TWI835787B - 在vero細胞上生長之減毒活黃熱病病毒株及包含其之疫苗組成物 - Google Patents

在vero細胞上生長之減毒活黃熱病病毒株及包含其之疫苗組成物 Download PDF

Info

Publication number
TWI835787B
TWI835787B TW108111634A TW108111634A TWI835787B TW I835787 B TWI835787 B TW I835787B TW 108111634 A TW108111634 A TW 108111634A TW 108111634 A TW108111634 A TW 108111634A TW I835787 B TWI835787 B TW I835787B
Authority
TW
Taiwan
Prior art keywords
seq
yellow fever
fever virus
amino acid
mutation
Prior art date
Application number
TW108111634A
Other languages
English (en)
Other versions
TW202003028A (zh
Inventor
曼努埃爾 凡吉利斯堤
娜塔莉 曼特爾
查巴茲 伊夫 吉瑞德
法比耶納 皮拉斯
Original Assignee
法商賽諾菲巴斯德股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商賽諾菲巴斯德股份有限公司 filed Critical 法商賽諾菲巴斯德股份有限公司
Publication of TW202003028A publication Critical patent/TW202003028A/zh
Application granted granted Critical
Publication of TWI835787B publication Critical patent/TWI835787B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units
    • C12N7/08Inactivation or attenuation by serial passage of virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/04Inactivation or attenuation; Producing viral sub-units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24161Methods of inactivation or attenuation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24161Methods of inactivation or attenuation
    • C12N2770/24164Methods of inactivation or attenuation by serial passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本發明是有關適應在Vero細胞上生長的減毒活黃熱病病毒株,該病毒株是來自不適應在Vero細胞上生長的親代黃熱病病毒17D亞株,其中該減毒活黃熱病病毒株的神經毒力不如該親代黃熱病病毒17D亞株。

Description

在VERO細胞上生長之減毒活黃熱病病毒株及包含其之疫苗組成物
本發明是有關減毒活黃熱病病毒(YFV)病毒株及其用於製備疫苗組成物對抗YFV感染的用途。
特別地,減毒活YFV病毒株適應在Vero細胞上生長,且已由不適應在Vero細胞上生長但適應在受精蛋上生長的親代減毒活YFV病毒株獲得。相較於親代減毒活YFV病毒株,減毒活YFV病毒株經進一步特徵鑑定為神經毒力降低。
黃熱病是一種病毒媒介的致命疾病,其在非洲,中美洲和南美洲的熱帶地區中分布超過50個國家。
黃熱病是一種急性病毒性出血性疾病,一些患者受到黃疸的影響,這說明了使用術語「黃」的理由。黃熱病的特徵症狀可能包括發燒、頭痛、黃疸、肌肉疼痛、噁心,嘔吐和疲勞。此外,一小部分感染病毒的患者會出現嚴重的症狀,而其中大約一半會在7至10天內死亡。
黃熱病病毒(YFV)屬於黃病毒科(Flaviviruses),其中登革熱病毒(DV)、日本腦炎病毒(JEV)、蜱傳染腦炎病毒(TBEV)、西尼羅河病毒(WNV)和茲卡病毒(ZV)為其他成員。YFV由圍繞核衣殼(由衣殼蛋白組成)的脂蛋白外膜和單股正義RNA(single-stranded,positive-sense RNA)組成,RNA長度為10862個核苷酸。在5'非翻譯區(5' UTR)和3'非翻譯區(3' UTR)之間,RNA從5'端至3'端編碼三種結構蛋白(即衣殼蛋白(C蛋白)、前膜/膜蛋白(prM/M蛋 白)、外膜蛋白(E蛋白))以及八種非結構(NS)蛋白(即NS1、NS2A、NS2B、NS3、NS4A、P2k肽,NS4B和NS5蛋白)。
野生型YFV在非洲主要是斑蚊屬(Aedes spp.)蚊子做為傳染媒介,而在南美洲則是趨血蚊屬(Haemogogus spp.)和煞蚊屬(Sabethes spp.)做為傳染媒介,且因為地理區域而異有非人類靈長類動物宿主。YFV傳播主要根據兩種流行病學模式實現:(1)城市模式和(2)森林模式(也稱為叢林或森林週期)。儘管有兩種傳播模式,但僅鑑定出一種涉及相同病毒的臨床相關疾病。在美洲大陸,現今YFV透過一種特有的森林模式進行傳播,這種模式每年有導致非免疫林業工人感染的數百則報導。在此同時,病毒透過城市模式和森林模式在非洲傳播,並定期打破其流行模式,在重大流行病中感染大量非免疫人員。
目前,黃熱病沒有抗病毒劑,疫苗接種對預防疾病來說至關重要。在這方面,早在1930年代,就開發出兩種減毒活YFV疫苗。
第一者對應於法國親神經性疫苗(FNV),其由野生型法國親內臟性病毒(FVV,在1928年從塞內加爾的Françoise Mayali分離)製備而來,並在小鼠腦中繼代。然而,很快地便證明FNV的神經毒力過高,接種後兒童腦炎的發病率加劇,並在1980年代早期被放棄了(Barrett,2017)。
第二種方法對應於「17D」病毒株,其是從野生型病毒株Asibi(分離自溫和的人類病例-「Asibi先生」-1927年在迦納)製備而來,並在小鼠和雞組織中繼代。疫苗病毒株17D已喪失親內臟性和神經毒力(Monath,2005)。
目前,六個國家正在從17D病毒株(即巴西(17DD亞株)、中國(17D-204亞株)、法國(17D-204亞株Stamaril®)、俄羅斯(17D-213亞株)、塞內加爾(17D-204亞株)和USA(17D-204亞株YF-VAX®)衍生而來的亞株生產減毒活YFV疫苗組成物(Barrett,2017)。
迄今為止,所有目前已商業化的疫苗都是在受精雞蛋中生產的,這種生產過程過去曾因穩健性問題而變得複雜(Barrett,2017)。特別是,由於製造問題,常常會有YFV疫苗短缺。實際上,在2016年於安哥拉和剛果民主共和國的爆發期間,可用疫苗批次的短缺首次導致需要分次劑量以 便因應緊急情況(Barrett;2017)。此外,對於對蛋過敏的人來說,靠受精雞蛋產生的YFV疫苗是禁忌的。
基於受精蛋的疫苗生產的替代方案是使用合適的細胞株來繼代病毒,例如哺乳動物細胞株。在哺乳動物細胞株中,Vero細胞株是研究最多的細胞株之一,同時在病毒產量的質量和數量方面提供穩定性和證明為良好的成果。Vero細胞已獲得FDA批准,並在世界各地使用。例如,Vero細胞已被用於製備針對日本腦炎的疫苗(以商標IXIARO®商業化)、針對流感病毒、針對脊髓灰白質炎病毒和針對狂犬病的疫苗。
過去和現在已經出現了利用Vero細胞來製備YFV疫苗的策略,而值得注意的是,這些策略僅僅是針對在不活化病毒的基礎上製備YFV疫苗的可行性(Hayes,2010;Beasley et al.,2013;Pereira et al.,2015)。儘管如此,雖然黃熱病不活化疫苗在理論上可能看起來更安全,但它不可能完全比得上單劑量現有減毒活黃熱病疫苗提供的長期保護(Hayes,2010)。此外,在近來黃熱病疫情的背景下,減毒活疫苗似乎更適合在爆發地區針對黃熱病的長期保護性免疫力提供高人口覆蓋率。
疫苗用減毒活病毒的具體限制條件是維持其減毒作用,即黃熱病病毒至少與目前上市的減毒活黃熱病疫苗一樣在神經毒力和親內臟性方面為減弱的;同時具有足以保護患者免於對應疾病的免疫原性。在這方面,針對特定的黃熱病病毒株,實現兩種特徵(即減毒和免疫原性)並不容易,例如在Monath,2005中可以看出。
因此,由於與基於受精雞蛋生產減毒活YFV疫苗相關的各種缺點,仍然需要用於提供減毒活YFV疫苗的替代生產方法。
在一個態樣中,本發明有關於一種適應在Vero細胞上生長的減毒活黃熱病病毒株,其來自不適應在Vero細胞上生長的親代黃熱病病毒17D亞株,其中該減毒活黃熱病病毒株的神經毒力不如親代黃熱病病毒17D亞株。
在另一個態樣中,本發明進一步有關於一種減毒活黃熱病病毒株,其包含含有下列的核酸:i)一個在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸由纈胺酸變成白胺酸,或ii)一個在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸由甲硫胺酸變成纈胺酸。
本發明的另一個態樣是有關於減毒活黃熱病病毒株,其包含含有在位置480處之突變的外膜蛋白,該突變造成胺基酸由纈胺酸變成白胺酸。
本發明的另一個態樣是有關於減毒活黃熱病病毒株,其包含含有白胺酸殘基的外膜蛋白,該白胺酸殘基位在對應於SEQ ID NO.15之位置480之蛋白質內的位置處。
在另一個態樣中,本發明進一步是有關於一種減毒活黃熱病病毒株,其包含編碼下列的核酸分子:(i)外膜蛋白,包含一個在位置480處的突變,該突變造成胺基酸由纈胺酸變成白胺酸,及(ii)NS2a蛋白,包含一個在位置65處的突變,該突變造成胺基酸由甲硫胺酸變成纈胺酸。
本發明的另一個態樣是有關於減毒活黃熱病病毒株,其包含編碼下列的核酸分子:(i)含有白胺酸殘基的外膜蛋白,該白胺酸殘基位在對應於SEQ ID NO.15之位置480之蛋白質內的位置處,以及(ii)包含纈胺酸殘基的NS2a蛋白,該纈胺酸殘基位在對應於SEQ ID NO.16之位置65的蛋白質內的位置處。
本發明的另一個態樣亦有關於一種免疫原性組成物,其包含依據本發明之減毒活黃熱病病毒株以及醫藥上可接受媒劑。
在又其他態樣中,本發明進一步有關於一種獲得適應在Vero細胞上生長之減毒活黃熱病病毒株的方法,包含下列步驟: a)純化親代減毒活黃熱病病毒株的病毒基因體RNA,該親代減毒活黃熱病病毒株不適應在Vero細胞上生長,且視情況適應在蛋上生長;b)用在步驟a)中純化的病毒基因體RNA轉染Vero細胞,從而獲得經轉染Vero細胞;c)使在步驟b)中獲得的經轉染Vero細胞生長在培養基中,從而獲得第一黃熱病病毒群並進一步回收;d)在新鮮Vero細胞上將在步驟c)結束時獲得的回收第一黃熱病病毒群擴增2次或更多次,從而獲得第二黃熱病病毒群;e)在Vero細胞上藉由兩個或更多個連續溶菌斑純化,對在步驟d)中獲得的第二黃熱病病毒群進行選殖,從而獲得複數個黃熱病病毒選殖株;f)在新鮮Vero細胞上將在步驟e)結束時獲得的每一個回收黃熱病病毒選殖株個別擴增2次或更多次,從而獲得複數個黃熱病病毒株;以及g)從在步驟f)中回收的該複數個黃熱病病毒株挑選出一或多個減毒活黃熱病病毒株,其在小鼠致死劑量50(MLD50)測試中的神經毒力不如親代減毒活黃熱病病毒株。
本發明的另一個態樣是有關於一種可依據本發明方法所獲得的減毒活黃熱病病毒株。
在另一個態樣中,本發明是有關於一種用於製備疫苗的依據本發明之減毒活黃熱病病毒株。
本發明的又一個態樣是有關於一種包含依據本發明之減毒活黃熱病病毒株的疫苗,其用於預防黃熱病病毒造成的感染。
圖1:說明製備適應在Vero細胞上生長的減毒活黃熱病病毒株(vYF)的圖,其在前主要種批(pMSL)階段。
圖2:說明依據A129小鼠模型的親內臟性分析的圖。
圖3:說明在D0用PBS(白色槓);Stamaril®參考物(黑色槓)或用衍生自Stamaril®譜系的vYF pMSL候選物(TV2212、TV2232和TV2241;深灰色槓)或衍生自YF-VAX®譜系的vYF pMSL候選物(TV3111、 TV3112和TV4221;淺灰色槓)免疫的A129小鼠,於D4和D6收集的血清中依據YF-NS5 qRT-PCR測量的病毒血症的圖。
圖4:說明在D0用PBS(白色槓);Stamaril®參考物(黑色槓)或用衍生自Stamaril®譜系的vYF pMSL候選物(TV2212、TV2232和TV2241;深灰色槓)或衍生自YF-VAX®譜系的vYF pMSL候選物(TV3111、TV3112和TV4221;淺灰色槓)免疫的A129小鼠,於D6和D11收集的肝臟樣品中依據YF-NS5 qRT-PCR測量的病毒負荷量的圖。
圖5:說明在D0用PBS(白色槓);Stamaril®參考物(黑色槓)或用衍生自Stamaril®譜系的vYF pMSL候選物(TV2212、TV2232和TV2241;深灰色槓)或衍生自YF-VAX®譜系的vYF pMSL候選物(TV3111、TV3112和TV4221;淺灰色槓)免疫的A129小鼠,於D6和D11收集的腦樣品中依據YF-NS5 qRT-PCR測量的病毒負荷量的圖。
圖6:說明在D0用PBS(白色槓);Stamaril®參考物(黑色槓)或用衍生自Stamaril®譜系的vYF pMSL候選物(TV2212、TV2232和TV2241;深灰色槓)或衍生自YF-VAX®譜系的vYF pMSL候選物(TV3111、TV3112和TV4221;淺灰色槓)免疫的A129小鼠,於D6和D11收集的脾臟樣品中依據YF-NS5 qRT-PCR測量的病毒負荷量的圖。
圖7:說明用Stamaril®,vYF病毒株TV221、TV2241、TV3111、TV3112、TV4221(虛線)或TV2232(實線)單次免疫A129小鼠後的Kaplan-Meier存活率曲線的圖。
圖8:說明依據倉鼠模型的免疫原性分析的圖。
圖9:說明在D26從D0用2.5或5.5 log10 CCID50/劑量的vYF病毒株(TV2212、TV2232、TV2241、TV3111、TV3112和TV4221)或Stamaril®參考疫苗免疫的倉鼠所收集之血清裡,對減毒活黃熱病病毒株具有特異性的中和抗體效價藉由在Vero細胞上之血清中和分析測量的圖。水平線表示反應者閾值。
圖10:說明在D41從D0與D26用2.5或5.5 log10 CCID50/劑量的vYF病毒株(TV2212、TV2232、TV2241、TV3111、TV3112和TV4221)或Stamaril®參考疫苗免疫的倉鼠所收集之血清裡,對減毒活黃熱病病毒株具 有特異性的中和抗體效價藉由在Vero細胞上之血清中和分析測量的圖。水平線表示反應者閾值。
圖11:說明與用現有疫苗Stamaril®和YF-VAX®相比,用vYF病毒株TV3112接種的猴子中的中和抗體反應的圖。水平線表示檢測極限。
圖12:說明與用現有參考疫苗Stamaril®和YF-VAX®相比,來自用減毒活vYF病毒株TV3112接種的猴子的週邊血液中,來自B記憶細胞的YF特異性IgM反應的圖。結果表示為IgM抗體分泌細胞在總IgM群中的百分率。
圖13:說明與用現有參考疫苗Stamaril®和YF-VAX®相比,來自用減毒活vYF病毒株TV3112接種的猴子的週邊血液中,來自B記憶細胞的YF特異性IgG反應的圖。結果表示為IgG抗體分泌細胞在總IgG群中的百分率。
圖14:說明用外膜蛋白刺激(ENV;左圖)或用非結構蛋白3(NS3;右圖)刺激後,以vYF病毒株TV3112接種的猴子的週邊血液中,IFN-γ(上圖)和IL-2(下圖)特異性T細胞反應的圖,並與現有疫苗Stamaril®和YF-VAX®進行比較。
圖15:說明與用現有參考疫苗Stamaril®和YF-VAX®比較,用減毒活vYF病毒株TV3112接種的猴子的器官中的病毒負荷量的圖。淺灰色槓和圓圈代表用Stamaril®接種的猴子的結果;中灰色槓和方塊代表用YF-VAX®接種的猴子的結果;深灰色槓和三角形代表用減毒活vYF病毒株TV3112接種的猴子的結果。水平線表示檢測極限。
本發明提供適應在Vero細胞上生長的減毒活YFV病毒株,其已經從適應在受精蛋上生長的親代減毒活YFV病毒株獲得。與親代減毒活YFV病毒株相比,已在小鼠LD50測試(MLD50)中針對神經毒力降低選出該減毒活YFV病毒株。
如本發明所示,透過在Vero細胞上繼代產生YFV允許提供穩定的、高度可再現的、高標準質量和數量的減毒活YFV病毒株,其隨後適於製備抗YF感染的疫苗。
各種定義
在本發明的範疇中,「YFV」是有關於黃熱病病毒「yellow fever virus」,而術語「vYF」表示適合Vero細胞的黃熱病病毒,即適應在Vero細胞上生長的黃熱病病毒。
因此,在本發明的範疇中,「適合Vero細胞的黃熱病病毒」(vYV)和「適應在Vero細胞上生長的黃熱病病毒」意欲是可互換的詞句。
在本發明的範疇中,適合在Vero細胞上生長的病毒是已經在Vero細胞上經歷至少3次連續繼代的病毒。在一些具體例中,病毒在Vero細胞上經歷了約3、4、5、6、7、8、9、10、11、12、13、14或15次連續繼代。
依據「繼代」,可以理解病毒在Vero細胞中經歷至少一個複製循環的任何步驟,特別是病毒在Vero細胞中的轉染,擴增或選殖的任何步驟。
如本文所用,詞句「減毒活黃熱病病毒」具有習於技藝者熟知的常見含義。在一些具體例中,這個詞句是指具有神經毒力減弱及/或親內臟性減弱的活黃熱病病毒。
在本發明的範疇內,術語「神經毒力」欲意指病毒穿過血腦屏障的能力(神經侵襲性)、在腦組織中複製的能力(親神經性),以及造成發炎、神經元損傷和腦炎的能力(嚴格來說為神經毒力)。
在本發明的範疇內,術語「親內臟性(viscerotropism)」意指病毒在神經外組織中複製、引起病毒血症和損害重要器官(包括肝臟)的能力(Monath,2005)。
在一些具體例中,該減毒活黃熱病病毒至少如現有商業化減毒活黃熱病疫苗病毒株(例如Stamaril®或YF-VAX®)一樣減弱。
在一些具體例中,該減毒活黃熱病病毒具有至少如現有商業化減毒活黃熱病疫苗病毒株(例如Stamaril®或YF-VAX®)之一般減弱的神經毒力。
在一些具體例中,該減毒活黃熱病病毒具有至少如現有商業化減毒活黃熱病疫苗病毒株(例如Stamaril®或YF-VAX®)之一般減弱的親內臟性。
在一些具體例中,該減毒活黃熱病病毒具有至少如現有商業化減毒活黃熱病疫苗病毒株(例如Stamaril®或YF-VAX®)之一般減弱的神經毒力以及親內臟性。
術語「包含(comprising/comprises/comprise/comprised)」分別含括「包括(including/includes/include/included)」還有「組成(consisting/consists/consist/consisted)」,例如「含有」組份X的組成物可能僅由組份X組成,或可能包括一或多種額外組份,例如組份X與組份Y。
如本文所用,「CCID50」意指細胞培養物感染劑量50%,亦即在經接種複製細胞培養物中,足以導致50%細胞病變作用的數量,如在單層細胞培養物中的終點稀釋分析所測定。
遵循世界衛生組織(WHO)的標準定義,本發明引用下列定義(WHO技術報導系列,第872號,1998)。
「主要種批」(「MSL」)或「首要種批」,如本文所用,意指病毒懸浮物的數量,其已在單次生產作業中經過加工處理且具有均勻的組成。
「工作種批」(「WSL」)或「次要種批」,如本文所用,意指病毒懸浮物的數量,其已在單次生產作業中經過加工處理且具有均勻的組成、經充分特徵鑑定且是來自MSL的單一繼代。在本發明的範疇內,取自WSL的材料在製備疫苗時用於接種受精蛋,或適當的細胞株。
「溶菌斑形成單位」(PFU)如本文所用,意指將在單層細胞培養物中產生溶菌斑的最少量病毒懸浮物。
「中位小鼠致死劑量」(小鼠LD50或MLD50)如本文所用,意指將會殺死注射其之50%小鼠的病毒懸浮物數量。
適應在Vero細胞上生長的減毒活YFV(又稱為適合Vero細胞的YF病毒「vVF病毒」)
在一個態樣中,本發明是有關於一種適應在Vero細胞上生長的減毒活YFV病毒株,其來自不適應在Vero細胞上生長的親代黃熱病病毒17D亞株。在不同具體例中,該減毒活黃熱病病毒株的神經毒力不如其親代黃熱病病毒17D亞株。
在一些具體例中,親代黃熱病病毒株是適應在蛋上生長的減毒活黃熱病病毒株。
在一些具體例中,蛋為受精蛋。
「17D亞株」是在其祖先中具有17D病毒株的黃熱病病毒株。
「17D病毒株」具有習於技藝者所熟知的常見含意。在一些具體例中,「17D病毒株」意指從在1927年於迦納的溫和人類病例「Asibi先生」分離而來,並且如Monath(2005)中所述在碎小鼠胚胎組織中繼代18次,然後在碎雞胚胎組織中繼代58次的黃熱病病毒株。
在一些具體例中,17D亞株含括如Monath(2005)中所述的17D-204亞株、17DD亞株,及/或17D-213亞株。在一個例示性具體例中,YFV 17D-204病毒株的RNA序列(Genbank登錄號X03700)如Rice et al.先前在1985所揭示,可由RNA序列SEQ ID NO.1表示。
在一些具體例中,親代黃熱病病毒株為黃熱病病毒17D-204亞株。
在一些具體例中,親代YFV病毒株為YFV 17D-204衍生的YF-VAX®病毒株,用於商業化疫苗YF-VAX®中的參考YFV病毒株。
在一個例示性具體例中,YFV 17D-204衍生的YF-VAX®的RNA序列可由RNA序列SEQ ID NO.2表示。
在一些具體例中,親代YFV病毒株為YFV 17D-204衍生的Stamaril®病毒株,用於商業化疫苗Stamaril®中的參考YFV病毒株。
在一個例示性具體例中,YFV 17D-204衍生的Stamaril®病毒株的RNA序列可由RNA序列SEQ ID NO.3表示。
在一個例示性具體例中,親代黃熱病病毒17D亞株包含SEQ ID NO.2的RNA序列。
在一個例示性具體例中,親代黃熱病病毒17D亞株包含SEQ ID NO.3的RNA序列。
在一個例示性具體例中,YFV 17D-213病毒株的RNA序列(Genbank登錄號U17067)如Santos et al.先前在1995所揭示,可由RNA序列SEQ ID NO.4表示,而YFV 17DD病毒株的RNA序列(Genbank登錄號U17066)亦如Dos Santos et al.先前在1995所揭示,可由RNA序列SEQ ID NO.5表示。
在一個例示性具體例中,Asibi病毒株的RNA序列(Genbank登錄號KF769016)可由RNA序列SEQ ID NO.6表示。
在一些具體例中,減毒活黃熱病病毒株於小鼠致死劑量50(MLD50)測試中的神經毒力不如親代黃熱病病毒17D-亞株。
在一些具體例中,依據WHO技術報導系列第872號1998的第68頁中所揭示(以引用的方式併入)實施適當的小鼠致死劑量50(MLD50)測試。
在本發明的範疇內,MLD50是估算在經腦內接種小鼠的50%中產生致命、特異性腦炎的病毒懸浮物數量。
在一些具體例中,經還原疫苗的適當連續稀釋是在磷酸鹽緩衝液、0.75%血清白蛋白中進行。
在一個例示性具體例中,在麻醉的情況下以即用疫苗稀釋液腦內注射4-6週大的小鼠。每個稀釋度使用至少6隻小鼠為一組,而連續稀釋理應在接種之後產生範圍在0-100%的死亡率。在21天的時間區間內紀錄死亡發生。因為不相干原因而死亡的小鼠被剔出死亡計算的分子以及分母。在第二十一天癱瘓的小鼠計入存活。
在某些具體例中,在小鼠致死劑量50(MLD50)測試中的神經毒力可依據參數log10MLD50/mL來測量。
在一些具體例中,依據本發明的減毒活YFV病毒株在小鼠致死劑量50(MLD50)測試中達到低於或等於4、低於或等於3.5、低於或等於3,或低於或等於2.5的log10MLD50/mL。
在一個具體例中,依據本發明的減毒活黃熱病病毒株適應在Vero細胞上生長、神經毒力不如其親代黃熱病病毒17D亞株且親內臟性至少與其親代黃熱病病毒17D亞株一樣減弱。
在一個具體例中,依據本發明之減毒活黃熱病病毒株適應在Vero細胞上生長、神經毒力不如其親代黃熱病病毒17D亞株、親內臟性至少與其親代黃熱病病毒17D亞株一樣減弱,且免疫原性至少與其親代黃熱病病毒17D亞株一樣。
在不同具體例中,本發明提供減毒活YFV病毒株,其包含RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4,或SEQ ID NO.5,其中一或多個核苷酸經突變。
在本發明的範疇內,詞句「一或多個核苷酸」意欲含括2、3、4、5或更多個核苷酸。
換言之,詞句「一或多個核苷酸」意欲含括1個核苷酸、2、3、4、5、6、7、8、9、10、11、12、13、14與15或更多個核苷酸。
在一些具體例中,突變為核苷酸置換。
在一些其他具體例中,突變不含括核苷酸插入以及核苷酸缺失。
在一些具體例中,核苷酸置換為沉默的。或者,核苷酸置換可能促使胺基酸置換。
在一個具體例中,RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5中的兩個核苷酸突變。
在另一個具體例中,RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5中的三個核苷酸突變。
在又一個具體例中,RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5中的四個核苷酸突變。
在又一個具體例中,RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5中的五個核苷酸突變。
本發明的另一個態樣是有關於減毒活黃熱病病毒株,其包含選自SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5的RNA序列,其中至少在位置2411、位置3701或位置6496處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5的RNA序列,其中至少在位置2411處的核苷酸以及在位置3701處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5的RNA序列,其中至少在位置2411處的核苷酸以及在位置6496處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5的RNA序列,其中至少在位置3701處的核苷酸以及在位置6496處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5的RNA序列,其中至少在位置2411處的核苷酸、在位置3701處的核苷酸以及在位置6496處的核苷酸突變。
在某些具體例中,在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置2411處的核苷酸G(鳥苷)被核苷酸U(尿苷)所取代。
在某些具體例中,在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置3701處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代。
在某些具體例中,在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置6496處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代。
在一些具體例中,減毒活YFV病毒株的特徵如下:-(i)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置2411處的核苷酸G(鳥苷)被核苷酸U(尿苷)所取代,以及 -(ii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置3701處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代。
在一些其他具體例中,減毒活YFV病毒株的特徵如下:-(i)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置2411處的核苷酸G(鳥苷)被核苷酸U(尿苷)所取代,以及-(ii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置6496處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代。
在一些其他具體例中,減毒活YFV病毒株的特徵如下:-(i)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置3701處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代,以及-(ii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置6496處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代。
在某些具體例中,減毒活YFV病毒株的特徵如下:-(i)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置2411處的核苷酸G(鳥苷)被核苷酸U(尿苷)所取代,-(ii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置3701處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代;以及-(iii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置6496處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代。
在一些具體例中,減毒活YFV病毒株進一步包含一個位在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置1408處的突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之群的RNA序列,其中至少在位置1408處的核苷酸與在位置2411處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5之群的RNA序列,其中至少在位置1408處的核苷酸與在位置3701處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5之群的RNA序列,其中至少在位置1408處的核苷酸與在位置6496處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5之群的RNA序列,其中至少在位置1408處的核苷酸、在位置2411處的核苷酸與在位置3701處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5之群的RNA序列,其中至少在位置1408處的核苷酸、在位置2411處的核苷酸與在位置6496處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5之群的RNA序列,其中至少在位置1408處的核苷酸、在位置3701處的核苷酸與在位置6496處的核苷酸突變。
在一些具體例中,減毒活YFV病毒株包含選自含有SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5之群 的RNA序列,其中至少在位置1408處的核苷酸、在位置2411處的核苷酸、在位置3701處的核苷酸與在位置6496處的核苷酸突變。
在一些具體例中,SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置1408處的核苷酸A(腺苷)被核苷酸U(尿苷)所取代。
在某些具體例中,減毒活YFV病毒株的特徵如下:-(i)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置2411處的核苷酸G(鳥苷)被核苷酸U(尿苷)所取代,-(ii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置3701處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代;-(iii)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置6496處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代;以及-(iv)在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之位置1408處的核苷酸A(腺苷)被核苷酸U(尿苷)所取代。
在一些具體例中,依據本發明之減毒活YFV病毒株包含選自SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4及SEQ ID NO.5的RNA序列,其中在位置2411、3701、6496以及視情況1408處的至少一或多個核苷酸突變,前提為沒有核苷酸是以回復成Asibi基因型(其可由RNA序列SEQ ID NO.6表示)的方式突變。換言之,若SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5中的核苷酸不同於Asibi基因體(SEQ ID NO.6內)中相同位置處的核苷酸,則在依據本發明之減毒活YFV病毒株之RNA序列的這個核苷酸不以變成在Asibi基因體(SEQ ID NO.6內)中相同位置處之核苷酸的方式突變。SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5的核苷酸(不同於在Asibi基因體(SEQ ID NO.6內)中相同位置處之核苷酸)可在SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO. 3、SEQ ID NO.4或SEQ ID NO.5與Asibi序列(SEQ ID NO.6)之間透過序列比對來簡單地鑑定(Needleman and Wunsch,(1970))。
在一些具體例中,依據本發明之減毒活YFV病毒株包含含有SEQ ID NO.2的RNA序列,其中在位置2411、3701、6496以及視情況1408處的至少一或多個核苷酸突變,前提為在SEQ ID NO.2的下列位置處的核苷酸不以回復成Asibi基因型(SEQ ID NO.6)的方式突變:304、370、854、883、1127、1140、1431、1482、1491、1572、1750、1819、1870、1887、1946、1965、2112、2193、2219、2356、2687、3371、3613、3817、3860、3925、4007、4013、4022、4054、4056、4289、4387、4505、4507、4612、4864、4873、5153、5194、5362、5431、5473、5926、6023、6448、6876、7171、7496、7571、7580、7642、7701、7945、8008、8629、10142、10285、10312、10338、10367、10418、10550以及10800。
Figure 108111634-A0202-12-0017-2
Figure 108111634-A0202-12-0018-3
在一些具體例中,依據本發明之減毒活YFV病毒株包含RNA序列SEQ ID NO.7。有利地,依據本發明之減毒活YFV病毒株包含與SEQ ID NO.7差異達一個有限數量的突變(例如不超過5個、不超過4個、不超過3個或不超過2個突變)的RNA序列。有利地,依據本發明之減毒活YFV病毒株 包含與SEQ ID NO.7差異達一個有限數量的突變(例如不超過5個、不超過4個、不超過3個或不超過2個突變)的RNA序列,前提為沒有核苷酸以回復成Asibi基因型的方式突變。在一個例示性具體例中,依據本發明之減毒活YFV病毒株的基因體RNA序列可由核苷酸序列SEQ ID NO.7組成。
在一些具體例中,依據本發明之減毒活YFV病毒株包含RNA序列SEQ ID NO.8。有利地,依據本發明之減毒活YFV病毒株包含與SEQ ID NO.8差異達一個有限數量的突變(例如不超過5個、不超過4個、不超過3個或不超過2個突變)的RNA序列。有利地,依據本發明之減毒活YFV病毒株包含與SEQ ID NO.8差異達一個有限數量的突變(例如不超過5個、不超過4個、不超過3個或不超過2個突變)的RNA序列,前提為沒有核苷酸以回復成Asibi基因型的方式突變。在一個例示性具體例中,依據本發明之減毒活YFV病毒株的基因體RNA序列可由核苷酸序列SEQ ID NO.8組成。
如上所述,YFV核酸編碼11個蛋白質,如下:-衣殼蛋白(C蛋白),其前驅物的長度為121aa,而成熟蛋白質的長度為101aa,-長度為164aa的前膜蛋白(prM蛋白),其是長度為75aa之膜蛋白(M蛋白)的前驅物,-外膜蛋白(E蛋白),其長度為493aa,-非結構蛋白1(NS1),其長度為352aa,-非結構蛋白2a(NS2a),其長度為224aa,-非結構蛋白2b(NS2b),其長度為130aa,-非結構蛋白3(NS3),其長度為623aa,-非結構蛋白4a(NS4a),其長度為126aa,-非結構肽P2k,其長度為23aa,-非結構蛋白4b(NS4b),且其長度為250aa,-非結構蛋白5(NS5),其長度為905aa。
在一些具體例中,減毒活黃熱病病毒株包含含有下列突變的核酸:在外膜蛋白(E)之位置480處的胺基酸密碼子突變、在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變、在非結構蛋白4A(NS4a)之位置19 處的胺基酸密碼子突變,及/或外膜蛋白(E)之位置145處的胺基酸密碼子突變。
在一些具體例中,減毒活黃熱病病毒株包含含有下列突變的核酸:在外膜蛋白(E)之位置480處的胺基酸密碼子突變以及在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變。
在一些具體例中,減毒活黃熱病病毒株包含含有下列突變的核酸:在外膜蛋白(E)之位置480處的胺基酸密碼子突變、在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變以及在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變。
在一些具體例中,減毒活黃熱病病毒株包含含有下列突變的核酸:在外膜蛋白(E)之位置480處的胺基酸密碼子突變、在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變、在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變,及/或外膜蛋白(E)之位置145處的胺基酸密碼子突變。
在一些具體例中,減毒活黃熱病病毒株包含含有下列的核酸:i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸,或ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸。
在一些具體例中,依據本發明之減毒活黃熱病病毒株包含含有下列的核酸:i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸,及ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸。
在一些具體例中,核酸進一步包含在非結構蛋白2A(NS2a)之位置19處的胺基酸密碼子突變,其造成密碼子從AAA變成AAG。
在一些具體例中,外膜蛋白(E)之位置480處的胺基酸密碼子突變造成密碼子從GUA變成UUA、UUG、CUU、CUC、CUA或CUG。在一個具體例中,密碼子從GUA變成UUA。
在一些具體例中,非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變造成密碼子從AUG變成GUG、GUU、GUC或GUA。在一個具體例中,密碼子從AUG變成GUG。
在一些具體例中,核酸進一步包含在外膜蛋白(E)之位置145處的胺基酸密碼子突變,其造成密碼子從GUA變成GUU。
在一些具體例中,依據本發明之減毒活黃熱病病毒株包含含有下列的核酸:i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸;ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸;及iii)在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變,其造成密碼子從AAA變成AAG。
在一些具體例中,依據本發明之減毒活黃熱病病毒株包含含有下列的核酸:i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸;ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸;iii)在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變,其造成密碼子從AAA變成AAG;及iv)在外膜蛋白(E)之位置145處的胺基酸密碼子突變,其造成密碼子從GUA變成GUU。
在一些具體例中,減毒活黃熱病病毒株包含含有在位置480處之突變的外膜蛋白。具體來說,依據本發明之減毒活黃熱病病毒株包含在位置480處之突變的外膜蛋白,該突變造成胺基酸從纈胺酸變成白胺酸。
在一些具體例中,減毒活黃熱病病毒株包含在對應於SEQ ID NO.15之位置480的蛋白質內的位置處含有白胺酸殘基的外膜蛋白。具體來說,該外膜蛋白包含與SEQ ID NO.15的序列至少90%、95%、98%或100%一致的序列。
具體來說,在本發明減毒活黃熱病病毒株的核酸中,沒有核苷酸是以回復成Asibi基因型(SEQ ID NO.6)的方式突變。例如減毒活黃熱病病毒株的核酸在SEQ ID NO.2中的下列位置處的核苷酸不包含呈回復成Asibi基因型(SEQ ID NO.6)之方式的突變:304、370、854、883、1127、1140、1431、1482、1491、1572、1750、1819、1870、1887、1946、1965、2112、2193、2219、2356、2687、3371、3613、3817、3860、3925、4007、4013、4022、4054、4056、4289、4387、4505、4507、4612、4864、4873、5153、5194、5362、5431、5473、5926、6023、6448、6876、7171、7496、7571、7580、7642、7701、7945、8008、8629、10142、10285、10312、10338、10367、10418,10550以及10800。
在一些具體例中,減毒活黃熱病病毒株包含編碼下列的核酸分子:(i)在位置480處包含突變的外膜蛋白,以及(ii)在位置65處包含突變的NS2a蛋白。
具體來說,減毒活黃熱病病毒的核酸分子進一步包含一個在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變及/或依個在外膜蛋白(E)之位置145處的胺基酸密碼子突變。
在一些具體例中,依據本發明之減毒活黃熱病病毒株包含編碼下列的核酸分子:(i)在位置480處包含突變的外膜蛋白,該突變造成胺基酸從纈胺酸變成白胺酸,以及(ii)在位置65處包含突變的NS2a蛋白,該突變造成胺基酸從甲硫胺酸變成纈胺酸。
具體來說,核酸分子進一步包含一個在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變(其造成密碼子從AAA變成AAG),及/或一 個在外膜蛋白(E)之位置145處的胺基酸密碼子突變(其造成密碼子從GUA變成GUU)。
具體來說,在本發明減毒活黃熱病病毒株的核酸中,沒有核苷酸是以回復成Asibi基因型(SEQ ID NO.6)的方式突變。例如減毒活黃熱病病毒株的核酸在SEQ ID NO.2中的下列位置處的核苷酸不包含呈回復成Asibi基因型(SEQ ID NO.6)之方式的突變:304、370、854、883、1127、1140、1431、1482、1491、1572、1750、1819、1870、1887、1946、1965、2112、2193、2219、2356、2687、3371、3613、3817、3860、3925、4007、4013、4022、4054、4056、4289、4387、4505、4507、4612、4864、4873、5153、5194、5362、5431、5473、5926、6023、6448、6876、7171、7496、7571、7580、7642、7701、7945、8008、8629、10142、10285、10312、10338、10367、10418,10550及10800。
在一些具體例中,依據本發明之減毒活黃熱病病毒株包含編碼下列的核酸分子:(i)在對應於SEQ ID NO.15之位置480的蛋白質內的位置處包含白胺酸殘基的外膜蛋白,以及(ii)在對應於SEQ ID NO.16之位置65的蛋白質內的位置處包含纈胺酸殘基的NS2a蛋白。
具體來說,該外膜蛋白包含與SEQ ID NO.15的序列至少90%、95%、98%或100%一致的序列,而該NS2a蛋白包含與SEQ ID NO.16的序列至少90%、95%、98%或100%一致的序列。
在對應於SEQ ID NO.17之位置57的編碼非結構蛋白4A(NS4a)的核酸內的位置處,本發明減毒活黃熱病病毒株的核酸可進一步包含一個G核苷酸,及/或在對應於SEQ ID NO.18之位置435的編碼外膜蛋白(E)的核酸內的位置處,本發明減毒活黃熱病病毒株的核酸可進一步包含一個U核苷酸。具體來說,本發明減毒活黃熱病病毒株可包含含有下列的核酸分子:編碼非結構蛋白4A(NS4a)之核酸(其含有與SEQ ID NO.17的序列至少90%、95%、98%或100%一致的序列),及/或編碼外膜蛋白(E)之核酸(其含有與SEQ ID NO.18的序列至少90%、95%、98%或100%一致的序列)。
具體來說,在本發明減毒活黃熱病病毒株的核酸中,沒有核苷酸是以回復成Asibi基因型(SEQ ID NO.6)的方式突變。例如,減毒活黃熱病病毒株的核酸在SEQ ID NO.2中的下列位置處的核苷酸不包含會回復成Asibi基因型(SEQ ID NO.6)的突變:304、370、854、883、1127、1140、1431、1482、1491、1572、1750、1819、1870、1887、1946、1965、2112、2193、2219、2356、2687、3371、3613、3817、3860、3925、4007、4013、4022、4054、4056、4289、4387、4505、4507、4612、4864、4873、5153、5194、5362、5431、5473、5926、6023、6448、6876、7171、7496、7571、7580、7642、7701、7945、8008、8629、10142、10285、10312、10338、10367、10418,10550及10800。
在一些具體例中,核酸包含17D亞株的RNA序列,其包含如上文所述依據本發明之突變。
在一些具體例中,核酸包含17D-204亞株的RNA序列,其包含如上文所述依據本發明之突變。
在一些具體例中,核酸包含RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5,其包含如上文所述依據本發明之突變。
在一個例示性具體例中,核酸包含RNA序列SEQ ID NO.2,其包含如上文所述依據本發明之突變。
如同在下面實例章節中所示,上文定義的突變容許提供適應在VERO細胞上生長的YFV病毒株,且其毒性相較於親代YFV病毒株有所減弱(諸如神經毒力減弱),且其毒性與那些作為疫苗或疫苗組成物中使用者不相上下。在一個具體例中,上文定義的突變容許提供適應在VERO細胞上生長的YFV病毒株,且其神經毒力較於親代YFV病毒株更弱,且親內臟性相較於親代YFV病毒株至少有減弱。在一個具體例中,上文定義的突變容許提供適應在VERO細胞上生長的YFV病毒株,且其神經毒力較於親代YFV病毒株更弱、親內臟性相較於親代YFV病毒株至少有減弱,以及免疫原性相較於親代YFV病毒株至少相同。
免疫原性、疫苗以及醫藥組成物
在另一個態樣中,本發明是有關於一種免疫原性組成物,其包含依據本發明之減毒活YFV病毒株。
在本發明的範疇內,術語「免疫原性」意指組成物引起抗體媒介及/或細胞媒介之免疫性及/或免疫記憶的能力。
在一些具體例中,可採用免疫原性組成物以產生對抗黃熱病病毒的中和抗體。
在另一個態樣中,本發明進一步是有關於一種免疫原性組成物,其包含依據本發明之減毒活黃熱病病毒株以及醫藥上可接受媒劑。
在一些具體例中,本發明亦有關於一種包含依據本發明之減毒活黃熱病病毒株的疫苗組成物,及/或一種包含依據本發明之免疫原性組成物的疫苗組成物。
在一些具體例中,疫苗組成物可不包含任何佐劑。
在本發明的範疇內,「佐劑」意指任何希望提高疫苗之相關免疫反應以及後續臨床效力的物質。
或者,疫苗組成物可進一步包含一或多種佐劑。
在一些具體例中,佐劑可包括礦物鹽、乳液、微生物天然或合成衍生物、組合佐劑、細胞介素衍生或輔助分子衍生的佐劑、顆粒調配物以及類似物。佐劑的製備以及使用為技藝中所熟知。
在一些具體例中,本發明提供一種免疫原性組成物,其包含如本文所述之減毒活YFV病毒株以及醫藥上可接受載劑。
在一些具體例中,本發明提供一種醫藥組成物,其包含如本文所述之減毒活YFV病毒株以及醫藥上可接受載劑。
在本發明的上下文中,詞句「醫藥上可接受媒劑」意指一種就投藥給人類來說為生理學上可接受,同時維持依據本發明之免疫原性組成物的生理學活性(亦即,其引起免疫反應的能力)的媒劑。一個例示性醫藥上可接受媒劑為生理食鹽水緩衝液。其他生理學上可接受媒劑為習於技藝者所熟知,且描述於例如Remington’s Pharmaceutical Sciences(18th edition),ed.A.Gennaro,1990,Mack Publishing Company,Easton,Pa.中。若需要的話,如本文所述的免疫原性組成物可視情況含有醫藥上可接受輔助物質以接近 生理條件,諸如pH調節劑與緩衝劑、張力調節劑、濕潤劑與類似者。此外,疫苗組成物可視情況包含醫藥上可接受添加劑,包括(例如)稀釋劑、黏合劑、安定劑與防腐劑。
在不同具體例中,免疫原性組成物的pH介於5.5與8,諸如介於6.5與7.5(例如約7)。可透過使用緩衝劑來維持穩定的pH。因此,在一些具體例中,免疫原性組成物包括緩衝劑。免疫原性組成物可能對人類為等張的。免疫原性組成物也可以包含一或數種額外鹽類,諸如NaCl。醫藥上可接受載劑的製備以及用途為技藝中所熟知。
在實務上,包含依據本發明之減毒活YFV病毒株的免疫原性組成物及/或疫苗組成物及/或醫藥組成物可使用技藝中的習知與良好操作來製備。
在一些具體例中,依據本發明之免疫原性組成物、疫苗組成物及/或醫藥組成物可包含一或多種適當的稀釋劑及/或賦形劑。
在不同具體例中,醫藥組成物、免疫原性組成物以及疫苗組成物也可以透過習知滅菌技術予以滅菌,或可以經無菌過濾。所得水性溶液可以呈液體形式或經凍乾來包裝並且儲存,經凍乾製品可以使用無菌水性載劑在投藥之前予以還原。在一個例示性具體例中,醫藥組成物、免疫原性組成物以及疫苗組成物可經由如WO 2009/109550中所述的製粒製程以微珠包裝與儲存。在一個具體例中,醫藥組成物、免疫原性組成物及/或疫苗組成物經凍乾或噴霧冷凍乾燥。
獲得減毒活YFV病毒株的方法
本發明的又一個態樣是有關於一種獲得適應在Vero細胞上生長的減毒活黃熱病病毒株的方法,包含下列步驟:-a)純化親代減毒活黃熱病病毒株的病毒基因體RNA,該親代減毒活黃熱病病毒株不適應在Vero細胞上生長,且視情況適應在蛋上生長;-b)用步驟a)中純化的病毒基因體RNA轉染Vero細胞,從而獲得經轉染Vero細胞;-c)在培養基中培育步驟b)中獲得的經轉染Vero細胞,從而獲得第一黃熱病病毒群並進一步回收; -d)在新鮮Vero細胞上將在步驟c)結束時獲得的經回收第一黃熱病病毒群擴增2次或更多次,從而獲得第二黃熱病病毒群;-e)在Vero細胞上藉由兩個或更多個連續溶菌斑純化,對在步驟d)中獲得的第二黃熱病病毒群進行選殖,從而獲得複數個黃熱病病毒選殖株;-f)在新鮮Vero細胞上將在步驟e)結束時獲得的每一個回收黃熱病病毒選殖株個別擴增2次或更多次,從而獲得複數個黃熱病病毒株;以及-g)從在步驟f)中回收的該複數個黃熱病病毒株挑選出一或多個減毒活黃熱病病毒株,其在小鼠致死劑量50(MLD50)測試中的神經毒力不如親代減毒活黃熱病病毒株。
在一些具體例中,上文本發明方法的步驟d)進行2、3、4、5、6或更多次。在一些具體例中,上文本發明方法的步驟e)中的選殖是在Vero細胞上進行2、3、4、5、6或更多次連續溶菌斑純化。在一些具體例中,上文本發明方法的步驟f)進行行2、3、4、5、6或更多次。
本發明的又一個態樣是有關於一種獲得適應在Vero細胞上生長之減毒活黃熱病病毒株的方法,包含下列步驟:a)純化親代減毒活黃熱病病毒株的病毒基因體RNA,該親代減毒活黃熱病病毒株不適應在Vero細胞上生長,且視情況適應在蛋上生長;b)用在步驟a)中純化的病毒基因體RNA轉染Vero細胞,從而獲得經轉染Vero細胞;c)在培養基中培育步驟b)中獲得的經轉染Vero細胞,從而獲得第一黃熱病病毒群並進一步回收;d)在新鮮Vero細胞上將在步驟c)結束時獲得的經回收第一黃熱病病毒群擴增2次或更多次,從而獲得第二黃熱病病毒群;e)在Vero細胞上藉由兩個或更多個連續溶菌斑純化,對在步驟d)中獲得的第二黃熱病病毒群進行選殖,從而獲得複數個黃熱病病毒選殖株;f)在新鮮Vero細胞上將在步驟e)結束時獲得的每一個經回收黃熱病病毒個別擴增2次或更多次,從而獲得複數個黃熱病病毒株;以及g)從在步驟f)中回收的該複數個黃熱病病毒株挑選出一或多個減毒活黃熱病病毒株,該一或多個減毒活黃熱病病毒株包含含有下列的核酸: i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸,或ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸。此等篩選可利用技藝中所熟知的定序方法來簡單進行。
在一些具體例中,步驟g)可包含挑選出一或多個減毒活黃熱病病毒株,該一或多個減毒活黃熱病病毒株包含含有下列的核酸:i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸,及ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸。
在一些具體例中,步驟g)可包含挑選出一或多個如上文所述的減毒活黃熱病病毒株,該一或多個減毒活黃熱病病毒株包含進一步含有下列的核酸:非結構蛋白4A(NS4a)的位置19處的胺基酸密碼子突變,其造成密碼子從AAA變成AAG。
在一些具體例中,步驟g)可包含挑選出一或多個如上文所述的減毒活黃熱病病毒株,該一或多個減毒活黃熱病病毒株包含進一步含有下列的核酸:外膜蛋白(E)的位置145處的胺基酸密碼子突變,其造成密碼子從GUA變成GUU。
在一些具體例中,步驟g)可包含挑選出一或多個減毒活黃熱病病毒株,該一或多個減毒活黃熱病病毒株包含含有下列的核酸:i)在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸,ii)在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸,iii)在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變,其造成密碼子從AAA變成AAG,及/或iv)在外膜蛋白(E)之位置145處的胺基酸密碼子突變,其造成密碼子從GUA變成GUU。
在一個具體例中,步驟a)的親代減毒活黃熱病病毒株是黃熱病17D亞株,諸如黃熱病17D-204亞株。
在實務上,Vero細胞可在細胞保存中心取得,諸如ATCC。適於在活體外細胞培養物中培育Vero細胞的方法為習於技藝者所熟知(Kolell K.et al.2007),包括使用無血清培養基的方法。在一個具體例中,在任何病毒培養之前,Vero細胞適於靠無血清培養基培育。
在一些具體例中,用於培育Vero細胞的培養基不含血清,且視情況不含任何人類或動物衍生的物質。
在本發明的範疇內,詞句「人類或動物衍生的物質」意指源自人類或非人類動物的物質(諸如蛋白質、脂質、糖蛋白、脂蛋白、糖脂質、單糖或多糖),例如得自(例如萃取自)人類或非人類動物的生長因子、激素。重組分子不被認為是人類或動物衍生的物質。此等不含血清的培養基及/或不含人類或動物衍生物質的培養基可容易在供應商目錄(例如THERMOFISHER SCIENTIFIC®目錄)中取得。
在一些具體例中,用來培育Vero細胞的培養基也不含抗生素。
在一些具體例中,用來培育Vero細胞的培養基可含有一或多種源自細菌、酵母及/或植物的萃取物。
在一些具體例中,不適應在Vero細胞上生長之親代減毒活黃熱病病毒株的基因體可呈編碼基因體RNA的cDNA形式。
在某些具體例中,cDNA是由適當載體攜帶,諸如質體。
在一些其他態樣中,本發明是有關於一種載體,其包含含有RNA序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5的核酸,其中存在本文所述的突變(等)。
在一些其他態樣中,本發明是有關於一種載體,其包含含有對應於序列SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5的cDNA序列的核酸,其中存在本文所述的突變(等)。
在又一個態樣中,依據本發明之減毒活黃熱病病毒株是透過使黃熱病病毒的基因體序列突變,以便在該基因體序列中引入本發明中所 述的突變而獲得。在一些具體例中,黃熱病17D亞株的基因體序列可經突變,以便在該基因體序列中引入本發明中所述的突變。在一些具體例中,包含SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5之RNA序列的核酸,或對應cDNA序列可經突變,以便引入在本發明中所述的突變。可透過定點誘變經由習於技藝者所熟知的方法將突變引入基因體序列中,包括使用任何適當的基因編輯技術。引入本發明中所述突變的基因體序列可以是編碼黃熱病病毒之基因體RNA的cDNA,諸如編碼黃熱病17D亞株之基因體RNA的cDNA,例如編碼SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4或SEQ ID NO.5的cDNA。在一些具體例中,cDNA是由適當的質體攜帶。可被引入黃熱病病毒之基因體序列中的本發明中所述突變是選自下列位置處的核苷酸突變:基因體序列的位置2411、位置3701或位置6496;或其任何組合。在一些具體例中,這些突變可包含在基因體序列的位置2411處的核苷酸G(鳥苷)被核苷酸U(尿苷)所取代、在基因體序列的位置3701處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代;或在基因體序列的位置6496處的核苷酸A(腺苷)被核苷酸G(鳥苷)所取代,或其任何組合。在一些具體例中,位在基因體序列的位置1408處引入又一個突變。在一些具體例中,這又一個突變是在基因體序列的位置1408處的核苷酸A(腺苷)被核苷酸U(尿苷)所取代。在一些具體例中,可將其他突變引入黃熱病病毒的基因體序列,前提為沒有核苷酸是以回復成Asibi基因型的方式突變。在另一個態樣中,可被引入黃熱病病毒之基因體序列中的本發明所述突變選自下列:在外膜蛋白(E)之位置480處的胺基酸密碼子突變,其造成胺基酸從纈胺酸變成白胺酸;在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變,其造成胺基酸從甲硫胺酸變成纈胺酸;或在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子突變,其造成密碼子從AAA變成AAG;或其任何組合。在一些具體例中,針對外膜蛋白(E)之位置145處的胺基酸密碼,引入又一個突變,其造成密碼子從GUA變成GUU。在一些具體例中,可將其他突變引入黃熱病病毒的基因體序列,前提為沒有核苷酸是以回復成Asibi基因型的方式突變。具體來說,可被引入黃熱病病毒之基因體序列中的本發明中所述突變為下列:在外膜蛋白(E)之位置480處的胺基酸密碼子突變 (其造成胺基酸從纈胺酸變成白胺酸),以及在非結構蛋白2A(NS2a)之位置65處的胺基酸密碼子突變(其造成胺基酸從甲硫胺酸變成纈胺酸)。
在又一個態樣中,本發明是有關於一種藉由依據本發明之方法獲得的減毒活黃熱病病毒株。
本文也揭示一種藉由依據本發明之方法獲得的減毒活黃熱病病毒株。
各種方法以及用途
本發明亦有關於一種免疫有需要之個體以對抗YFV感染的方法,該方法包含向該個體投與依據本發明之疫苗組成物。
在本發明之範疇內,詞句「有需要之個體」欲意指處在感染YFV風險下的個體。
本發明的又一個態樣是有關於依據本發明之減毒活YFV病毒株用於製備疫苗的用途。在一些具體例中,本發明亦有關於依據本發明之減毒活YFV病毒株做為pMSL、做為MSL或做為WSL的用途。具體來說,本發明亦有關於依據本發明之減毒活YFV病毒株在疫苗製備製程中做為pMSL、做為MSL或做為WSL的用途。
在另一個態樣中,本發明是有關於一種用於製備疫苗之依據本發明的減毒活YFV病毒株。
本發明的又再一個態樣是有關於一種用於預防YFV感染之依據本發明的疫苗組成物。
在一些具體例中,本發明是有關於一種在個體體內預防YFV感染的方法,包含向該個體投與有效量之依據本發明的減毒活YFV、免疫原性組成物、醫藥組成物或疫苗組成物。
在一些具體例中,本發明是有關於一種在個體體內產生中和抗體對抗黃熱病病毒的方法,包含向該個體投與有效量之依據本發明的減毒活YFV、免疫原性組成物、醫藥組成物或疫苗組成物。
在一些具體例中,本發明是有關於依據本發明之減毒活病毒用於製備預防YFV感染之藥物的用途。
在一些具體例中,本發明是有關於用於預防YFV感染之依據本發明的減毒活病毒。
在一些具體例中,本發明是有關於依據本發明之免疫原性組成物用於製備用以預防YFV感染之藥物的用途。
在一些具體例中,本發明是有關於依據本發明之免疫原性組成物用於製備用以預防YFV感染之疫苗組成物的用途。
在一些具體例中,本發明是有關於用以預防YFV感染之依據本發明的免疫原性組成物。
依據本發明之疫苗組成物以及免疫原性組成物可透過任何適當投藥途徑被投與給有需要的個體。
依據本發明之免疫原性組成物或疫苗可經由任何適當途徑投藥,諸如透過黏膜投藥(例如鼻內或舌下)、非經腸投藥(例如肌肉內、皮下、穿皮或皮內途徑),或經口途徑。如習於技藝者所知曉,本發明之疫苗適於調配成與預期投藥途徑相容。在例示性具體例中,本發明之組成物經肌肉內或皮下投藥。
依據本發明之疫苗可按數個劑量投藥。例如,依據本發明之疫苗可按一個、兩個或三個劑量投藥。在一個具體例中,依據本發明之疫苗按單一個劑量投藥。
依據本發明之疫苗可按技藝中具有通常技術者所決定的數量投藥。在一些具體例中,疫苗劑量介於4與6 log10CCID50
實例
實例1:藉由適應Vero細胞來製備減毒活YFV病毒株(前主要種批 (pMSL))
1.1/方法的選擇/原則
前主要種批(pMSL)的整體策略顯示於圖1中。
YF-VAX®和Stamaril®疫苗均由未經選殖的YF17D-204病毒株製品開發而來,並含有如依據溶菌斑大小表現型而觀察到的異源病毒群。此外,這兩種疫苗都是在蛋上生產的。
為了產生適合在Vero細胞上生長的同質、界定明確的病毒株,並確保最終pMSL中的無菌且不存在外來因子:-(1)純化YF-VAX®和Stamaril®病毒的病毒基因體RNA;-(2)然後轉染到Vero細胞中以回收黃熱病病毒,接著靠著Vero細胞擴增兩次,以使得病毒適應靠這個細胞基質生長;-(3)接而透過兩個溶菌斑純化循環來選殖病毒。為此目的,稀釋病毒製品以供感染Vero細胞並在半固體覆蓋下生長,以獲得充分分離的病毒溶菌斑。關於每次轉染,透過覆蓋物挑出2個個別的溶菌斑,各個溶菌斑對應於單一個病毒群,稀釋並用於第二個溶菌斑純化循環,產生病毒選殖株;-(4)接著擴增這些選殖株以獲得足夠的病毒原液而構成pMSL。
用於pMSL生產的所有培養基和溶液均不含動物和人類組分。
1.2/方法
1.2.1/YF-VAX®基因體cDNA的活體外轉錄
根據供應商的建議,用Message mMachineTM SP6 Kit(AMBION®,參照AM1340)進行來自YF-VAX®(質體pJSY2374.5,如WO 2014/016360中所揭示)的YFV基因體cDNA的活體外轉錄。從質體pJSY2374.5並行進行2次活體外轉錄。
簡言之,在室溫下解凍後,透過用限制酶NruI(30U/10μg)在37±2℃下消化2小時使得10μg質體變成線性。然後透過在65℃下培育20分鐘使酶不活化。藉由在0.5%瓊脂糖凝膠上電泳來驗證質體的線性化。製備包含套組的反應緩衝液、核糖核苷酸(ATP、CTP、UTP與GTP和7-甲基-GTP的混合物)、酶與1μg質體的40μL反應混合物。將所得混合物在37±2℃下培育2小時。
1.2.2/RNA純化
a)來自Stamaril®疫苗工作種批
並行進行兩次病毒RNA純化。
將四管Stamaril®疫苗的工作種批(lot # FA238667,感染效價6.38 log10 PFU/管)各自懸浮於200μl的RNeasy®套組(QIAGEN®)的溶解緩衝液中,然後合併。接著透過用苯酚/氯仿/異戊醇(125:24:1;pH 4.5)進行兩系列萃取來純化RNA。
將2mL Phase Lock Gel Heavy管(5PRIME®)以11,000×g離心30秒。將750μL RNA/溶解緩衝液混合物引入各管中。然後向每管加入等體積(750μl)的苯酚/氯仿/IAA溶液。在劇烈混合有機相和水相以形成均勻的瞬時懸浮液後,將管以11,000×g離心5分鐘以分離各相。然後回收上層相(水相)。在新的Phase Lock Gel 2mL管上繼續操作。然後用氯仿和異戊醇(24:1)的混合物再次進行操作以除去所有的微量苯酚。然後根據供應商的建議,透過使用RNeasy®套組(QIAGEN®)在矽膠管柱上純化來濃縮RNA並清除任何微量的有機溶劑。接著在無核酸酶水中溶析經純化的RNA。
b)來自YF-VAX®基因體cDNA的活體外轉錄
藉由4U的DNase在37±2℃下歷時15分鐘消除透過活體外轉錄獲得的RNA的質體DNA(見上文)。然後透過在70℃下培育10分鐘使SP6聚合酶不活化。
透過活體外轉錄獲得的RNA與60μl不含RNase水和來自RNeasy®套組(QIAGEN®)的350μl溶解緩衝液混合。然後透過用苯酚/氯仿/異戊醇(125:24:1;pH 4.5)進行兩系列萃取來純化RNA。為此,將Phase Lock Gel Heavy 1.5mL管以11,000×g離心30秒。將750μL的RNA/溶解緩衝液混合物引入各管中。然後向各管中加入等體積(750μl)的苯酚/氯仿/異戊醇溶液。在劇烈混合有機相和水相以形成均勻的瞬時懸浮液後,將管以11,000×g離心5分鐘以分離各相。然後回收上層相(水相)。在新的Phase Lock Gel 1.5mL管上繼續操作。然後用氯仿和異戊醇(24:1)的混合物再次進行操作以除去所有的微量苯酚。接著根據供應商的建議,使用RNeasy®套組(QIAGEN®)在矽膠管柱上純化RNA。然後用無核酸酶水溶析經純化的RNA。
1.2.3/轉染
對每個RNA純化並行進行兩次轉染。
a)製備RNA/LipofectamineTM混合物
將10或15μL的LipofectamineTM 2000 CD(LIFE TECHNOLOGIES®)與1mL的OptiPro SFM培養基(LIFE TECHNOLOGIES®)混合,並且在室溫下培育5分鐘。然後添加約10 log10Geq(如Mantel et al.(2008)中所述,基因體相等效價)的經純化RNA。在室溫下培育這些混合物10分鐘。
b)Vero細胞製備
在轉染之前,用每孔2mL OptiPro SFM培養基漂洗先前接種在6孔盤中之Sanofi Pasteur's GMP庫的無血清Vero細胞(每孔9.105個細胞於3mL的VP-SFM(THERMOFISHER SCIENTIFIC)中)。
c)轉染反應
於6孔盤中,在從細胞移除漂洗培養基後,針對每個製品將含有RNA的轉染混合物沉積在兩個孔(1mL/孔)中。使孔與不含RNA的OptiPro SFM/LipofectamineTM接觸,並將最後一個孔作為在單獨OptiPro SFM培養基中的細胞對照。並行製備兩個盤,一個盤含有10μl LipofectamineTM的混合物,而另一個含有15μl LipofectamineTM的混合物。將含有LipofectamineTM和RNA的混合物與Vero細胞在37±2℃、5±2% CO2下接觸4小時,然後向每孔加入2mL預熱的VP-SFM培養基。將6孔盤在37±2℃;5±2% CO2下培育歷時16小時。然後更換培養基並將盤再培育於37±2℃、5±2% CO2下。當細胞病變效應(細胞溶解)可見到時以及當透過培養物上清液的YF-NS5 qRT-PCR測定的基因體效價(如Mantel et al.(2008)中所述)大於8.0 log10Geq/mL時,收集轉染上清液。如果允許收穫所需的培養時間大於這些時間,則在D5和D8用新鮮培養基替換培養基。將收取的上清液分成等分試樣。
1.2.4/擴增病毒
a)擴增n°1(病毒繼代n°2)
在病毒擴增n°1前的兩天,將2.105個Vero細胞接種在含有5mL VP-SFM培養基的25cm2培養瓶中。然後將由轉染所得的病毒懸浮液稀釋在VP-SFM培養基,以獲得基因體倍數(m.o.g)為2(即每個細胞有2個Geq,由透過qRT-PCR獲得的RNA濃度估算)。移除先前接種的Vero細胞的培養基,並 使細胞與1mL的經稀釋病毒懸浮液或單獨1mL VP-SFM培養基(細胞對照)接觸。將培養瓶在37±2℃;5±2% CO2下培育2小時。然後除去病毒接種物並用10mL VP-SFM培養基替換,且將細胞在37±2℃;5±2% CO2下培育歷時2天。接著用預熱至37±2℃的新VP-SFM培養基更換培養基,並將培養瓶在37±2℃;5±2% CO2下再培育歷時2至3天。在總共培育4至5天後,回收含有病毒的培養物上清液。透過在4℃下以1200rpm離心10分鐘使病毒懸浮液澄清,然後以等分試樣分配。使用140μl的此病毒懸浮液用QiaAmp病毒微型套組(QIAGEN®;根據供應商的方案)萃取總RNA,並藉由YF-NS5 qRT-PCR定量病毒RNA(如Mantel et al.(2008)中所述)。
視病毒RNA效價而定,儲存一或多個等分試樣以進行第二擴增步驟(如果其在同一天進行),而其他等分試樣則在10%最終山梨糖醇存在下冷凍於
Figure 108111634-A0202-12-0036-116
-70℃下。
b)擴增n°2(病毒繼代n°3)
在病毒擴增n°2前的兩天,將5.105個Vero細胞接種在含有20mL VP-SFM培養基的75cm2培養瓶中。然後將來自第一次擴增的病毒懸浮液稀釋在VP-SFM培養基中,以便以m.o.g.為2的比率感染Vero細胞(即每個細胞的Geq,由透過qRT-PCR獲得的RNA濃度估算)。
進行擴增n°2的其他步驟如關於擴增n°1(參見上文章節a))所詳述。
c)病毒選殖-盤純化(病毒繼代4與5)
轉染和擴增後獲得的每個病毒懸浮液需要兩個6孔盤。
將擴增n°2後獲得的病毒懸浮液等分試樣稀釋,以獲得約2.0 log10 PFU/mL的懸浮液和1.7 log10 PFU/mL的懸浮液。觀察先前接種在6孔盤中的Vero細胞(每孔3mL VP-SFM中9.105個細胞)以供驗證細胞的完整性且沒有污染,然後移除培養基。關於每次稀釋,在每孔中用500μL經稀釋病毒(2.0 log10 PFU/mL或1.7 log10 PFU/mL稀釋液)感染盤的5個孔,並且細胞對照孔僅含有500μL的VP-SFM。將盤在37±2℃;5±2% CO2下培育2小時。然後移除接種物並用4mL覆蓋混合物(即預熱至42℃的VP-SFM 2X溶液)替換,且按照體積用2%瓊脂糖溶液臨時混合。在覆蓋混合物固化後,將盤以 相反位置(蓋子向下)在37±2℃;5±2% CO2下培育3至6天。每天觀察盤。只要出現細胞病變效應,第二個覆蓋混合物(與第一個相同,但進一步含有0.008%中性紅)被添加至每個孔(2mL),並將盤以相反位置於37±2℃;5±2% CO2下培育1至2天。
用病毒顆粒(選殖株)感染細胞在這些條件下仍然受限於緊鄰周圍細胞並引起局部溶解,在其他紅色細胞單層上產生富含病毒的白斑(溶解溶菌斑)。關於每個經擴增的病毒稀釋液,使用微量移液管和1000μL錐形體透過覆蓋培養基回收兩個選殖株。將由此獲得的病毒選殖株懸浮於1mL VP-SFM培養基中,然後劇烈混合。
將這些懸浮液中的每一者以1:2至1:200,000的級聯步驟稀釋,以進行第二系列的盤純化。在第二次選殖運行結束時,再次收取每個盤的兩個選殖株。獲得每個譜系最多16個選殖株,即來自Stamaril ®親代病毒株的16個選殖株和來自YF-VAX®親代病毒株的16個選殖株。
d)擴增n°3(病毒繼代n°6)
針對每個選殖株(至多32個),透過再懸浮於瓊脂糖中含有的病毒物質獲得的病毒懸浮液在VP-SFM中被稀釋1/4或1/2(取決於收集的溶菌斑大小)。
根據與擴增n°1相同的方案(參見上文章節a))進行擴增n°3。當細胞病變效應可見且qRT-PCR中的基因體效價超過8.0 log10 Geq/mL時,收取經擴增的病毒。
在總共培養4至5天後,回收含有病毒的培養物上清液並分成等分試樣。根據供應商的方案,使用140μL此病毒懸浮液用QiaAmp病毒微型套組(QIAGEN)萃取總RNA,並藉由YF-NS5 qRT-PCR定量病毒RNA(如Mantel et al.(2008)中所述)。視病毒RNA效價而定,保留一或多個等分試樣以進行第二擴增步驟(如果其在同一天進行),而其他等分試樣則在10%最終山梨糖醇存在下冷凍於
Figure 108111634-A0202-12-0037-117
-70℃下。
e)擴增n°4(病毒繼代n°7)
將由擴增n°3(參見上文章節d))得到的病毒懸浮液稀釋在VP-SFM培養基中,以便感染先前以m.o.g.為2的比率接種的Vero細胞,並根據與擴增n°2相同的方案進一步處理(見上文章節b))。
當細胞病變效應可見以及當qRT-PCR的基因體效價超過8.0 log10 Geq/mL時,收取轉染經擴增病毒。在總共培養4至5天後,回收上清液,透過在4℃以1200rpm離心10分鐘來澄清病毒懸浮液,然後在10%最終山梨糖醇存在下分成等分試樣冷凍於
Figure 108111634-A0202-12-0038-119
-70℃下。
由此獲得的病毒懸浮液用於進行感染效價和病毒基因體的定序。
根據以下標準,從每個譜系的這些數據中選出三個病毒株(即來自Stamaril®親代病毒株的三個TV2212、TV2232和TV2241病毒株,以及來自YF-VAX®親代病毒株的三個TV3111、TV3112和TV4221病毒株):感染效價
Figure 108111634-A0202-12-0038-121
6 log10 CCID50/mL和基因體序列不表現出回復成Asibi原有病毒株序列。
使用CCID50方法對Vero細胞進行病毒懸浮感染效價測定。簡言之,將病毒懸浮液從-4.6 log10至-8 log10連續4倍稀釋於96孔深盤的IMDM(THERMOFISHER SCIENTIFIC)+4% FCS中。對照病毒(在Vero細胞上擴增一次的Stamaril®病毒,批次MLE-JPO-000089)納入每個測試中做為陽性對照。將100微升的各個病毒稀釋液加入10個孔中,所述孔含有在分析前3天接種在平底96孔盤中的Vero細胞(8000個細胞/孔)。在+37℃、5% CO2下培育4天後,丟棄上清液,將細胞在-20±3℃下用150μL丙酮85%固定15分鐘,然後在用泛黃病毒E特異性4G2小鼠單株抗體(RD BIOTECH®,lot # 130726-4G2)以2μg/mL(稀釋度1/2,000)進行免疫染色前,用2.5%牛奶PBS-Tween緩衝液飽和。然後在用1/1000稀釋的山羊抗小鼠IgG鹼性磷酸酶綴合的抗體(CLINISCIENCES® SA,ref# 1030-04,lot # A7013-Z145),接著以鹼性磷酸酶受質(BCIP/NBT,SIGMA-ALDRICH,ref# B5655,lot SLBN0689V和左旋咪唑,SIGMA-ALDRICH,ref# L9756,lot # 091M1227V)培育後,顯露出經4G2抗體染色的感染點。
計數陽性孔,即含有至少一個染成黑色的溶菌斑的孔,並使用最小平方回歸法計算最終效價。
f)擴增n°5(病毒繼代n°8)-前主要候選物(pMSL)
將來自選自擴增n°4(參見上文章節e))的6個病毒株中的每一者的病毒懸浮液稀釋於VP-SFM培養基中,以便以0.01的m.o.i.感染Vero細胞。
在病毒擴增n°5前的兩天,將12.106個Vero細胞接種在含有30mL VP-SFM培養基的175cm2培養瓶中。如前所施行,移除培養基並用12mL的經稀釋病毒懸浮液或單獨VP-SFM(對照細胞)代替。將培養瓶在37±2℃;5±2% CO2下培育2小時期間。然後移除病毒接種物並用50mL VP-SFM培養基代替。將培養瓶在37±2℃;5±2% CO2下培育2天。然後用預熱至37±2℃的新鮮VP-SFM培養基更替培養基,並將燒瓶在37±2℃;5±2% CO2下再培養歷時1至3天。當細胞病變效應可見且qRT-PCR中的基因體效價超過8.0 log10 Geq/mL時,收取經擴增的病毒。
在總共培養3至5天後,回收上清液,透過在4℃以1200rpm離心10分鐘澄清病毒懸浮液,然後在10%最終山梨糖醇存在下分配成等分試樣冷凍於
Figure 108111634-A0202-12-0039-122
-70℃下。從6個選出的病毒株中獲得的擴增病毒構成6個候選pMSL。
實例2:候選物在小鼠模型中的神經毒力
2.1/pMSL候選物在小鼠模型中的神經毒力
如WHO TRS 872,附件2(1998)中所述,透過測定小鼠致死劑量50%(MLD50)來評估vYF(適應Vero細胞的黃熱病病毒)前主要種批(pMSL)候選物的神經毒力。
關於pMSL候選物的神經毒力研究,將8隻雌性OF1小鼠(接種時4週大)為一組藉由腦內途徑注射30μl的5-7種在0.4% NaCl 2.5%人類血清白蛋白(HS A)緩衝液中的病毒稀釋液。評估四種vYF pMSL候選物TV2212、TV3111、TV3112和TV4221的神經毒力,並與Stamaril®和YF-VAX®參考疫苗進行比較。監測小鼠歷時21天,並在第21天記錄存活小鼠的數量。用樣 品隨機分佈的方式進行三次獨立實驗。關於每個實驗,在接種當天藉由CCID50反測定確認注射量。
每天進行臨床監測以記錄每天的存活率。使用最小平方回歸計算MLD50為誘導存活小鼠之50%的劑量,並以log10 MLD50/mL表示。每個病毒株的MLD50被確定為3個測定值和95%信賴區間的平衡平均值,除了TV3111和TV3112沒有MLD50可以計算以外,因為對於投與TV3111和TV3112病毒株的組別(甚至更高劑量,30μl的0.7 log10稀釋度)記錄到100%的存活小鼠。
結果呈現在下表2中。
Figure 108111634-A0202-12-0040-4
關於由Stamaril®譜系而來的vYF病毒株TV2212,與Stamaril®參考疫苗相比,它表現出類似的神經毒力。
與YF-VAX®參考疫苗相比,YF-VAX®譜系而來的vYF病毒株TV4221展現出類似的神經毒力。最後,與YF-VAX®參考疫苗相比,從YF-VAX®譜系而來的vYF病毒株TV3111和TV3112均未展現出神經毒力效應。就這2個vYF病毒株來說,無法計算出MLD50效價(至少<2.2 log10 MLD50/mL)。
結果,2個vYF病毒株TV2212和TV4221呈現出與它們各自的親代參考Stamaril®和YF-VAX®相似的神經毒力概況和MLD50效價。另外兩種由YF-VAX®譜系而來的vYF病毒株TV3111和TV3112與其YF-VAX®親代病毒株相比,神經毒力明顯減弱,無法評估其MLD50效價。
2.2./TV3112病毒株MSL與WSL在小鼠模型中的神經毒力
2.2.1/TV3112病毒株MSL與WSL
用於MSL和WSL生產的所有培養基和溶液均不含動物和人類成分。
在靜止條件下進行Vero細胞擴增後,將細胞接種在生物反應器中。在生物反應器中細胞生長3天後,將培養基從細胞生長培養基更換為病毒生產培養基。透過在生物反應器中添加種批(TV3112 pMSL以產生TV3112 MSL,或TV3112 MSL以產生TV3112 WSL)來接種病毒。病毒繁殖2天後,丟棄病毒生產培養基並用相同體積的新鮮病毒生產培養基替換。病毒接種後4天,收取生物反應器的內容物、澄清、穩定,填充並冷凍儲存。
2.2.2./TV3112病毒株MSL與WSL的神經毒力
使用與上文實例2、子章節2.1中所述相同的程序。
Figure 108111634-A0202-12-0041-6
關於TV3112 pMSL,TV3112 MSL和TV3112 WSL展現出無神經毒力效應。關於TV3112 MSL和TV3112 WSL,無法計算出MLD50效價(至少<2.2 log10 MLD50/mL)。
TV3112 MSL和TV3112 WSL與其YF-VAX®親代病毒株相比,神經毒力明顯減弱,且無法評估其MLD50效價。
實例3:vYF病毒株候選物在小鼠模型中的親內臟性以及親神經性
在基於對接種第I型IFN受體缺陷型小鼠的分析中,評估6個vYF(適應Vero細胞的黃熱病病毒)前主要種批(pMSL)候選物的親內臟性和親神經性,這些小鼠被開發用來區分致病性和減毒性疫苗病毒株(Meier et al.,2009;Erickson and Pfeiffer,2015)。描述用於第I型IFN受體的A129免疫缺陷型小鼠KO以模擬在靈長類動物和人類中的野生型YF病毒感染(Meier et al.,2009)。因此,這樣一個小鼠模型似乎適於研究由非減毒黃熱病病毒引起的親內臟性疾病。
3.1/方法
3.1.1/分組定義
對15組(A組至O組)的6隻4-8週大雌性A129小鼠給與4個log10CCIDCCID50/劑量的6種pMSL候選物之一者或Stamaril®參考疫苗,如下表4中所述(無佐劑;皮下給藥途徑;在D0為200μl)。
Figure 108111634-A0202-12-0042-7
3.1.2/研究排程表
研究排程表描述於圖2中。
在D6對C、E、G、I、K、M、O組的6隻小鼠實施安樂死並採樣器官,另在D11對B、D、F、H、J、L、N組的6隻小鼠實施安樂死並採樣其器官。在D4時,在A、B、D、F、H、J、L和N組中收集中間血液採樣。關於PBS對照,僅包括6隻小鼠並在D11時採樣(A組)。
3.1.3/小鼠臨床觀察結果以及評分
根據下表5中所述的評分網格,在接種後11天期間每天觀察動物。每天從D3到D11實驗結束監測並記錄體溫。
Figure 108111634-A0202-12-0043-8
在實驗過程期間,若有下列任一事件發生,將動物安樂死:
-痛苦的跡象(惡病質、虛弱,難以移動或進食)
-化合物毒性(弓身、抽搐)
-一般態樣評分=3+對刺激的反應=3
-體重減輕>20%
任何被發現死亡的動物都要進行屍檢。
3.1.4-生物學採樣
a)在D4,在麻醉的情況下從頜下靜脈取得中間血液樣品。將約200μL血液收集在含有血塊活化因子和血清分離器(BD Microtainer SST)的小瓶中。
b)在第6天和第11天,在麻醉的情況下透過切開頸動脈放血後取得所有動物的血液樣品。將約1mL血液收集在含有血塊活化因子和血清分離器(BD Vacutainer SST)的小瓶中。
c)器官收集是在無菌條件下進行。用於動物解剖的器械先前用RNaseZapTM去污溶液沖洗。在放血後儘快對所有小鼠進行下列器官進行採樣,然後在麻醉的情況下透過頸椎脫位進行動物安樂死:腦,肝臟和脾臟。
關於肝臟,將兩個直徑為7mm,專用於病毒負荷量偵測的活檢穿孔器放入含有1mL RNAlaterTM溶液的小瓶中。
關於腦和脾臟,將2個專門用於病毒負荷量偵測的半切片置於含有1mL RNAlaterTM溶液的小瓶中。
3.1.7/分析測試
a)病毒血症
根據製造商的說明書,在Tecan Evoware自動化RNA萃取工作站上使用Macherey Nagel NucleoSpin® 96病毒套組從140μL每種單獨的血清樣品中萃取總基因體RNA,並分兩步溶析至最終體積為140μL無核酸酶水中。
萃取後立即藉由YF-NS5 qRT-PCR進行RNA定量(如Mantel et al.(2008)中所述)。qRT-PCR靶向YF NS5基因的保守區以檢測YF病毒基因體的存在。
b)器官內的病毒負荷量
於-80℃下將活檢穿孔器冷凍在RNA laterTM溶液中。在解凍時,對每個器官樣本進行秤重。
使用供應商建議所規定的組合TrizolTM(Invitrogen®)/RNeasyTM(Qiagen®)方法從器官的穿孔中萃取總RNA。
然後使用如Mantel et al.(2008)中所述的YF-NS5 qRT-PCR分析來定量經純化RNA樣品中病毒RNA的存在。qRT-PCR靶向YF NS5基因的保守區以檢測YF病毒基因體的存在。
每個qRT-PCR運行包括兩個非模板對照(陰性qRT-PCR對照)和兩個基於CYD-3病毒懸浮液的陽性對照。
為了要驗證運行,所有陰性對照必須低於偵檢極限(LOD),陽性對照必須納入對照圖表中。
由於稀釋因子和用於100mg器官的樣品,偵檢極限以1Geq/mg器官計算。
3.2/結果
3.2.1/臨床跡象
根據上表5中描述的評分網格,在接種後每天觀察所有動物:從第3天到第6天每天對A組至O組的所有小鼠進行評分,而A、B、D、F、H、J、L和N組的所有小鼠每日評分甚至到第11天。
計算每個標準的平均計分,即一般態樣(GA)、對刺激的反應(RS)、神經學跡象(NS)和呼吸(B),每個時間點每組從第3天至第11天。一如預期,注射了食鹽水對照的所有A129小鼠照(PBS,A組)在整個監測期間沒有任何動物記錄到特定臨床計分。
關於施用Stamaril®參考疫苗或使用vYF pMSL候選物之一的所有A129組,臨床跡象輕微,每個標準的平均計分低於1.5,無論時間點和標準為何(GA<1.5;RS、NS和B<1)。
關於第3、4和5天記錄到沒有特定的臨床計分;然後在第6天和第7天記錄幾隻小鼠計分為1/0/0/0或2/0/0/0(GA/RS/NS/B)。在第10天和第11天,施用Stamaril®參考疫苗或vYF pMSL候選物之一的所有A129小鼠顯示低計分(一些小鼠GA計分=1或2,且RS、NS以及B計分=1),除了一隻施用TV2232(F組)的小鼠在第10天呈現一些顫抖表現型、運動併發症,虛脫和呼吸窘迫(得分3/2/3/2),並因道德原因被安樂死以外。
3.2.2/體重監測
在第0、3、4、5和6天對所有小鼠(A至O組)秤重;在第7、10和11天,將剩餘組別(A、B、D、F、H、J、L和N)的所有小鼠秤重。在每個時間點計算每隻個別小鼠與第0天相比的體重減輕百分比。
用Stamaril®參考疫苗免疫後,在11天監測期間觀察到輕微的體重減輕(在D11平均為少於5%體重減輕)。
用Stamaril®譜系而來的vYF pMSL候選物免疫後,就Stamaril對照來說,除了在第10天用選殖株TV2232免疫的一隻小鼠喪失其體重超過20%以外,沒有觀察到顯著的體重減輕。出於道德原因,必須對這隻小鼠實施安樂死(見上文3.2.1)。
用來自YFVAX®譜系的vYF pMSL候選物TV3111,TV3112和TV4221免疫後,觀察到體重穩定並記錄至多到第5至6天,且至多在監測期結束時觀察到輕微的體重增加(在D11平均為少於5%體重增加)。
3.2.3/血清與器官中的病毒負荷量
a)血清中-圖3
針對每組和時間點計算的個別病毒血症以及幾何平均效價(GMT)和標準偏差描繪於圖3中。
一如預期,在第0天施用PBS的A129小鼠中於第4天沒有檢測到病毒血症(<LOD為3 log10Geq/mL),而在施用Stamaril®參考疫苗的A129小鼠中於第4天和第6天檢測到4至5 log10Geq/mL的幾何平均病毒血症效價。
用vYF pMSL候選物免疫後,與用Stamaril®對照免疫後誘發的病毒血症相比,沒有觀察到病毒血症的顯著優勢(無論時間點如何,TV2212、TV2232、TV2241、TV3111和TV3112的所有p值>0.2),除了YF-VAX®譜系而來的TV4221在注射後第4天誘發明顯高於Stamaril®對照的病毒血症以外(p值=0.001)。
b)在肝臟中-圖4
結果以log10Geq/mg器官表示。針對每組和時間點計算的各個病毒負荷量以及幾何平均值和標準偏差描繪於圖4中。
一如預期,在第0天施用PBS的A129小鼠於第11天未檢測到肝臟病毒負荷量(<LOD為1 log10Geq/mg),同樣在施用Stamaril®參考疫苗的A129小鼠中檢測到無或低肝臟病毒負荷量(在第6天GMT=0.8,在第11天<LOD)。
用vYF pMSL候選物免疫後,與用Stamaril®對照免疫後誘發的肝臟病毒負荷量相比,未觀察到肝臟病毒負荷量的顯著優勢(TV2212、TV2232、TV2241、TV3111、TV3112和TV4221在第6天的所有p值均>0.1,由於大量無反應者<LOD,因此在第11天未進行統計學分析)。
c)在腦中-圖5
結果以log10 Geq/mg器官表示。針對每組和時間點計算的各個病毒負荷量以及幾何平均效價和標準偏差描繪於圖5中。
一如預期,在第0天施用PBS的A129小鼠於第11天未檢測到腦病毒負荷量(<LOD為1 log10Geq/mg),而在施用Stamaril®參考疫苗的A129小鼠中檢測到腦病毒負荷量(在第6天GMT=0.6,在第11天為3.7)。
用vYF pMSL候選物免疫後,與用Stamaril®對照免疫後誘導的腦病毒負荷量相比,未觀察到腦病毒負荷量的顯著優勢(TV2212和TV2232的p值>0.06)。此外,TV2241、TV3111、TV3112和TV4221在第11天誘發顯著低於Stamaril®對照的腦病毒負荷量(p值
Figure 108111634-A0202-12-0047-123
0.003)。
d)在脾臟中-圖6
結果以log10 Geq/mg器官表示。針對每組和時間點計算的各個病毒負荷量以及幾何平均效價和標準偏差描繪於圖6中。
一如預期,在第0天施用PBS的A129小鼠於第11天未檢測到脾臟病毒負荷量(<LOD為1 log10Geq/mg),而在施用Stamaril®參考疫苗的A129小鼠中檢測到脾臟病毒負荷量(在第6天GMT=4.1,在第11天為2)。
用vYF pMSL候選物免疫後,與用Stamaril®對照免疫後誘發的脾臟病毒負荷量相比,未觀察到脾臟病毒負荷量的顯著優勢(不論哪個時間點,TV2212、TV2232、TV2241、TV3111、TV3112及TV4221的所有p-值>0.09)。
3.2.4/存活率
為了計算每組的存活率(A、B、D、F、H、J,L和N組),在用4 log10CCID50/劑量的Stamaril®或6個vYF pMSL候選者之一進行皮下免疫接種後,每天記錄存活小鼠的數目歷時11天。
如Kaplan Meir曲線所繪示(圖7),當施用PBS緩衝液,Stamaril®或五種vYF病毒株(TV2212、TV2241、TV3111、TV3112和TV4221)之一時,100%(6隻中有6隻小鼠)小鼠在整個研究過程中存活下來。
相反,在施用來自Stamaril®譜系之TV2232病毒株的F組中,只有80%的小鼠存活,因為在第10天,出於道德原因對一隻小鼠實施安樂死(參見上文3.2.1)。
實例4-vYF病毒株候選物在倉鼠模型中的免疫原性
在倉鼠模型中評估6個vYF pMSL候選物的免疫原性並且與Stamaril®參考疫苗相比較。
4.1/方法
4.1.1/分組定義
每組納入15隻5-6週大雌性金色敘利亞倉鼠,並且針對6個pMSL候選物中的每一者施用2個劑量,即2.5 log10CCID50/量的低次優劑量和5.5 log10CCID50/劑量的高劑量。
關於Stamaril®參考,就上述2個測試劑量,每組僅納入10隻倉鼠。
總共200隻雌性金色敘利亞倉鼠隨機分派到下表6中所述的14個下列組別(A組至N組)之一(無佐劑;皮下給藥途徑;在D0和D26為200μl)。
Figure 108111634-A0202-12-0048-9
4.1.2/研究時程表
研究時程表歸納在圖8中。
干預計畫以及干預細節詳述於下表7中。
Figure 108111634-A0202-12-0048-10
Figure 108111634-A0202-12-0049-11
4.1.3/生物學採樣及血清中和分析
a)生物學採樣
在D0,D26和D41,於麻醉的情況下從所有動物的眼窩後竇(ROS)取得中間血液樣品。經由心內穿刺在麻醉的情況下進行最終血液採樣。藉由腹膜內途徑以200μl的體積施用Imalgène(150mg/kg)和Rompun(10mg/kg)進行麻醉。
將血液收集在含有血塊活化因子和血清分離器(BD Microtainer SST)的小瓶中。在+4℃下一晚或在37℃下2小時後,將血液以2000×g離心10分鐘期間,收集血清並儲存在-20℃直至分析。
b)血清中和分析
從第一次注射起,在D0,D26和D41分析存在於經免疫接種動物血清中的功能性中和抗體。
簡言之,將經熱不活化的血清自1:5起2倍連續稀釋於IMDM+4%胎牛血清(FCS)中。稀釋在Vero細胞上生長的YF-17D Stamaril®病毒,以在IMDM中獲得4000μFFU/mL,並與2倍稀釋的血清樣品(v/v)一起培育90分鐘。然後將病毒/血清混合物加入96孔盤中的Vero細胞並培育45 +/- 2小時。培育後,在免疫染色前用85%丙酮固定細胞。用PBS+0.05% Tween 20+2.5%脫脂乳阻斷盤,且首先與抗黃病毒單株抗體4G2,然後用山羊抗小鼠IgG HRP綴合物一起培育。最後,用TrueblueTM色原將盤染色。用來自MicrovisionTM的Viruscope讀數器計數溶菌斑。
使用最小平方法計算最終的血清中和抗體效價,並且對應於稀釋度的倒數,顯示中和50%的病毒溶菌斑。分析的LOD為10,對應於最終體積中的第一倒數稀釋度。
為了計算每組的平均值,將任意效價為5(LOD的一半)分配給低於10的所有效價。
4.2/結果-血清中和
在基線(D0)、一次免疫後四週(D26)和兩次免疫後兩週(D41),透過從所有動物收集的個體血清樣品中的血清中和分析來監測對抗依在Vero細胞上之黃熱病17D疫苗的中和活性。幾何平均效價(GMT)以及個體中和效價與95%信賴區間(CI)如圖9和圖10中所繪示。
一如預期,無論是pMSL vYF候選物還是Stamaril®參考物,在組別GMT
Figure 108111634-A0202-12-0050-125
12的情況下於基線(D0)的素樸倉鼠中均檢測到無或低中和抗體效價(
Figure 108111634-A0202-12-0050-128
40)。藉由對在D0獲得的所有個別數據進行統計分析,將反應者閾值定義為20.87(1.32 log10)(優越的容差區間,比例為0.99,風險α為5%)。
關於反應動力學,第1次免疫後1個月(D26;圖9),所有經免疫組觀察到顯著增加的中和反應,與D0基線相比,中和GMT增加至少10倍至多到850倍。第二次免疫後兩週(D41;圖10),所有組的中和GMT進一步增加,與D26相比,中和GMT增加0.8-7.5倍。
對於2.5 log10 CCID50劑量(分別在D26和D41為GMT 281和544),Stamaril®參考物所誘發的中和抗體反應比5.5 log10 CCID50劑量(分別在D26和D41為GMT 5061和11714)明顯更低(分別在D26和D41的p值=0.007和0.023)。值得注意的是,第一次免疫(D26)後,來自施用5.5 log10 CCID50劑量組的100%倉鼠就被定義為反應者(>20.87閾值),而施用2.5 log10 CCID50劑量組的倉鼠只有60%和70%分別在D26和D41發現反應者。
對於來自Stamaril®譜系的vYF pMSL候選物TV2212、TV2232和TV2241,兩種測試劑量之間沒有觀察到顯著差異(所有p值>0.07,無論vYF pMSL候選物和時間點為何),2.5 log10 CCID50劑量的GMT範圍為在D26從144至505,在D41從115至1159,相比於5.5 log10 CCID50的GMT範圍在D26從115至373,在D41從465至955。無論測試劑量和免疫方案為何(1或2次免疫後),來自Stamaril®譜系的vYF pMSL候選物沒有一者能在所有經免疫動物中誘發持續性中和抗體反應。在一次免疫後發現反應者倉鼠的百分比在53%至93%之間,在用TV2212,TV2232和TV2241免疫兩次後,無論劑量如何,發現反應者倉鼠的百分比在43%至93%。
關於來自YF-VAX®譜系的vYF pMSL候選物TV3111,TV3112和TV4221,兩種測試劑量之間沒有觀察到顯著差異(所有p值> 0.06,無論vYF病毒株和時間點為何),除了TV3111以外,其中2.5 log10 CCID50劑量誘發顯著高於5.5 log10 CCID50的中和抗體效價(在D26和D41處p值分別=0.04和0.003)。關於2.5 log10 CCID50劑量,誘發的GMT高,在D26為從3939至8898且在D41為從3771至13674,而關於5.5 log10 CCID50劑量,GMT在D26為從2071至5145且在D41為從1821至6421。來自YF-VAX®譜系的vYF pMSL候選物在1次免疫後能夠在大多數經免疫動物中誘發持續性中和抗體反應(2.5 log10 CCID50劑量的TV3111為93%的反應者,而關於所有其他來自YF-VAX®譜系的vYF pMSL候選物為100%反應者,無論測試劑量為何)。在兩次免疫後,來自YF-VAX®譜系的所有vYF pMSL候選物能夠在100%經免疫倉鼠中誘發持續性中和抗體反應,無論劑量為何。
關於vYF pMSL候選物的每一者與Stamaril®參考物的比較,由YF-VAX®譜系而來的vYF pMSL候選物TV3111,TV3112和TV4221的2.5 log10 CCID50劑量誘發的中和反應明顯不亞於用Stamaril®參考疫苗獲得者(在D26和D41的p值分別為
Figure 108111634-A0202-12-0051-130
0.010和
Figure 108111634-A0202-12-0051-131
0.047)。從Stamaril®譜系而來的vYF病毒株(所有p值
Figure 108111634-A0202-12-0051-132
0.25,無論劑量和時間點為何)均未顯示出顯著的非劣效性,對於以5.5 log10 CCID50施用的YF-VAX®譜系而來的vYF病毒株也未顯示出顯著的非劣效性(p值
Figure 108111634-A0202-12-0051-133
0.49,無論時間點為何)。
實例5-vYF TV3112病毒株在猴子模型中的毒性以及免疫原性
在非人類靈長類動物(NHP)中進行初步毒性研究和免疫原性研究。非人類靈長類動物,特別是恆河猴或食蟹獼猴,慣常用於透過病毒血症測量來評估安全性和感染性,以及疫苗候選物對抗黃病毒(登革熱,黃熱病.....)的免疫原性。在黃熱病的情況下,猴子是天然宿主;病毒首先是在猴子中分離出來,並在本模型中評估了疫苗病毒株的減毒作用。自2000年代以來,已經描述過「小動物」模型,並且可以用來評估候選疫苗的某些性質,如針對vYF pMSL候選物篩選所進行的。然而,這些模型(倉鼠,小鼠A129)具有侷限性,而獼猴與人類相比至今仍然是最具預測性的金標準模型,並且在文獻中廣泛描述,例如,Julander(2016)、Mason et al.(1973)、Monath et al.(2010)與Moulin et al.(2013)。此外,在管理指南中推薦這個模型。
5.1/方法
5.1.1/分組定義及目標
從毛里求斯進口3組9隻2歲大的雄性食蟹獼猴(Macaca fascicularis)藉由SC途徑用500μL Stamaril®(一個人類劑量相當於4.2 log10CCID50/劑量)、一劑YF-VAX®(6.2 log10CCID50)或4.2 log10CCID50的vYF TV3112 WSL候選者予以免疫。
作為初級讀數,將疫苗候選物與每種參考疫苗進行比較,用於評估i)疫苗安全性、ii)其誘發YF特異性病毒血症的能力以及在下列器官中的病毒負荷量:肝臟、脾臟、腎臟、淋巴結和腦(藉由依據YF-NS5 qRT-PCR的病毒RNA定量評估,如Mantel et al.(2008)中所述),以及iii)誘發黃熱病特異性血清中和抗體反應(藉由μPRNT50分析評估),定義為保護相關性。
作為二級讀數,為了鑑定疫苗性能的其他潛在生物標誌,監測不同的參數。這些分析解決了:i)抗體反應的持續性,以及ii)B和T細胞免疫反應,包括記憶反應。
5.1.2/麻醉
關於免疫接種和在某些情況下(例如血液採樣與適應期間的其他操作相結合或如果猴子在沒有麻醉的情況下對血液採樣抗拒),進行輕度麻醉。在大腿中以10mg/kg肌肉內注射氯胺酮(Imalgene 1000,MERIAL®)。
5.1.3/監測
在D-29和D0將所有動物秤重,每天觀察臨床跡象直至D7,並且在D-17和在D0、D3、D4、D5,D6和D7期間的病毒血症預期期間記錄牠們的個別體溫(反應者系統)。在D1、D3和D7的所有猴子中評估血液學,生物化學和血液病毒血症。然後在D7對每組中的三隻猴子實施安樂死,並取其器官用於器官評估中的組織病理學和病毒負荷量。在D27、D60、D90、D122、D153和D181進一步秤重每組中的其餘6隻猴子,並在D10和D14的病毒血症預期期間進一步記錄牠們的個別體溫。每天還觀察每組中的其餘6隻猴子的臨床跡象直至D221。在D27、D60、D90、D122、D153,D181和D221時從每組中的其餘6隻猴子收集血液樣品用於血清中和、T細胞和記憶B細胞分析。
5.1.4/測試方法
在Vero細胞上,使用μPRNT50方法測定YF特異性血清中和抗體。簡言之,將熱不活化的血清自1:5起連續2倍稀釋在IMDM(THERMOFISHER SCIENTIFIC)+4% FCS中。稀釋在Vero細胞上生長的YF-17D Stamaril®病毒,以在IMDM中獲得4000μFFU/mL,並與經2倍稀釋的血清樣品(v/v)一起培育90分鐘。然後將病毒/血清混合物加入96孔盤中的Vero細胞並培育45 +/- 2小時。培育後,在免疫染色前用85%丙酮固定細胞。用PBS+0.05% Tween 20+2.5%脫脂乳阻斷盤,首先與抗黃病毒單株抗體4G2,然後與山羊抗小鼠IgG HRP綴合物一起培育。最後,用TrueblueTM色原將盤染色。用來自MicrovisionTM的Viruscope讀數器計數溶菌斑。使用最小平方法計算最終效價,並且對應於稀釋度的倒數,顯示中和50%的溶菌斑。
當所測試血清的第一個稀釋度為1:10時,μPRNT50分析的LOD為約20μPRNT50。為了計算每組的平均值,將LOD的一半的任意值分配給低於LOD的所有樣品,即10μPRNT50。
透過ELISPOT測量記憶細胞反應。螢光連接的免疫點(FLUOROSPOT)用來偵測和計數分泌抗體的個別記憶B細胞,不論抗原特異性為何(總IgM或總IgG)。
在D0,將冷凍的PBMC於補充有10% FBS和100μg/mL DNase的RPMI培養基(THERMOFISHER SCIENTIFICIC)中解凍,並在37℃;5% CO2下培育1小時。1小時後,將細胞以1百萬個細胞/mL稀釋,並透過在37℃;5% CO2下於補充有rIL2(10μg/mL)的RPMI 10% FBS中培育4天予以刺激。
在D3,將配備有低螢光PVDF膜(MERCK Millipore®)的96孔FluoroSpot微孔盤的膜用35μL的35%乙醇預潤濕1分鐘。用200μL PBS 1X洗滌每個孔兩次。然後以1:80的稀釋度將微孔盤塗覆經YF-17D感染的Vero細胞溶解產物(SANOFI PASTEUR)或以15μg/mL稀釋度的猴子IgG和IgM特異性單株抗體混合物,並在4℃下培育過夜。
在D4,用PBS洗滌盤,然後在37℃下用RPMI 10% FBS阻斷至少2小時。洗滌盤後,在塗覆有經YF-17D感染的Vero細胞溶解產物的孔中 加入2×105或4×105個經刺激PBMC。將經刺激細胞的範圍稀釋液(5×103至6,2×102)加入塗覆有抗-IgG和抗-IgM抗體的孔中。
5小時後,用PBS 1X洗滌盤3次並當夜在4℃下儲存。
在D7,用PBS 1X-BSA 0.5%(150μL/孔)洗滌盤6次。在洗滌步驟後,於室溫下,在黑暗中分別於PBS1X-BSA 0.5%中以1/500稀釋度加入100μL/孔的抗猴IgM-FITC和IgG-CY3抗體歷時2小時。用PBS 1X-BSA 0.5%(150μL/孔)將盤再洗滌6次。將盤在5℃±3℃下儲存於黑暗中直至讀數。
對應於抗體分泌細胞的每個點用自動FLUOROSPOT盤讀數器(MicrovisionTM)計數。結果表示為每106個細胞的ACS分泌細胞數。
透過IFN-γ IL-2反應Dual FluoroSpot(來自Mabtech®的FS-2122-10 Monkey IFN-γ/IL-2 FluoroSpot套組)測定對經分離PBMC的T細胞反應。
簡言之,配備FluoroSpot PVDF膜的微量盤用35%乙醇預處理、洗滌,並在無菌磷酸鹽緩衝食鹽水(PBS)中在4℃下以15μg/mL的濃度透過與針對猴IFN-γ(純系GZ-4,Mabtech®)和針對猴IL-2(純系IL2M-I/249,Mabtech®)的單株抗體一起培育過夜而被塗覆。將盤用PBS洗滌3次,然後透過在37℃下用補充有10% FCS的RPMI 1640培養基(Gibco)培育2小時來阻斷。向每個有0.1μg/mL單株抗體CD28-A(Mabtech®)的孔中添加PBMC(4×105)。將YF-Env和YF-NS3肽庫(含括YF-Env和YF-NS3胺基酸序列的15員重疊肽)添加至培養基中達每種肽的最終濃度為1μg/mL。抗CD3 mAb(Mabtech®)以2.5μg/mL用做陽性對照。將盤在37℃下於含有5% CO2的氣氛中培育24小時。培育後,用PBS洗滌盤6次。分別在0.5% BSA的PBS中以1:200和1μg/mL的濃度添加FITC抗IFN-γ抗體(純系7-B6-1-FS-FITC,Mabtech®)和生物素化抗IL-2抗體(IL2-生物素MT8G10,Mabtech®);將盤在37℃下培育2小時。用PBS洗滌3次後,用於0.5% BSA的PBS中稀釋的抗-FITC-490(1:200,Mabtech®)和鏈黴抗生物素蛋白SA-550(1:200,Mabtech®)在室溫下進行培育1小時,且用PBS洗滌6次。將盤在5℃±3℃下儲存於黑暗中直至讀數。對應於IFN-γ或IL-2分泌細胞(IFN-γSC或IL5 SC)以及分泌IFN-γ和IL-2細胞介素的多功能T細胞的螢光點用自動FLUOROSPOT 盤讀取器(MicrovisionTM)計數。結果表示為每106個PBMC的IFN-γ或IL-2分泌細胞數目。
透過YF-NS5 qRT-PCR監測YF疫苗病毒血症和器官中的病毒負荷量(如Mantel et al.(2008)中所述)。
5.2/結果
減毒活黃熱病疫苗的保護相關性在WHO TRS 978附件5中定義為在先前血清陰性個體中誘發可測量到的中和抗體,例如,PRNT效價>檢測極限。在D14和至少9個月期間,所有猴子中檢測到遠高於預定保護閾值(LOD=20)的中和抗體(參見圖11)。中和抗體效價與用現有疫苗免疫後檢測到的效價沒有顯著差異。
vYF TV3112疫苗接種後第14天至多到第221天,於週邊血液中監測到的持續性B記憶細胞頻率也支持這個持久性中和抗體反應(參見圖12和圖13)。這些數據顯示,IgM(圖12)和IgG(圖13)記憶B細胞在疫苗接種後第14天就發展出來並且在研究期間持續至少221天。關於vYF TV3112,受誘發記憶B細胞的動力學和百分率類似於由參考疫苗Stamaril®和YF-VAX®所誘發的記憶B細胞的特徵。
此外,在vYF TV3112疫苗接種後誘發了對YF-ENV和YF-NS3的特異性Th1細胞反應(IFN-γ和IL-2分泌細胞),並且與接種Stamaril®或YF-VAX®後觀察到的細胞反應相似(參見圖14)。
與對照疫苗相比,這個研究還證明了vYF TV3112的保守安全性概況:沒有臨床跡象、沒有體重減輕、沒有溫度變化、沒有血液學(白血球和紅血球;嗜中性球;淋巴球;單核球;嗜酸性球;嗜鹼性球;網狀紅細胞;血小板;血紅素;血容比;平均血球容積;平均血球血紅素)或生物化學(鹼性磷酸酶;丙胺酸轉移酶;天冬胺酸轉移酶;γ-麩胺醯基轉移酶;C-反應蛋白;膽酸;總膽紅素;白蛋白;血尿素氮;肌酐)病症(與Stamaril®和YF-VAX®無統計學差異,依據PLS-DA統計分析)、無或極低病毒血症(9隻猴子中有1隻<4 log10Geq/mL)、在黃熱病靶器官中檢測到無或極低病毒RNA(比野生型Asibi感染後觀察到的病毒負載量低100至10 000倍)(參見圖15)、在黃熱病靶器官中沒有與疫苗相關的組織病理學結果。
實例6-由vYV TV3112病毒株在獼猴模型中誘發對抗致死攻毒的保護作用
目的是評估用vYF TV3112疫苗候選物免疫的獼猴對黃熱病病毒攻毒的保護作用。
6.1/方法
6.1.1/動物
用Stamaril®、YF-VAX®或vYF TV3112疫苗候選物免疫後9個月,於上述實例5中研究的三個動物組中的每一組在D221的其餘6隻猴子用Asibi毒性病毒株針對黃熱病進行攻毒,以便進行評估疫苗效力。另一組6隻素樸對照猴子也受到攻毒。
6.1.2/YFV以及緩衝液
用來自德州大學醫學部(UTMB)的黃熱病病毒株Asibi(YFV)進行攻毒。將YFV(lot 19455,對VERO細胞的感染效價為7.7 Log10CCID50/mL)的YFV稀釋於NaCl+HSA緩衝液(NaCl 0.4%+人類血清白蛋白(HSA)2.5%)中。每隻動物在右上背部位用在1mL NaCl+HSA緩衝液中的103 CCID50的YFV皮下攻毒。
6.1.3/監測
在Asibi攻毒後追踪動物歷時28天。每天觀察動物的攝食量和行為。在每個採樣時間點記錄直腸溫度和體重。如下表8中所述進行血液採樣。
Figure 108111634-A0202-12-0056-12
Figure 108111634-A0202-12-0057-13
1臨床觀察、體重、直腸溫度。2.白血球&紅血球;嗜中性球;淋巴球;單核球;嗜酸性球;嗜鹼性球;網狀紅細胞;血小板;血紅素;血容比;平均血球容積;平均血球血紅素。3中和分析。4.鹼性磷酸酶;丙胺酸轉移酶;天冬胺酸轉移酶;γ-麩胺醯基轉移酶;C-反應蛋白;膽酸;總膽紅素;白蛋白;血尿素氮;肌酐。
6.1.4-一生觀察
觀察動物一週七天。在每次採血時,如下表9中所述實施檢驗。
Figure 108111634-A0202-12-0057-14
1參見表8。
6.2/結果
所有接種疫苗的猴子都受到保護免受攻毒的影響:病毒血症(只有低病毒血症,即2/6隻猴子中<3.6 log10GEq/mL歷時僅一天,依據YF-NS5 qRT-PCR測量,如Mantel et al.(2008)中所述)、血液病症,血液生物化學病症以及死亡。
在這項研究中,未接種疫苗對照組的6隻NHP中有3隻經歷過攻毒而存活下來,但所有6隻對照NHP均出現病毒血症(>8 log10Geq/mL)、淋巴球減少症、血小板減少症和血液生物化學病症,且轉胺酶、CRP、膽紅素和膽酸含量增加。
因此,vYF TV3112疫苗候選物能夠保護食蟹獼猴(黃熱病疫苗的最佳預測動物模型之一)免於野生型Asibi感染,就像是目前可用的疫苗Stamaril®和YF-VAX®那樣。
實例7:定序分析
RNA病毒天然存在高度遺傳變異水平,這是造成這些病毒的準種固有性質的原因。即使將黃熱病聚合酶的錯誤率就RNA病毒來說是低的,但聚合酶錯誤率也是每個感染週期每個基因體約10-6個取代。
界定明確的病毒生產製程,透過總是維持相同的病毒生長條件而將這種現象限制在最低限度。但從統計學上說,每當病毒在細胞中複製時,病毒準物種就會不斷產生,每當變體為病毒帶來生長優勢時,它就會長期保留下來並擴增,逐步取代初始群。
此外,由於新的病毒生長系統將從蛋轉移成Vero細胞培養物,預計可能會發生一些適應性突變。特別地,NS4B中的幾個突變在不同黃病毒模型中被描述為病毒在Vero細胞中生長的正向適應性(Blaney et al.,2003;Tang et al.,2005;Beasley et al.2013)。
此外,目前的批次從未被選殖過,因此準種的混合物共同存在於現有的疫苗病毒株中。首先透過YF-VAX®和Stamaril®疫苗的基因體的高通量定序來建立參考序列,然後將新的pMSL候選物基因體與它們進行比較。
由於在2個選殖步驟後獲得新的pMSL候選物,它們代表同源病毒群。
7.3/方法
7.3.1/原則
在萃取和純化病毒RNA後進行黃熱病病毒的定序。
接著將RNA逆轉錄成互補DNA,然後使用特異性引子藉由PCR完整擴增基因體。接而因為Nextera® XT DNA樣品製備套組(llumina,Inc)將PCR產物用於形成庫。庫的形成分成幾個步驟進行。首先,擴增子以等莫耳方式組裝。然後使用轉位體(Tagmentase)將它們分段。轉位體切割DNA並添加適配子(adapter)。然後因為與適配子互補的引子進行PCR擴增步驟。這個步驟允許在片段的兩側添加索引(用於標記樣品)並將片段連接至定序撐體(support)。最後,使用Agencourt®珠(AMPure® XP,Beckman Coultern Genomics,Inc.)純化庫,並使用MiSeq定序儀(Illumina®,Inc.)定序。
在獲得序列後,接而使用CLC Genomics Workbench軟體(QIAGEN®)的分析模組「基於質量的變體檢測(遺留)」進行分析。
7.3.2)RNA萃取
根據供應商的建議,用Qiamp病毒套組(QIAGEN®)從最小濃度為108Geq/mL的140μl病毒懸浮液萃取病毒RNA(依據YF-NS5 qRT-PCR定量)。純化的經純化病毒RNA在140μl無核酸酶水中溶析。
7.3.3)RT-PCR
首先,使用三種反義引子進行RNA到cDNA的特異性逆轉錄(RT)步驟,希望與黃熱病病毒的基因體重疊。然後使用表10中所述的三個引子對進行PCR擴增。
Figure 108111634-A0202-12-0059-16
製備三個含有三種反義引子之一者(SEQ ID NO.10;SEQ ID NO.12或SEQ ID NO.14)的混合物(參見下表11)。
Figure 108111634-A0202-12-0059-17
在溫度循環儀中以+65℃加熱樣品歷時5分鐘,並透過將管培育在冰上3分鐘立刻進行熱休克。
接著如下表12中所述製備混合物。
Figure 108111634-A0202-12-0059-15
向三個RNA/引子管的每一者添加12μl的這個混合物,並如下表13中所述進行逆轉錄作業:
Figure 108111634-A0202-12-0060-18
將1μl的RNAse H加入各管中並且於溫度循環儀中在37℃下培育20分鐘。
進行擴增,從所獲得的cDNA藉由PCR變成三個擴增子。
如下表14中所述,製備含有三對引子中之一者(SEQ ID NO.9與SEQ ID NO.10;SEQ ID NO.11與SEQ ID NO.12;SEQ ID NO.13與SEQ ID NO.14)的三個PCR混合物。
Figure 108111634-A0202-12-0060-19
20μl的各混合物被添加至5μl對應cDNA。
PCR程序是如下表15中所述。
Figure 108111634-A0202-12-0060-21
7.3.5)分析以及純化擴增子
在1.2%瓊脂糖凝膠上分析所有擴增子,以確認擴增的品質。依據供應商的建議,使用QIAQuick® PCR純化套組(QIAGEN®)手動純化擴增子。
7.3.6)使用Nextera® XT套組(Illumina,Inc.)形成庫
利用Qubit® 2.0螢光計(LIFE TECHNOLOGIES®),使用Qubit® dsDNA HS Assay套組,依據供應商的建議來定量經純化擴增子。
在分析之後,將擴增子連續稀釋於無核酸酶水中,以獲得最終濃度為0.2ng/μL。然後,針對各樣品,混合三個擴增子而得到0.6ng/μL的單個濃縮PCR池。
PCR程序是如下表16中所述。
Figure 108111634-A0202-12-0061-22
依據供應商的建議,藉由Agencourt® AMPure® XP套組(BECKMAN COULTER®)的方式來純化並校正擴增子。使庫在-20℃下穩定一週。
7.3.7)分析庫
依據供應商的建議,利用Qubit® 2.0螢光計(LIFE TECHNOLOGIES®)使用Qubit® dsDNA HS Assay套組來實施庫的定量。
7.3.8)庫的定序
依據供應商的建議,藉由MiSeq系統(ILLUMINA®)對庫進行定序。依據供應商的建議,透過ILLUMINA® Sequencing Analysis Viewer(Illumina,Inc.)分析序列。
依據供應商的建議,利用CLC Genomics Workbenck 7.5.2軟體(QIAGEN®)對所產生的序列進行分析。
7.4/結果
7.4.1)YF-VAX®與Stamaril®疫苗的參考序列
YF-VAX®疫苗的參考序列呈現為SEQ ID NO.2。Stamaril®疫苗的參考序列發現為SEQ ID NO.3。
7.4.1.1)Stamaril®衍生的pMSL
pMSL候選物基因體(繼代n°8)經定序並且與其親代病毒株基因體相比較。下表17提供三個來自Stamaril®譜系之病毒株的高通量定序結果。
Figure 108111634-A0202-12-0062-24
1自5’第一個核苷酸起的核苷酸位置。2 Stamaril®參考基因體的核苷酸。3相較於Stamaril®參考基因體之對應核苷酸有突變的核苷酸。4對應YFV蛋白及蛋白質中的對應胺基酸位置。
TV2241與TV2212相較於用作為參考物的Stamaril®親代病毒株存在單個突變(核苷酸2524,位在NS1編碼區中,在胺基酸層次為沉默的)。TV2232顯示一個不同的概況,在NS3與NS5中有五個突變,全為沉默的。
7.4.1.2)YF-VAX®衍生的pMSL
下表18提供三個來自YF-VAX®譜系之pMSL候選物(繼代n°8)的高通量定序結果。
Figure 108111634-A0202-12-0062-23
Figure 108111634-A0202-12-0063-25
1自5’第一個核苷酸起的核苷酸位置。2 YF-VAX®參考基因體的核苷酸。3相較於YF-VAX®參考基因體之對應核苷酸有突變的核苷酸。4對應YFV蛋白及蛋白質中的對應胺基酸位置。5相較於YF-VAX®參考物的對應胺基酸,蛋白質中有突變的胺基酸以及位置。
TV4221與YF-VAX®疫苗病毒株的參考序列一致。
TV3111有3個突變,在位置2411(E-480,Val至Leu)、3701(NS2a-65,Met至Val)以及6496(NS4a-19,沉默)。
TV3112具有與TV3111相同的突變,加上另外一個在位置1408處的突變(E-145,沉默)。
TV3112與TV3111病毒株具有由SEQ ID NO 15(在位置480處有一個白胺酸殘基)表示的外膜蛋白。SEQ ID NO 16(在位置65處有一個纈胺酸殘基)是TV3112與TV3111病毒株之NS2a蛋白的序列。SEQ ID NO 17(在位置57處有一個G核苷酸)是編碼TV3112病毒株之NS4a蛋白的RNA序列。SEQ ID NO 18(在位置435處有一個U核苷酸)是編碼TV3112病毒株之外膜蛋白的RNA序列。
習於技藝者已知,基因體的角色在於提供資訊而蛋白質透過其功能在病毒表現型上發揮其功能。沉默突變對於蛋白質功能沒有影響。因此,TV3112與TV3111病毒株可描述成包含編碼下列之核酸分子的減毒活黃熱病病毒株:(i)在位置480處包含一個突變的外膜蛋白,該突變造成胺基酸從纈胺酸變成白胺酸,以及(ii)在位置65處包含一個突變的NS2a蛋白,該突變造成胺基酸從甲硫胺酸變成纈胺酸。或TV3112與TV3111病毒株可描述成包含編碼下列之核酸分子的減毒活黃熱病病毒株:(i)外膜蛋白,在對應SEQ ID NO.15之位置480的蛋白質內的位置處包含一個白胺酸殘基,以及 (ii)NS2a蛋白,在對應SEQ ID NO.16之位置65的蛋白質內的位置處包含一個纈胺酸殘基。
7.4.2)YF-VAX®衍生的TV3112病毒株,在MSL和WSL階段
TV3112 MSL的一致序列與其pMSL親代(TV3112 pMSL)維持一致。TV3112 WSL的一致序列與其MSL親代(TV3112 MSL)維持一致。TV3112病毒株在遺傳上是穩定的,且從pMSL至WSL階段在其一致序列中保有在核苷酸位置1408、2411、3701與6496處的突變。
參考資料
非專利參考資料
- Barrett ADT. Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease. Vaccine. 2017 Oct 20;35(44):5951-5955.
- Beasley DW, Morin M, Lamb AR, Hayman E, Watts DM, Lee CK, Trent DW, Monath TP. Adaptation of yellow fever virus 17D to Vero cells is associated with mutations in structural and non-structural protein genes. Virus Res. 2013 Sep;176(1-2):280-4.
- Blaney JE Jr, Manipon GG, Firestone CY, Johnson DH, Hanson CT, Murphy BR, Whitehead SS. Mutations which enhance the replication of dengue virus type 4 and an antigenic chimeric dengue virus type 2/4 vaccine candidate in Vero cells. Vaccine. 2003 Oct 1;21(27-30):4317-27.
- dos Santos CN, Post PR, Carvalho R, Ferreira II, Rice CM, Galler R. Complete nucleotide sequence of yellow fever virus vaccine strains 17DD and 17D-213. Virus Res. 1995 Jan;35(1):35-41.
- Dupuy A, Despres P, Cahour A, Girard M, Bouloy M. Nucleotide sequence comparison of the genome of two 17D-204 yellow fever vaccines. Nucleic Acids Res. 1989 May 25;17(10):3989.
- Erickson AK, Pfeiffer JK. Spectrum of disease outcomes in mice infected with YFV-17D. J Gen Virol. 2015 Jun; 96:1328-1339.
- Hayes EB. Is it time for a new yellow fever vaccine? Vaccine. 2010 Nov 29;28(51):8073-6.
- Julander JG. Animal models of yellow fever and their application in clinical research. Curr Opin Virol. 2016 Jun; 18:64-9.
- Kolell K. et al. Virus Production in Vero Cells Using a Serum-free Medium. In: Smith R. (eds) Cell Technology for Cell Products (2007). Springer.
- Mantel N, Aguirre M, Gulia S, Girerd-Chambaz Y, Colombani S, Moste C, Barban V. Standardized quantitative RT-PCR assays for quantitation of yellow fever and chimeric yellow fever-dengue vaccines. J Virol Methods. 2008 Jul;151(1):40-6.
- Mason RA, Tauraso NM, Spertzel RO, Ginn RK. Yellow fever vaccine: direct challenge of monkeys given graded doses of 17D vaccine. Appl Microbiol. 1973 Apr;25(4):539-44.
- Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog. 2009 Oct;5(10).
- Monath TP. Yellow fever vaccine. Expert Rev Vaccines. 2005 Aug;4(4):553-74.
- Monath TP, Lee CK, Julander JG, Brown A, Beasley DW, Watts DM, Hayman E, Guertin P, Makowiecki J, Crowell J, Levesque P, Bowick GC, Morin M, Fowler E, Trent DW. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity. Vaccine. 2010 May 14;28(22):3827-40.
- Moulin JC, Silvano J, Barban V, Riou P, Allain C. Yellow fever vaccine: comparison of the neurovirulence of new 17D-204 StamarilTM seed lots and RK 168-73 strain. Biologicals. 2013 Jul;41(4):238-46.
- Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443-53.
- Pereira RC, Silva AN, Souza MC, Silva MV, Neves PP, Silva AA, Matos DD, Herrera MA, Yamamura AM, Freire MS, Gaspar LP, Caride E. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures. Vaccine. 2015 Aug 20;33(35):4261-8.
- Remington’s Pharmaceutical Sciences (18th edition), ed. A. Gennaro, 1990, Mack Publishing Company, Easton, Pa.
- Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science. 1985 Aug 23;229(4715):726-33.
- Tang WF, Eshita Y, Tadano M, Morita K, Makino Y. Molecular basis for adaptation of a chimeric dengue type-4/Japanese encephalitis virus to Vero cells. Microbiol Immunol. 2005;49(3):285-94.
- World Health Organization. Requirements for yellow fever vaccine. WHO Technical report series, 1998, No. 872, Annex 2, 30-68.
- World Health Organization. Recommendations to assure the quality, safety and efficacy of live attenuated yellow fever vaccines. WHO Technical report series, 2010, No. 978, Annex 5, 241-314.
專利參考資料
- WO 2009/109550
- WO 2014/016360
<110> 法商賽諾菲巴斯德股份有限公司(SANOFI PASTEUR SA)
<120> 在VERO細胞上生長之減毒活黃熱病病毒株及包含其之疫苗組成物
<130> PM1801-WO-PCT
<140> 108111634
<141> 2019-04-02
<150> EP 108305405.5
<151> 2018-04-06
<160> 18
<170> BiSSAP 1.3.6
<210> 1
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV 17D204病毒株的RNA序列
<400> 1
Figure 108111634-A0305-02-0069-1
Figure 108111634-A0305-02-0070-2
Figure 108111634-A0202-12-0069-28
Figure 108111634-A0202-12-0070-29
Figure 108111634-A0202-12-0071-30
Figure 108111634-A0202-12-0072-31
Figure 108111634-A0202-12-0073-32
<210> 2
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV YF-Vax®病毒株的RNA序列
<400> 2
Figure 108111634-A0202-12-0073-33
Figure 108111634-A0202-12-0074-34
Figure 108111634-A0202-12-0075-35
Figure 108111634-A0202-12-0076-36
Figure 108111634-A0202-12-0077-37
Figure 108111634-A0202-12-0078-38
Figure 108111634-A0202-12-0079-39
Figure 108111634-A0202-12-0080-40
<210> 3
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV Stamaril®病毒株的RNA序列
<400> 3
Figure 108111634-A0202-12-0080-41
Figure 108111634-A0202-12-0081-42
Figure 108111634-A0202-12-0082-43
Figure 108111634-A0202-12-0083-44
Figure 108111634-A0202-12-0084-45
Figure 108111634-A0202-12-0085-46
Figure 108111634-A0202-12-0086-47
<210> 4
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV 17D-213病毒株的RNA序列
<400> 4
Figure 108111634-A0202-12-0087-48
Figure 108111634-A0202-12-0088-49
Figure 108111634-A0202-12-0089-50
Figure 108111634-A0202-12-0090-51
Figure 108111634-A0202-12-0091-52
Figure 108111634-A0202-12-0092-53
Figure 108111634-A0202-12-0093-54
<210> 5
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV 17DD病毒株的RNA序列
<400> 5
Figure 108111634-A0202-12-0093-55
Figure 108111634-A0202-12-0094-56
Figure 108111634-A0202-12-0095-57
Figure 108111634-A0202-12-0096-58
Figure 108111634-A0202-12-0097-59
Figure 108111634-A0202-12-0098-60
Figure 108111634-A0202-12-0099-61
Figure 108111634-A0202-12-0100-62
<210> 6
<211> 10833
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV Asibi病毒株的RNA序列
<400> 6
Figure 108111634-A0202-12-0100-63
Figure 108111634-A0202-12-0101-64
Figure 108111634-A0202-12-0102-65
Figure 108111634-A0202-12-0103-66
Figure 108111634-A0202-12-0104-67
Figure 108111634-A0202-12-0105-68
Figure 108111634-A0202-12-0106-69
<210> 7
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV TV3112病毒株的RNA序列
<400> 7
Figure 108111634-A0202-12-0106-70
Figure 108111634-A0202-12-0107-71
Figure 108111634-A0202-12-0108-72
Figure 108111634-A0202-12-0109-73
Figure 108111634-A0202-12-0110-74
Figure 108111634-A0202-12-0111-75
Figure 108111634-A0202-12-0112-76
Figure 108111634-A0202-12-0113-77
<210> 8
<211> 10862
<212> RNA
<213> 黃熱病病毒
<220>
<223> YFV TV3111病毒株的RNA序列
<400> 8
Figure 108111634-A0202-12-0113-78
Figure 108111634-A0202-12-0114-79
Figure 108111634-A0202-12-0115-80
Figure 108111634-A0202-12-0116-81
Figure 108111634-A0202-12-0117-82
Figure 108111634-A0202-12-0118-83
Figure 108111634-A0202-12-0119-84
<210> 9
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> DNA引子
<400> 9
Figure 108111634-A0202-12-0119-86
<210> 10
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> DNA引子
<400> 10
Figure 108111634-A0202-12-0120-90
<210> 11
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> DNA引子
<400> 11
Figure 108111634-A0202-12-0120-89
<210> 12
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> DNA引子
<400> 12
Figure 108111634-A0202-12-0120-88
<210> 13
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> DNA引子
<400> 13
Figure 108111634-A0202-12-0120-87
<210> 14
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> DNA引子
<400> 14
Figure 108111634-A0202-12-0121-92
<210> 15
<211> 493
<212> PRT
<213> 黃熱病病毒
<220>
<223> YFV TV3111或TV3112病毒株之外膜蛋白的序列
<400> 15
Figure 108111634-A0202-12-0121-93
Figure 108111634-A0202-12-0122-94
<210> 16
<211> 224
<212> PRT
<213> 黃熱病病毒
<220>
<223> YFV TV3111或TV3112病毒株之NS2a蛋白的序列
<400> 16
Figure 108111634-A0202-12-0122-96
Figure 108111634-A0202-12-0123-99
<210> 17
<211> 378
<212> RNA
<213> 黃熱病病毒
<220>
<223> 編碼YFV TV3112病毒株之NS4a蛋白的RNA序列
<400> 17
Figure 108111634-A0202-12-0123-98
<210> 18
<211> 1479
<212> RNA
<213> 黃熱病病毒
<220>
<223> 編碼YFV TV3112病毒株之外膜蛋白的RNA序列
<400> 18
Figure 108111634-A0202-12-0123-97
Figure 108111634-A0202-12-0124-100

Claims (15)

  1. 一種減毒活黃熱病病毒株,其包含在對應於SEQ ID NO.15之位置480的蛋白質內的位置處含有白胺酸殘基的外膜蛋白。
  2. 如請求項1之減毒活黃熱病病毒株,其包含含有在位置480處之突變的外膜蛋白,該突變造成胺基酸從纈胺酸變成白胺酸。
  3. 如請求項2之減毒活黃熱病病毒株,其包含含有下列的核酸:i)一個在外膜蛋白(E)之對應於SEQ ID NO.15之位置480處的胺基酸密碼子突變,其造成胺基酸由纈胺酸變成白胺酸。
  4. 如請求項3之減毒活黃熱病病毒株,其包含含有下列的核酸:i)一個在外膜蛋白(E)之對應於SEQ ID NO.15之位置480處的胺基酸密碼子突變,其造成胺基酸由纈胺酸變成白胺酸,及ii)一個在非結構蛋白2A(NS2a)之對應於SEQ ID NO.16之位置65處的胺基酸密碼子突變,其造成胺基酸由甲硫胺酸變成纈胺酸。
  5. 如請求項3或4之減毒活黃熱病病毒株,其中該核酸進一步包含一個在非結構蛋白4A(NS4a)的位置19處的胺基酸密碼子中對應於SEQ ID NO.17之位置57的核苷酸位置處編碼非結構蛋白4A(NS4a)的序列之突變,該突變造成密碼子從AAA變成AAG。
  6. 如請求項3或4之減毒活黃熱病病毒株,其中該核酸進一步包含在外膜蛋白(E)之位置145處的胺基酸密碼子突變,該突變造成密碼子從GUA變成GUU。
  7. 一種減毒活黃熱病病毒株,其包含編碼下列的核酸分子:(i)在對應於SEQ ID NO.15之位置480處包含突變的外膜蛋白,該突變造成胺基酸從纈胺酸變成白胺酸,以及(ii)在對應於SEQ ID NO.16之位置65處包含突變的NS2a蛋白,該突變造成胺基酸從甲硫胺酸變成纈胺酸。
  8. 如請求項7之減毒活黃熱病病毒株,其中該核酸進一步包含一個在非結構蛋白4A(NS4a)之位置19處的胺基酸密碼子中對應於SEQ ID NO.17之位置57的核苷酸位置處編碼非結構蛋白4A(NS4a)的序列之突變,該突變造成密碼子從AAA變成AAG。
  9. 如請求項7或8之減毒活黃熱病病毒株,其中該核酸進一步包含一個在外膜蛋白(E)之位置145處的胺基酸密碼子突變,該突變造成密碼子從GUA變成GUU。
  10. 一種減毒活黃熱病病毒株,其包含編碼下列的核酸分子:(i)在對應於SEQ ID NO.15之位置480的蛋白質內的位置處包含白胺酸殘基的外膜蛋白;以及(ii)在對應於SEQ ID NO.16之位置65的蛋白質內的位置處包含纈胺酸殘基的NS2a蛋白。
  11. 如請求項10之減毒活黃熱病病毒株,其中在對應於SEQ ID NO.17之位置57的編碼非結構蛋白4A(NS4a)的核酸內的位置處,該核酸進一步包含一個G核苷酸。
  12. 如請求項10或11之減毒活黃熱病病毒株,其中在對應於SEQ ID NO.18之位置435的編碼外膜蛋白(E)的核酸內的位置處,該核酸進一步包含一個U核苷酸。
  13. 一種免疫原性組成物,包含如請求項1至12中任一項之減毒活黃熱病病毒株及醫藥上可接受媒劑。
  14. 一種如請求項1至12中任一項之減毒活黃熱病病毒株或如請求項13之免疫原性組成物用於製備預防黃熱病病毒感染的疫苗之用途。
  15. 一種包含如請求項1至12中任一項之減毒活黃熱病病毒株或如請求項13之免疫原性組成物的疫苗之用途,其用於製備預防黃熱病病毒感染的藥物。
TW108111634A 2018-04-06 2019-04-02 在vero細胞上生長之減毒活黃熱病病毒株及包含其之疫苗組成物 TWI835787B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18305405.5A EP3549603A1 (en) 2018-04-06 2018-04-06 Live-attenuated yellow fever virus strain adapted to grow on vero cells and vaccine composition comprising the same
EP18305405.5 2018-04-06

Publications (2)

Publication Number Publication Date
TW202003028A TW202003028A (zh) 2020-01-16
TWI835787B true TWI835787B (zh) 2024-03-21

Family

ID=62046805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111634A TWI835787B (zh) 2018-04-06 2019-04-02 在vero細胞上生長之減毒活黃熱病病毒株及包含其之疫苗組成物

Country Status (15)

Country Link
US (2) US11471521B2 (zh)
EP (2) EP3549603A1 (zh)
JP (1) JP7370338B2 (zh)
KR (1) KR20200140292A (zh)
CN (1) CN111918669A (zh)
AR (1) AR114471A1 (zh)
AU (1) AU2019249329A1 (zh)
BR (1) BR112020018879A2 (zh)
CA (1) CA3095438A1 (zh)
CO (1) CO2020011984A2 (zh)
PE (1) PE20210317A1 (zh)
SG (1) SG11202009439YA (zh)
TW (1) TWI835787B (zh)
WO (1) WO2019192997A1 (zh)
ZA (1) ZA202006280B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3549603A1 (en) * 2018-04-06 2019-10-09 Sanofi Pasteur Live-attenuated yellow fever virus strain adapted to grow on vero cells and vaccine composition comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011969A1 (en) * 2010-07-23 2012-01-26 Xcellerex, Inc. High yield yellow fever virus strain with increased propagation in cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2010008799A (es) 2008-03-05 2010-09-07 Sanofi Pasteur Proceso para estabilizar una composicion de vacuna que contiene adyuvante.
DK2459709T3 (en) * 2009-07-31 2014-12-01 Ge Healthcare Bio Sciences HIGH-REPLACED YELLOW FEBER VIRUS TREASURY WITH INCREASED CELL STORAGE
SG11201500412TA (en) 2012-07-24 2015-02-27 Sanofi Pasteur Vaccine compositions
EP3549603A1 (en) * 2018-04-06 2019-10-09 Sanofi Pasteur Live-attenuated yellow fever virus strain adapted to grow on vero cells and vaccine composition comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011969A1 (en) * 2010-07-23 2012-01-26 Xcellerex, Inc. High yield yellow fever virus strain with increased propagation in cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Thomas J. Chambers and Michael Nickells, "Neuroadapted Yellow Fever Virus 17D: Genetic and Biological Characterization of a Highly Mouse-Neurovirulent Virus and Its Infectious Molecular Clone", Journal of Virology, Vol. 75, No.22, 無, November 2001, Pages 10912–10922 *

Also Published As

Publication number Publication date
BR112020018879A2 (pt) 2021-01-26
US20210154289A1 (en) 2021-05-27
KR20200140292A (ko) 2020-12-15
US11452772B2 (en) 2022-09-27
AR114471A1 (es) 2020-09-09
WO2019192997A1 (en) 2019-10-10
US20220047692A1 (en) 2022-02-17
PE20210317A1 (es) 2021-02-16
TW202003028A (zh) 2020-01-16
RU2020136260A (ru) 2022-05-06
ZA202006280B (en) 2022-06-29
US11471521B2 (en) 2022-10-18
CA3095438A1 (en) 2019-10-10
JP7370338B2 (ja) 2023-10-27
AU2019249329A1 (en) 2020-12-03
SG11202009439YA (en) 2020-10-29
EP3549603A1 (en) 2019-10-09
CN111918669A (zh) 2020-11-10
EP3773701A1 (en) 2021-02-17
CO2020011984A2 (es) 2021-02-08
JP2021520384A (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
Hahn et al. Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it.
JP5197362B2 (ja) デング熱セロタイプ1弱毒株
JP5538729B2 (ja) 偽感染性フラビウイルスおよびそれらの使用
CN113637086B (zh) 用于疫苗中的登革热病毒嵌合式构建物的组合物及方法
US20130095136A1 (en) Tetravalent Dengue Vaccines
KR20090064593A (ko) 4 가지 뎅기열 혈청형에 대한 면역화 방법
KR20090027759A (ko) 뎅기열의 4 가지 혈청형에 대한 면역화 방법
Pletnev Infectious cDNA clone of attenuated Langat tick-borne flavivirus (strain E5) and a 3′ deletion mutant constructed from it exhibit decreased neuroinvasiveness in immunodeficient mice
US20210322535A1 (en) Vaccines against infectious diseases caused by positive stranded rna viruses
US11452772B2 (en) Live-attenuated yellow fever virus strain adapted to grow on Vero cells and vaccine composition comprising the same
Kelly et al. Evolution of attenuating mutations in dengue-2 strain S16803 PDK50 vaccine and comparison of growth kinetics with parent virus
AU2009211379B2 (en) Flaviviridae mutants comprising a deletion in the capsid protein for use as vaccines
RU2788130C2 (ru) Живой аттенуированный штамм вируса желтой лихорадки, адаптированный к росту в клетках vero, и вакцинная композиция, содержащая его
EP1002054B1 (en) Process for the production of virus in cell cultures
RU2795800C1 (ru) Иммунобиологическое средство для профилактики заболеваний, вызванных вирусом клещевого энцефалита на основе рекомбинантного вируса рода Flavivirus
Kuznetsova et al. Development and Characterization of Yellow Fever Virus Vaccine Strain 17DD-Based Chimeric Tick-Borne Encephalitis Virus
Kaiser Characterization of Candidate Mutations for Use in a Live Attenuated West Nile Virus Vaccine