methods for making same
US20020080156A1 (en) 1998-12-18 2002-06-27 Abbott Kenneth H. Supplying notifications related to supply and consumption of user context data
WO2001030123A1 (en) 1999-10-18 2001-04-26 Massachusetts Institute Of Technology Flexible electronic circuitry and method of making same
US7223105B2 (en) 1999-12-16 2007-05-29 Paricon Technologies Corporation Cable connector incorporating anisotropically conductive elastomer
US6802720B2 (en) 1999-12-16 2004-10-12 Paricon Technologies Corporation Pin-array, separable, compliant electrical contact member
US20010035836A1 (en) 1999-12-22 2001-11-01 Gilbert Miceli Method and system for identification of subterranean objects
US6440593B2 (en) 2000-02-16 2002-08-27 The University Of Massachusetts Molded article
US20020009972A1 (en) 2000-07-06 2002-01-24 Brian Amento Bioacoustic control system, method and apparatus
US6833807B2 (en) 2000-10-26 2004-12-21 Automotive Distance Control Systems Gmbh Method for adaptive target processing in a motor vehicle radar system
US20060125803A1 (en) 2001-02-10 2006-06-15 Wayne Westerman System and method for packing multitouch gestures onto a hand
US7644488B2 (en) 2001-02-15 2010-01-12 Integral Technologies Method to form a conductive device
US6711354B2 (en) 2001-03-05 2004-03-23 Yazaki Corporation Auxiliary module use relaying component and auxiliary module
US6717065B2 (en) 2001-03-30 2004-04-06 J.S.T. Mfg. Co., Ltd. Electric contact and an electric connector both using resin solder and a method of connecting them to a printed circuit board
US20040259391A1 (en) 2001-12-14 2004-12-23 Infineon Technologies Ag Construction and connection technique in textile structures
US7230610B2 (en) 2001-12-14 2007-06-12 Future-Shape Gmbh Keypad in textiles with capacitive read-out circuit
US7249954B2 (en) 2002-02-26 2007-07-31 Paricon Technologies Corporation Separable electrical interconnect with anisotropic conductive elastomer for translating footprint
JP2003280049A (en) 2002-03-26 2003-10-02 Tdk Corp Functional fiber and textile using the same
US7348285B2 (en) 2002-06-28 2008-03-25 North Carolina State University Fabric and yarn structures for improving signal integrity in fabric-based electrical circuits
US20110286585A1 (en) 2002-08-08 2011-11-24 Stephen Lee Hodge Telecommunication Call Management And Monitoring System With Voiceprint Verification
US20050148876A1 (en) 2002-09-03 2005-07-07 Fujitsu Limited Individual identification device
US20090177068A1 (en) 2002-10-09 2009-07-09 Stivoric John M Method and apparatus for providing derived glucose information utilizing physiological and/or contextual parameters
US20080002027A1 (en) 2002-10-18 2008-01-03 Sony Corporation Information processing system and method, information processing apparatus, image-capturing device and method, recording medium, and program
US20080065291A1 (en) 2002-11-04 2008-03-13 Automotive Technologies International, Inc. Gesture-Based Control of Vehicular Components
US7164820B2 (en) 2002-12-17 2007-01-16 Koninklijke Philips Electronics, N.V. Electro-optic filament or fibre
US6929484B2 (en) 2003-01-09 2005-08-16 Roger E. Weiss Apparatus for applying a mechanically-releasable balanced compressive load to an assembly such as a compliant anisotropic conductive elastomer electrical connector
US20090018428A1 (en) 2003-05-19 2009-01-15 Umist Ventures Limited Knitted transducer devices
US7134879B2 (en) 2003-06-05 2006-11-14 Sharp Kabushiki Kaisha Anisotropic conductive material body, display apparatus, method for producing the display apparatus, and conductive member
US7310236B2 (en) 2003-07-30 2007-12-18 Sony Corporation Electronic device
US7941676B2 (en) 2003-09-24 2011-05-10 Infineon Technologies Ag Processor array having a multiplicity of processor elements and method of transmitting electricity between processor elements
US20070192647A1 (en) 2003-09-24 2007-08-16 Rupert Glaser Process array, fabric structure, surface-covering structure and method of transmitting electricity
US20050128124A1 (en) 2003-12-12 2005-06-16 Greneker Eugene F.Iii Radar detection device employing a scanning antenna system
US20070197115A1 (en) 2003-12-20 2007-08-23 Koninklijke Philips Electronic, N.V. Woven material and display device constructed therefrom
US20070024488A1 (en) 2004-01-20 2007-02-01 Zemany Paul D Method and apparatus for through-the-wall motion detection utilizing cw radar
US7528082B2 (en) 2004-02-25 2009-05-05 Koninklijke Philips Electronics N.V. Fabric
US20060170584A1 (en) 2004-03-05 2006-08-03 The Regents Of The University Of California Obstacle penetrating dynamic radar imaging system
US20090203244A1 (en) 2004-04-17 2009-08-13 Koninklijke Philips Electronics, N.V. Electrical Connector Abstract
US8921473B1 (en) 2004-04-30 2014-12-30 Sydney Hyman Image making medium
US8560972B2 (en) 2004-08-10 2013-10-15 Microsoft Corporation Surface UI for gesture-based interaction
US20060047386A1 (en) 2004-08-31 2006-03-02 International Business Machines Corporation Touch gesture based interface for motor vehicle
US20060061504A1 (en) 2004-09-23 2006-03-23 The Regents Of The University Of California Through wall detection and tracking system
US20060139162A1 (en) 2004-12-10 2006-06-29 Honeywell International Inc. Surveillance system
US20060136997A1 (en) 2004-12-21 2006-06-22 Eastman Kodak Company Authentication system and method
US20060148351A1 (en) 2005-01-06 2006-07-06 Xiaoming Tao Patterned conductive textile sensors and devices
US20060157734A1 (en) 2005-01-17 2006-07-20 Koji Onodera Semiconductor device and method of manufacturing semiconductor device
US8614689B2 (en) 2005-01-24 2013-12-24 Nissha Printing Co., Ltd. Lead wire connection method for touch panel
US20060209021A1 (en) 2005-03-19 2006-09-21 Jang Hee Yoo Virtual mouse driving apparatus and method using two-handed gestures
US7544627B2 (en) 2005-05-12 2009-06-09 The Hong Kong Polytechnic University Pressure sensing fabric
US20070026695A1 (en) 2005-07-27 2007-02-01 Physical Optics Corporation Electrical connector configured as a fastening element
US7462035B2 (en) 2005-07-27 2008-12-09 Physical Optics Corporation Electrical connector configured as a fastening element
US20090149036A1 (en) 2005-07-27 2009-06-11 Kang Lee Inherently sealed electrical connector
US20070027369A1 (en) 2005-07-28 2007-02-01 Guido Pagnacco Apparatus and methods for assessing human physical performance
US7791700B2 (en) 2005-09-16 2010-09-07 Kent Displays Incorporated Liquid crystal display on a printed circuit board
US7670144B2 (en) 2005-11-28 2010-03-02 Hoya Corporation Conductive layer, manufacturing method of the same, and signal transmission substrate
US7834276B2 (en) 2005-12-16 2010-11-16 Unitech Printed Circuit Board Corp. Structure for connecting a USB communication interface in a flash memory card by the height difference of a rigid flexible board
US7317416B2 (en) 2005-12-22 2008-01-08 Leonard Flom Skeletal topography imaging radar for unique individual identification
EP1815788A1 (en) 2006-01-31 2007-08-08 Polar Electro Oy Connector mechanism
US20090278915A1 (en) 2006-02-08 2009-11-12 Oblong Industries, Inc. Gesture-Based Control System For Vehicle Interfaces
US20070237423A1 (en) 2006-04-10 2007-10-11 Nokia Corporation Constructing image panorama using frame selection
WO2007125298A1 (en) 2006-04-27 2007-11-08 Peratech Limited Manually operable position sensor
US20080024438A1 (en) 2006-07-28 2008-01-31 Eleksen Limited Interfacing an electronic device to a controller
US8169404B1 (en) 2006-08-15 2012-05-01 Navisense Method and device for planary sensory detection
US20080134102A1 (en) 2006-12-05 2008-06-05 Sony Ericsson Mobile Communications Ab Method and system for detecting movement of an object
US20080168396A1 (en) 2007-01-07 2008-07-10 Michael Matas Portable Multifunction Device, Method, and Graphical User Interface for Providing Maps and Directions
US20080211766A1 (en) 2007-01-07 2008-09-04 Apple Inc. Multitouch data fusion
US8314732B2 (en) 2007-01-31 2012-11-20 Cambridge Consultants Ltd. Adaptive radar
US20080303800A1 (en) 2007-05-22 2008-12-11 Elwell James K Touch-based input device providing a reconfigurable user interface
US20080320419A1 (en) 2007-06-22 2008-12-25 Michael Matas Touch Screen Device, Method, and Graphical User Interface for Providing Maps, Directions, and Location-Based Information
US20080316085A1 (en) 2007-06-22 2008-12-25 Broadcom Corporation Apparatus for position detection using multiple hcf transmissions
US8505474B2 (en) 2007-07-31 2013-08-13 Snu R&Db Foundation Electrically conductive metal composite embroidery yarn and embroidered circuit using thereof
US20090058820A1 (en) 2007-09-04 2009-03-05 Microsoft Corporation Flick-based in situ search from ink, text, or an empty selection region
US20090115617A1 (en) 2007-10-17 2009-05-07 Sony Corporation Information provision system, information provision device, information provision method, terminal device, and display method
US20090113298A1 (en) 2007-10-24 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method of selecting a second content based on a user's reaction to a first content
US20090118648A1 (en) 2007-11-04 2009-05-07 Akihiko Kandori Living body inspection system, living body inspection apparatus, and living body inspection method
US20100234094A1 (en) 2007-11-09 2010-09-16 Wms Gaming Inc. Interaction with 3d space in a gaming system
WO2009083467A1 (en) 2007-12-28 2009-07-09 Nokia Corporation A controller
US20110010014A1 (en) 2008-02-25 2011-01-13 Kingsdown, Inc. Systems and methods for controlling a bedroom environment and for providing sleep data
US20120174299A1 (en) 2008-03-21 2012-07-12 Alfiero Balzano Safety vest assembly including a high reliability communication system
US8341762B2 (en) 2008-03-21 2013-01-01 Alfiero Balzano Safety vest assembly including a high reliability communication system
US8344949B2 (en) 2008-03-31 2013-01-01 Golba Llc Wireless positioning approach using time-delay of signals with a known transmission pattern
US20090295712A1 (en) 2008-05-29 2009-12-03 Sony Ericsson Mobile Communications Ab Portable projector and method of operating a portable projector
US8569189B2 (en) 2008-06-10 2013-10-29 Koninklijke Philips N.V. Electronic textile
US20090319181A1 (en) 2008-06-20 2009-12-24 Microsoft Corporation Data services based on gesture and location information of device
US20100050133A1 (en) 2008-08-22 2010-02-25 Nishihara H Keith Compound Gesture Recognition
US20100053151A1 (en) 2008-09-02 2010-03-04 Samsung Electronics Co., Ltd In-line mediation for manipulating three-dimensional content on a display device
US7952512B1 (en) 2008-10-14 2011-05-31 Sprint Communications Company L.P. Mobile device enabled radar tags
US20100225562A1 (en) 2009-01-15 2010-09-09 Smith David R Broadband metamaterial apparatus, methods, systems, and computer readable media
US9569001B2 (en) 2009-02-03 2017-02-14 Massachusetts Institute Of Technology Wearable gestural interface
US20100241009A1 (en) 2009-03-20 2010-09-23 Wright State University Systems and Methods for Detecting Movement of a Target
US8282232B2 (en) 2009-04-08 2012-10-09 Fu-biau Hsu Illuminating textile article
US8549829B2 (en) 2009-05-20 2013-10-08 Amogreentech Co., Ltd. Silver yarn, plied yarn silver yarn, functional fabric using same, and method for producing same
US20100306713A1 (en) 2009-05-29 2010-12-02 Microsoft Corporation Gesture Tool
US20110003664A1 (en) 2009-07-02 2011-01-06 Richard Maertz J Exercise and communications system and associated methods
US8367942B2 (en) 2009-10-27 2013-02-05 Hon Hai Precision Ind. Co., Ltd. Low profile electrical interposer of woven structure and method of making same
US20150312041A1 (en) 2009-11-17 2015-10-29 Unho Choi Authentication in ubiquitous environment
US20110166940A1 (en) 2010-01-05 2011-07-07 Searete Llc Micro-impulse radar detection of a human demographic and delivery of targeted media content
US8514221B2 (en) 2010-01-05 2013-08-20 Apple Inc. Working with 3D objects
US20170233903A1 (en) 2010-01-14 2017-08-17 Byung-Ok Jeon Electrically conductive fabric and manufacturing method and apparatus thereof
US9335825B2 (en) 2010-01-26 2016-05-10 Nokia Technologies Oy Gesture control
US9093289B2 (en) 2010-02-03 2015-07-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for assembling at least one chip using a fabric, and fabric including a chip device
US20110197263A1 (en) 2010-02-11 2011-08-11 Verizon Patent And Licensing, Inc. Systems and methods for providing a spatial-input-based multi-user shared display experience
US20130046544A1 (en) 2010-03-12 2013-02-21 Nuance Communications, Inc. Multimodal text input system, such as for use with touch screens on mobile phones
US20110234492A1 (en) 2010-03-29 2011-09-29 Ajmera Rahul Gesture processing
US20110279303A1 (en) 2010-05-13 2011-11-17 The United States Of America As Represented By The Secretary Of The Navy Active-radar-assisted passive composite imagery for aiding navigation or detecting threats
US20110307842A1 (en) 2010-06-14 2011-12-15 I-Jen Chiang Electronic reading device
US20120001875A1 (en) 2010-06-29 2012-01-05 Qualcomm Incorporated Touchless sensing and gesture recognition using continuous wave ultrasound signals
US20120019168A1 (en) 2010-07-20 2012-01-26 Shuhei Noda Illumination control system and method for controlling illumination
US8785778B2 (en) 2010-08-23 2014-07-22 Foster-Miller, Inc. PALS compliant routing system
US20130161078A1 (en) 2010-09-03 2013-06-27 Hui Hong Jim Kery Li Rigid-flex circuit board and manufacturing method
US9148949B2 (en) 2010-09-21 2015-09-29 Koninklijke Philips N.V. Electronic textile and method of manufacturing an electronic textile
US20130253029A1 (en) 2010-09-28 2013-09-26 Panacea Biotec Ltd Novel bicyclic compounds
US20120150493A1 (en) 2010-12-13 2012-06-14 Southwest Research Institute Sensor Array Processor with Multichannel Reconstruction from Random Array Sampling
US20120156926A1 (en) 2010-12-15 2012-06-21 Toyota Boshoku Kabushiki Kaisha Connection member, method of manufacturing the same and connection structure
US20120154313A1 (en) 2010-12-17 2012-06-21 The Hong Kong University Of Science And Technology Multi-touch finger registration and its applications
US20120254810A1 (en) 2011-03-31 2012-10-04 Microsoft Corporation Combined Activation for Natural User Interface Systems
US20120280900A1 (en) 2011-05-06 2012-11-08 Nokia Corporation Gesture recognition using plural sensors
US20120298748A1 (en) 2011-05-24 2012-11-29 Bird Aerosystems Ltd System, device and method of protecting aircrafts against incoming missiles and threats
US20140247212A1 (en) 2011-05-31 2014-09-04 Microsoft Corporation Gesture Recognition Techniques
US20140184499A1 (en) 2011-07-11 2014-07-03 VTouch Co., Ltd. Remote manipulation device and method using a virtual touch of a three-dimensionally modeled electronic device
US8179604B1 (en) 2011-07-13 2012-05-15 Google Inc. Wearable marker for passive interaction
US20130027218A1 (en) 2011-07-25 2013-01-31 Ips Group Inc. Low Power Vehicle Detection
JP2014532332A (en) 2011-09-21 2014-12-04 モバイル ジュース、インコーポレイテッド Assembly
US20130078624A1 (en) 2011-09-25 2013-03-28 Theranos, Inc., a Delaware Corporation Systems and methods for multi-purpose analysis
US20130082922A1 (en) 2011-09-29 2013-04-04 Samuel A. Miller Tactile glove for human-computer interaction
US20130083173A1 (en) 2011-09-30 2013-04-04 Kevin A. Geisner Virtual spectator experience with a personal audio/visual apparatus
US20130104084A1 (en) 2011-10-21 2013-04-25 Digital Artforms, Inc. Systems and methods for human-computer interaction using a two handed interface
US20130117377A1 (en) 2011-10-28 2013-05-09 Samuel A. Miller System and Method for Augmented and Virtual Reality
US20140298266A1 (en) 2011-11-09 2014-10-02 Joseph T. LAPP Finger-mapped character entry systems
US10082950B2 (en) 2011-11-09 2018-09-25 Joseph T. LAPP Finger-mapped character entry systems
US20140343392A1 (en) 2011-11-25 2014-11-20 Chang-Ming Yang Object, method, and system for detecting heartbeat or whether or not electrodes are in proper contact
WO2013084108A1 (en) 2011-12-07 2013-06-13 Koninklijke Philips Electronics N.V. Electronic textile with means for facilitating waste sorting
US20130147833A1 (en) 2011-12-09 2013-06-13 Ident Technology Ag Electronic Device with a User Interface that has more than Two Degrees of Freedom, the User Interface Comprising a Touch-Sensitive Surface and Contact-Free Detection Means
US20140324888A1 (en) * 2011-12-09 2014-10-30 Nokia Corporation Method and Apparatus for Identifying a Gesture Based Upon Fusion of Multiple Sensor Signals
US20140208275A1 (en) 2011-12-23 2014-07-24 Rajiv Mongia Computing system utilizing coordinated two-hand command gestures
US20130169471A1 (en) 2011-12-28 2013-07-04 Hrl Laboratories, Llc Coded aperture beam analysis method and apparatus
US9141194B1 (en) 2012-01-04 2015-09-22 Google Inc. Magnetometer-based gesture sensing with a wearable device
US20140333467A1 (en) 2012-01-16 2014-11-13 Toyota Jidosha Kabushiki Kaisha Object detection device
US8527146B1 (en) 2012-01-30 2013-09-03 Google Inc. Systems and methods for updating vehicle behavior and settings based on the locations of vehicle passengers
US20130195330A1 (en) 2012-01-31 2013-08-01 Electronics And Telecommunications Research Institute Apparatus and method for estimating joint structure of human body
US20130194173A1 (en) 2012-02-01 2013-08-01 Ingeonix Corporation Touch free control of electronic systems and associated methods
US20130260630A1 (en) 2012-03-28 2013-10-03 Toyota Boshoku Kabushiki Kaisha Woven fabric
US20130278501A1 (en) 2012-04-18 2013-10-24 Arb Labs Inc. Systems and methods of identifying a gesture using gesture data compressed by principal joint variable analysis
US20150062033A1 (en) 2012-04-26 2015-03-05 Panasonic Intellectual Property Corporation Of America Input device, input assistance method, and program
US20150030256A1 (en) 2012-05-09 2015-01-29 Duke University Multi-sensor compressive imaging
US20130332438A1 (en) 2012-06-12 2013-12-12 Microsoft Corporation Disambiguating Intents Within Search Engine Result Pages
US20140135631A1 (en) 2012-06-22 2014-05-15 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US20140028539A1 (en) 2012-07-29 2014-01-30 Adam E. Newham Anatomical gestures detection system using radio signals
US9235241B2 (en) 2012-07-29 2016-01-12 Qualcomm Incorporated Anatomical gestures detection system using radio signals
US20140050354A1 (en) 2012-08-16 2014-02-20 Microchip Technology Incorporated Automatic Gesture Recognition For A Sensor System
US20140049487A1 (en) 2012-08-17 2014-02-20 Qualcomm Incorporated Interactive user interface for clothing displays
US20150229885A1 (en) 2012-08-21 2015-08-13 Robert Bosch Gmbh Method for supplementing a piece of object information assigned to an object and method for selecting objects in surroundings of a vehicle
US9230160B1 (en) 2012-08-27 2016-01-05 Amazon Technologies, Inc. Method, medium, and system for online ordering using sign language
US20140318699A1 (en) 2012-09-11 2014-10-30 Gianluigi LONGINOTTI-BUITONI Methods of making garments having stretchable and conductive ink
US20140070957A1 (en) 2012-09-11 2014-03-13 Gianluigi LONGINOTTI-BUITONI Wearable communication platform
US20170196513A1 (en) 2012-09-11 2017-07-13 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US20150143601A1 (en) 2012-09-11 2015-05-28 Gianluigi LONGINOTTI-BUITONI Garments having stretchable and conductive ink
US20140095480A1 (en) 2012-10-01 2014-04-03 Microsoft Corporation Semantic zoom for related content
US20150285906A1 (en) 2012-10-04 2015-10-08 Technology Service Corporation Proximity sensor
US20150280102A1 (en) 2012-10-12 2015-10-01 Kansai University Piezoelectric element
US20150256763A1 (en) 2012-11-06 2015-09-10 Nokia Technologies Oy Method and apparatus for creating motion effect for image
US20140143678A1 (en) 2012-11-20 2014-05-22 Samsung Electronics Company, Ltd. GUI Transitions on Wearable Electronic Device
US20140139422A1 (en) 2012-11-20 2014-05-22 Samsung Electronics Company, Ltd. User Gesture Input to Wearable Electronic Device Involving Outward-Facing Sensor of Device
US9766742B2 (en) 2012-12-05 2017-09-19 R&D Core Limited Contact sensor
US8814574B2 (en) 2012-12-31 2014-08-26 Suunto Oy Male end of a telemetric transceiver
US20140201690A1 (en) 2013-01-15 2014-07-17 Leap Motion, Inc. Dynamic user interactions for display control and scaling responsiveness of display objects
US20140215389A1 (en) 2013-01-31 2014-07-31 Hewlett-Packard Development Company, L.P. Graphical element placement on a display surface
US20140250515A1 (en) 2013-03-01 2014-09-04 Bjorn Markus Jakobsson Systems and methods for authenticating a user based on a biometric model associated with the user
US20140253431A1 (en) 2013-03-08 2014-09-11 Google Inc. Providing a gesture-based interface
US20140282877A1 (en) 2013-03-13 2014-09-18 Lookout, Inc. System and method for changing security behavior of a device based on proximity to another device
US20140262478A1 (en) 2013-03-13 2014-09-18 Federal-Mogul Powertrain, Inc. EMI Shielding Textile Fabric, Wrappable Sleeve Constructed Therefrom and Method of Construction Thereof
US20140280295A1 (en) 2013-03-14 2014-09-18 Microsoft Corporation Multi-language information retrieval and advertising
US20150268027A1 (en) 2013-03-15 2015-09-24 Medusa Scientific Llc Electric field sensing and e field visualization
US20140281975A1 (en) 2013-03-15 2014-09-18 Glen J. Anderson System for adaptive selection and presentation of context-based media in communications
US20160171293A1 (en) 2013-03-28 2016-06-16 The University Of Warwick Gesture tracking and classification
US9971414B2 (en) 2013-04-01 2018-05-15 University Of Washington Through Its Center For Commercialization Devices, systems, and methods for detecting gestures using wireless communication signals
US20140309855A1 (en) * 2013-04-12 2014-10-16 Bao Tran Smart car with automatic signalling
US20140316261A1 (en) 2013-04-18 2014-10-23 California Institute Of Technology Life Detecting Radars
US20140329567A1 (en) * 2013-05-01 2014-11-06 Elwha Llc Mobile device with automatic volume control
US20170322633A1 (en) 2013-05-14 2017-11-09 Empire Technology Development Llc Detection of user gestures
US20160103500A1 (en) 2013-05-21 2016-04-14 Stanley Innovation, Inc. System and method for a human machine interface utilizing near-field quasi-state electrical field sensing technology
US20140368441A1 (en) 2013-06-12 2014-12-18 Amazon Technologies, Inc. Motion-based gestures for a computing device
US9055879B2 (en) 2013-06-14 2015-06-16 Suunto Oy Device and method for assembling an electronic device and a flexible element for facilitating assembly of electronic components
US20150002391A1 (en) 2013-06-28 2015-01-01 Chia Ming Chen Systems and methods for controlling device operation according to hand gestures
US20150040040A1 (en) 2013-08-05 2015-02-05 Alexandru Balan Two-hand interaction with natural user interface
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
WO2015017931A1 (en) 2013-08-07 2015-02-12 Blackberry Limited Determining the distance of an object to an electronic device
US20160186366A1 (en) 2013-08-16 2016-06-30 Footfalls And Heartbeats Limited Method for making electrically conductive textiles and textile sensor
US20160299526A1 (en) 2013-09-10 2016-10-13 Polyera Corporation Attachable article with signaling, split display and messaging features
US20150145805A1 (en) 2013-09-12 2015-05-28 Min Liu Detecting gestures on the side of a computing device
US20150091859A1 (en) 2013-09-27 2015-04-02 Sensel, Inc. Capacitive Touch Sensor System and Method
US20170075496A1 (en) 2013-09-27 2017-03-16 Sensel, Inc. Diamond patterned touch sensor system and method
US20150091820A1 (en) 2013-09-27 2015-04-02 Sensel, Inc. Touch Sensor Detector System and Method
US20160253044A1 (en) 2013-10-10 2016-09-01 Eyesight Mobile Technologies Ltd. Systems, devices, and methods for touch-free typing
US20150109164A1 (en) * 2013-10-17 2015-04-23 Denso Corporation Target detection apparatus
US20160262685A1 (en) 2013-11-12 2016-09-15 Highland Instruments, Inc. Motion analysis systemsand methods of use thereof
US20180160943A1 (en) 2013-12-10 2018-06-14 4Iiii Innovations Inc. Signature based monitoring systems and methods
US20150177866A1 (en) 2013-12-23 2015-06-25 Microsoft Corporation Multiple Hover Point Gestures
US20150185314A1 (en) 2013-12-26 2015-07-02 International Business Machines Corporation Radar integration with handheld electronic devices
US20150226004A1 (en) 2014-02-10 2015-08-13 Michael C. Thompson Technique to verify underground targets utilizing virtual reality imaging and controlled excavation
US20160349790A1 (en) 2014-02-25 2016-12-01 Medibotics Llc Wearable Computer Display Devices for the Forearm, Wrist, and/or Hand
US9594443B2 (en) 2014-02-26 2017-03-14 Lenovo (Singapore) Pte. Ltd. Wearable device authentication and operation
US20160026253A1 (en) 2014-03-11 2016-01-28 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US20170052618A1 (en) 2014-04-30 2017-02-23 Lg Innotek Co., Ltd. Touch device, wearable device having the same and touch recognition method
US20150317518A1 (en) 2014-05-01 2015-11-05 Seiko Epson Corporation Head-mount type display device, control system, method of controlling head-mount type display device, and computer program
US20150323993A1 (en) 2014-05-12 2015-11-12 Immersion Corporation Systems and methods for providing haptic feedback for remote interactions
US20150332075A1 (en) 2014-05-15 2015-11-19 Fedex Corporate Services, Inc. Wearable devices for courier processing and methods of use thereof
US20150341550A1 (en) 2014-05-21 2015-11-26 Motorola Mobility Llc Enhanced image capture
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9971415B2 (en) 2014-06-03 2018-05-15 Google Llc Radar-based gesture-recognition through a wearable device
US20180196527A1 (en) 2014-06-03 2018-07-12 Google Llc Radar-Based Gesture-Recognition through a Wearable Device
US9331422B2 (en) 2014-06-09 2016-05-03 Apple Inc. Electronic device with hidden connector
US9354709B1 (en) 2014-06-17 2016-05-31 Amazon Technologies, Inc. Tilt gesture detection
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US20180046258A1 (en) 2014-08-07 2018-02-15 Google Llc Radar-Based Gesture Sensing and Data Transmission
US20160042169A1 (en) 2014-08-07 2016-02-11 Verizon Patent And Licensing Inc. Methods and Systems for Determining a User Identity by Analysis of Reflected Radio Frequency Signals Received by an Antenna Array
US20160038083A1 (en) 2014-08-08 2016-02-11 Orn, Inc. Garment including integrated sensor components and feedback components
US9933908B2 (en) 2014-08-15 2018-04-03 Google Llc Interactive textiles
US20170115777A1 (en) 2014-08-15 2017-04-27 Google Inc. Interactive Textiles
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US20160048672A1 (en) 2014-08-15 2016-02-18 California Institute Of Technology HERMA - Heartbeat Microwave Authentication
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US20180004301A1 (en) 2014-08-22 2018-01-04 Google Inc. Occluded Gesture Recognition
US9994233B2 (en) 2014-09-30 2018-06-12 Continental Automotive Systems, Inc. Hands accelerating control system
US20170249033A1 (en) 2014-09-30 2017-08-31 Apple Inc. Fabric sensing device
WO2016053624A1 (en) 2014-09-30 2016-04-07 Arimtax Technologies Llc Fabric sensing device
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US20170192523A1 (en) 2014-10-02 2017-07-06 Google Inc. Non-Line-of-Sight Radar-Based Gesture Recognition
US20160100166A1 (en) 2014-10-03 2016-04-07 Microsoft Technology Licensing, Llc Adapting Quantization
US20160140872A1 (en) * 2014-11-13 2016-05-19 Smartdrive Systems, Inc. System and method for detecting a vehicle event and generating review criteria
US20160090839A1 (en) 2014-11-26 2016-03-31 Larry G. Stolarczyk Method of protecting the health and well-being of coal mine machine operators
US20160170491A1 (en) 2014-12-12 2016-06-16 Alpine Electronics, Inc. Gesture assistive zoomable selector for screen
US20160216825A1 (en) 2015-01-28 2016-07-28 Qualcomm Incorporated Techniques for discerning between intended and unintended gestures on wearable touch-sensitive fabric
US20160252607A1 (en) 2015-02-27 2016-09-01 Texas Instruments Incorporated Gesture Recognition using Frequency Modulated Continuous Wave (FMCW) Radar with Low Angle Resolution
US9817109B2 (en) 2015-02-27 2017-11-14 Texas Instruments Incorporated Gesture recognition using frequency modulated continuous wave (FMCW) radar with low angle resolution
US20170060254A1 (en) 2015-03-03 2017-03-02 Nvidia Corporation Multi-sensor based user interface
US20160259037A1 (en) 2015-03-03 2016-09-08 Nvidia Corporation Radar based user interface
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
US20160320853A1 (en) 2015-04-30 2016-11-03 Google Inc. RF-Based Micro-Motion Tracking for Gesture Tracking and Recognition
US10139916B2 (en) 2015-04-30 2018-11-27 Google Llc Wide-field radar-based gesture recognition
US20160320852A1 (en) 2015-04-30 2016-11-03 Google Inc. Wide-Field Radar-Based Gesture Recognition
US20160320854A1 (en) 2015-04-30 2016-11-03 Google Inc. Type-Agnostic RF Signal Representations
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US20160345638A1 (en) 2015-05-27 2016-12-01 Google Inc. Attaching Electronic Components to Interactive Textiles
US10155274B2 (en) 2015-05-27 2018-12-18 Google Llc Attaching electronic components to interactive textiles
US20170232538A1 (en) 2015-05-27 2017-08-17 Google Inc. Attaching Electronic Components to Interactive Textiles
US20160349845A1 (en) 2015-05-28 2016-12-01 Google Inc. Gesture Detection Haptics and Virtual Tools
US20160377712A1 (en) 2015-06-24 2016-12-29 Htc Corporation Handheld device, object positioning method and computer-readable recording medium
US20170060298A1 (en) 2015-08-26 2017-03-02 Futureplay, Inc. Smart Interaction Device
US20170075481A1 (en) 2015-09-15 2017-03-16 Touchplus Information Corp. Wearable device exhibiting capacitive sensing function
US20170097684A1 (en) 2015-10-06 2017-04-06 Google, Inc. Compressed Sensing for Gesture Tracking and Recognition with Radar
WO2017062566A1 (en) 2015-10-06 2017-04-13 Google Inc. Radar-enabled sensor fusion
US20170097413A1 (en) 2015-10-06 2017-04-06 Google Inc. Radar-Enabled Sensor Fusion
US9837760B2 (en) 2015-11-04 2017-12-05 Google Inc. Connectors for connecting electronics embedded in garments to external devices
US20170125940A1 (en) 2015-11-04 2017-05-04 Google Inc. Connectors for Connecting Electronics Embedded in Garments to External Devices
US20170124407A1 (en) 2015-11-04 2017-05-04 Ford Global Technologies, Llc Predicting vehicle movements based on driver body language
US10034630B2 (en) 2015-11-16 2018-07-31 Samsung Electronics Co., Ltd. Apparatus and method to train autonomous driving model, and autonomous driving apparatus
US20170325337A1 (en) 2016-05-03 2017-11-09 Google Inc. Connecting an Electronic Component to an Interactive Textile
US20170325518A1 (en) 2016-05-16 2017-11-16 Google Inc. Interactive Fabric
WO2017200949A1 (en) 2016-05-16 2017-11-23 Google Llc Interactive fabric
US20170329425A1 (en) 2016-05-16 2017-11-16 Google Inc. Interactive Object with Multiple Electronics Modules
US20180005766A1 (en) 2016-07-01 2018-01-04 Wisconsin Alumni Research Foundation Conductive textiles and related devices
US20180157330A1 (en) 2016-12-05 2018-06-07 Google Inc. Concurrent Detection of Absolute Distance and Relative Movement for Sensing Action Gestures
WO2018106306A1 (en) 2016-12-05 2018-06-14 Google Llc Concurrent detection of absolute distance and relative movement for sensing action gestures

Non-Patent Citations (146)

* Cited by examiner, † Cited by third party
Title
"Advisory Action", U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages.
"Combined Search and Examination Report", GB Application No. 1620891.0, dated May 31, 2017, 9 pages.
"Combined Search and Examination Report", GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 14/930,220, dated May 11, 2017, 2 pages.
"Corrected Notice of Allowance", U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages.
"Final Office Action", U.S. Appl. 15/267,181, dated Jun. 7, 2018, 31 pages.
"Final Office Action", U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages.
"Final Office Action", U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages.
"Final Office Action", U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages.
"Final Office Action", U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages.
"Final Office Action", U.S. Appl. No. 14/518,863, dated May 5, 2017, 18 pages.
"Final Office Action", U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages.
"Final Office Action", U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages.
"Final Office Action", U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages.
"Final Office Action", U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages.
"Final Office Action", U.S. Appl. No. 14/959,799, dated Jul. 19, 2017, 12 pages.
"Final Office Action", U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages.
"Final Office Action", U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages.
"Final Office Action", U.S. Appl. No. 15/093,533, dated Mar. 21, 2018, 19 pages.
"Final Office Action", U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages.
"Final Office Action", U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages.
"Final Office Action", U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages.
"Final Office Action", U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages.
"Final Office Action", U.S. Appl. No. 15/286,512, dated Dec. 26, 2018, 15 pages.
"Final Office Action", U.S. Appl. No. 15/398,147, dated Jun. 30, 2017, 11 pages.
"Final Office Action", U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages.
"Final Office Action", U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages.
"First Action Interview Office Action", U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages.
"First Action Interview Office Action", U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages.
"First Action Interview Office Action", U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages.
"Foreign Office Action", Chinese Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages.
"Foreign Office Action", Chinese Application No. 201721290290.3, dated Mar. 9, 2018, 2 pages.
"Foreign Office Action", European Application No. 16784352.3, dated May 16, 2018, 3 pages.
"Foreign Office Action", Japanese Application No. 2018-501256, dated Jul. 24, 2018, 11 pages.
"International Preliminary Report on Patentability", Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages.
"International Preliminary Report on Patentability", Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages.
"International Preliminary Report on Patentability", Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages.
"International Preliminary Report on Patentability", Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages.
"International Preliminary Report on Patentability", Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages.
"International Preliminary Report on Patentability", PCT Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages.
"International Search Report and Written Opinion", Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages.
"International Search Report and Written Opinion", Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages.
"International Search Report and Written Opinion", Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages.
"International Search Report and Written Opinion", Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages.
"International Search Report and Written Opinion", Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages.
"International Search Report and Written Opinion", PCT Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages.
"International Search Report and Written Opinion", PCT/US2017/047691, dated Nov. 16, 2017, 13.
"Introduction To Radar Systems", 1 January 1981, MCGRAW HILL, ISBN: 9780070579095, article MERRILL I. SKOLNIK: "Chapter three: CW and Frequency-Modulated Radar", pages: 68 - 100, XP055047545
"Non-Final Office Action", U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages.
"Non-Final Office Action", U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages.
"Non-Final Office Action", U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages.
"Non-Final Office Action", U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages.
"Non-Final Office Action", U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages.
"Non-Final Office Action", U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages.
"Non-Final Office Action", U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages.
"Non-Final Office Action", U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages.
"Non-Final Office Action", U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages.
"Non-Final Office Action", U.S. Appl. No. 14/862,409, dated Dec. 14, 2017, 17 pages.
"Non-Final Office Action", U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages.
"Non-Final Office Action", U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages.
"Non-Final Office Action", U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages.
"Non-Final Office Action", U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages.
"Non-Final Office Action", U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages.
"Non-Final Office Action", U.S. Appl. No. 14/959,799, dated Sep. 8, 2017, 16 pages.
"Non-Final Office Action", U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages.
"Non-Final Office Action", U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages.
"Non-Final Office Action", U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages.
"Non-Final Office Action", U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages.
"Non-Final Office Action", U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages.
"Non-Final Office Action", U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages.
"Non-Final Office Action", U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages.
"Non-Final Office Action", U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages.
"Non-Final Office Action", U.S. Appl. No. 15/286,512, dated Jul. 19, 2018, 15 pages.
"Non-Final Office Action", U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages.
"Non-Final Office Action", U.S. Appl. No. 15/286,837, dated Oct. 26, 2018, 10 pages.
"Non-Final Office Action", U.S. Appl. No. 15/287,155, dated Dec. 10, 2018, 12 pages.
"Non-Final Office Action", U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages.
"Non-Final Office Action", U.S. Appl. No. 15/287,253, dated Sep. 7, 2018, 20 pages.
"Non-Final Office Action", U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages.
"Non-Final Office Action", U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages.
"Non-Final Office Action", U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages.
"Non-Final Office Action", U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages.
"Non-Final Office Action", U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages.
"Non-Final Office Action", U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages.
"Notice of Allowance", U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages.
"Notice of Allowance", U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages.
"Notice of Allowance", U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages.
"Notice of Allowance", U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages.
"Notice of Allowance", U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages.
"Notice of Allowance", U.S. Appl. No. 14/862,409, dated Jun. 16, 2018, 7 pages.
"Notice of Allowance", U.S. Appl. No. 14/874,955, dated Oct. 20, 2017, 7 pages.
"Notice of Allowance", U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages.
"Notice of Allowance", U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages.
"Notice of Allowance", U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages.
"Notice of Allowance", U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages.
"Notice of Allowance", U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages.
"Notice of Allowance", U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages.
"Notice of Allowance", U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages.
"Notice of Allowance", U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages.
"Notice of Allowance", U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages.
"Notice of Allowance", U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages.
"Notice of Allowance", U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages.
"Notice of Publication", U.S. Appl. No. 15/703,511, dated Jan. 4, 2018, 1 page.
"Pre-Interview Communication", U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages.
"Pre-Interview Communication", U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages.
"Pre-Interview Communication", U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 3 pages.
"Pre-Interview Communication", U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 3 pages.
"Pre-Interview Communication", U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages.
"Pre-Interview Communication", U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages.
"Pre-Interview Communication", U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages.
"Pre-Interview Communication", U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages.
"Pre-Interview Communication", U.S. Appl. No. 15/362,359, dated May 17, 2018, 4 pages.
"Pre-Interview First Office Action", U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages.
"Pre-Interview Office Action", U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages.
"Preliminary Report on Patentability", PCT Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages.
"Restriction Requirement", U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages.
"Restriction Requirement", U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages.
"Textile Wire Brochure", Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages.
"Written Opinion", PCT Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages.
"Written Opinion", PCT Application No. PCT/US2017/032733, dated Jul. 24, 2017, 5 pages.
"Written Opinion", PCT Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages.
"Written Opinion", PCT Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages.
BONDADE RAJDEEP; ZHANG YI; MA DONGSHENG: "A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers", 2014 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), IEEE, 14 September 2014 (2014-09-14), pages 5769 - 5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193
Bondade, et al., "A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers", 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages.
Cheng,"Smart Textiles: From Niche to Mainstream", IEEE Pervasive Computing, Jul. 2013, pp. 81-84.
FAN TENGLONG; MA CHAO; GU ZHITAO; LV QINYI; CHEN JIALONG; YE DEXIN; HUANGFU JIANGTAO; SUN YONGZHI; LI CHANGZHI; RAN LIXIN: "Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, PLENUM, USA, vol. 64, no. 11, 1 November 2016 (2016-11-01), USA, pages 4012 - 4020, XP011633246, ISSN: 0018-9480, DOI: 10.1109/TMTT.2016.2610427
Fan, et al., "Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors", IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, Nov. 1, 2016 (Nov. 1, 2016), pp. 4012-4012, XP011633246, ISSN: 0018-9480, DOI: 10.1109/TMTT.2016.2610427, Nov. 1, 2016, 9 pages.
Farringdon,"Wearable Sensor Badge & Sensor Jacket for Context Awareness", Third International Symposium on Wearable Computers, Oct. 1999, 7 pages.
Gürbüz, et al., "Detection and Identification of Human Targets in Radar Data", Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages.
JAIME LIEN ; NICHOLAS GILLIAN ; M. EMRE KARAGOZLER ; PATRICK AMIHOOD ; CARSTEN SCHWESIG ; ERIK OLSON ; HAKIM RAJA ; IVAN PO: "Soli", ACM TRANSACTIONS ON GRAPHICS (TOG), ACM, US, vol. 35, no. 4, 11 July 2016 (2016-07-11), US, pages 1 - 19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953
Lien, et al., "Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar", ACM Transactions on Graphics (TOG), ACM, Us, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016), pp. 1-19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages.
MARTÍNEZ-GARCÍA HERMINIO; SABERKARI ALIREZA: "Four-quadrant linear-assisted DC/DC voltage regulator", ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, SPRINGER NEW YORK LLC, US, vol. 88, no. 1, 23 April 2016 (2016-04-23), US, pages 151 - 160, XP035898949, ISSN: 0925-1030, DOI: 10.1007/s10470-016-0747-8
Martinez-Garcia, et al., "Four-quadrant linear-assisted DC/DC voltage regulator", Analog Integrated Circuits and Signal Processing, Springer New York LLC, US, vol. 88, No. 1, Apr. 23, 2016 (Apr. 23, 2016) , pp. 151-160, XP035898949, ISSN: 0925-1030, DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages.
Pu,"Gesture Recognition Using Wireless Signals", Oct. 2014, pp. 15-18.
Schneegass,"Towards a Garment OS: Supporting Application Development for Smart Garments", Wearable Computers, ACM, Sep. 2014, 6 pages.
Skolnik, "CW and Frequency-Modulated Radar", In: "Introduction to Radar Systems", Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages.
Stoppa,"Wearable Electronics and Smart Textiles: A Critical Review", In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992.
ZHENG CHUAN; HU TIANCUN; QIAO SHAN; SUN YONGZHI; HUANGFU JIANGTAO; RAN LIXIN: "Doppler bio-signal detection based time-domain hand gesture recognition", 2013 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON RF AND WIRELESS TECHNOLOGIES FOR BIOMEDICAL AND HEALTHCARE APPLICATIONS (IMWS-BIO), IEEE, 9 December 2013 (2013-12-09), pages 3 - 3, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200
Zheng, et al., "Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition", 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, Dec. 9, 2013 (Dec. 9, 2013), p. 3, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10409385B2 (en) 2014-08-22 2019-09-10 Google Llc Occluded gesture recognition
US10310620B2 (en) 2015-04-30 2019-06-04 Google Llc Type-agnostic RF signal representations
US10300370B1 (en) 2015-10-06 2019-05-28 Google Llc Advanced gaming and virtual reality control using radar
US10310621B1 (en) 2015-10-06 2019-06-04 Google Llc Radar gesture sensing using existing data protocols
US10379621B2 (en) 2015-10-06 2019-08-13 Google Llc Gesture component with gesture library
US10401490B2 (en) 2015-10-06 2019-09-03 Google Llc Radar-enabled sensor fusion
US10459080B1 (en) 2015-10-06 2019-10-29 Google Llc Radar-based object detection for vehicles
US10285456B2 (en) 2016-05-16 2019-05-14 Google Llc Interactive fabric

Also Published As

Publication number Publication date
US20190321719A1 (en) 2019-10-24
US20190257939A1 (en) 2019-08-22
US20170097413A1 (en) 2017-04-06
JP2018527558A (en) 2018-09-20
US20190232156A1 (en) 2019-08-01
KR20180030123A (en) 2018-03-21
US10300370B1 (en) 2019-05-28
CN107710012A (en) 2018-02-16
EP3359976A1 (en) 2018-08-15
WO2017062566A1 (en) 2017-04-13
US10459080B1 (en) 2019-10-29
US20190011989A1 (en) 2019-01-10
US10401490B2 (en) 2019-09-03
US10310621B1 (en) 2019-06-04
US10379621B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
Schmidt Ubiquitous computing-computing in context
US8457353B2 (en) Gestures and gesture modifiers for manipulating a user-interface
US8896522B2 (en) User-centric three-dimensional interactive control environment
JP6031071B2 (en) User interface method and system based on natural gestures
EP2956221B1 (en) Control device with passive reflector
CN105393079B (en) Depth transducer control based on context
JP5777272B2 (en) Method and system for obtaining positioning data
Teixeira et al. A survey of human-sensing: Methods for detecting presence, count, location, track, and identity
US9454225B2 (en) Gaze-based display control
CN103890696B (en) Certified gesture identification
US20110175810A1 (en) Recognizing User Intent In Motion Capture System
CN105409212B (en) The electronic equipment with depth sense is caught with multi-view image
US9030408B2 (en) Multiple sensor gesture recognition
US8830189B2 (en) Device and method for monitoring the object's behavior
US8843857B2 (en) Distance scalable no touch computing
EP2133848B1 (en) Computer-implemented process for controlling a user-selected electronic component using a pointing device
US20120306850A1 (en) Distributed asynchronous localization and mapping for augmented reality
Wilson et al. XWand: UI for intelligent spaces
JP2009195707A (en) Location-aware mixed-reality gaming platform
JP6110857B2 (en) Gesture-based user interface with user feedback
US20130044912A1 (en) Use of association of an object detected in an image to obtain information to display to a user
US7843425B2 (en) Motion recognition system and method for controlling electronic devices
CN105408938B (en) System for the processing of 2D/3D space characteristics
US20060238490A1 (en) Non contact human-computer interface
US9881026B2 (en) Method and apparatus for identifying input features for later recognition

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE