TWI832549B - 核殼粒子與鋰離子電池 - Google Patents

核殼粒子與鋰離子電池 Download PDF

Info

Publication number
TWI832549B
TWI832549B TW111143108A TW111143108A TWI832549B TW I832549 B TWI832549 B TW I832549B TW 111143108 A TW111143108 A TW 111143108A TW 111143108 A TW111143108 A TW 111143108A TW I832549 B TWI832549 B TW I832549B
Authority
TW
Taiwan
Prior art keywords
core
shell
lithium
atomic
particle
Prior art date
Application number
TW111143108A
Other languages
English (en)
Other versions
TW202419404A (zh
Inventor
柯冠宇
曾俊棋
劉佳兒
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW111143108A priority Critical patent/TWI832549B/zh
Priority to US17/994,710 priority patent/US20240162431A1/en
Priority to JP2022191932A priority patent/JP7520092B2/ja
Priority to CN202211610116.8A priority patent/CN118039821A/zh
Priority to EP23151436.5A priority patent/EP4368576A1/en
Priority to KR1020230011681A priority patent/KR20240069569A/ko
Application granted granted Critical
Publication of TWI832549B publication Critical patent/TWI832549B/zh
Publication of TW202419404A publication Critical patent/TW202419404A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

核殼粒子包括核心,其化學式為Ti (1-x)M1 xNb (2-y)M2 yO (7-z)Q z,其中M1為Li或Mg,M2為Fe、Mn、V、Ni、Cr、或Cu,Q為F、Cl、Br、I、或S,x為0至0.15,y為0至0.15,以及z為0至2;以及殼層,覆蓋核心的至少部分表面,且殼層包括Cu、Nb、Ti、及O。

Description

核殼粒子與鋰離子電池
本揭露關於鋰離子電池,更特別關於電池的負極所用的核殼粒子。
現今主流的碳負極材料雖具有不錯的電容量(~350 mAh/g),但在循環壽命、安全性、可快充等特性仍有瓶頸。而鈦酸鋰(Li 4Ti 5O 12) 具有長壽命、高安全之快充負極材料,但電容量較低(~165mAh/g)。鈦酸鈮(TiNb 2O 7,TNO)具有更高的理論電容量(~380 mAh/g),1.6V的工作電位可防止鋰枝晶生成,安全性與循環壽命良好,振實密度也較高,適合作為下一代快充負極。目前鋰電池能量密度高,但充電速率較差(<5C,充入50%),而鈦酸鋰電池雖然充電速度快(>5C,充入80%以上),但能量密度低使得應用受到侷限。而鈦酸鈮由於容量和密度與鈦酸鋰相比明顯提升,可大幅增加快充鋰電池的能量密度,而擁有更大的應用範圍,如提升電動車的續航力與充電速度、儲能系統的儲能密度,甚至可用於減少消費型電子產品的充電時間,且低溫性能良好,可適應各種惡劣環境。然而鈦酸鈮的導電性質不佳,如需用於動力鋰電池,材料需改質以得更好的性能如充放電容量與循環壽命。
本揭露一實施例提供之核殼粒子,包括:核心,其化學式為Ti (1-x)M1 xNb (2-y)M2 yO (7-z)Q z,其中M1為Li或Mg,M2為Fe、Mn、V、Ni、Cr、或Cu,Q為F、Cl、Br、I、或S,x為0至0.15,y為0至0.15,以及z為0至2;以及殼層,覆蓋核心的至少部分表面,且殼層包括Cu、Nb、Ti、及O。
本揭露一實施例提供之鋰離子電池,包括:負極;正極;以及電解質,位於負極與正極之間,其中負極包括上述核殼粒子。
本揭露一實施例提供之核殼粒子,包括:核心,其化學式為Ti (1-x)M1 xNb (2-y)M2 yO (7-z)Q z,其中M1為Li或Mg,M2為Fe、Mn、V、Ni、Cr、或Cu,Q為F、Cl、Br、I、或S,x為0至0.15,y為0至0.15,以及z為0至2;以及殼層,覆蓋核心的至少部分表面,且殼層包括Cu、Nb、Ti、及O。在一些實施例中,上述核殼粒子形成方法係取鈮源、鈦源、與視情況存在的其他摻雜物(如氟源,非必要)混合後燒結形成核心。接著取核心與銅源混合後,形成含銅殼層於核心上以得核殼粒子。值得注意的是,銅源並非與鈮源、鈦源、及其他摻雜物混合後一起燒結,此作法將形成摻雜銅的鈮酸鈦材料,而非形成含銅殼層與鈮酸鈦核心的核殼材料。另一方面,殼層中的Cu有部分擴散至核心,而核心中的Nb與Ti有部分擴散至殼層。即使如此,殼層與核心之間具有明顯界面,殼層為非晶態,且核心為結晶態。此外,核心的主要金屬組成為Ti與Nb,而殼層的主要金屬組成為Cu。
在一些實施例中,核心與該殼層的重量比為1:0.004至1:0.02。若殼層的比例過大,則可能阻礙鋰離子的嵌出嵌入。若殼層的比例過小,則與無殼層的核心材料效果類似。
在一些實施例中,殼層的Cu含量為5原子%至15原子%,Nb含量為0至5原子%,Ti含量為0至6原子%,且O含量為70原子%至90原子%。殼層中的Nb與Ti的含量,與燒結形成含銅殼層的溫度與時間相關。若燒結溫度過高或時間過長,則殼層可能厚度過厚而阻礙鋰離子嵌出嵌入。若燒結溫度過低或時間過短,則可能造成反應不完全而殘留硫酸銅,導致材料表面阻抗提高。
在一些實施例中,殼層的厚度為5 nm至50 nm。若殼層的厚度過小,則與無殼層包覆核心的效果類似。若殼層的厚度過大,則可能阻礙鋰離子的嵌入嵌出。
在一些實施例中,殼層為不連續的薄膜。舉例來說,殼層可能露出核心的部分表面。然而在其他實施例中,殼層可完全包覆核心。
在一些實施例中,核殼粒子的一次粒徑中位數(D 50)為100 nm至400 nm。若核殼粒子的一次粒徑中位數(D 50)過大,則可能增加電子與鋰離子傳導路徑、及增加傳導的時間而降低倍率能力。若核殼粒子的一次粒徑中位數(D 50)過小,則可能增加材料的比表面積,造成混漿製程分散不易,降低極板密度與均勻性。
本揭露一實施例提供之鋰離子電池,包括:負極;正極;以及電解質,位於負極與正極之間,其中負極包括上述核殼粒子。負極可進一步包含導電碳黑、黏合劑、或其他合適組成。
在一些實施例中,負極更包括鈦酸鋰粒子,且核殼粒子與鈦酸鋰粒子的重量比例為90:10至10:90,以提升負極倍率性能及降低成本。若鈦酸鋰的比例過低,則與無鈦酸鋰的效果類似。若鈦酸鋰的比例過高,則導致此複合材料之克電容量下降過多。舉例來說,鈦酸鋰的化學結構為Li 4Ti 5O a,且8≤a≤12。
在一些實施例中,正極包括鈷酸鋰、鎳酸鋰、錳酸鋰、三元正極材料、磷酸鋰鐵、磷酸鋰鐵錳、磷酸鋰錳、或上述之組合。在一些實施例中,電解質由其形態可分為液態、膠態、與固態。液態電解質由鋰鹽、溶劑或離子液體所組成,常用的鋰鹽有LiPF 6、LiAsF 6、LiClO 4、LiBF 4、LiTFSI、或LiCF 3SO 3等,常用的溶劑有環狀碳酸酯(如碳酸乙烯酯、碳酸丙烯酯)、鏈狀碳酸酯(如碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯)、或醚類化合物(如二甲醚、1,3-二氧環戊烷)等。固態電解質區分為高分子及玻璃陶瓷等。另一方面,在量測核殼粒子的負極性能時,此負極可與鋰正極及常見電解液組成半電池。
為讓本揭露之上述內容和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下: [實施例]
比較例1 依計量比將氧化鈮、氧化鈦、與氟源(MgF 2)加入含分散劑PVA BP-05的去離子水中,充分混合18小時後得到均勻分散之漿料。接著以噴霧乾燥的方式造粒得到前驅物粉體。將前驅物粉體置入氧化鋁坩鍋,經1015℃燒結3小時後,即得摻雜氟與鎂的鈮酸鈦材料Mg 0.02Ti 0.98Nb 2O 6.96F 0.04
取85重量份的上述摻雜氟與鎂的鈮酸鈦材料、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,且碳酸乙烯酯(EC):碳酸二甲酯(DMC)=1:2 (體積比)。此電池在不同充放電速率下的電容量對電壓的曲線圖如圖1A所示,而以定電流-定電壓模式(constant current-constant voltage)放電,以定電流模式(constant current) 進行充電,充放電速率皆為1C的條件下,進行充放電的次數與對應的電容量如圖1B所示。此電池對不同充放電速率的電容量以及50次循環後的電容維持率如表1所示。
實施例1 取20g的比較例1製備的摻雜氟與鎂的鈮酸鈦材料Mg 0.02Ti 0.98Nb 2O 6.96F 0.04加入含0.3139克CuSO 4.5H 2O之水溶液,在常溫下拌攪均勻後,加熱至100 ℃蒸發水以得乾燥粉體,再將此乾燥粉體置入氧化鋁坩鍋,經700℃燒結2小時後,得到表面包覆殼層(含銅)之摻雜氟與鎂的鈮酸鈦核心的核殼粒子。
取85重量份的上述核殼粒子、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池在不同充放電速率下的電容量對電壓的曲線圖如圖2A所示,而以定電流-定電壓模式(constant current-constant voltage) 放電,以定電流模式(constant current) 進行充電,充放電速率皆為1C的條件下,進行充放電的次數與對應的電容如圖2B所示。此電池對不同充放電速率的電容量以及50次循環後的電容維持率如表1所示。
比較例2 取20g的比較例1製備的摻雜氟與鎂的鈮酸鈦材料Mg 0.02Ti 0.98Nb 2O 6.96F 0.04加入含0.315克AgNO 3之水溶液,在常溫下拌攪均勻後,加熱至90 ℃蒸發水以得乾燥粉體,再將此乾燥粉體置入氧化鋁坩鍋,經700℃燒結1小時後,得到表面包覆殼層(含銀)之摻雜氟與鎂的鈮酸鈦核心的核殼粒子。
取85重量份的上述核殼粒子、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池對不同充放電速率的電容量以及50次循環後的電容維持率如表1所示。
表1
  0.2C/0.2C充放電電容量(mAh/g) 1C/1C充放電電容量 (mAh/g) 5C/5C充放電電容量 (mAh/g) 6C/6C充放電電容量 (mAh/g) 50圈循環(1C/1C)後的電容維持率
比較例1 (無殼) 248.5 228.9 178.0 163.3 74.78%
實施例1 (含銅殼) 250.5 229.4 183.2 172.5 88.03%
比較例2 (含銀殼) 250.6 228.8 151.4 133.5 74.4%
與無殼材料及含銀殼的核殼粒子相較,含銅殼的核殼粒子具有較高的充放電電容量以及較長的循環壽命。
比較例3 依計量比將氧化鈮與氧化鈦加入含分散劑PVA BP-05的去離子水中,充分混合18小時後得到均勻分散之漿料。接著以噴霧乾燥的方式造粒得到前驅物粉體。將前驅物粉體置入氧化鋁坩鍋,經1100℃燒結12小時後,即得鈮酸鈦材料TiNb 2O 7
取85重量份的上述鈮酸鈦材料、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池對不同充放電速率的電容量如表3所示。
實施例2 取20g的比較例3製備的鈮酸鈦TiNb 2O 7加入含0.3139克CuSO 4.5H 2O之水溶液,在常溫下拌攪均勻後,加熱至100 ℃蒸發水以得乾燥粉體,再將此乾燥粉體置入氧化鋁坩鍋,經600℃燒結1小時後,得到表面包覆殼層(含銅)之鈮酸鈦核心的核殼粒子。
可由X射線能量散布分析儀(EDX)分析殼層與核心中不同點的元素組成,如表2所示:
表2
  殼層 核心
第一位置 第二位置 第三位置 第四位置 第五位置
O 86.63 86.57 75.24 61.05 62.94
Ti 1.43 2.54 4.85 14.18 14.24
Cu 11.38 8.62 14.05 3.95 3.74
Nb 0.55 2.27 5.87 20.83 19.08
總計 100 100 100 100 100
由表2可知,殼層中有部分自核心擴散的Ti與Nb,而核心中有部分自殼層擴散的Cu。然而殼層主要含Cu,而核心主要含Nb與Ti。
取85重量份的上述核殼粒子、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池對不同充放電速率的電容量如表3所示。
實施例3 取20g的比較例1製備的鈮酸鈦TiNb 2O 7加入含0.3139克CuSO 4.5H 2O之水溶液,在常溫下拌攪均勻後,加熱至100 ℃蒸發水以得乾燥粉體,再將此乾燥粉體置入氧化鋁坩鍋,經700℃燒結1小時後,得到表面包覆殼層(含銅)之鈮酸鈦核心的核殼粒子。
取85重量份的上述核殼粒子、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池對不同充放電速率的電容量如表3所示。
實施例4 取20g的比較例3製備的鈮酸鈦TiNb 2O 7加入含0.6278克CuSO 4.5H 2O之水溶液,在常溫下拌攪均勻後,加熱至100 ℃蒸發水以得乾燥粉體,再將此乾燥粉體置入氧化鋁坩鍋,經600℃燒結1小時後,得到表面包覆殼層(含銅)之鈮酸鈦核心的核殼粒子。
取85重量份的上述核殼粒子、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池對不同充放電速率的電容量如表3所示。
比較例4 將15.38g氧化鈮、4.72g氧化鈦、與0.6278 CuSO 4.5H 2O加入含分散劑PVA BP-05的去離子水中,充分混合18小時後得到均勻分散之漿料。接著以噴霧乾燥的方式造粒得到前驅物粉體。將前驅物粉體置入氧化鋁坩鍋,經1015℃燒結3小時後,即得摻雜銅之鈮酸鈦材料,其中銅均勻摻雜於鈮酸鈦中而非形成殼層包覆鈮酸鈦核心。
取85重量份的上述摻雜銅之鈮酸鈦材料、6重量份的KS4 (購自TIMCAL TIMREX)、4重量份的Super P (購自TIMCAL TIMREX)、與5重量份的PVDF (購自Solef)均勻混合配置為漿料。接著將漿料塗佈於鋁箔基材上,得到厚度小於150微米之塗層。以輾壓機將塗層輾至原厚度之65%,以得負極板。將負極板裁切為直徑12 mm之圓形負極板。取上述圓形負極板、鋰金屬的正極板、以及電解液組成CR2032半電池,以測試半電池的電化學性質。上述電解液組成為1M LiPF 6,EC:DMC=1:2 (體積比)。此電池對不同充放電速率的電容量如表3所示。
表3
  0.2C/0.2C充放電電容量(mAh/g) 1C/1C充放電電容量 (mAh/g) 5C/5C充放電電容量 (mAh/g) 6C/6C充放電電容量 (mAh/g)
比較例3 (無殼) 233.4 196.9 110.1 98.5
實施例2 (含銅殼) 259.4 231.7 151.6 126.4
實施例3 (含銅殼) 250.9 226.3 151.3 124.0
實施例4 (含銅殼) 252.5 227.7 154.9 133.2
比較例4 (摻雜銅,無殼) 247.3 217.4 144.0 114.4
與無殼材料(不論是否摻雜銅)相較,含銅殼的核殼粒子具有較高的充放電電容量。
雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
無。
圖1A係本揭露一實施例中,電池在不同充放電速率下的電容量對電壓的曲線圖。 圖1B係本揭露一實施例中,電池進行充放電的次數與對應的電容的圖式。 圖2A係本揭露一實施例中,電池在不同充放電速率下的電容量對電壓的曲線圖。 圖2B係本揭露一實施例中,電池進行充放電的次數與對應的電容的圖式。

Claims (9)

  1. 一種核殼粒子,包括:一核心,其化學式為Ti(1-x)M1xNb(2-y)M2yO(7-z)Qz;其中M1為Li或Mg;M2為Fe、Mn、V、Ni、Cr、或Cu;Q為F、Cl、Br、I、或S;x為0至0.15;y為0至0.15,以及z為0至2;以及一殼層,覆蓋該核心的至少部分表面,且該殼層包括Cu、Nb、Ti、及O,其中該核心與該殼層的重量比為1:0.004至1:0.02。
  2. 如請求項1之核殼粒子,其中該殼層的Cu含量為5原子%至15原子%,Nb含量為大於0至5原子%,Ti含量為大於0至6原子%,且O含量為70原子%至90原子%。
  3. 如請求項1之核殼粒子,其中該殼層的厚度為5nm至50nm。
  4. 如請求項1之核殼粒子,其中該殼層為非晶結構。
  5. 如請求項1之核殼粒子,其中該殼層為不連續的薄膜。
  6. 如請求項1之核殼粒子,其中該核殼粒子的一次粒徑中位數(D50)為100nm至400nm。
  7. 一種鋰離子電池,包括:一負極;一正極;以及一電解質,位於該負極與該正極之間;其中該負極包括請求項1之該核殼粒子。
  8. 如請求項7之鋰離子電池,其中該負極更包括一鈦酸鋰粒子,且該核殼粒子與該鈦酸鋰粒子的重量比例為90:10至10:90。
  9. 如請求項7之鋰離子電池,其中該正極包括鈷酸鋰、鎳酸鋰、錳酸鋰、三元正極材料、磷酸鋰鐵、磷酸鋰鐵錳、磷酸鋰錳或上述之組合。
TW111143108A 2022-11-11 2022-11-11 核殼粒子與鋰離子電池 TWI832549B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW111143108A TWI832549B (zh) 2022-11-11 2022-11-11 核殼粒子與鋰離子電池
US17/994,710 US20240162431A1 (en) 2022-11-11 2022-11-28 Core-shell particle and lithium ion battery
JP2022191932A JP7520092B2 (ja) 2022-11-11 2022-11-30 コアシェル粒子およびリチウムイオン電池
CN202211610116.8A CN118039821A (zh) 2022-11-11 2022-12-14 核壳颗粒与锂离子电池
EP23151436.5A EP4368576A1 (en) 2022-11-11 2023-01-13 Core-shell particle and lithium ion battery
KR1020230011681A KR20240069569A (ko) 2022-11-11 2023-01-30 코어-쉘 입자 및 리튬 이온 배터리

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111143108A TWI832549B (zh) 2022-11-11 2022-11-11 核殼粒子與鋰離子電池

Publications (2)

Publication Number Publication Date
TWI832549B true TWI832549B (zh) 2024-02-11
TW202419404A TW202419404A (zh) 2024-05-16

Family

ID=84981319

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111143108A TWI832549B (zh) 2022-11-11 2022-11-11 核殼粒子與鋰離子電池

Country Status (6)

Country Link
US (1) US20240162431A1 (zh)
EP (1) EP4368576A1 (zh)
JP (1) JP7520092B2 (zh)
KR (1) KR20240069569A (zh)
CN (1) CN118039821A (zh)
TW (1) TWI832549B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943207A (zh) * 2019-10-28 2020-03-31 浙江锋锂新能源科技有限公司 一种改性的TiNb2O7材料及改性方法
CN112106232A (zh) * 2017-12-29 2020-12-18 塞克姆公司 通过金属氧氟化物前体在用于锂离子电池的阴极陶瓷颗粒上形成LimMOxFy壳

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047871A (zh) 2015-06-18 2015-11-11 哈尔滨工业大学 一种掺杂型锂离子电池负极材料及其制备方法
CN109428066A (zh) 2017-08-30 2019-03-05 中国科学院宁波材料技术与工程研究所 核壳材料及其制备方法、锂离子电池负极材料及锂离子电池
JP6710668B2 (ja) 2017-09-19 2020-06-17 株式会社東芝 活物質、電極、二次電池、電池パック、及び車両
US11005094B2 (en) * 2018-03-07 2021-05-11 Global Graphene Group, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries
CN111137919B (zh) 2018-11-06 2022-08-12 财团法人工业技术研究院 掺杂铌酸钛与电池
CN111354923A (zh) 2018-12-24 2020-06-30 北方奥钛纳米技术有限公司 负极材料及其制备方法、负极片和锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112106232A (zh) * 2017-12-29 2020-12-18 塞克姆公司 通过金属氧氟化物前体在用于锂离子电池的阴极陶瓷颗粒上形成LimMOxFy壳
CN110943207A (zh) * 2019-10-28 2020-03-31 浙江锋锂新能源科技有限公司 一种改性的TiNb2O7材料及改性方法

Also Published As

Publication number Publication date
US20240162431A1 (en) 2024-05-16
JP7520092B2 (ja) 2024-07-22
TW202419404A (zh) 2024-05-16
JP2024070761A (ja) 2024-05-23
KR20240069569A (ko) 2024-05-20
CN118039821A (zh) 2024-05-14
EP4368576A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
CN111137919B (zh) 掺杂铌酸钛与电池
CN102024950B (zh) 正极活性物质及其制备方法、正极和非水电解质电池
JP3769291B2 (ja) 非水電解質電池
JP6207153B2 (ja) リチウム電池用の正極素材、それから得られる正極、及び該正極を採用したリチウム電池
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
KR20140108102A (ko) 복합 양극 활물질 및 그 제조방법, 상기 복합 양극 활물질을 채용한 양극과 리튬 전지
US11677065B2 (en) Cathode active material of lithium secondary battery
JP2013110134A (ja) 非水電解質電池
KR20080023831A (ko) 리튬티탄산화물 분말, 그 제조방법, 이를 포함하는 전극,및 이차전지
US20140023933A1 (en) Non-aqueous electrolyte secondary battery, and process for producing same
US20200287204A1 (en) Negative electrode active substance material and electricity storage device
JP2009176583A (ja) リチウム二次電池
JP7574266B2 (ja) 三元正極材及びその製造方法、正極プレート並びにリチウムイオン電池
KR102199028B1 (ko) Li 이온 2차 전지용 부극 재료 및 그의 제조 방법, Li 이온 2차 전지용 부극 그리고 Li 이온 2차 전지
JP7106702B2 (ja) 全固体二次電池用正極、及びそれを含む全固体二次電池
TWI832549B (zh) 核殼粒子與鋰離子電池
TWI705952B (zh) 摻雜鈮酸鈦與電池
JP2009187819A (ja) リチウムイオン二次電池用ペーストの製造方法
WO2023052836A1 (en) Cathode active material for lithium-ion battery and method for preparing said active material, and cathode comprising said active material and method for preparing said cathode
KR20140120752A (ko) 리튬 이차 전지용 양극 활물질, 양극 활물질 코팅 물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101491540B1 (ko) 금속 산화막이 코팅된 전극 및 이의 제조방법
EP3489198A1 (en) Cathode active material of lithium secondary battery
KR20060021252A (ko) 지르코니아로 코팅된 이차 전지용 양극활물질 및 그제조방법, 그리고 이를 사용한 이차전지
US20240243271A1 (en) Doped titanium niobate and battery
US20240113327A1 (en) Solid-state electrolyte, lithium battery comprising solid-state electrolyte, and preparation method of solid-state electrolyte