TWM591738U - Low power voltage level converter - Google Patents

Low power voltage level converter Download PDF

Info

Publication number
TWM591738U
TWM591738U TW108213977U TW108213977U TWM591738U TW M591738 U TWM591738 U TW M591738U TW 108213977 U TW108213977 U TW 108213977U TW 108213977 U TW108213977 U TW 108213977U TW M591738 U TWM591738 U TW M591738U
Authority
TW
Taiwan
Prior art keywords
pmos transistor
signal
power supply
level converter
voltage level
Prior art date
Application number
TW108213977U
Other languages
Chinese (zh)
Inventor
余建政
賴永瑄
邱崑霖
李惠宇
李泓頡
Original Assignee
修平學校財團法人修平科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修平學校財團法人修平科技大學 filed Critical 修平學校財團法人修平科技大學
Priority to TW108213977U priority Critical patent/TWM591738U/en
Publication of TWM591738U publication Critical patent/TWM591738U/en

Links

Images

Abstract

本創作提出一種低功率電壓位準轉換器,其係由一輸入電路(1)、一栓鎖電路(2)以及一競爭抑制電路(3)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用以保存該第二信號(V(OUT));該競爭抑制電路(3)係用來抑制該輸出端(OUT)電位的競爭現象。 This author proposes a low power voltage level converter, which is composed of an input circuit (1), a latch circuit (2) and a competition suppression circuit (3), wherein the input circuit (1) is used To provide a differential input signal; the latch circuit (2) is used to save the second signal (V(OUT)); the competition suppression circuit (3) is used to suppress the competition phenomenon of the output (OUT) potential .

本創作所提出之低功率電壓位準轉換器,不但能精確地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地抑制上拉路徑與下拉路徑的互相競爭,進而降低功率損耗。 The low-power voltage level converter proposed in this work not only can accurately convert the first signal to a second signal, but also has multiple functions such as simple circuit structure and device miniaturization, and it can also effectively Suppresses the competition between the pull-up path and the pull-down path, thereby reducing power loss.

Description

低功率電壓位準轉換器 Low power voltage level converter

本創作提出一種低功率電壓位準轉換器,尤指一由一輸入電路(1)、一栓鎖電路(2)以及一競爭抑制電路(3)所組成,以求獲得精確電壓位準轉換同時亦能有效降低功率損耗之電子電路。 This author proposes a low-power voltage level converter, especially an input circuit (1), a latch circuit (2) and a competition suppression circuit (3), in order to obtain accurate voltage level conversion at the same time An electronic circuit that can effectively reduce power loss.

電壓位準轉換器係一種用來溝通不同的積體電路(Integrated Circuit,簡稱IC)之間的信號傳遞之電子電路。在許多應用中,當應用系統需將信號從電壓位準較低的核心邏輯傳送到電壓位準較高的週邊裝置時,電壓位準轉換器就負責將低電壓工作信號轉換成高電壓工作信號。 A voltage level converter is an electronic circuit used to communicate signals between different integrated circuits (ICs). In many applications, when the application system needs to transfer the signal from the core logic with a lower voltage level to the peripheral device with a higher voltage level, the voltage level converter is responsible for converting the low-voltage working signal into a high-voltage working signal .

第1圖係顯示另一先前技藝(prior art)之一鏡像型電壓位準轉換器電路,該電壓位準轉換器藉由將第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極連接在一起並連接到第一PMOS電晶體(MP1)的汲極,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)形成電流鏡電路,第一PMOS電晶體(MP1)是處於飽和區,並且其閘極電壓使得飽和電流等於流入第一NMOS電晶體(MN1)之電流,而流經第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)之電流亦相等。由於鏡像型的電壓位準轉換器的性能是由第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)的電流來決定,因此,即使輸出的第一高電源供應電壓(VDDH)改變,電壓位準轉換器的性能 也不會有太大的改變。因此,鏡像型的電壓位準轉換器可以適用在各種輸出電壓電路。 Figure 1 shows a mirror-type voltage level converter circuit of another prior art. The voltage level converter uses a first PMOS transistor (MP1) and a second PMOS transistor (MP2). The gates of are connected together and connected to the drain of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) and the second PMOS transistor (MP2) form a current mirror circuit, the first PMOS transistor ( MP1) is in the saturation region, and its gate voltage makes the saturation current equal to the current flowing into the first NMOS transistor (MN1), and the current flowing through the first PMOS transistor (MP1) and the second PMOS transistor (MP2) Also equal. Since the performance of the mirror-type voltage level converter is determined by the current of the first PMOS transistor (MP1) and the first NMOS transistor (MN1), even if the output of the first high power supply voltage (VDDH) changes , The performance of the voltage level converter There will not be much change. Therefore, the mirror-type voltage level converter can be applied to various output voltage circuits.

然而,當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘極電位被拉降,使得第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)都導通。如此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間會產生一個靜態電流路徑。 However, when the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potentials of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are pulled down, so that Both the first PMOS transistor (MP1) and the second PMOS transistor (MP2) are turned on. In this way, a static current path is generated between the first PMOS transistor (MP1) and the first NMOS transistor (MN1).

第2圖係顯示一先前技藝之一閂鎖型電壓位準轉換器電路,其係使用一第一PMOS電晶體(MP1)、一第二PMOS電晶體(MP2)、一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)及一反相器(INV)來構成一電壓位準轉換器電路,其中,該反相器(INV)的偏壓是第二高電源供應電壓(VDDL)及地(GND),而第一信號(V(IN))的電位亦在地(GND)與第二高電源供應電壓(VDDL)之間。第一信號(V(IN))及經過反相器(INV)輸出的反相輸入電壓信號分別連接至第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)的閘極(gate)。因此,在同一時間內,第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)之中只有一個會導通(ON)。此外,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的交叉耦合(cross-coupled)方式,使得當電壓位準轉換器的輸出(OUT)處於一個穩定的狀態時,閂鎖型的電壓位準轉換器中沒有靜態電流(static current)產生。尤其,當第一NMOS電晶體(MN1)關閉(OFF)而第二NMOS電晶體(MN2)導通(ON)時,第一PMOS電晶體(MP1)的閘極電位被拉降(pull down)並使得第一PMOS電晶體(MP1)導通,以致拉升(pull up)第二PMOS電晶體(MP2)的閘極電位而關閉第二PMOS電晶體(MP2);再者, 當第一NMOS電晶體(MN1)導通而第二NMOS電晶體(MN2)關閉時,第二PMOS電晶體(MP2)的閘極電位被拉降並使得第二PMOS電晶體(MP2)導通,以致拉升第一PMOS電晶體(MP1)的閘極電位而關閉第一PMOS電晶體(MP1)。因此,在第一PMOS電晶體(MP1)和第一NMOS電晶體(MN1)之間或第二PMOS電晶體(MP2)和第二NMOS電晶體(MN2)之間就不會存在一個電流路徑。 Figure 2 shows a prior art latch-type voltage level converter circuit that uses a first PMOS transistor (MP1), a second PMOS transistor (MP2), and a first NMOS transistor ( MN1), a second NMOS transistor (MN2) and an inverter (INV) to form a voltage level converter circuit, wherein the bias voltage of the inverter (INV) is the second highest power supply voltage ( VDDL) and ground (GND), and the potential of the first signal (V(IN)) is also between ground (GND) and the second highest power supply voltage (VDDL). The first signal (V(IN)) and the inverted input voltage signal output through the inverter (INV) are respectively connected to the gates of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) . Therefore, at the same time, only one of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) will be turned ON. In addition, due to the cross-coupled mode of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), when the output (OUT) of the voltage level converter is in a stable state, the latch No static current is generated in the lock-type voltage level converter. In particular, when the first NMOS transistor (MN1) is turned off and the second NMOS transistor (MN2) is turned on, the gate potential of the first PMOS transistor (MP1) is pulled down and The first PMOS transistor (MP1) is turned on, so that the gate potential of the second PMOS transistor (MP2) is pulled up and the second PMOS transistor (MP2) is turned off; furthermore, When the first NMOS transistor (MN1) is turned on and the second NMOS transistor (MN2) is turned off, the gate potential of the second PMOS transistor (MP2) is pulled down and the second PMOS transistor (MP2) is turned on, so that The gate potential of the first PMOS transistor (MP1) is raised to turn off the first PMOS transistor (MP1). Therefore, there is no current path between the first PMOS transistor (MP1) and the first NMOS transistor (MN1) or between the second PMOS transistor (MP2) and the second NMOS transistor (MN2).

然而,上述習知電壓位準轉換器在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。此外,考慮當第一信號(V(IN))由0伏特改變至1.8伏特時,第一NMOS電晶體(MN1)導通,而第二PMOS電晶體(MP2)的閘極變為低電位,使得第二PMOS電晶體(MP2)導通。所以,輸出為一第一高電源供應電壓(VDDH)。但是,由於0伏特無法瞬間轉換至1.8伏特,因此,在轉換期間的較低第一信號(V(IN))可能無法使第一PMOS電晶體(MP1)、第二PMOS電晶體(MP2)、第一NMOS電晶體(MN1)及第二NMOS電晶體(MN2)達到完全導通或完全關閉,如此會造成在第一高電源供應電壓(VDDH)與地(GND)之間存在一靜態電流(static current),此靜態電流會增加功率的損耗。 However, the above-mentioned conventional voltage level converter is approaching (or turning off) the second PMOS transistor (MP2) and turning off (or turning on) the second NMOS transistor (MN2). There is a phenomenon of contention between the pull-up and pull-down of the potential at the output (OUT), so the second signal (V(OUT)) is slower when it transitions to a low potential. In addition, consider that when the first signal (V(IN)) changes from 0 volts to 1.8 volts, the first NMOS transistor (MN1) turns on, and the gate of the second PMOS transistor (MP2) becomes a low potential, so that The second PMOS transistor (MP2) is turned on. Therefore, the output is a first high power supply voltage (VDDH). However, since 0 volts cannot be instantaneously converted to 1.8 volts, the lower first signal (V(IN)) during the conversion may not make the first PMOS transistor (MP1), the second PMOS transistor (MP2), The first NMOS transistor (MN1) and the second NMOS transistor (MN2) are fully turned on or turned off, which will cause a static current (static) between the first high power supply voltage (VDDH) and the ground (GND) current), this quiescent current will increase the power loss.

再者,閂鎖型的電壓位準轉換器的性能是受到第一高電源供應電壓(VDDH)的影響,由於第一PMOS電晶體(MP1)和第二PMOS電晶體(MP2)的閘-源極電壓為第一高電源供應電壓(VDDH),而第一NMOS電晶體(MN1)和第二NMOS電晶體(MN2)的閘-源極電壓是第二高電源供應電壓 (VDDL)。因此,限制了可以使閂鎖型電壓位準轉換器正常運作的第一高電源供應電壓(VDDH)的範圍。在第二PMOS電晶體(MP2)趨近於導通(或關閉)與在第二NMOS電晶體(MN2)趨近於關閉(或導通)的過程中,對於輸出端(OUT)上的電位之拉升及拉降有互相競爭(contention)的現象,因此第二信號(V(OUT))在轉變成低電位時速度較慢。 Furthermore, the performance of the latch-type voltage level converter is affected by the first high power supply voltage (VDDH) due to the gate-source of the first PMOS transistor (MP1) and the second PMOS transistor (MP2) The pole voltage is the first high power supply voltage (VDDH), and the gate-source voltage of the first NMOS transistor (MN1) and the second NMOS transistor (MN2) is the second highest power supply voltage (VDDL). Therefore, the range of the first high power supply voltage (VDDH) that can normally operate the latch-type voltage level converter is limited. In the process of the second PMOS transistor (MP2) tending to turn on (or off) and in the process of the second NMOS transistor (MN2) tending to turn off (or turn on), the pull on the potential at the output (OUT) There is a phenomenon of contention between rise and fall, so the second signal (V(OUT)) is slower when it transitions to a low potential.

有鑑於此,本創作之主要目的係提出一種低功率電壓位準轉換器,其不但能精確且快速地將第一信號轉換為一第二信號,並且可有效地減少上拉路徑與下拉路徑的互相競爭,進而降低功率損耗。 In view of this, the main purpose of this creation is to propose a low-power voltage level converter, which not only can accurately and quickly convert the first signal to a second signal, but also can effectively reduce the pull-up path and the pull-down path Compete with each other to reduce power consumption.

本創作提出一種低功率電壓位準轉換器,其係由一輸入電路(1)、一栓鎖電路(2)以及一競爭抑制電路(3)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用以保存該第二信號(V(OUT));該競爭抑制電路(3)係用來抑制該輸出端(OUT)電位的競爭現象。 This author proposes a low power voltage level converter, which is composed of an input circuit (1), a latch circuit (2) and a competition suppression circuit (3), wherein the input circuit (1) is used To provide a differential input signal; the latch circuit (2) is used to save the second signal (V(OUT)); the competition suppression circuit (3) is used to suppress the competition phenomenon of the output (OUT) potential .

由模擬結果證實,本創作所提出之低功率電壓位準轉換器,不但能精確且快速地將第一信號轉換為一第二信號,並且兼具電路結構簡單以及有利於裝置之小型化等多重功效,同時亦能有效地減少功率損耗。 It is confirmed by the simulation results that the low-power voltage level converter proposed in this work not only can accurately and quickly convert the first signal to a second signal, but also has a simple circuit structure and is beneficial to the miniaturization of the device. It can also effectively reduce power loss.

1‧‧‧輸入電路 1‧‧‧ input circuit

2‧‧‧栓鎖電路 2‧‧‧ latch circuit

3‧‧‧競爭抑制電路 3‧‧‧Competition suppression circuit

I1‧‧‧第一反相器 I1‧‧‧First inverter

N1‧‧‧第一節點 N1‧‧‧First node

N2‧‧‧第二節點 N2‧‧‧The second node

MP1‧‧‧第一PMOS電晶體 MP1‧‧‧First PMOS transistor

MP2‧‧‧第二PMOS電晶體 MP2‧‧‧Second PMOS transistor

MP3‧‧‧第三PMOS電晶體 MP3‧‧‧third PMOS transistor

MP4‧‧‧第四PMOS電晶體 MP4‧‧‧ Fourth PMOS transistor

MN1‧‧‧第一NMOS電晶體 MN1‧‧‧The first NMOS transistor

MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor

OUT‧‧‧輸出端 OUT‧‧‧Output

V(OUT)‧‧‧第二信號 V(OUT)‧‧‧Second signal

IN‧‧‧第一輸入端 IN‧‧‧First input

V(IN)‧‧‧第一信號 V(IN)‧‧‧First signal

INB‧‧‧第二輸入端 INB‧‧‧Second input terminal

GND‧‧‧地 GND‧‧‧Ground

VDDH‧‧‧第一高電源供應電壓 VDDH‧‧‧The highest power supply voltage

VDDL‧‧‧第二高電源供應電壓 VDDL‧‧‧The second highest power supply voltage

第1圖 係顯示第一先前技藝中電壓位準轉換器之電路圖; Figure 1 is a circuit diagram showing the voltage level converter in the first prior art;

第2圖 係顯示第二先前技藝中電壓位準轉換器之電路圖; Figure 2 is a circuit diagram showing a voltage level converter in the second prior art;

第3圖 係顯示本創作較佳實施例之低功率電壓位準轉換器之電路圖; Figure 3 is a circuit diagram showing the low power voltage level converter of the preferred embodiment of the present invention;

第4圖 係顯示本創作較佳實施例之第一信號及第二信號之暫態分析時序圖; Figure 4 is a timing diagram showing the transient analysis of the first signal and the second signal of the preferred embodiment of the present invention;

根據上述之目的,本創作提出一種低功率電壓位準轉換器,如第3圖所示,其係由一輸入電路(1)、一栓鎖電路(2)以及一競爭抑制電路(3)所組成,其中,該輸入電路(1)係用來提供差動輸入信號;該栓鎖電路(2)係用以保存該第二信號(V(OUT));該競爭抑制電路(3)係用來抑制該輸出端(OUT)電位的競爭現象;該輸入電路(1)係由一第一NMOS電晶體(MN1)、一第二NMOS電晶體(MN2)以及一第一反相器(I1)所組成,其中,該第一NMOS電晶體(MN1)的源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第三PMOS電晶體(MP3)的汲極相連接;該第二NMOS電晶體(MN2)的源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第四PMOS電晶體(MP4)的汲極相連接;該第一反相器(I1)係耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號;該栓鎖電路(2)係由一第一PMOS電晶體(MP1)以及一第二PMOS電晶體(MP2)所組成,其中,該第一PMOS電晶體(MP1)的源極連接至第一高電源供應電壓(VDDH),其閘極連接至該第二節點(N2),而其汲極則與該第一節點(N1)相連接;該第二PMOS電晶體(MP2)的源極連接至第一高電源供應電壓(VDDH),其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接;該競爭抑制電路(3)係由一第三PMOS電晶體 (MP3)以及一第四PMOS電晶體(MP4)所組成,其中,該第三PMOS電晶體(MP3)的源極連接至該第一節點(N1),其閘極連接至該第二輸入端(INB),而其汲極則與該第一NMOS電晶體(MN1)的汲極相連接;該第四PMOS電晶體(MP4)的源極連接至該第二節點(N2),其閘極連接至該第一輸入端(IN),而其汲極則與該第二NMOS電晶體(MN2)的汲極相連接;該第一高電源供應電壓(VDDH)係用以提供該低功率電壓位準轉換器所需之第一高電源電壓,該第二高電源供應電壓(VDDL)係用以提供該低功率電壓位準轉換器所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之位準係小於該第一高電源供應電壓(VDDH)之位準,該第一信號為介於0伏特及1.2伏特間的矩形波,而該第二信號則為介於0伏特及1.8伏特間的對應波形,該第一高電源供應電壓(VDDH)為1.8伏特,而該第二高電源供應電壓(VDDL)為1.2伏特,該第一信號(V(IN))為介於0伏特及1.2伏特間的矩形波,該第二信號(V(OUT))則為介於0伏特及1.8伏特間的對應波形。 Based on the above purpose, the author proposes a low-power voltage level converter, as shown in Figure 3, which is composed of an input circuit (1), a latch circuit (2) and a competition suppression circuit (3) Composition, wherein the input circuit (1) is used to provide a differential input signal; the latch circuit (2) is used to save the second signal (V (OUT)); the competition suppression circuit (3) is used To suppress the competition of the potential of the output terminal (OUT); the input circuit (1) is composed of a first NMOS transistor (MN1), a second NMOS transistor (MN2) and a first inverter (I1) The source of the first NMOS transistor (MN1) is connected to the ground (GND), the gate is connected to the first input (IN), and the drain is connected to the third PMOS transistor (MP3) the drain is connected; the source of the second NMOS transistor (MN2) is connected to ground (GND), its gate is connected to the second input (INB), and its drain is connected to the first The drains of the four PMOS transistors (MP4) are connected; the first inverter (I1) is coupled to the first input (IN) for receiving the first signal (V(IN)), and Provide a signal inverse to the first signal (V(IN)); the latch circuit (2) is composed of a first PMOS transistor (MP1) and a second PMOS transistor (MP2), where , The source of the first PMOS transistor (MP1) is connected to the first high power supply voltage (VDDH), its gate is connected to the second node (N2), and its drain is connected to the first node (N1 ) Connected; the source of the second PMOS transistor (MP2) is connected to the first high power supply voltage (VDDH), the gate is connected to the first node (N1), and the drain is connected to the second The node (N2) is connected; the competition suppression circuit (3) is composed of a third PMOS transistor (MP3) and a fourth PMOS transistor (MP4), wherein the source of the third PMOS transistor (MP3) is connected to the first node (N1), and the gate is connected to the second input terminal (INB), and its drain is connected to the drain of the first NMOS transistor (MN1); the source of the fourth PMOS transistor (MP4) is connected to the second node (N2), and its gate Connected to the first input (IN), and its drain is connected to the drain of the second NMOS transistor (MN2); the first high power supply voltage (VDDH) is used to provide the low power voltage The first high power supply voltage required by the level converter, the second high power supply voltage (VDDL) is used to provide the second highest power supply voltage required by the low power voltage level converter, the second high power supply The level of the voltage (VDDL) is less than the level of the first high power supply voltage (VDDH), the first signal is a rectangular wave between 0 volts and 1.2 volts, and the second signal is between 0 Corresponding waveform between volts and 1.8 volts, the first high power supply voltage (VDDH) is 1.8 volts, and the second high power supply voltage (VDDL) is 1.2 volts, and the first signal (V(IN)) is For a rectangular wave between 0 volts and 1.2 volts, the second signal (V(OUT)) is a corresponding waveform between 0 volts and 1.8 volts.

請再參閱第3圖,現在考慮第一信號(V(IN))為邏輯低位準(0伏特)時,低功率電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的邏輯低位準同時傳送到該第一反相器(I1)的輸入端、該第一NMOS電晶體(MN1)的閘極以及該第四PMOS電晶體(MP4)的閘極,使得該第一NMOS電晶體(MN1)截止(OFF),該第四PMOS電晶體(MP4)導通(ON),而該第一反相器(I1)傳送邏輯高位準(VDDL)到該第二NMOS電晶體(MN2)以及該第三PMOS電晶體(MP3)的閘極,使得該第二NMOS電晶體(MN2)導通(ON),該第三PMOS電晶體(MP3)截止(OFF),此時,由於該第四PMOS電晶體(MP4) 和該第二NMOS電晶體(MN2)都導通(ON),該第二節點(N2)的電位會被拉降至一邏輯低位準(0伏特),而該第二節點(N2)上的邏輯低位準傳送到該第一PMOS電晶體(MP1)的閘極,使得該第一PMOS電晶體(MP1)導通,此時由於該第一PMOS電晶體(MP1)導通,而該第一NMOS電晶體(MN1)和該第三PMOS電晶體(MP3)都截止,因此,該第一節點(N1)的電位會被拉升至一邏輯高位準,該第一節點(N1)的邏輯高位準使得該第二PMOS電晶體(MP2)截止,由於該第二PMOS電晶體(MP2)截止,而該第二NMOS電晶體(MN2)和該第四PMOS電晶體(MP4)都導通,因此,該第二節點(N2)的電位將維持在邏輯低位準(0伏特),輸出端(OUT)的電位會維持在一邏輯低位準(0伏特)的穩態值。質言之,第一信號(V(IN))為邏輯低位準(0伏特)時,經過低功率電壓位準轉換器轉換成具邏輯低位準(0伏特)的第二信號,由輸出端(OUT)輸出。 Please refer to Fig. 3 again. Now consider the steady-state operation of the low-power voltage level converter when the first signal (V(IN)) is at a logic low level (0 volts): on the first input (IN) The logic low level is simultaneously transmitted to the input terminal of the first inverter (I1), the gate of the first NMOS transistor (MN1) and the gate of the fourth PMOS transistor (MP4), so that the first NMOS Transistor (MN1) is turned off, the fourth PMOS transistor (MP4) is turned on, and the first inverter (I1) transmits a logic high level (VDDL) to the second NMOS transistor (MN2) ) And the gate of the third PMOS transistor (MP3), so that the second NMOS transistor (MN2) is turned on (ON), the third PMOS transistor (MP3) is turned off (OFF), at this time, due to the first Four PMOS transistors (MP4) And the second NMOS transistor (MN2) are turned on, the potential of the second node (N2) is pulled down to a logic low level (0 volts), and the logic on the second node (N2) The low level is transmitted to the gate of the first PMOS transistor (MP1), so that the first PMOS transistor (MP1) is turned on. At this time, since the first PMOS transistor (MP1) is turned on, the first NMOS transistor (MN1) and the third PMOS transistor (MP3) are turned off, therefore, the potential of the first node (N1) will be raised to a logic high level, the logic high level of the first node (N1) makes the The second PMOS transistor (MP2) is turned off. Since the second PMOS transistor (MP2) is turned off, and the second NMOS transistor (MN2) and the fourth PMOS transistor (MP4) are both turned on, therefore, the second The potential of the node (N2) will be maintained at a logic low level (0 volts), and the potential of the output terminal (OUT) will be maintained at a steady state value of a logic low level (0 volts). In short, when the first signal (V(IN)) is a logic low level (0 volts), it is converted into a second signal with a logic low level (0 volts) by a low-power voltage level converter. OUT) output.

再考慮第一信號(V(IN))為邏輯高位準(VDDL)時,低功率電壓位準轉換器的穩態操作情形:第一輸入端(IN)上的邏輯高位準(VDDL)同時傳送到該第一反相器(I1)的輸入端、該第一NMOS電晶體(MN1)的閘極以及該第四PMOS電晶體(MP4)的閘極,使得該第一NMOS電晶體(MN1)導通(ON),該第四PMOS電晶體(MP4)截止(OFF),而該第一反相器(I1)傳送邏輯低位準到該第二NMOS電晶體(MN2)以及該第三PMOS電晶體(MP3)的閘極,使得該第二NMOS電晶體(MN2)截止(OFF),該第三PMOS電晶體(MP3)導通(ON),此時,由於該第三PMOS電晶體(MP3)和該第一NMOS電晶體(MN1)都導通(ON),該第一節點(N1)的電位會被拉降至一邏輯低位準,該第一節點(N1)上的邏輯低位準傳送到該第二PMOS電晶體(MP2)的閘極,使得 該第二PMOS電晶體(MP2)導通,此時由於該第二PMOS電晶體(MP2)導通,而該第二NMOS電晶體(MN2)和該第四PMOS電晶體(MP4)都截止,因此,該第二節點(N2)的電位會被拉升至一邏輯高位準,該第二節點(N2)的邏輯高位準使得該第一PMOS電晶體(MP1)截止,此時由於該第一PMOS電晶體(MP1)截止,而該第一NMOS電晶體(MN1)和該第三PMOS電晶體(MP3)都導通,因此,該第一節點(N1)的電位將維持在一邏輯低位準,而該第二節點(N2)的電位亦將維持在一邏輯高位準,因此,輸出端(OUT)的電位會維持在一邏輯高位準的穩態值。質言之,第一信號(V(IN))為一邏輯高位準(VDDL)時,經過低功率電壓位準轉換器轉換成具第一高電源供應電壓(VDDH)的第二信號,由輸出端(OUT)輸出。 Considering the steady state operation of the low power voltage level converter when the first signal (V(IN)) is at logic high level (VDDL): the logic high level (VDDL) on the first input (IN) is transmitted simultaneously To the input of the first inverter (I1), the gate of the first NMOS transistor (MN1) and the gate of the fourth PMOS transistor (MP4), so that the first NMOS transistor (MN1) On, the fourth PMOS transistor (MP4) is turned off, and the first inverter (I1) transmits a logic low level to the second NMOS transistor (MN2) and the third PMOS transistor (MP3), the second NMOS transistor (MN2) is turned off, and the third PMOS transistor (MP3) is turned on. At this time, due to the third PMOS transistor (MP3) and The first NMOS transistor (MN1) is turned on, the potential of the first node (N1) is pulled down to a logic low level, and the logic low level on the first node (N1) is transmitted to the first The gate of two PMOS transistors (MP2) makes The second PMOS transistor (MP2) is turned on. At this time, since the second PMOS transistor (MP2) is turned on, and both the second NMOS transistor (MN2) and the fourth PMOS transistor (MP4) are turned off, therefore, The potential of the second node (N2) will be raised to a logic high level, and the logic high level of the second node (N2) causes the first PMOS transistor (MP1) to turn off. At this time, the first PMOS transistor The crystal (MP1) is turned off, and the first NMOS transistor (MN1) and the third PMOS transistor (MP3) are both turned on. Therefore, the potential of the first node (N1) will be maintained at a logic low level, and the The potential of the second node (N2) will also be maintained at a logic high level. Therefore, the potential of the output terminal (OUT) will be maintained at a logic high level. In short, when the first signal (V(IN)) is a logic high level (VDDL), it is converted into a second signal with a first high power supply voltage (VDDH) by a low-power voltage level converter, which is output by (OUT) output.

綜上所述,該第一信號(V(IN))為邏輯低位準(0伏特)時,該第二信號(V(OUT))亦為邏輯低位準(0伏特);而該第一信號(V(IN))為邏輯高位準(VDDL)時,該第二信號(V(OUT))為第一高電源供應電壓(VDDH)。如此,電壓位準轉換的目的便實現。 In summary, when the first signal (V(IN)) is at a logic low level (0 volts), the second signal (V(OUT)) is also at a logic low level (0 volts); and the first signal When (V(IN)) is a logic high level (VDDL), the second signal (V(OUT)) is the first high power supply voltage (VDDH). In this way, the purpose of voltage level conversion is achieved.

本創作所提出之低功率電壓位準轉換器之Spice暫態分析模擬結果,如第4圖所示,由該模擬結果可証實,本創作所提出之低功率電壓位準轉換器,其不但仍能快速且精確地將第一信號轉換為一第二信號,並且可有效地減少輸出端(OUT)的上拉路徑與下拉路徑之間的互相競爭,進而降低功率損耗。 The simulation results of Spice transient analysis of the low power voltage level converter proposed in this creation are shown in Figure 4. From the simulation results, it can be confirmed that the low power voltage level converter proposed in this creation not only remains The first signal can be converted into a second signal quickly and accurately, and the competition between the pull-up path and the pull-down path at the output (OUT) can be effectively reduced, thereby reducing power loss.

雖然本創作特別揭露並描述了所選之最佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本創作的精神與範圍。因此,所有相關技術範疇內之改變都包括在本創作之申請專 利範圍內。 Although this creation specifically discloses and describes the selected preferred embodiment, anyone familiar with the technology may understand that any possible changes in form or detail have not departed from the spirit and scope of this creation. Therefore, all changes in the relevant technical category are included in the application Profitable.

1‧‧‧輸入電路 1‧‧‧ input circuit

2‧‧‧栓鎖電路 2‧‧‧ latch circuit

3‧‧‧競爭抑制電路 3‧‧‧Competition suppression circuit

I1‧‧‧第一反相器 I1‧‧‧First inverter

N1‧‧‧第一節點 N1‧‧‧First node

N2‧‧‧第二節點 N2‧‧‧The second node

MP1‧‧‧第一PMOS電晶體 MP1‧‧‧First PMOS transistor

MP2‧‧‧第二PMOS電晶體 MP2‧‧‧Second PMOS transistor

MP3‧‧‧第三PMOS電晶體 MP3‧‧‧third PMOS transistor

MP4‧‧‧第四PMOS電晶體 MP4‧‧‧ Fourth PMOS transistor

MN1‧‧‧第一NMOS電晶體 MN1‧‧‧The first NMOS transistor

MN2‧‧‧第二NMOS電晶體 MN2‧‧‧Second NMOS transistor

OUT‧‧‧輸出端 OUT‧‧‧Output

V(OUT)‧‧‧第二信號 V(OUT)‧‧‧Second signal

IN‧‧‧第一輸入端 IN‧‧‧First input

V(IN)‧‧‧第一信號 V(IN)‧‧‧First signal

INB‧‧‧第二輸入端 INB‧‧‧Second input terminal

GND‧‧‧地 GND‧‧‧Ground

VDDH‧‧‧第一高電源供應電壓 VDDH‧‧‧The highest power supply voltage

VDDL‧‧‧第二高電源供應電壓 VDDL‧‧‧The second highest power supply voltage

Claims (7)

一種低功率電壓位準轉換器,用以將一第一信號(V(IN))轉換為一第二信號(V(OUT)),其包括: A low power voltage level converter for converting a first signal (V(IN)) into a second signal (V(OUT)), which includes: 一第一節點(N1),用以將一第三PMOS電晶體(MP3)的源極、一第二PMOS電晶體(MP2)的閘極以及一第一PMOS電晶體(MP1)的汲極連接在一起; A first node (N1) for connecting the source of a third PMOS transistor (MP3), the gate of a second PMOS transistor (MP2) and the drain of a first PMOS transistor (MP1) Together 一第二節點(N2),用以將一第四PMOS電晶體(MP4)的源極、該第一PMOS電晶體(MP1)的閘極以及該第二PMOS電晶體(MP2)的汲極連接在一起; A second node (N2) for connecting the source of a fourth PMOS transistor (MP4), the gate of the first PMOS transistor (MP1) and the drain of the second PMOS transistor (MP2) Together 一第一輸入端(IN),耦接於該第一NMOS電晶體(MN1)以及該第四PMOS電晶體(MP4)的閘極,用以提供該第一信號(V(IN)); A first input terminal (IN), coupled to the gates of the first NMOS transistor (MN1) and the fourth PMOS transistor (MP4), for providing the first signal (V(IN)); 一第二輸入端(INB),耦接於一第二NMOS電晶體(MN2)以及該第三PMOS電晶體(MP3)的閘極,用以提供該第一信號(V(IN))的反相信號(V(INB)); A second input terminal (INB) is coupled to the gate of a second NMOS transistor (MN2) and the third PMOS transistor (MP3) to provide the inverse of the first signal (V(IN)) Phase signal (V(INB)); 一輸出端(OUT),耦接於該第二節點(N2),用以輸出該第二信號(V(OUT)); An output terminal (OUT), coupled to the second node (N2), is used to output the second signal (V(OUT)); 一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號; A first inverter (I1), coupled to the first input terminal (IN), is used to receive the first signal (V(IN)) and provide a first signal (V(IN)) Inverted signal; 一第一高電源供應電壓(VDDH),耦接於該第一PMOS電晶體(MP1)以及該第二PMOS電晶體(MP2)的源極,用以提供該電壓位準轉換器所需之第一高電源電壓; A first high power supply voltage (VDDH), coupled to the source of the first PMOS transistor (MP1) and the second PMOS transistor (MP2), is used to provide the first level required by the voltage level converter A high power supply voltage; 一第二高電源供應電壓(VDDL),用以提供該電壓位準轉換器所需之第二高電源電壓,該第二高電源供應電壓(VDDL)之電位係小於該第一高電源供應電壓(VDDH)之電位; A second high power supply voltage (VDDL) is used to provide a second high power supply voltage required by the voltage level converter. The potential of the second high power supply voltage (VDDL) is less than the first high power supply voltage (VDDH) potential; 一輸入電路(1),耦接於該第一輸入端(IN),用來提供差動輸入信號; An input circuit (1), coupled to the first input terminal (IN), is used to provide a differential input signal; 一栓鎖電路(2),耦接於該第一高電源供應電壓(VDDH),用以保存該第二信號(V(OUT));以及 A latch circuit (2), coupled to the first high power supply voltage (VDDH), for storing the second signal (V(OUT)); and 一競爭抑制電路(3),耦接於該輸入電路(1)以及該栓鎖電路(2),用來抑制該輸出端(OUT)電位的競爭現象。 A competition suppression circuit (3), coupled to the input circuit (1) and the latch circuit (2), is used to suppress the competition of the potential of the output terminal (OUT). 如申請專利範圍第1項所述的低功率電壓位準轉換器,其中該輸入電路(1)包括: The low power voltage level converter as described in item 1 of the patent application scope, wherein the input circuit (1) includes: 一第一NMOS電晶體(MN1),其源極連接至地(GND),其閘極連接至該第一輸入端(IN),而其汲極則與該第三PMOS電晶體(MP3)的汲極相連接; A first NMOS transistor (MN1), its source is connected to ground (GND), its gate is connected to the first input (IN), and its drain is connected to the third PMOS transistor (MP3) Drain connected 一第二NMOS電晶體(MN2),其源極連接至地(GND),其閘極連接至該第二輸入端(INB),而其汲極則與該第四PMOS電晶體(MP4)的汲極相連接;以及 A second NMOS transistor (MN2), its source is connected to ground (GND), its gate is connected to the second input (INB), and its drain is connected to the fourth PMOS transistor (MP4) Drain connected; and 一第一反相器(I1),耦接於該第一輸入端(IN),用以接受該第一信號(V(IN)),並提供一個與該第一信號(V(IN))反相的信號。 A first inverter (I1), coupled to the first input terminal (IN), is used to receive the first signal (V(IN)) and provide a first signal (V(IN)) Inverted signal. 如申請專利範圍第2項所述的低功率電壓位準轉換器,其中該栓鎖電路(2)包括: The low power voltage level converter as described in item 2 of the patent application scope, wherein the latch circuit (2) includes: 一第一PMOS電晶體(MP1),其源極連接至第一高電源供應電壓(VDDH),其閘極連接至該第二節點(N2),而其汲極則與該第一節點(N1)相連接;以及 A first PMOS transistor (MP1), its source is connected to the first high power supply voltage (VDDH), its gate is connected to the second node (N2), and its drain is connected to the first node (N1 ) Connected; and 一第二PMOS電晶體(MP2),其源極連接至第一高電源供應電壓(VDDH),其閘極連接至該第一節點(N1),而其汲極則與該第二節點(N2)相連接。 A second PMOS transistor (MP2), its source is connected to the first high power supply voltage (VDDH), its gate is connected to the first node (N1), and its drain is connected to the second node (N2 ) Are connected. 如申請專利範圍第3項所述的低功率電壓位準轉換器,其中該競爭抑制電路(3)包括: The low power voltage level converter as described in item 3 of the patent application scope, wherein the competition suppression circuit (3) includes: 一第三PMOS電晶體(MP3),其源極連接至該第一節點(N1),其閘極連接至該第二輸入端(INB),而其汲極則與該第一NMOS電晶體(MN1)的汲極相連接;以及 A third PMOS transistor (MP3) has its source connected to the first node (N1), its gate connected to the second input (INB), and its drain connected to the first NMOS transistor ( MN1) connected to the drain; and 一第四PMOS電晶體(MP4),其源極連接至該第二節點(N2),其閘極連接至該第一輸入端(IN),而其汲極則與該第二NMOS電晶體(MN2)的汲極相連接。 A fourth PMOS transistor (MP4), its source is connected to the second node (N2), its gate is connected to the first input (IN), and its drain is connected to the second NMOS transistor ( The drain of MN2) is connected. 如申請專利範圍第1項所述的低功率電壓位準轉換器,其中該第一信號(V(IN))的振幅為0伏特至該第二高電源供應電壓(VDDL)之間。 The low power voltage level converter as described in item 1 of the patent application range, wherein the amplitude of the first signal (V(IN)) is between 0 volts and the second high power supply voltage (VDDL). 如申請專利範圍第5項所述的低功率電壓位準轉換器,其中該第二信號(V(OUT))的振幅為0伏特至該第一高電源供應電壓(VDDH)之間。 The low-power voltage level converter according to item 5 of the patent application scope, wherein the amplitude of the second signal (V(OUT)) is between 0 volts and the first high power supply voltage (VDDH). 如申請專利範圍第6項所述的低功率電壓位準轉換器,其中該第一反相器(I1)的電壓源為該第二高電源供應電壓(VDDL)。 The low power voltage level converter according to item 6 of the patent application scope, wherein the voltage source of the first inverter (I1) is the second high power supply voltage (VDDL).
TW108213977U 2019-10-24 2019-10-24 Low power voltage level converter TWM591738U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108213977U TWM591738U (en) 2019-10-24 2019-10-24 Low power voltage level converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108213977U TWM591738U (en) 2019-10-24 2019-10-24 Low power voltage level converter

Publications (1)

Publication Number Publication Date
TWM591738U true TWM591738U (en) 2020-03-01

Family

ID=70767570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108213977U TWM591738U (en) 2019-10-24 2019-10-24 Low power voltage level converter

Country Status (1)

Country Link
TW (1) TWM591738U (en)

Similar Documents

Publication Publication Date Title
TWM598009U (en) Voltage level shifter having output control circuit
TWM616390U (en) Low power voltage level shifter
TWM586017U (en) Low power level shifter circuit
TWM576365U (en) Low power voltage level converter
TWM576366U (en) Level conversion circuit with auxiliary circuit
TWM565921U (en) Voltage level shifter
TWM591738U (en) Low power voltage level converter
TWM591737U (en) Low power level converter circuit
TWM618862U (en) Voltage level shifter with low power consumption
TWM599059U (en) Voltage level shifter having output buffer circuit
TWM626307U (en) Contention-reduced level converting circuit
TWM625119U (en) Voltage level converting circuit with reduced power consumption
TWM647689U (en) High speed voltage level converter with low power consumption
TWM635887U (en) Low-power voltage level converter with contention reduction
TWM601491U (en) Voltage level shifter with low power consumption
TWM598007U (en) High performance voltage level converter
TWM626414U (en) Voltage level converter with stack transistors
TWM625120U (en) Voltage level converter with leakage current reduction
TWM628446U (en) Contention-free level converting circuit for data receiving circuit
TWM626417U (en) High-speed low-power level shifter circuit
TWM531694U (en) Voltage level converter
TWM604082U (en) Low power voltage level converter
TWM628475U (en) Low power and high performance voltage level converting circuit
TWM639384U (en) High-speed low-power level shifter circuit for integrated circuits having multiple power supplies
TWM629687U (en) High performance voltage level shifter

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees