US10088110B2 - Pressure vessel liner venting via nanotextured surface - Google Patents
Pressure vessel liner venting via nanotextured surface Download PDFInfo
- Publication number
- US10088110B2 US10088110B2 US15/485,483 US201715485483A US10088110B2 US 10088110 B2 US10088110 B2 US 10088110B2 US 201715485483 A US201715485483 A US 201715485483A US 10088110 B2 US10088110 B2 US 10088110B2
- Authority
- US
- United States
- Prior art keywords
- pressure vessel
- vent
- longitudinal
- boss
- liner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/02—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
- F17C1/04—Protecting sheathings
- F17C1/06—Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/002—Details of vessels or of the filling or discharging of vessels for vessels under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K13/00—Etching, surface-brightening or pickling compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
- C23F4/04—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00 by physical dissolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0619—Single wall with two layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0621—Single wall with three layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/066—Plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/067—Synthetics in form of fibers or filaments helically wound
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0305—Bosses, e.g. boss collars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2154—Winding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/035—Propane butane, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/011—Improving strength
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/037—Handling leaked fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/038—Detecting leaked fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- Pressure vessels are commonly used for containing a variety of fluids under pressure, such as storing hydrogen, oxygen, natural gas, nitrogen, propane, methane, and other fuels, for example.
- Suitable container shell materials include laminated layers of wound fiberglass filaments or other synthetic filaments bonded together by a thermal-setting or thermoplastic resin.
- a polymeric or other non-metallic resilient liner or bladder often is disposed within the composite shell to seal the vessel and prevent internal fluids from contacting the composite material.
- the composite construction of the vessels provides numerous advantages such as lightness in weight and resistance to corrosion, fatigue and catastrophic failure. These attributes are due at least in part to the high specific strengths of the reinforcing fibers or filaments that are typically oriented in the direction of the principal forces in the construction of the pressure vessels.
- FIGS. 1 and 2 illustrate a conventional elongated pressure vessel 10 , such as that disclosed in U.S. Pat. No. 5,476,189, entitled “Pressure vessel with damage mitigating system,” which is hereby incorporated by reference.
- Vessel 10 has a main body section 18 with end sections 14 .
- a boss 16 typically constructed of aluminum, is provided at one or both ends of the vessel 10 to provide a port for communicating with the interior of the vessel 10 .
- the vessel 10 has an inner polymer liner 20 covered by an outer composite shell 12 .
- composite means a fiber reinforced resin matrix material, such as a filament wound or laminated structure.
- the composite shell 12 resolves structural loads on the vessel 10 .
- the design of a pressure vessel 10 of this type produces a phenomenon wherein gas diffuses into the liner 20 under pressurization. When depressurization of the vessel 10 occurs, this gas diffuses into the interface or space between the liner 20 and the composite shell 12 . A pocket of gas may thereby be formed, causing the liner 20 to bulge inward.
- laminate strain in the composite shell 12 is low, and microcracks in the shell 18 close up, effectively forming a seal; when a higher pressure is reached, those microcracks open up again, thereby allowing expulsion of the trapped pocket of gas.
- a pressure vessel has a first end with a first boss, the first boss having a first outer surface.
- the vessel includes a liner having a second outer surface, a shell disposed over the second outer surface, and a first vent.
- the first vent is etched onto at least a portion of the first outer surface and at least a portion of the second outer surface.
- the first vent includes a texture that provides a higher rate of gas flow through the first vent than through a portion of an interface of the liner and shell lacking the texture.
- a pressure vessel has a first end and a second end.
- the first end has a first boss having a first outer surface
- the second end has a second boss having a second outer surface.
- the vessel includes a liner having a third outer surface, a shell disposed over the third outer surface, a plurality of first longitudinal vents and a plurality of second longitudinal vents.
- Each of the first longitudinal vents is etched onto a portion of the first outer surface and a portion of the third outer surface.
- Each of the first longitudinal vents includes a texture that provides a higher rate of gas flow through the first longitudinal vent than through a portion of an interface of the liner and shell lacking the texture.
- Each of the second longitudinal vents is etched onto a portion of the second outer surface and a portion of the third outer surface.
- Each of the second longitudinal vents includes a texture that provides a higher rate of gas flow through the second longitudinal vent than through a portion of an interface lacking the texture.
- At least one of first longitudinal vents is circumferentially offset around the pressure vessel from at least one of the second longitudinal vents.
- FIG. 1 is a side elevation view of a typical elongated pressure vessel.
- FIG. 2 is a partial cross-sectional view through one end of such a pressure vessel, taken along line 2 - 2 of FIG. 1 .
- FIG. 3 is an enlarged partial cross-sectional view of a pressure vessel incorporating an exemplary embodiment of a nano-textured liner surface vent of the present disclosure.
- FIG. 4 is a partial cross-sectional view, taken along line 4 - 4 of FIG. 3 , of a first exemplary longitudinal nano-textured liner surface vent at the interface of the liner and composite shell.
- FIG. 5 is a side elevation view of an elongated pressure vessel incorporating exemplary arrangements of longitudinal nano-textured liner surface vents.
- FIGS. 6( a )-6( i ) are photographs showing topographical features of exemplary nano-textured liner surface vents.
- This disclosure relates to providing a vent path to prevent gas and pressure build up between the liner 20 ′ and the composite shell 12 of a pressure vessel 10 ′.
- This vent path allows gas, such as hydrogen, to escape at a steadier rate, preventing leak detector disturbances.
- the disclosed vent path prevents the liner 20 ′ from bulging or buckling inwardly, thereby preventing localized weakening that may result in shorter life of the liner 20 ′.
- Exemplary embodiments of such a vent path are provided as longitudinal vents 22 of FIGS. 3-5 . As shown in FIG. 3 , an end 22 a of longitudinal vent 22 adjacent boss 16 is open to the atmosphere.
- a method of forming a pressure vessel 10 ′ includes mounting a boss 16 on a mandrel (not shown) and allowing a fluid polymer material for liner 20 ′ to flow around flange 32 and into grooves 34 of boss 16 .
- the liner material then solidifies, thereby forming liner 20 ′, which is mechanically interlocked with boss 16 . Accordingly, even under extreme pressure conditions, separation of liner 20 ′ from boss 16 is prevented.
- the liner 20 ′ can be made of plastic, elastomers, or other polymers, and can be manufactured by compression molding, blow molding, injection molding or any other generally known technique.
- the liner 20 ′ can include other materials, including but not limited to metals such as steel, aluminum, nickel, titanium, stainless steel, and any alloys thereof. Suitable metals can be generally characterized as having a high modulus of elasticity.
- the liner 20 ′ is formed of blow molded high density polyethylene (HDPE).
- one or more vents 22 are etched onto at least a portion of outer surface 24 of the liner 20 ′ and at least a portion of the outer surface of boss 16 ′.
- the etching provides a vent 22 having a rough surface texture at the liner and shell interface 26 , wherein the texture provides a higher rate of gas flow through the vent 22 than through a portion of interface 26 lacking the texture. Vent 22 thereby providing a tortuous pathway along the roughened surface 24 of liner 20 ′ for gas to escape from interface 26 between liner 20 ′ and shell 12 .
- An optional auxiliary outer layer may also be formed on shell 12 .
- each vent 22 extends from a boss 16 ′ at least to center 30 of pressure vessel 10 ′.
- a vent 22 may extend from a first boss 16 a ′ all the way to a second boss 16 b ′.
- an etched vent surface may be provided substantially over an entire surface 24 of liner 20 ′ facing shell 12 , rather than along longitudinal pathways.
- an end of vent 22 a is exposed to the atmosphere outside of pressure vessel 10 ′.
- vent 22 defines a tortuous path on the etched surface portion of surface 24 , through which fluid at the interface 26 between shell 12 and the underlying liner 20 ′ and boss 16 ′ can travel to exhaust at vent end 22 a to the atmosphere.
- Vent 22 is formed by laser, chemical, or mechanical etching, for example, to modify at least portions of the outer surface 24 of the liner 20 ′ and the outer surface of the boss 16 ′.
- about three to about four laser etched vents 22 are provided for a pressure vessel 10 ′.
- the use of more or fewer vents 22 on a pressure vessel is also contemplated.
- Outer shell 12 is formed surrounding the liner 20 ′ and at least a portion of flange 32 of boss 16 ′.
- Suitable materials for shell 12 include a composite of laminated layers of wound fiberglass fibers or filaments or other synthetic filaments bonded together by a thermal-setting or thermoplastic resin.
- the fiber may be fiberglass, aramid, carbon, graphite, or any other generally known fibrous reinforcing material or combination of fibrous reinforcing materials.
- the resin matrix used may be epoxy, polyester, vinyl ester, thermoplastic or any other suitable resinous material capable of providing fiber to fiber bonding, fiber layer to layer bonding, and the fragmentation resistance required for the particular application in which the vessel is to be used.
- a dispensing head for the fibers moves in such a way as to wrap the fiber on the liner 20 ′ in a desired pattern.
- the vessel 10 ′ is cylindrical, rather than spherical, fiber winding is normally applied in both a substantially longitudinal (helical) and a circumferential (hoop) wrap. This winding process is defined by a number of factors, such as resin content, fiber configuration, winding tension, and the pattern of the wrap in relation to the axis of the liner 20 ′. Details relevant to the formation of an exemplary pressure vessel are disclosed in U.S. Pat. No. 4,838,971, entitled “Filament Winding Process and Apparatus,” which is incorporated herein by reference.
- a single or plurality of vents 22 are provided on exterior surface 24 of liner 20 ′ to fluidly connect the interface 26 to the atmosphere via a designated pathway defined by the portion of surface 24 that is provided with a nanotexture, such as by etching.
- longitudinal vents 22 extend from at least a boss 16 a ′ or 16 b ′ to a point near or past center 30 of the cylindrical main section 18 of the cylindrical vessel 10 ′.
- the center 30 of the cylindrical main body section 18 is typically the most compliant (i.e., same strength; but less edge support) portion of the vessel 10 ′ and is thus the most likely area to exhibit bulging or buckling of the vessel liner 20 inwardly because of gas buildup.
- at least one of the longitudinal vents 22 from boss 16 a and at least one of the longitudinal vents 22 from boss 16 b extends to and/or beyond the intermediate portion of the pressure vessel 10 ′ proximate center 30 .
- an arrangement of vents 22 as shown in FIG. 5 places about twice the number of vents 22 proximate center 30 compared to the number of vents proximate end sections 14 a ′, 14 b′.
- vents 22 are arranged so that circumferentially adjacent vents extend to opposite bosses 16 a ′, 16 b ′. In such a case, a first plurality of longitudinal vents 22 are directed to the boss 16 a ′ on one end 14 a ′ of vessel 10 ′ and a second plurality of longitudinal vents 22 are directed to the boss 16 b ′ on the opposite end 14 b ′ of vessel 10 ′.
- the two sets of longitudinal vents 22 are alternately arranged around the circumference of vessel 10 ′ so that they extend alternately from the respective boss 16 a ′, 16 b ′ at least to center line 30 .
- two circumferentially adjacent longitudinal vents 22 are circumferentially offset from each other and are directed to opposite ends 14 a ′, 14 b ′ of vessel 10 ′.
- a single longitudinal vent extends from one boss 16 a ′ to the opposite boss 16 b ′.
- pressure vessel 10 ′ has an intermediate, substantially cylindrical portion proximate center 10 .
- a vessel 10 ′ having a length of about 24 inches to about 60 inches includes about four vents 22 having a width of about 1 ⁇ 4 inch to about 1 ⁇ 2 inch each.
- vents 22 could be used on any vessel. While the illustrated embodiments show one or a plurality of discrete longitudinal vents 22 , it is also contemplated that a more extensive venting layer may be used, wherein more of surface 24 liner 20 ′ is provided with a nanotextured characteristic.
- vents 22 are illustrated as including straight lines, it is contemplated that the vents 22 may alternatively or additionally include a serpentine or other shape or configuration.
- vents 22 may be used on a pressure vessel 10 ′.
- the vents 22 may be sized differently than in the exemplary embodiments.
- a plurality of vents 22 for a particular pressure vessel 10 ′ may all be of the same size and shape and symmetrically placed about a circumference of pressure vessel 10 ′, it is also contemplated that vents 22 may alternatively possess a combination of different sizes, shapes, changing widths, and placements in a single pressure vessel.
- FIGS. 6( a )-6( i ) are photographs showing topographical features of exemplary nano-textured vents 22 .
- a texturing or etching process is completed on the outer surface 24 of liner 20 ′ and the outer surface of flange 32 and neck 28 of boss 16 to form vents 22 .
- Such a texturing or etching process may be accomplished with sandblasting, knurling, laser light, chemicals, nano-silica particle blasting, or other means of imparting surface deformities to outer surface 24 of liner 20 ′.
- etching processes generally remove material from a surface
- other suitable ways of imparting surface deformities to outer surface 24 of liner 20 ′ including depositing material on outer surface 24 of liner 20 ′ to form a textured surface capable of providing a higher gas flow rate thereon compared to an adjacent surface without material deposited thereon.
- the resulting surface of vent 22 includes a plurality of surface peaks (some of which are labeled with reference numbers 1 and 2 ) and valleys between the peaks.
- a 5 micrometer (5,000 nanometer) length gauge is shown in FIGS. 6( a )-6( i ) .
- each vent 22 has a surface texture in which a distance between adjacent surface peaks averages between about 5 micrometers (5,000 nanometers) and about 20 micrometers (20,000 nanometers). Because of the small scale of the textured surface, it is sometimes referred to as a “nanotextured surface.”
- the “nanotextured surface” is to be distinguished from surfaces having macro-scale features such as machined channels and grooves.
- the surface texture of vents 22 is fine enough that liquids such as the matrix (e.g., resin and filament) material for shell 12 does not fully penetrate or wet the surface, but rather floats on the peaks, thereby allowing a porous gas vent path 22 to remain within the valleys of the nanotextured portion of surface 24 .
- pressure vessel 10 ′ has a first end 14 a ′ with a first boss 16 a ′, the first boss 16 a ′ having a first outer surface 38 .
- Liner 20 ′ has a second outer surface 24 .
- a composite shell 12 is disposed over the second outer surface 24 .
- a first vent 22 is etched onto at least a portion of the first outer surface 38 and at least a portion of the second outer surface 24 , the first vent 22 including a texture that provides a higher rate of gas flow through the first vent 22 than through a portion of an interface 26 of the liner 20 ′ and shell 12 lacking the texture.
- the first vent 22 includes a nanotextured portion of the first outer surface 38 and a nanotextured portion of the second outer surface 24 .
- the first vent 22 is elongated.
- the first vent 22 is aligned substantially parallel to a longitudinal axis 36 of the pressure vessel 10 ′.
- the pressure vessel 10 ′ has a cylindrical portion 18 , and the first vent 22 extends at least from the cylindrical portion 18 to the first boss 16 a ′.
- the first vent 22 extends at least to a longitudinal midpoint 30 of the pressure vessel 10 ′.
- an end 22 a of the first vent 22 is disposed on a neck 28 of the first boss 16 a ′.
- the end 22 a is open to the atmosphere.
- the textures includes a plurality of peaks and valleys, and a distance between adjacent peaks is in a range between about 5 micrometers and about 20 micrometers, as illustrated in FIGS. 6( a )-6( i ) .
- a pressure vessel 10 ′ has a first end 14 a ′ with a first boss 16 a ′ having a first outer surface 38 and a second end 14 b ′ with a second boss a 16 b ′ having a second outer surface 38 .
- a liner 20 ′ has a third outer surface 24 .
- a shell 12 is disposed over the third outer surface 24 .
- a plurality of first longitudinal vents 22 is etched onto a portion of the first outer surface 38 and a portion of the third outer surface 24 , each first longitudinal vent 22 including a texture that provides a higher rate of gas flow through the first longitudinal vent 22 than through a portion of an interface 26 of the liner 20 ′ and shell 12 lacking the texture.
- a plurality of second longitudinal vents 22 is etched onto a portion of the second outer surface 38 and a portion of the third outer surface 24 , each second longitudinal vent 22 including a texture that provides a higher rate of gas flow through the second longitudinal vent 22 than through a portion of an interface 26 of the liner 20 ′ and shell 12 lacking the texture.
- at least one of first longitudinal vents 22 is circumferentially offset around the pressure vessel 10 ′ from at least one of the second longitudinal vents 22 .
- at least one of the longitudinal vents 22 is aligned substantially parallel to a longitudinal axis 36 of the pressure vessel 10 ′.
- at least one of the first and second longitudinal vents 22 includes a nanotextured portion of the third outer surface 24 .
- the pressure vessel 10 ′ has a cylindrical portion 18 , and at least one of the first longitudinal vents 22 extends at least from the cylindrical portion 18 to the first boss 16 a ′.
- an end 22 a of at least one of the first longitudinal vents 22 is disposed on a neck 28 of the first boss 16 ′.
- the end 22 a is open to the atmosphere.
- at least one of the longitudinal vents 22 extends at least to a longitudinal midpoint 30 of the pressure vessel 10 ′.
- the textures includes a plurality of peaks and valleys, and a distance between adjacent peaks is in a range between about 5 micrometers and about 20 micrometers, as illustrated in FIGS. 6( a )-6( i ) .
- a method for forming a pressure vessel 10 ′ includes providing a boss 16 ′ having a first outer surface 38 ; forming a liner 20 ′ in contact with the boss 16 ′, the liner 20 ′ having a second outer surface 24 ; and forming a vent 22 on the boss 16 ′ and liner 20 ′ by imparting a nanotexture on at least a portion of the first outer surface 38 and at least a portion of the second outer surface 24 .
- imparting the nanotexture includes laser etching.
- imparting the nanotexture includes chemical etching.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/485,483 US10088110B2 (en) | 2016-05-17 | 2017-04-12 | Pressure vessel liner venting via nanotextured surface |
| US16/114,799 US10677390B2 (en) | 2016-05-17 | 2018-08-28 | Pressure vessel liner venting via nanotextured surface |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662337450P | 2016-05-17 | 2016-05-17 | |
| US15/485,483 US10088110B2 (en) | 2016-05-17 | 2017-04-12 | Pressure vessel liner venting via nanotextured surface |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/114,799 Continuation US10677390B2 (en) | 2016-05-17 | 2018-08-28 | Pressure vessel liner venting via nanotextured surface |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20170336031A1 US20170336031A1 (en) | 2017-11-23 |
| US10088110B2 true US10088110B2 (en) | 2018-10-02 |
Family
ID=58669011
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/485,483 Active US10088110B2 (en) | 2016-05-17 | 2017-04-12 | Pressure vessel liner venting via nanotextured surface |
| US16/114,799 Active US10677390B2 (en) | 2016-05-17 | 2018-08-28 | Pressure vessel liner venting via nanotextured surface |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/114,799 Active US10677390B2 (en) | 2016-05-17 | 2018-08-28 | Pressure vessel liner venting via nanotextured surface |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US10088110B2 (enExample) |
| EP (1) | EP3458768B1 (enExample) |
| JP (1) | JP6767509B2 (enExample) |
| KR (2) | KR102175868B1 (enExample) |
| CN (2) | CN109154418B (enExample) |
| AU (2) | AU2017267404B2 (enExample) |
| BR (1) | BR112018073487B1 (enExample) |
| CA (1) | CA3021532C (enExample) |
| RU (2) | RU2703869C1 (enExample) |
| WO (1) | WO2017200713A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11073240B2 (en) * | 2015-12-16 | 2021-07-27 | Hexagon Technology As | Pressure vessel dome vents |
| US11312229B1 (en) | 2019-05-02 | 2022-04-26 | Agility Fuel Systems Llc | Fuel system mountable to a vehicle frame |
| US11440399B2 (en) | 2019-03-22 | 2022-09-13 | Agility Fuel Systems Llc | Fuel system mountable to a vehicle frame |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11353160B2 (en) * | 2014-02-27 | 2022-06-07 | Hanwha Cimarron Llc | Pressure vessel |
| JP7127547B2 (ja) * | 2019-01-09 | 2022-08-30 | トヨタ自動車株式会社 | 圧力容器 |
| US12104749B2 (en) | 2019-06-28 | 2024-10-01 | Linamar Corporation | Liner collapse mitigations for type IV conformable pressure vessels |
| KR102875909B1 (ko) * | 2019-06-28 | 2025-10-24 | 리나마 코포레이션 | Iv형 압력 용기용 엔드 보스 |
| US11299036B2 (en) * | 2019-11-06 | 2022-04-12 | GM Global Technology Operations LLC | Hydrogen storage tank having a nanoporous breather layer |
| CN112833324B (zh) * | 2019-11-22 | 2023-10-10 | 未势能源科技有限公司 | 压力容器 |
| RU2757951C1 (ru) * | 2020-12-23 | 2021-10-25 | Общество с ограниченной ответственностью «Инспрем» | Сосуд высокого давления |
| KR102460147B1 (ko) * | 2021-01-04 | 2022-11-01 | 주식회사 성우하이텍 | 압력 용기 |
| JP7223802B2 (ja) * | 2021-03-31 | 2023-02-16 | 本田技研工業株式会社 | 高圧タンク及びその製造方法 |
| EP4502449A1 (de) * | 2023-08-02 | 2025-02-05 | SAG Group B.V. | Behälter zur aufnahme eines kryofluids |
Citations (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1651521A (en) | 1925-05-20 | 1927-12-06 | Lucas-Girardville Paul Nicolas | Method and apparatus for the storage and the transportation of gas |
| US1835699A (en) | 1927-10-10 | 1931-12-08 | Commercial Solvents Corp | Apparatus and process for preserving liquid carbon dioxide |
| US1970120A (en) * | 1931-07-18 | 1934-08-14 | Stanley Insulating Company | Heat insulated receptacle |
| US2243240A (en) | 1938-03-18 | 1941-05-27 | Smith Corp A O | Pressure vessel for hydrogenating hydrocarbons |
| US2344856A (en) | 1942-07-02 | 1944-03-21 | Guyon L C Earle | Means for reinforcing hollow containers for gases under pressure |
| US2940631A (en) * | 1956-07-03 | 1960-06-14 | British Oxygen Co Ltd | Storage vessels for liquefied gases |
| US3067078A (en) * | 1960-07-28 | 1962-12-04 | Us Stoneware Co | Treatment of polymeric fluorine-containing resins and resulting products |
| US3224619A (en) | 1963-03-15 | 1965-12-21 | Chicago Bridge & Iron Co | Hydrogen processing multiple layer pressure vessels |
| US3231338A (en) | 1962-04-19 | 1966-01-25 | Chicago Bridge & Iron Co | Multi-layer pressure vessel for high temperature hydrogenation processes |
| US3348728A (en) | 1965-01-04 | 1967-10-24 | Grace W R & Co | Pressure vessels |
| US3368586A (en) | 1965-09-01 | 1968-02-13 | Bendix Corp | Accumulator |
| US3472632A (en) | 1966-11-25 | 1969-10-14 | Universal Oil Prod Co | Internally lined reactor for high temperatures and pressures and leakage monitoring means therefor |
| US3488160A (en) | 1966-04-14 | 1970-01-06 | Chantiers De L Atlantique Penh | Fluid-tight wall element and vessel made thereof |
| US3604587A (en) | 1969-04-07 | 1971-09-14 | Hahn & Clay | Multilayer pressure vessel |
| US3841520A (en) | 1969-04-04 | 1974-10-15 | Airco Inc | Flame arresting vent valve |
| US3920518A (en) | 1971-10-26 | 1975-11-18 | Technigaz | Pressure vessels having thermal insulsation |
| US4107372A (en) | 1974-08-22 | 1978-08-15 | H. B. Fuller Company | Composite |
| US4135621A (en) | 1978-02-24 | 1979-01-23 | The International Nickel Company, Inc. | Hydrogen storage module |
| US4241843A (en) | 1979-06-08 | 1980-12-30 | Amtrol Inc. | Lined metal tank with heat shield and method of making same |
| US4298416A (en) | 1976-12-08 | 1981-11-03 | Huron Chemicals Limited | Protection of substrates against corrosion |
| US4358377A (en) | 1980-09-02 | 1982-11-09 | The Dow Chemical Company | Shear-vectoring design for composite casing end and removable, pressure-locking closure therefor |
| US4777982A (en) | 1986-08-22 | 1988-10-18 | Robert Bosch Gmbh | Elastic separating wall |
| US5476189A (en) | 1993-12-03 | 1995-12-19 | Duvall; Paul F. | Pressure vessel with damage mitigating system |
| US5697515A (en) | 1994-12-22 | 1997-12-16 | State Industries, Inc. | Tank and tank connector assembly |
| RU2117853C1 (ru) | 1997-02-18 | 1998-08-20 | Шевчук Константин Михайлович | Сосуд давления |
| US5901379A (en) | 1997-07-31 | 1999-05-11 | Phild Co., Ltd. | Health bands |
| WO2000008368A1 (en) | 1998-08-08 | 2000-02-17 | Boreas Consultants Limited | Venting of plastics lined pipelines |
| RU2162564C1 (ru) | 2000-06-16 | 2001-01-27 | Колдыбаев Сергей Глебович | Баллон давления из композиционных материалов и способ его изготовления |
| WO2002046654A1 (en) | 2000-12-05 | 2002-06-13 | Dixon Roche Keith | Pipe or vessel with liner annulus venting construction |
| RU2187746C2 (ru) | 2000-09-06 | 2002-08-20 | Общество с ограниченной ответственностью НПО "ПОИСК" | Металлический лейнер, металлопластиковый баллон высокого давления (варианты) и способ изготовления металлопластикового баллона высокого давления |
| US6503584B1 (en) | 1997-08-29 | 2003-01-07 | Mcalister Roy E. | Compact fluid storage system |
| US6648167B1 (en) | 2001-02-14 | 2003-11-18 | Sermatech International, Inc. | Ducting passages for a polymeric lining |
| US6787007B2 (en) | 2002-09-23 | 2004-09-07 | Bechtel Bwxt Idaho, Llc | Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion |
| US7287663B2 (en) | 2005-01-05 | 2007-10-30 | Amtrol Inc. | Lined pressure vessel and connector therefor |
| US20090057319A1 (en) | 2007-08-29 | 2009-03-05 | Harald Schlag | Diffusion layer for pressure vessels |
| JP2009174700A (ja) | 2007-06-14 | 2009-08-06 | Toyota Motor Corp | ガスタンク |
| FR2956185A1 (fr) | 2010-02-11 | 2011-08-12 | Air Liquide | Reservoir composite et ensemble comprenant un tel reservoir et un organe receveur et/ou distributeur de gaz |
| US20110240655A1 (en) | 2010-04-01 | 2011-10-06 | Gm Global Technology Operations, Inc. | Temperature regulating device for a pressure vessel |
| US8076015B2 (en) | 2003-02-11 | 2011-12-13 | Eveready Battery Company, Inc. | Battery cell with improved pressure relief vent |
| US20120048865A1 (en) | 2009-02-06 | 2012-03-01 | Hexagon Technology As | Pressure Vessel Longitudinal Vents |
| US8608014B2 (en) | 2011-04-20 | 2013-12-17 | Parker Hannifin Manufacturing Germany GmbH & Co. KG | Cylindrical pressure vessel having a defined leakage path |
| US20130341235A1 (en) | 2010-11-29 | 2013-12-26 | Quantum Fuel Systems Technologies Worldwide | Breather layer for exhausting permeate from pressure vessels |
| US8652589B2 (en) | 2008-01-25 | 2014-02-18 | Oerlikon Trading Ag, Truebbach | Permeation barrier layer |
| US8695651B2 (en) | 2010-07-09 | 2014-04-15 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Filler coupling and corresponding receptacle and filling method |
| US20140103051A1 (en) | 2012-10-15 | 2014-04-17 | Honda Motor Co., Ltd. | Pressure gas container and vehicle including the same |
| US20140203026A1 (en) | 2013-01-24 | 2014-07-24 | GM Global Technology Operations LLC | Method for Online Detection of Liner Buckling in a Storage System for Pressurized Gas |
| EP2889572A2 (en) | 2007-05-25 | 2015-07-01 | Orica Explosives Technology Pty Ltd | Use of post-blast markers in the mining of mineral deposits |
| US20160025266A1 (en) | 2014-07-28 | 2016-01-28 | Quantum Fuel Systems Technologies Worldwide, Inc. | Composite pressure tank boss mounting with pressure relief |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4765458A (en) * | 1986-10-14 | 1988-08-23 | Ni Industries, Inc. | Asbestos free hardened monolithic filler mass |
| US4838971A (en) | 1987-02-19 | 1989-06-13 | Brunswick Corporation | Filament winding process and apparatus |
| US6361703B1 (en) * | 1999-03-04 | 2002-03-26 | Caterpillar Inc. | Process for micro-texturing a mold |
| JP2001219477A (ja) * | 2000-02-08 | 2001-08-14 | Yokohama Rubber Co Ltd:The | バンド成形ドラム |
| JP3562713B2 (ja) * | 2001-01-26 | 2004-09-08 | 富士高分子工業株式会社 | 放熱シート積層体の巻回体、及び放熱シートの貼り付け方法 |
| US8093144B2 (en) * | 2002-05-24 | 2012-01-10 | Massachusetts Institute Of Technology | Patterning of nanostructures |
| JP2004176885A (ja) * | 2002-11-29 | 2004-06-24 | Mitsubishi Heavy Ind Ltd | 水素貯蔵容器 |
| DE10312494A1 (de) * | 2003-03-20 | 2004-10-07 | Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) | Kohlenstoff-Nanostrukturen und Verfahren zur Herstellung von Nanoröhren, Nanofasern und Nanostrukturen auf Kohlenstoff-Basis |
| JP2005315367A (ja) * | 2004-04-30 | 2005-11-10 | Toyoda Gosei Co Ltd | 高圧ガス容器用ライナー |
| RU45503U1 (ru) * | 2004-11-24 | 2005-05-10 | Меркин Николай Александрович | Баллон высокого давления |
| JP5071801B2 (ja) * | 2008-03-31 | 2012-11-14 | トヨタ自動車株式会社 | 高圧タンクとその製造方法 |
| WO2013083658A2 (en) * | 2011-12-05 | 2013-06-13 | Blue Wave Co S.A. | Pressure vessel for non fuel use with controlled weight/gas capacity ratio |
| FR2990384B1 (fr) * | 2012-05-14 | 2015-05-15 | Saint Gobain | Procede de texturation sur un substrat de grande surface |
| CN203068120U (zh) * | 2012-12-20 | 2013-07-17 | 朱仕杰 | 一种液化气罐 |
| CN104514982A (zh) * | 2013-09-27 | 2015-04-15 | 天津东轩燃气有限公司 | Lng储罐用气体回收装置 |
| FR3015629B1 (fr) * | 2013-12-20 | 2016-01-29 | Eads Composites Aquitaine | Reservoir destine au stockage de milieux liquides ou gazeux sous pression |
| WO2016189664A1 (ja) * | 2015-05-26 | 2016-12-01 | 日産自動車株式会社 | 高圧ガス容器 |
-
2017
- 2017-04-12 US US15/485,483 patent/US10088110B2/en active Active
- 2017-04-24 EP EP17721295.8A patent/EP3458768B1/en active Active
- 2017-04-24 CA CA3021532A patent/CA3021532C/en active Active
- 2017-04-24 KR KR1020197031353A patent/KR102175868B1/ko active Active
- 2017-04-24 CN CN201780030716.8A patent/CN109154418B/zh active Active
- 2017-04-24 CN CN201911065703.1A patent/CN110878904B/zh active Active
- 2017-04-24 AU AU2017267404A patent/AU2017267404B2/en not_active Ceased
- 2017-04-24 BR BR112018073487A patent/BR112018073487B1/pt active IP Right Grant
- 2017-04-24 JP JP2018560508A patent/JP6767509B2/ja active Active
- 2017-04-24 RU RU2018142766A patent/RU2703869C1/ru active
- 2017-04-24 RU RU2019128333A patent/RU2019128333A/ru unknown
- 2017-04-24 KR KR1020187033569A patent/KR102038793B1/ko active Active
- 2017-04-24 WO PCT/US2017/029080 patent/WO2017200713A1/en not_active Ceased
-
2018
- 2018-08-28 US US16/114,799 patent/US10677390B2/en active Active
-
2020
- 2020-01-15 AU AU2020200292A patent/AU2020200292B2/en not_active Expired - Fee Related
Patent Citations (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1651521A (en) | 1925-05-20 | 1927-12-06 | Lucas-Girardville Paul Nicolas | Method and apparatus for the storage and the transportation of gas |
| US1835699A (en) | 1927-10-10 | 1931-12-08 | Commercial Solvents Corp | Apparatus and process for preserving liquid carbon dioxide |
| US1970120A (en) * | 1931-07-18 | 1934-08-14 | Stanley Insulating Company | Heat insulated receptacle |
| US2243240A (en) | 1938-03-18 | 1941-05-27 | Smith Corp A O | Pressure vessel for hydrogenating hydrocarbons |
| US2344856A (en) | 1942-07-02 | 1944-03-21 | Guyon L C Earle | Means for reinforcing hollow containers for gases under pressure |
| US2940631A (en) * | 1956-07-03 | 1960-06-14 | British Oxygen Co Ltd | Storage vessels for liquefied gases |
| US3067078A (en) * | 1960-07-28 | 1962-12-04 | Us Stoneware Co | Treatment of polymeric fluorine-containing resins and resulting products |
| US3231338A (en) | 1962-04-19 | 1966-01-25 | Chicago Bridge & Iron Co | Multi-layer pressure vessel for high temperature hydrogenation processes |
| US3224619A (en) | 1963-03-15 | 1965-12-21 | Chicago Bridge & Iron Co | Hydrogen processing multiple layer pressure vessels |
| US3348728A (en) | 1965-01-04 | 1967-10-24 | Grace W R & Co | Pressure vessels |
| US3368586A (en) | 1965-09-01 | 1968-02-13 | Bendix Corp | Accumulator |
| US3488160A (en) | 1966-04-14 | 1970-01-06 | Chantiers De L Atlantique Penh | Fluid-tight wall element and vessel made thereof |
| US3472632A (en) | 1966-11-25 | 1969-10-14 | Universal Oil Prod Co | Internally lined reactor for high temperatures and pressures and leakage monitoring means therefor |
| US3841520A (en) | 1969-04-04 | 1974-10-15 | Airco Inc | Flame arresting vent valve |
| US3604587A (en) | 1969-04-07 | 1971-09-14 | Hahn & Clay | Multilayer pressure vessel |
| US3785040A (en) | 1969-04-07 | 1974-01-15 | Hahn & Clay | Multilayer pressure vessel method |
| US3920518A (en) | 1971-10-26 | 1975-11-18 | Technigaz | Pressure vessels having thermal insulsation |
| US4107372A (en) | 1974-08-22 | 1978-08-15 | H. B. Fuller Company | Composite |
| US4298416A (en) | 1976-12-08 | 1981-11-03 | Huron Chemicals Limited | Protection of substrates against corrosion |
| US4135621A (en) | 1978-02-24 | 1979-01-23 | The International Nickel Company, Inc. | Hydrogen storage module |
| US4241843A (en) | 1979-06-08 | 1980-12-30 | Amtrol Inc. | Lined metal tank with heat shield and method of making same |
| US4358377A (en) | 1980-09-02 | 1982-11-09 | The Dow Chemical Company | Shear-vectoring design for composite casing end and removable, pressure-locking closure therefor |
| US4777982A (en) | 1986-08-22 | 1988-10-18 | Robert Bosch Gmbh | Elastic separating wall |
| US5476189A (en) | 1993-12-03 | 1995-12-19 | Duvall; Paul F. | Pressure vessel with damage mitigating system |
| US5697515A (en) | 1994-12-22 | 1997-12-16 | State Industries, Inc. | Tank and tank connector assembly |
| RU2117853C1 (ru) | 1997-02-18 | 1998-08-20 | Шевчук Константин Михайлович | Сосуд давления |
| US5901379A (en) | 1997-07-31 | 1999-05-11 | Phild Co., Ltd. | Health bands |
| US6503584B1 (en) | 1997-08-29 | 2003-01-07 | Mcalister Roy E. | Compact fluid storage system |
| WO2000008368A1 (en) | 1998-08-08 | 2000-02-17 | Boreas Consultants Limited | Venting of plastics lined pipelines |
| RU2162564C1 (ru) | 2000-06-16 | 2001-01-27 | Колдыбаев Сергей Глебович | Баллон давления из композиционных материалов и способ его изготовления |
| RU2187746C2 (ru) | 2000-09-06 | 2002-08-20 | Общество с ограниченной ответственностью НПО "ПОИСК" | Металлический лейнер, металлопластиковый баллон высокого давления (варианты) и способ изготовления металлопластикового баллона высокого давления |
| WO2002046654A1 (en) | 2000-12-05 | 2002-06-13 | Dixon Roche Keith | Pipe or vessel with liner annulus venting construction |
| US6648167B1 (en) | 2001-02-14 | 2003-11-18 | Sermatech International, Inc. | Ducting passages for a polymeric lining |
| US6787007B2 (en) | 2002-09-23 | 2004-09-07 | Bechtel Bwxt Idaho, Llc | Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion |
| US8076015B2 (en) | 2003-02-11 | 2011-12-13 | Eveready Battery Company, Inc. | Battery cell with improved pressure relief vent |
| US7287663B2 (en) | 2005-01-05 | 2007-10-30 | Amtrol Inc. | Lined pressure vessel and connector therefor |
| EP2889572A2 (en) | 2007-05-25 | 2015-07-01 | Orica Explosives Technology Pty Ltd | Use of post-blast markers in the mining of mineral deposits |
| JP2009174700A (ja) | 2007-06-14 | 2009-08-06 | Toyota Motor Corp | ガスタンク |
| US20090057319A1 (en) | 2007-08-29 | 2009-03-05 | Harald Schlag | Diffusion layer for pressure vessels |
| US7870971B2 (en) | 2007-08-29 | 2011-01-18 | GM Global Technology Operations LLC | Diffusion layer for pressure vessels |
| US8652589B2 (en) | 2008-01-25 | 2014-02-18 | Oerlikon Trading Ag, Truebbach | Permeation barrier layer |
| US20120048865A1 (en) | 2009-02-06 | 2012-03-01 | Hexagon Technology As | Pressure Vessel Longitudinal Vents |
| US20120291878A1 (en) | 2010-02-11 | 2012-11-22 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Composite tank, and assembly including such a tank and member for receiving and/or dispensing gas |
| FR2956185A1 (fr) | 2010-02-11 | 2011-08-12 | Air Liquide | Reservoir composite et ensemble comprenant un tel reservoir et un organe receveur et/ou distributeur de gaz |
| US20110240655A1 (en) | 2010-04-01 | 2011-10-06 | Gm Global Technology Operations, Inc. | Temperature regulating device for a pressure vessel |
| US8695651B2 (en) | 2010-07-09 | 2014-04-15 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Filler coupling and corresponding receptacle and filling method |
| US20130341235A1 (en) | 2010-11-29 | 2013-12-26 | Quantum Fuel Systems Technologies Worldwide | Breather layer for exhausting permeate from pressure vessels |
| US9205373B2 (en) | 2010-11-29 | 2015-12-08 | Quantum Fuel Systems Trechnologies Worldwide, Inc. | Breather layer for exhausting permeate from pressure vessels |
| US20160053945A1 (en) | 2010-11-29 | 2016-02-25 | Quantum Fuel Systems Technologies Worldwide, Inc. | Breather layer for exhausting permeate from pressure vessels |
| US8608014B2 (en) | 2011-04-20 | 2013-12-17 | Parker Hannifin Manufacturing Germany GmbH & Co. KG | Cylindrical pressure vessel having a defined leakage path |
| US20140103051A1 (en) | 2012-10-15 | 2014-04-17 | Honda Motor Co., Ltd. | Pressure gas container and vehicle including the same |
| US20140203026A1 (en) | 2013-01-24 | 2014-07-24 | GM Global Technology Operations LLC | Method for Online Detection of Liner Buckling in a Storage System for Pressurized Gas |
| US20160025266A1 (en) | 2014-07-28 | 2016-01-28 | Quantum Fuel Systems Technologies Worldwide, Inc. | Composite pressure tank boss mounting with pressure relief |
Non-Patent Citations (3)
| Title |
|---|
| Gleiter, H., "Nanostructured Materials: Basic Concepts and Microstructure", Acta Materialia, vol. 48 Issue 1, Jan. 1, 2000, Abstract. * |
| International Search Report and Written Opinion dated Jul. 6, 2017 for International Application No. PCT/US2017/029080. |
| Longtin, Remi et al., "Laser-assited Synthesis of Carbon Nanofibers: From Arrays to Thin Films and Coatings", Surface and Coatings Technology, vol. 202 Issue 22, Mar. 15, 2008, Abstract. * |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11073240B2 (en) * | 2015-12-16 | 2021-07-27 | Hexagon Technology As | Pressure vessel dome vents |
| US11440399B2 (en) | 2019-03-22 | 2022-09-13 | Agility Fuel Systems Llc | Fuel system mountable to a vehicle frame |
| US11312229B1 (en) | 2019-05-02 | 2022-04-26 | Agility Fuel Systems Llc | Fuel system mountable to a vehicle frame |
| US11560982B2 (en) | 2019-05-02 | 2023-01-24 | Agility Fuel Systems Llc | Fuel system mountable to a vehicle frame |
| US11940098B2 (en) | 2019-05-02 | 2024-03-26 | Agility Fuel Systems Llc | Polymeric liner based gas cylinder with reduced permeability |
| US12215824B2 (en) | 2019-05-02 | 2025-02-04 | Agility Fuel Systems Llc | Gas cylinder with reduced permeability |
| US12228249B2 (en) | 2019-05-02 | 2025-02-18 | Agility Fuel Systems Llc | Polymeric liner based gas cylinder with reduced permeability |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102038793B1 (ko) | 2019-10-31 |
| US20180363853A1 (en) | 2018-12-20 |
| AU2020200292A1 (en) | 2020-02-06 |
| KR20190122906A (ko) | 2019-10-30 |
| AU2020200292B2 (en) | 2020-09-03 |
| JP6767509B2 (ja) | 2020-10-14 |
| BR112018073487A2 (pt) | 2019-04-02 |
| BR112018073487B1 (pt) | 2019-12-17 |
| EP3458768A1 (en) | 2019-03-27 |
| US10677390B2 (en) | 2020-06-09 |
| EP3458768B1 (en) | 2020-06-17 |
| WO2017200713A1 (en) | 2017-11-23 |
| KR102175868B1 (ko) | 2020-11-09 |
| CN110878904B (zh) | 2021-07-09 |
| AU2017267404B2 (en) | 2019-12-05 |
| CN110878904A (zh) | 2020-03-13 |
| CN109154418B (zh) | 2019-11-22 |
| RU2019128333A (ru) | 2019-10-04 |
| KR20180128501A (ko) | 2018-12-03 |
| CA3021532A1 (en) | 2017-11-23 |
| CN109154418A (zh) | 2019-01-04 |
| CA3021532C (en) | 2019-09-10 |
| RU2703869C1 (ru) | 2019-10-22 |
| JP2019521289A (ja) | 2019-07-25 |
| AU2017267404A1 (en) | 2018-11-15 |
| US20170336031A1 (en) | 2017-11-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2020200292B2 (en) | Pressure vessel liner venting via nanotextured surface | |
| US11761589B2 (en) | Pressure vessel longitudinal vents | |
| KR102478330B1 (ko) | 압력 용기 돔 배기구 | |
| US20200200328A1 (en) | Vented fitting for pressure vessel boss |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |