TWM315337U - Peak voltage detector having NMOS current source and one-sided transistor load - Google Patents

Peak voltage detector having NMOS current source and one-sided transistor load Download PDF

Info

Publication number
TWM315337U
TWM315337U TW95221549U TW95221549U TWM315337U TW M315337 U TWM315337 U TW M315337U TW 95221549 U TW95221549 U TW 95221549U TW 95221549 U TW95221549 U TW 95221549U TW M315337 U TWM315337 U TW M315337U
Authority
TW
Taiwan
Prior art keywords
transistor
voltage
nmos
source
gate
Prior art date
Application number
TW95221549U
Other languages
Chinese (zh)
Inventor
Ming-Chuen Shiau
Chun-Ming Huang
Original Assignee
Hsiuping Inst Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hsiuping Inst Technology filed Critical Hsiuping Inst Technology
Priority to TW95221549U priority Critical patent/TWM315337U/en
Publication of TWM315337U publication Critical patent/TWM315337U/en

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

M315337 八、新型說明: 【新型所屬之技術領域】 本創作係有關-種具NMOS電流源及單邊負載之電壓峰值檢知器 用一差動放大器、一充電電晶體以及一電容考所細 私利 峰值且具有低功率消耗之互補式金氧半(CM〇s)電子電路。 電壓 【先前技術】 電壓峰值檢知ϋ係-種電子電路,能夠測得_電壓波形之最大值,質 該電路之輸人為-變動之電壓信號,而其輸出則是該輸人電壓波形之最大^。 在許多應用中,輸入電壓信號之峰值必須被測出,然後將之以直流電型離 保留住以便後續分析、使用。-個脈衝串之尖峰值慨它的平均值要更有用了 例如當執行破壞性測試時,就有必要追尋出並保持峰值信號,而量測電壓信號 在傳輸媒介上之韻量、類比錄轉換||(趟__)、最大近似解碼^統 (maximum Hkelih00d deeoding system)以及用以檢測核輻射之脈衝信號檢測電路 等也需要用到電壓峰值檢知器。 先前技藝(priorart)中,電壓峰值檢知器之最簡單作法係令輸入電壓信號通過 二極體,而對電容充電,以便取得該輸入電壓波形之峰值。 如第一圖所示,當輸入電壓V(IN)大於電容器C之電壓時,二極體D導通, •遂行充電作用,直到輸入電壓VON)到達其最大值,電容器C不能再繼續充 電’此時輸出電壓V(OUT)即表示輸入電壓V(IN)之峰值。 由於輸出端與輸入端之間存在二極體D,此電路無法精確地檢得輸入電壓 V(IN)之真正峰值。換言之,輸出電壓ν(〇υτ)與輸入電壓V(IN)之峰值之間永遠 存在二極體導通電壓Vd之誤差。亦即,MAX(V(OUT))=MAX(V(IN))-Vd,如第 二圖所示(該圖係OrCADPSpice之暫態分析模擬結果)。 對於許多應用而言,上述二極體導通電壓V(j之誤差係不欲見到的,並且該 電壓差會因為使用不同之二極體而有所差異,可能導致不良之影響或不可預測 之後果。 為了能夠精確地檢測輸入之峰值電壓,另一種常用之先前技藝係使用了由二 個運算放大器0P1和0P2、二個二極體D1和D2、二個電阻器R1和R2、以及一 M315337 ,電容IIC來構成_電壓峰值檢知器,如第三圖所示,其〇1€必烈咖之暫熊 =模擬結果,如第四圖所示。其中,〇ρι是_個精確的半波整流器,當輸二 :iV(IN)大於電容電壓v(c)時,二極體m將傳送偏壓對電容器ci進行充 =電容電壓v(c)將會與輸入電mv_之峰值電壓相當接近,所檢測出的輸出 ΙίΠυΤ)也會與輸人電歡㈣之峰健齡#接近,不會财如第二圖所示 ;別端與輸入端之間存在一二極體導通電壓Vd之誤差。而當輸入電壓 二(^0:J、於電容電壓哪時,二極體m將會導通,二極體D1將會截止而不再對 β谷器C進行充電之動作,這使得所檢測出的輸出電壓V(㈤丁)會等於 =〇之峰值電壓。雖說第三圖之電壓峰值檢知器能精確地檢測出峰值電壓,但 八電,結構複雜、佔用的晶片面積大,實不利於積體電路之要求。 一 k号有々夕電壓峰值檢知器之技術被提出,例如於美國專利案第 ΓΓΓΓΙ ^ΤΓ46'5546027'5969545 ^ 6051998'6064238 ^ 6472861 ^ 二i公綠號第476418號情揭露者触,該等技術均能精確地 3輸场叙峰值電壓,但由於該等電壓峰值檢知器均使㈣—個以上之運 ΐϊϋ ’因此存在有電職構複雜、侧的晶片面積大等缺失;此外,該等 電垄峰值檢知器並未考慮到如何節省功率消耗之問題。 出,⑼到運算放W之精密電壓峰值檢Μ之技術被提 % 52359? ^ 公告案说第517161號(其主要代表圖如第五圖所示)、 苐 3592 #b、第 1223078 號、第 1223079 號、第 1223 卿99中所揭露者即是,該等技術係由本申請人提出,‘ ^一電流鏡所組成的電路來取代運算放大器,由於並用 因 ::,路結構簡單、佔用的晶片面積小以及有利於裝置 存在二而,该等技捕未考慮到如何減少功率消耗之問題,因此仍有改良空間 有4a於此’本創作之主要目的係提出一種新颖架構之具職〇流源及 電壓”檢知器’其不但能精確且快速地檢測出輸入信號之峰值電 ’並且可較先狀賴峰值檢知器具有更低之功率消耗。 化 M315337 【新型内容】 β本創作提di-崎軸構之具丽〇8電麟料邊貞狀電壓峰值檢知 ’器,其係由-差動放大器⑴、一充電電晶體⑵以及一電容器⑻所組成, 、^中’該差動放大器(1)係做為比較器使用,該充電電晶體⑵係做為充電 器使用,用以提供電容器(c)所需之充電電流,且該差動放大器⑴之兩輸 入端係分職錄人電齡軌電齡值檢知器之輸㈣壓赚信號,並提供 適當之充電電流給充f電晶體,以便取得輸人電壓波形之峰值做為輸出電壓信 號,該差動放大器(1)係由第一 PM〇s電晶體(Mpl)、第一_〇8電晶體(_〇、 第二NMOS電晶體(_2)以及nmos電流源(IP)所組成,其中,該第一 ❿NMOS電晶體MN1和第二刪〇8電晶體麗2係做為驅動器(driver)使用,該第 一 PMOS電晶體MP1係做為一單邊負載電晶體使用,且該單邊負載電晶體與該 充電電晶體⑵共同構成一電流鏡,而該丽〇8電流源(Ip)則作為一電流源 使用且設計成二極體形式,以便提供一電流給該差動放大器(1)使用。本創作 所提出之電壓峰值檢知器,不但能精確地檢測出輸入信號之峰值電壓,並且兼 具電路結構簡單、使用的電晶體數量較少以及有利於裝置之小型化等多重功 效’同時亦可有效地減少功率消耗。 【實施方式】 φ 根據上述之目的,本創作提出一種具NMOS電流源及單邊負載之電壓峰值 檢知器,如第六圖所示,其係由一差動放大器1、一充電電晶體2以及一電容器C 所組成。該差動放大器1係由第一PM〇s電晶體]^卜第—NMOS電晶體_丨、第 二NMOS電晶體MN2以及NMOS電流源IP所組成,其中,該第一NMOS電晶體 MN1和第二NMOS電晶體MN2係做為驅動器(driver)使用,該第一PMOS電晶體 MP1係做為一單邊負載電晶體使用,且該單邊負載電晶體與該充電電晶體2共同 構成一電流鏡,而該NMOS電流源IP係由一NMOS電晶體MN所組成,且設計成 二極體形式並作為一電流源使用,以便提供一電流給該差動放大器丨使用。 該第一NMOS電晶體MN 1和第二NMOS電晶體MN2之閘極(gate)係分別接受 輸入信號V(IN)及檢知器之輸出電壓回授信號V(OUT),源極(source)連接在一 起,並連接至NMOS電流源IP之汲極(source),而其汲極則分別與第一PMOS電晶 M315337 體MP1之汲極和電源電壓Vdd相連接;該NMOS電流源IP係由一_〇8電晶體 MN所組成,其閘極與汲極連接在一起以形成一二極體,並連接至該第一_〇8 電晶體MN1之源極和該第二應〇8電晶體MN2之源極,而源極則連接至接地; 該第一PMOS電晶體MP1之源極係連接至電源電壓Vdd,而閘極與汲極連接在一 起以形成一二極體,並連接至該第一NMOS電晶體MN1之汲極。 請再參考第六圖,該充電電晶體2係由第二PMOS電晶體MP2所組成,該第 一PMOS電晶體MP2之源極連接至電源電壓vdd,閘極與該第一pm〇S電晶體 MP1之閘極以及該第一NM〇§電晶體MN1之没極相連接,而没極則與該電容器c 以及該第:NM〇S電晶體MN2之閘極相連接。其中該第一PM〇s電晶體Mp丨與該 第二PMOS電晶體MP2係形成一電流鏡組態。M315337 VIII. New Description: [New Technology Field] This creation is related to a kind of differential amplifier with a NMOS current source and a single-sided load voltage peak detector, a charging transistor and a capacitor. Complementary MOS(s) electronic circuits with low power consumption. Voltage [Prior Art] Voltage peak detection is a kind of electronic circuit that can measure the maximum value of the _ voltage waveform, and the output of the circuit is the artificial-variable voltage signal, and the output is the maximum of the input voltage waveform. ^. In many applications, the peak value of the input voltage signal must be measured and then retained in DC mode for subsequent analysis and use. - The peak value of a burst is more useful. For example, when performing a destructive test, it is necessary to trace and maintain the peak signal, and measure the rhythm of the voltage signal on the transmission medium, analog recording The ||(趟__), the maximum approximate decoding system (maximum Hkelih00d deeoding system), and the pulse signal detecting circuit for detecting nuclear radiation also require a voltage peak detector. In the prior art, the simplest method of the voltage peak detector is to pass the input voltage signal through the diode and charge the capacitor to obtain the peak value of the input voltage waveform. As shown in the first figure, when the input voltage V(IN) is greater than the voltage of the capacitor C, the diode D is turned on, • charging is performed until the input voltage VON) reaches its maximum value, and the capacitor C cannot continue charging. The output voltage V(OUT) represents the peak value of the input voltage V(IN). Due to the presence of diode D between the output and the input, this circuit cannot accurately detect the true peak value of the input voltage V(IN). In other words, there is always an error in the diode turn-on voltage Vd between the output voltage ν(〇υτ) and the peak value of the input voltage V(IN). That is, MAX(V(OUT))=MAX(V(IN))-Vd, as shown in the second figure (this figure is the transient analysis simulation result of OrCADPSpice). For many applications, the above-mentioned diode turn-on voltage V (j error is undesired, and the voltage difference may vary due to the use of different diodes, which may cause adverse effects or unpredictable In order to be able to accurately detect the peak voltage of the input, another common prior art technique uses two operational amplifiers OP1 and OP2, two diodes D1 and D2, two resistors R1 and R2, and a M315337. The capacitor IIC is used to form the _ voltage peak detector, as shown in the third figure, and the 暂1€必烈咖的熊熊= simulation result, as shown in the fourth figure. Among them, 〇ρι is _ a precise half Wave rectifier, when the input two: iV (IN) is greater than the capacitor voltage v (c), the diode m will transmit a bias voltage to charge the capacitor ci = the capacitor voltage v (c) will be the peak voltage of the input power mv_ Quite close, the detected output ΙίΠυΤ) will also be close to the peak of the power generation (4), which is not shown in the second figure; there is a diode turn-on voltage Vd between the other end and the input. The error. When the input voltage is two (^0:J, at the capacitor voltage, the diode m will be turned on, the diode D1 will be turned off and the β-cutter C will not be charged, which causes the detected The output voltage V((五)丁) will be equal to the peak voltage of 〇. Although the voltage peak detector of the third figure can accurately detect the peak voltage, the eight-electricity has a complicated structure and a large wafer area, which is not conducive to The requirements of the integrated circuit. The technique of the No. k voltage peak detector is proposed, for example, in the U.S. Patent No. ΓΓΓΓΙ^ΤΓ46'5546027'5969545^6051998'6064238^6472861 ^ 二i绿绿号#476418 In the case of the revealer, these technologies can accurately predict the peak voltage of the three fields, but since the voltage peak detectors make (four) more than one operation, there is a complicated wafer area on the side. In addition, the electric ridge peak detector does not consider how to save power consumption. Out, (9) to the precision voltage peak detection technology of the operational amplifier W is raised% 52359? ^ Announcement No. 517161 (the main representative figure is as shown in the fifth figure The disclosures of 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Due to the combination of::, the road structure is simple, the occupied wafer area is small, and the device is beneficial to the second. These techniques do not take into account how to reduce the power consumption. Therefore, there is still room for improvement in this work. The main purpose is to propose a novel architecture of the turbulent source and voltage "detector" which can not only accurately and quickly detect the peak power of the input signal and can have lower power than the peak detector. Consumption. M315337 [New content] β This creation proposes a di-saki axis structure with a 〇8 electric lining material edge-like voltage peak detection, which is a differential amplifier (1), a charging transistor (2) and a The capacitor (8) is composed of, and the 'differential amplifier (1) is used as a comparator, and the charging transistor (2) is used as a charger to supply a charging current required for the capacitor (c), and difference The two input terminals of the amplifier (1) are divided into the input of the electric age-age electric age value detector (4) to earn the signal, and provide the appropriate charging current to the charging transistor to obtain the peak value of the input voltage waveform as the output. a voltage signal, the differential amplifier (1) is composed of a first PM〇s transistor (Mpl), a first _8 transistor (_〇, a second NMOS transistor (_2), and an nmos current source (IP) a composition, wherein the first NMOS transistor MN1 and the second NMOS transistor 2 are used as a driver, and the first PMOS transistor MP1 is used as a single-sided load transistor, and the The single-sided load transistor and the charging transistor (2) together form a current mirror, and the Radisson 8 current source (Ip) is used as a current source and is designed in the form of a diode to provide a current to the differential amplifier. (1) Use. The voltage peak detector proposed by the present invention not only accurately detects the peak voltage of the input signal, but also has the advantages of simple circuit structure, small number of transistors used, and miniaturization of the device. It can effectively reduce power consumption. [Embodiment] φ According to the above purpose, the present invention proposes a voltage peak detector with an NMOS current source and a single-sided load, as shown in the sixth figure, which is composed of a differential amplifier 1 and a charging transistor 2 And a capacitor C. The differential amplifier 1 is composed of a first PM 〇s transistor, an NMOS transistor 丨, a second NMOS transistor MN2, and an NMOS current source IP, wherein the first NMOS transistor MN1 and the first The two NMOS transistor MN2 is used as a driver. The first PMOS transistor MP1 is used as a single-sided load transistor, and the single-sided load transistor and the charging transistor 2 form a current mirror. The NMOS current source IP is composed of an NMOS transistor MN and is designed in the form of a diode and used as a current source to provide a current for the differential amplifier. The gates of the first NMOS transistor MN 1 and the second NMOS transistor MN2 respectively receive the input signal V(IN) and the output voltage feedback signal V(OUT) of the detector, and the source (source) Connected together and connected to the source of the NMOS current source IP, and the drain is connected to the drain of the first PMOS transistor M315337 and the supply voltage Vdd; the NMOS current source IP is a 〇8 transistor MN, the gate and the drain are connected together to form a diode, and connected to the source of the first _8 transistor MN1 and the second 〇8 transistor a source of MN2, and a source connected to the ground; a source of the first PMOS transistor MP1 is connected to a power supply voltage Vdd, and a gate is connected to the drain to form a diode, and is connected to the The drain of the first NMOS transistor MN1. Referring to FIG. 6 again, the charging transistor 2 is composed of a second PMOS transistor MP2. The source of the first PMOS transistor MP2 is connected to a power supply voltage vdd, and the gate and the first pmS transistor are connected. The gate of MP1 is connected to the pole of the first NM transistor MN1, and the pole is connected to the capacitor c and the gate of the NM〇S transistor MN2. The first PM〇s transistor Mp丨 and the second PMOS transistor MP2 form a current mirror configuration.

為了便於說明起見,以下之推導過程,均將金氧半電晶體以〇rCAD Pspice 中之最簡單模型(即levell模型)來描述,且不考慮通道長度調變(channellength modulation)效應。但於後續之模擬驗證時,則考慮了〇rCA〇pspice中之所有電 晶體參數(當然包括通道長度調變效應)。 由第六圖所示電路得知,當輸入電壓信號V(IN)大於輸出電壓信號v(〇UT) 時’第一NMOS電晶體MN1之沒極電流id(]V[Nl)會大於第二偷jqs電晶體 之汲極Id (_2) ’其中,流入電晶體之電流取正號,而流出電晶體之電流則取 負號,亦即,電流Id (MN1)代表流入第一nm〇s電晶體麵丨之汲極電流,而_w (MP1)則代表流出第一PMOS電晶體]^1之汲極電流,且For the sake of explanation, the following derivation process describes the gold oxide semi-transistor as the simplest model in 〇rCAD Pspice (ie, the levell model), regardless of the channel length modulation effect. However, in the subsequent simulation verification, all the crystal parameters in the 〇rCA〇pspice (including the channel length modulation effect, of course) are considered. It is known from the circuit shown in FIG. 6 that when the input voltage signal V(IN) is greater than the output voltage signal v(〇UT), the no-pole current id (]V[Nl) of the first NMOS transistor MN1 is greater than the second. Stealing the drain of the jqs transistor Id (_2) 'where the current flowing into the transistor takes a positive sign, and the current flowing out of the transistor takes a negative sign, that is, the current Id (MN1) represents the current flowing into the first nm〇s The radon current of the crystal plane 丨, and _w (MP1) represents the drain current flowing out of the first PMOS transistor ^1, and

Id (MN1) + Id (MN2) = IP ⑴ 其中,IP為NMOS電流源所提供之電流,又Id (MN1) + Id (MN2) = IP (1) where IP is the current supplied by the NMOS current source,

Id (MN1) = -Id (MP1) (2) 由於第一PMOS電晶體MP1及第:PM0S電晶體撕2係構成一電流鏡,因此 -Id (MP1) /(W/L)mpi= -Id (MP2) /(W/L)MP2 (3) 其中’(W/L)mp^(W/L)mp2分別表示第一pmos電晶體MPi及第二pM〇S電晶體 MP2之有效通道寬長比,故可對電容器c進行充電動作。 當充電動作達到V(OUT)等於輸入電壓信號V(IN)之峰值電壓時,電流 Id (MN1) /(W/L)^^ Id (MN2) /(W/L)mn2 ⑷ 其中’(^¥/1^)_和(\\^)讀2分別表示第一nm〇s電晶體娜丨及第二麵⑽電晶 體_2之有效通道寬長比,此時仍會對電容器c進行充電動作。 M315337 但依據差動放大器之轉移特性曲線得知:輸出電壓信號ν(〇υτ)須較輸入峰 值電壓vpeak!^過一超量電壓(〇verShoot v〇ltage簡稱v〇s)才能將第一_〇§電晶 體MN1強迫為截止狀態,當第一麵〇8電晶體^^為截止狀態時,充電電晶體 即停止對電容器c進行充電作用,此時輸出電壓信號ν(ουτ)為 V(OUT)=vpeak+Vos ⑶ 由於此時的第二:^]\408電晶體MN2係工作於飽和區,而第一nm〇S電晶體 MN1恰由飽和區進入截止區,因此,可由下列電流方程式求出VGS2&VGS1 :Id (MN1) = -Id (MP1) (2) Since the first PMOS transistor MP1 and the PMOS transistor teardown 2 constitute a current mirror, -Id (MP1) /(W/L)mpi= -Id (MP2) /(W/L)MP2 (3) where '(W/L) mp^(W/L)mp2 represents the effective channel width of the first pmos transistor MPi and the second pM〇S transistor MP2, respectively Therefore, the capacitor c can be charged. When the charging action reaches V(OUT) equal to the peak voltage of the input voltage signal V(IN), the current Id (MN1) /(W/L)^^ Id (MN2) /(W/L)mn2 (4) where '(^ ¥/1^)_ and (\\^) reading 2 respectively indicate the effective channel width-to-length ratio of the first nm〇s transistor and the second side (10) transistor_2, and the capacitor c is still charged at this time. action. M315337 However, according to the transfer characteristic curve of the differential amplifier, it is known that the output voltage signal ν(〇υτ) must be compared with the input peak voltage vpeak!^ over an excess voltage (〇verShoot v〇ltage abbreviated as v〇s) to be the first _ 〇 § The transistor MN1 is forced to the off state. When the first surface 〇8 transistor is turned off, the charging transistor stops charging the capacitor c. At this time, the output voltage signal ν(ουτ) is V (OUT). )=vpeak+Vos (3) Since the second: ^]\408 transistor MN2 operates in the saturation region, and the first nm〇S transistor MN1 enters the cut-off region from the saturation region, the following current equation can be used. Out VGS2&VGS1:

Id (MN2) =IP (6)Id (MN2) = IP (6)

Id (MN1) -〇 ⑺ 故超量電壓Vos等於Id (MN1) - 〇 (7) Therefore, the excess voltage Vos is equal to

Vos = VGS2-VGS1 ⑻ 之後,當輸入電壓信號V (IN)由峰值電壓vpeak往下掉時,因第一nm〇s電 晶體MN1已進入截止狀態,因此電流 -Id (MP1) = .ld (MP2) =0 ⑼ 所以充電電晶體不會再對電容器c進行充電動作,因此輸出電壓信號ν(ουτ) 仍會固定維持在方程式(5)之電壓。 由方程式(5)得知,輸出電壓信號ν(ουτ)恆較輸入峰值電壓Vpeak高出一超 篁電壓Vos ’該超量電壓v〇s係顯示於方程式(8)中,若所有的電晶體均 具有相同的零偏壓臨限電壓VT〇(Zero-bias threshold voltage)以及互導參數 KP(Tmnsconductance parameter),該零偏壓臨限電壓%〇以及互導參數灯均為 金氧半電晶體之一模型參數,則方程式(8)可改寫為After Vos = VGS2-VGS1 (8), when the input voltage signal V (IN) falls down from the peak voltage vpeak, since the first nm 〇s transistor MN1 has entered the off state, the current -Id (MP1) = .ld ( MP2) =0 (9) Therefore, the charging transistor will no longer charge the capacitor c, so the output voltage signal ν(ουτ) will remain fixed at the voltage of equation (5). It is known from equation (5) that the output voltage signal ν(ουτ) is always higher than the input peak voltage Vpeak by an over-voltage Vos'. The excess voltage v〇s is shown in equation (8), if all the transistors Both have the same zero-bias threshold voltage and a permutation parameter KP (Tmnsconductance parameter), and the zero-bias threshold voltage %〇 and the mutual conductance parameter lamp are both gold-oxygen semi-transistors. One of the model parameters, equation (8) can be rewritten as

Vos = [2 · IP · 1/KP · 1/(W/L)_]1/2 n〇^ 其中’(W/L)mn2表示第二NMOS電晶體MN2之有效通道寬長比,有關超量 電壓Vos之推導可參考Kenneth R. Laker及Willy M.C. Sansen合著由 McGRAW-Hill出版「Designofanalogintegrated circuits and systems」一書中之第 357至375 頁。 由方程式(10)可知,只要適當的選擇NM〇S電流源所提供之電流ιρ及第二 NMOS電晶體MN2之(W/L—2即可將該超量電壓Vos控制在一極小值,此時即能 使具NMOS電流源及單邊負載之電壓峰值檢知器精確地檢測出輸入信號之峰值 M315337 電壓 本創作所難之具NM〇S驗源及單邊 PSpice暫態分析模擬結果,如第七圖所示,由該模擬結果可 == =〇S電流源及單邊負載之電壓峰值檢知器能精確地檢測出輸:; 接下來說明本創作如何減少功率消耗,首先比較第五圖所示之中華 主 ^號第5Π161號專利案之電壓峰值檢知器與第六圖所示之本創作較佳實施例: 由於在第五_不之先前技藝中,用以提供-電流給差敝大器 NMOS電晶體ΜΝ3之閘姉連接至電源電壓·,因此,該第三譲沉^ ^ ΜΝ3 _雜電雜料·電壓,反觀本創侧以提供—電流给t j器1使用之NMOS電流源IP係由一應〇s電晶體議Vos = [2 · IP · 1/KP · 1/(W/L)_]1/2 n〇^ where '(W/L)mn2 represents the effective channel width-to-length ratio of the second NMOS transistor MN2, related to The derivation of the voltage Vos can be found in pages 357 to 375 of the book "Designofanalogintegrated circuits and systems" published by McGrath-Hill in conjunction with Kenneth R. Laker and Willy MC Sansen. It can be known from equation (10) that the current voltage ιρ provided by the NM〇S current source and the second NMOS transistor MN2 (W/L-2 can control the excess voltage Vos to a minimum value, The voltage peak detector with NMOS current source and unilateral load can accurately detect the peak value of the input signal M315337. The voltage is difficult to create NM〇S source and unilateral PSpice transient analysis simulation results, such as As shown in the seventh figure, the voltage peak detector of the current source and the unilateral load can accurately detect the output from the simulation result: Next, how to reduce the power consumption in this creation, first compare the fifth The figure shows the voltage peak detector of the Chinese Patent No. 5, 161 patent and the preferred embodiment of the present invention shown in the sixth figure: since in the fifth prior art, the current is supplied The gate of the NMOS transistor ΜΝ3 is connected to the power supply voltage. Therefore, the third 譲 ^ ^ 以 以 以 以 以 以 以 以 以 以 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本Current source IP is determined by a 〇s transistor

ΞΪ^Τ^Γ08 t^MN ϋ: ’本創作作為麵os電流源IP使用之該順〇s電晶 門ίίϊί GS(IP)的絕對值怪小於第五圖所示之該第三丽_晶體麵3的 ’結果’本創條較第五騎枕先前技藝具有更低之辨消耗。 減、為巾華民國公告銳第517161號專職之電壓峰值檢知器(先前 創作電壓峰值檢知器之0rCADPSpiee暫態、分析模擬結果,由該模擬結 ^正’摘作之電壓雜檢知器報先前技藝具有更低之電流消耗。 mil作之電壓峰值檢知器在使用時可於電容器C兩端並聯連接一開關,該 啸供—放電路徑,以便將電容器上所儲存之電荷放電,俾利於下次 輸入電壓信號之峰值檢測。 【創作功效】 本顺所提丨之獅^〇8電麟及科貞叙籠峰值檢知旨,具有如下功 # ⑴:集積度及有利於裝置之小型化··由於本創作所提出之電壓峰值檢知器僅使 用了2個PMOS電晶體、3個NMOS電晶體以及丨個電容器,因此不但電路架 1單、使用的電晶體數量較少,並且因不需使用運算放大器,因 ,、備有高集積度及有利於裝置之小型化等優點; M315337 (2) 尚精確度:本創作所提出之電壓峰值檢知器經模擬結果註實,確實能精確地 檢測出輸入信號之峰值電壓,因此也具有高精確度之優點; (3) 低功率消耗:本創作所提出之電壓峰值檢知器經模擬結果証實,確實能有效 降低差動放大器之電流消耗,因此可有效降低電壓峰值檢知器之功率消耗。 人士 ,_«悉本技術之 M315337 【圖式簡單說明】 第一圖係顯示第一先前技藝中電壓峰值檢知器之電路圖. 第二圖係顯示第:圖電壓峰值檢知器之輪人電壓信^如電壓信號之暫態分 析時序圖, 第三圖係顯示第二先前技藝中電壓峰值檢知器之電路圖· 第四圖係顯示第三圖峰值紗H之輸人賴錢及輪 析時序圖; 第五圖係顯示中華民@公告案號第517⑹號專電壓峰值紗S之電路圖; 第六圖係顯示本創作較佳實施例之電壓峰值檢知器之電路圖· 第七圖係顯示本創作較佳實施例之輸入電壓信號及輸出電壓信號之暫態分析時 序圖; 第八圖係比較本創作電壓峰值檢知器與中華民國公告案號第51716H虎專利案電 壓峰值檢知器之暫態電流分析時序圖。 【主要元件符號說明】 1 差動放大器 D 二極體 2 充電電晶體 D1 二極體ΞΪ^Τ^Γ08 t^MN ϋ: 'This creation is used as the surface os current source IP. The sigma s electric gate ίίϊί GS (IP) absolute value is less than the third _ crystal shown in the fifth figure The 'results' of the face 3 have a lower consumption than the previous skill of the fifth rider. Reduced, for the Republic of China Announcement No. 517161 full-time voltage peak detector (the previous creation voltage peak detector 0rCADPSpiee transient, analysis simulation results, the analog junction ^ Zheng' extract of the voltage miscellaneous detector The prior art has lower current consumption. The voltage peak detector of mil can be connected in parallel with a switch at both ends of the capacitor C, which is used to discharge the charge stored on the capacitor. Conducive to the peak detection of the next input voltage signal. [Creation function] This lion's lion 〇 电 电 电 电 电 及 及 及 及 及 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值 峰值Since the voltage peak detector proposed in this creation uses only two PMOS transistors, three NMOS transistors, and one capacitor, not only the number of transistors used in the circuit frame 1 but also the number of transistors is small, and There is no need to use an operational amplifier, because it has a high degree of integration and is advantageous for miniaturization of the device; M315337 (2) Accuracy: The voltage peak detector proposed in this work is verified by simulation results. It can accurately detect the peak voltage of the input signal, so it also has the advantage of high precision; (3) Low power consumption: The voltage peak detector proposed by the author proves that the differential amplifier can effectively reduce the differential amplifier. The current consumption is therefore effective in reducing the power consumption of the voltage peak detector. Person, _ «M315337 of the present technology [Simple description of the diagram] The first figure shows the circuit diagram of the voltage peak detector in the first prior art. The second figure shows the transient analysis timing diagram of the wheel voltage signal of the voltage peak detector, such as the voltage signal, and the third diagram shows the circuit diagram of the voltage peak detector of the second prior art. The figure shows the input and cost analysis of the peak yarn H of the third figure; the fifth picture shows the circuit diagram of the special voltage peak yarn S of the number 517(6) of Zhonghuamin@公告案号; The circuit diagram of the voltage peak detector of the embodiment. The seventh diagram shows the transient analysis timing diagram of the input voltage signal and the output voltage signal of the preferred embodiment of the present invention; Transient current analysis timing diagram of voltage peak detector and voltage peak detector of the Republic of China Announcement No. 51716H. [Main component symbol description] 1 Differential amplifier D diode 2 Charging transistor D1 II Polar body

D2 二極體 Id(MN3) NMOS電晶體MN3之汲極電流 運算放大器 第二PMOS電晶體 第四PMOS電晶體 第二NMOS電晶體 NMOS電晶體 電源電壓 電阻器 輸出電壓信號 OP1 運算放大器 OP2 MP1 第一 PMOS電晶體MP2 MP3 第三PMOS電晶體MP4 MN1 第一 NMOS電晶體MN2 MN3第三NMOS電晶體 MN IP NMOS電流源 Vdd R1 電阻器 R2 V(IN)輸入電壓信號 V(OUT) c 電容器 12D2 Diode Id (MN3) NMOS transistor MN3 drain current operational amplifier second PMOS transistor fourth PMOS transistor second NMOS transistor NMOS transistor power supply voltage resistor output voltage signal OP1 operational amplifier OP2 MP1 first PMOS transistor MP2 MP3 third PMOS transistor MP4 MN1 first NMOS transistor MN2 MN3 third NMOS transistor MN IP NMOS current source Vdd R1 resistor R2 V (IN) input voltage signal V (OUT) c capacitor 12

Claims (1)

M315337 九、申請專利範圍: 1·-,具NMOS電麵及單邊負載之電壓峰值檢知器,用讀測輸人電壓信 峰值,其包括: ' 一輸入端,用以提供一輸入電壓信號; 一輸出端,用以輸出該輸入電壓信號之峰值電壓; :電,供應電壓,用以提供電壓峰值檢知騎需之電源電壓和參考接地; 抑具單邊負1電晶體之差動放大||(1},用以接受並比較輸人電壓信號及電容 器上之電壓信號,並提供充電電流信號給充電電晶體; :充電電晶體(2),用崎據該差動放大器⑴之單邊負載電晶體所流過之電流 • 量’而提供一充電電流給電容器;以及 電谷器(C) ’ 5亥電谷器之一端連接至充電電晶體(2),以便接受該充電電晶體 (2)所供應之充電電流,而另一端則連接至參考接地; 其中,該具單邊負載電晶體之差動放大器(1)包括: -單邊負載電晶體,其係由第-PMOS電晶體(Μρι)所組成,該第一pM〇s電 晶體(MP1)之源極連接至電源電壓,閘極與汲極連接在一起,並連接至充電電 晶體(2)之閘極; 一第一NMOS電晶體(MN1),其源極與第二_〇8電晶體(_2)之源極以及 NMOS電晶體(MN)之汲極相連接,閘極用以接受輸入電壓信號,而汲極則 與該充電電晶體(2)之閘極以及該第一 PM0S電晶體(Mp丨)之汲極相連接; • 一第二NMOS電晶體(MN2),其源極與第一NMOS電晶體(MN1)之源極以及 NMOS電晶體(MN)之汲極相連接,閘極用以接受電容器上之電壓信號,而 汲極則連接至電源電壓;以及 一NMOS電流源(IP),該NMOS電流源(IP)係由一NM〇s電晶體(MN) 所組成’其閘極與沒極連接在一起以形成一二極體,並連接至該第一NM〇s 電晶體(MN1)之源極和該第二NMOS電晶體(_2)之源極,而源極則連 接至接地。 2·如申請專利範圍第1項所述之具NMOS電流源及單邊負載之電壓峰值檢知 器,其中該充電電晶體(2)係由第二PMOS電晶體(MP2)所組成,該第二PMOS 電晶體(MP2)之源極連接至電源電壓,閘極與第一PMOS電晶體(MP1)之閘極 13 M315337 以及第一NMOS電晶體(ΜΝ1)之汲極相連接,而汲極則與該電容Γ —山 及第二NMOS電晶體(ΜΝ2)之閘極相連接。 Ό 端以 3. 如申請專利範圍第1項所述之具NMOS電流源及單邊負栽之電壓峰值檢知 器,其更包括: # 二,關,該開關係與該電容器並聯連接,用以提供一放電路徑,以便將電 容器^所儲存之電荷放電,俾利於下次輸入電壓信號之峰值檢測。 m利酬第3項所述之具丽⑽電顏及單邊貞栽之峰值檢知 » ,八中該開關係由一金氧半電晶體所組成。 4·M315337 IX. Patent application scope: 1·-, voltage peak detector with NMOS electric surface and unilateral load, used to read and measure the input voltage peak value, which includes: 'An input terminal for providing an input voltage signal An output terminal for outputting a peak voltage of the input voltage signal; electricity, a supply voltage, a voltage supply for providing a voltage peak to detect a power supply voltage and a reference grounding; and a differential amplification of a single-sided negative 1 transistor ||(1}, for accepting and comparing the input voltage signal and the voltage signal on the capacitor, and providing a charging current signal to the charging transistor; : charging the transistor (2), using the differential amplifier (1) A current is supplied to the capacitor by the current flowing through the transistor, and a charging current is supplied to the capacitor; and one end of the electric grid (C) '5 galvanic grid is connected to the charging transistor (2) to receive the charging transistor (2) The supplied charging current, and the other end is connected to the reference ground; wherein the differential amplifier (1) with the single-sided load transistor includes: - a single-sided load transistor, which is made of a -PMOS a crystal (Μρι), The source of the first pM〇s transistor (MP1) is connected to the power supply voltage, the gate is connected to the drain, and is connected to the gate of the charging transistor (2); a first NMOS transistor (MN1), The source is connected to the source of the second _8 transistor (_2) and the drain of the NMOS transistor (MN), the gate is used to receive the input voltage signal, and the drain is connected to the charging transistor (2) a gate connected to the first PMOS transistor (Mp丨); a second NMOS transistor (MN2) having a source and a source of the first NMOS transistor (MN1) and an NMOS The drain of the crystal (MN) is connected, the gate is used to receive the voltage signal on the capacitor, and the drain is connected to the power supply voltage; and an NMOS current source (IP) is used, and the NMOS current source (IP) is composed of an NM. The 〇s transistor (MN) is composed of 'the gate and the gate are connected together to form a diode, and is connected to the source of the first NM〇s transistor (MN1) and the second NMOS transistor (_2) the source, and the source is connected to the ground. 2. The voltage peak detector with NMOS current source and unilateral load as described in the first paragraph of the patent application, The charging transistor (2) is composed of a second PMOS transistor (MP2), the source of the second PMOS transistor (MP2) is connected to a power supply voltage, and the gate is connected to the first PMOS transistor (MP1). The gate 13 M315337 is connected to the drain of the first NMOS transistor (ΜΝ1), and the drain is connected to the gate of the capacitor 山山 and the second NMOS transistor (ΜΝ2). The voltage peak detector of the NMOS current source and the unilateral load described in claim 1 further includes: #二,关, the open relationship is connected in parallel with the capacitor to provide a discharge path, In order to discharge the charge stored in the capacitor ^, the peak detection of the next input voltage signal is facilitated. m rewards the third point of the (10) electric and unilateral stalking peak detection », the eight-in-one relationship consists of a gold-oxygen semi-transistor. 4·
TW95221549U 2006-12-07 2006-12-07 Peak voltage detector having NMOS current source and one-sided transistor load TWM315337U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95221549U TWM315337U (en) 2006-12-07 2006-12-07 Peak voltage detector having NMOS current source and one-sided transistor load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95221549U TWM315337U (en) 2006-12-07 2006-12-07 Peak voltage detector having NMOS current source and one-sided transistor load

Publications (1)

Publication Number Publication Date
TWM315337U true TWM315337U (en) 2007-07-11

Family

ID=39454811

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95221549U TWM315337U (en) 2006-12-07 2006-12-07 Peak voltage detector having NMOS current source and one-sided transistor load

Country Status (1)

Country Link
TW (1) TWM315337U (en)

Similar Documents

Publication Publication Date Title
US6384684B1 (en) Amplifier
TWI326968B (en) Comparator with multiple gain stages
TWI540830B (en) Operational amplifier and power management system thereof for controlling electric light source
CN107294369B (en) A kind of constant current start-up circuit applied to booster converter
TW200919131A (en) A method and charge-up circuit capable of adjusting charge-up current
CN102156211A (en) Full-CMOS (complementary metal-oxide-semiconductor transistor) accurate current sampling circuit
US11041890B2 (en) Current measurement at a switching amplifier output
JP4810943B2 (en) Overcurrent detection circuit and voltage comparison circuit
US9948242B2 (en) Selectable current limiter circuit
JP3431119B2 (en) Current detection circuit
JP2008515378A (en) Charging method and circuit using indirect current detection
JPS6190509A (en) Mimic circuit for transistor or diode
US7057445B2 (en) Bias voltage generating circuit and differential amplifier
CN117040449A (en) Overcurrent protection and detection circuit suitable for class AB output stage
TWM315337U (en) Peak voltage detector having NMOS current source and one-sided transistor load
JP2006507621A (en) Cascode amplifier circuit for generating high-speed, stable, and accurate bit line voltage
TWI288239B (en) Peak voltage detector having lower current consumption
TW517161B (en) Voltage peak detector
TWM337745U (en) Peak voltage detector having controllable NMOS current source
TWM311888U (en) Peak voltage detector having PMOS current source with dual charging paths
RU2727074C2 (en) Device for measuring electric current generated by audio frequency amplifier for actuation of acoustic column
JP2005122753A (en) Temperature detection circuit, heating protection circuit, various electronic apparatus incorporating these circuits
TWM335097U (en) Peak voltage detector having controllable NMOS current source and output stage
TWI245905B (en) CMOS peak voltage detector
TWM337743U (en) Peak voltage detector having controllable NMOS current source and output stage

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees