TWI824415B - 火力發電廠以及火力發電廠的控制方法 - Google Patents

火力發電廠以及火力發電廠的控制方法 Download PDF

Info

Publication number
TWI824415B
TWI824415B TW111105630A TW111105630A TWI824415B TW I824415 B TWI824415 B TW I824415B TW 111105630 A TW111105630 A TW 111105630A TW 111105630 A TW111105630 A TW 111105630A TW I824415 B TWI824415 B TW I824415B
Authority
TW
Taiwan
Prior art keywords
water
temperature
low
temperature water
steam
Prior art date
Application number
TW111105630A
Other languages
English (en)
Other versions
TW202248568A (zh
Inventor
當房誠
福岡佳奈
森本健太郎
小原和貴
小田川衛
堂本和宏
Original Assignee
日商三菱重工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021169753A external-priority patent/JP7374159B2/ja
Application filed by 日商三菱重工業股份有限公司 filed Critical 日商三菱重工業股份有限公司
Publication of TW202248568A publication Critical patent/TW202248568A/zh
Application granted granted Critical
Publication of TWI824415B publication Critical patent/TWI824415B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/28Steam-separating arrangements involving reversal of direction of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D3/00Accumulators for preheated water

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Control Of Turbines (AREA)

Abstract

本發明為一種火力發電廠,具備:鍋爐;蒸氣渦輪,由來自前述鍋爐的蒸氣所驅動;渦輪旁通管路,用於輸送繞過蒸氣渦輪的蒸氣;冷凝器,冷卻蒸氣渦輪的排氣而生成冷凝水;低壓給水加熱器,將冷凝水藉由來自前述蒸氣渦輪的抽氣蒸氣予以加熱;及脫氣器,將冷凝水藉由抽氣蒸氣予以脫氣,該火力發電廠具備:溫水加熱器,以渦輪旁通管路的主蒸氣作為熱源,使從冷凝器供給的冷凝水成為高溫水;高溫水槽,貯存該高溫水;及高溫水泵浦,將高溫水槽所貯存的高溫水輸送到低壓給水加熱器的下游或脫氣器。

Description

火力發電廠以及火力發電廠的控制方法
本發明係關於利用在鍋爐所產生的蒸氣之火力發電廠以及火力發電廠的控制方法。 本申請案係基於2021年2月16日於日本專利局提出申請的日本特願2021-022766號及2021年10月15日於日本專利局提出申請的日本特願2021-169753號而主張優先權,其內容引用於此。
已知利用在鍋爐(蒸氣產生器)所產生的蒸氣而驅動蒸氣渦輪的火力發電廠。此種火力發電廠作為以往電力系統的大型電源,主要擔任基載,可配合GTCC(蒸氣渦輪複循環)電廠的負載變動對應力而協助國內電力的穩定供給。
另外,近來源自可再生能源的電力對於電力系統的連網量增加,日間的電力系統中火力發電廠及GTCC電廠的送電量之比例有年年減少的傾向,依照不同地區,這些電廠的運轉數必須降低到電力系統的頻率維持或供需調整所需的最低程度,然而,僅管如此,處在剩餘狀態的源自可再生能源的電力依然可能無法順利連網到電力系統。
為了對於電力系統擴大提供源自可再生能源的電力,在以往的大型電源之中,火力發電廠在電廠最低負載下的送電量偏大,並且運用DSS(日間啟動停止)重新啟動電廠所需的時間偏長,因而必須改善其運用性。 [先前技術文獻] [專利文獻]
專利文獻1:日本實開昭64-54605號公報
上述專利文獻1的目的在於當電廠以低負載運轉時將給水的一部分貯藏在熱水槽,電力需求為尖峰負載時將該熱水朝向高壓給水加熱器群排出,使朝向高壓給水加熱器的抽氣降低或減少,藉此,蒸氣渦輪的輸出增加。
另外,上述專利文獻1中的電廠低負載運轉之前提為:將在鍋爐所產生的主蒸氣及再熱蒸氣之全量,通過調節器而朝向蒸氣渦輪導入予以發電,火力發電廠可實現的最低負載之下限設為從鍋爐最低負載時所產生的主蒸氣、再熱蒸氣的熱量扣除渦輪的抽氣而得的量,並且必須對於一般而言為25%負載、最小的情況為10%負載以上的電力系統送電。
理想狀況為:將從燃煤火力發電站(火力發電廠)朝向電力系統送出的電力,設法從以往最小的10%負載降低到大致0%負載(並聯無送電運用),藉此,擴大日間的電力系統對於再生能源的接受幅度,並且在同時間帶也使燃煤火力發電站(火力發電廠)的渦輪發電機預先並聯到常時系統,藉此,面對天候的變化導致再生能源的發電量減少,盡快使送電量增加,而協助電源系統的頻率維持、供需調整。
又,理想狀況為:以往在使用輕油作為啟動用燃料而運用DSS的火力發電廠,設法使利用廉價煤炭的電廠連續運轉,藉此,不僅可減少燃料費,也可避免運用DSS所伴隨的機器損耗以及啟動時故障。
本發明係鑒於上述情況而完成者,目的在於提供可一邊維持高運用性,一邊靈活應對再生能源的發電量之變化的火力發電技術。
本發明具備:鍋爐;蒸氣渦輪,由來自前述鍋爐的蒸氣所驅動;渦輪旁通管路,用於輸送繞過前述蒸氣渦輪的蒸氣;冷凝器,冷卻前述蒸氣渦輪的排氣而生成冷凝水;低壓給水加熱器,將前述冷凝水藉由來自前述蒸氣渦輪的抽氣蒸氣予以加熱;及脫氣器,將前述冷凝水藉由前述抽氣蒸氣予以脫氣,該火力發電廠的特徵為:具備:溫水加熱器,以前述渦輪旁通管路的主蒸氣作為熱 源,使從前述冷凝器供給的前述冷凝水成為高溫水;高溫水槽,貯存該高溫水;及高溫水泵浦,將前述高溫水槽所貯存的前述高溫水輸送到前述低壓給水加熱器的下游或前述脫氣器。
若依照本發明,則可提供可一邊維持高運用性,一邊靈活對應再生能源的發電量之變化的火力發電技術。
以下,參考附加圖示而說明本發明的數個實施形態。然而,作為實施形態記載或者圖示所呈現的構成構件之尺寸、材質、形狀、及其相對配置等並未將本發明的範圍限定於此,僅為說明例。 例如,表示「在某方向」、「沿著某方向」、「平行」、「正交」、「中心」、「同心」或者「同軸」等相對或絕對的配置之用語並非僅表示嚴格意義上的該配置,也表示具有公差、或者可得到相同功能的程度之角度或距離而相對變位之狀態。 例如,「相同」、「相等」及「均質」等表示事物為同等狀態的用語並非僅表示嚴格意義上的同等狀態,也表示具有公差、或者可得到相同功能的程度之差存在的狀態。 例如,表示四角形狀或圓筒形狀等形狀的用語並非僅表示幾何學上嚴格意義上的四角形狀或圓筒形狀等形狀,也表示在可得到同樣效果的範圍,包含凹凸部或倒角部等的形狀。 另外,「具有」、「擁有」、「具備」、「包含」、或「有」一個構成要素的用語並非排除其他構成要素的存在之排他性用語。
在以下的實施形態,作為本發明的至少一實施形態的燃煤火力電廠,以火力發電廠1為例說明。圖1為一實施形態的火力發電廠1的概略構成圖。
火力發電廠1具備:鍋爐2;蒸氣渦輪4;冷凝器13;水蓄熱系統70;及控制裝置80(參考圖7)。在本實施形態,火力發電廠1例示具備高壓渦輪4A、中壓渦輪4B、低壓渦輪4C作為蒸氣渦輪4的情況,火力發電廠1可具有單獨或者2個蒸氣渦輪4,也可具有4個以上的蒸氣渦輪4。
鍋爐2為可將燃燒微粉燃料所產生的熱與給水或蒸氣進行熱交換而生成過熱蒸氣的蒸氣產生器。鍋爐2例如為使用將煤(含碳的固體燃料)粉碎的微粉炭作為微粉燃料,再使該微粉燃料藉由燃燒器燃燒的燃煤(焚燒微粉)鍋爐。
尚且,在本實施形態,作為鍋爐2例示燃煤鍋爐,鍋爐2作為燃料可使用生質燃料或石油精煉時所產生的PC(石油焦:Petroleum Coke)燃料、石油殘渣等固體燃料。又,鍋爐2不限於固體燃料作為燃料,也可使用重油、輕油、重質油等石油類或工廠廢液等液體燃料,進一步,作為燃料也可使用氣體燃料(天然氣、副產物氣體等)。進一步,鍋爐2可為組合這些燃料予以使用的混合焚燒鍋爐。
在鍋爐2所生成的蒸氣(過熱蒸氣)經由主蒸氣管路6而供給到蒸氣渦輪4。在本實施形態,來自鍋爐2的蒸氣首先藉由供給到設置在上游側的高壓渦輪4A,而驅動高壓渦輪4A。
在高壓渦輪4A完成作業的蒸氣經由再熱蒸氣管路9,於再熱器35再加熱,然後供給到設置在下游側的中壓渦輪4B,藉此,驅動中壓渦輪4B。再熱蒸氣管路9連接高壓渦輪4A與中壓渦輪4B之間。在中壓渦輪4B完成作業的蒸氣經由中壓渦輪排氣管路12而供給到設置在下游側的低壓渦輪4C,藉此,驅動低壓渦輪4C。中壓渦輪排氣管路12連接中壓渦輪4B與低壓渦輪4C之間。在低壓渦輪4C完成作業的蒸氣排出到冷凝器13,而生成冷凝水。
又,設置連接主蒸氣管路6與冷凝器13的渦輪旁通管路7。在渦輪旁通管路7設置渦輪旁通閥8,調整渦輪旁通閥8的開口度,藉此,可將流經主蒸氣管路6的蒸氣之一部分,繞過蒸氣渦輪4而排出到冷凝器13。
高壓渦輪4A、中壓渦輪4B及低壓渦輪4C的輸出軸連接到發電機5的旋轉軸。發電機藉由來自這些蒸氣渦輪4的動力予以驅動而進行發電。由發電機製造的電力經由未圖示的電線而供給到電力系統(例如商用系統)。
尚且,高壓渦輪4A、中壓渦輪4B及低壓渦輪4C具有彼此共通的輸出軸,該輸出軸可連接到共通的發電機,作為發電機,可具有高壓渦輪4A及中壓渦輪4B的輸出軸被連接的第一發電機及低壓渦輪4C的輸出軸被連接的第二發電機。
又,如同圖6的粗線所示,由高壓渦輪4A、中壓渦輪4B所抽氣的蒸氣(抽氣蒸氣;hb,ib)分別供給到第二高壓給水加熱器21、第一高壓給水加熱器20。高壓渦輪4A的排氣蒸氣(he)之一部分也供給到第二高壓給水加熱器21。從第二高壓給水加熱器21排出的飽和排水(抽氣蒸氣hb及排氣蒸氣he凝結而成者)供給到第一高壓給水加熱器20。從第一高壓給水加熱器20排出的排水(從前述第二高壓給水加熱器21排出的飽和排水及抽氣蒸氣ib凝結而成者)朝向脫氣器17供給。又,中壓渦輪4B的排氣蒸氣(ie)之一部分朝向脫氣器17供給。又,從低壓渦輪4C抽氣的蒸氣(低壓抽氣;lb)朝向低壓給水加熱器16供給。從低壓給水加熱器16排出的飽和排水(低壓抽氣lb凝結而成者)朝向冷凝器13供給。以下,為了避免繁雜,在各圖中,適當省略從各蒸氣渦輪4朝向各高壓給水加熱器21,20、低壓給水加熱器16的輔助蒸氣管路。
由冷凝器13所生成的冷凝水藉由冷凝水泵浦14升壓,經由冷凝水管路15而朝向低壓給水加熱器16供給,再由來自低壓渦輪4C的抽氣蒸氣(lb)加熱之後,流入脫氣器17。在脫氣器17,藉由中壓渦輪4B的排氣蒸氣(ie)之一部分,將冷凝水脫氣。由脫氣器17所脫氣的冷凝水藉由給水泵浦18所升壓,經由送水管路19而朝向第一高壓給水加熱器20、第二高壓給水加熱器21供給,由中壓渦輪4B的抽氣蒸氣(ib)、高壓渦輪4A的抽氣蒸氣及排氣蒸氣(hb、he)加熱之後,朝向鍋爐2流入。
鍋爐2在低負載條件下以亞臨界狀態運轉。此時,鍋爐2的火爐出口之氣液混合水在排水分離器31氣液分離,蒸氣流入過熱器36,飽和排水經由排水分離器排水管路33及排水分離器排水控制閥32而朝向冷凝器13流入。
接下來,說明設置在火力發電廠1的水蓄熱系統70。本實施形態的火力發電廠1實施低負載運轉。低負載運轉為使鍋爐2及蒸氣渦輪4分別以最低限度的負載所進行的運轉。例如,將鍋爐2下降到最低輸出15%,將蒸氣渦輪4的輸出下降到5%,將蒸氣渦輪4的輸出全部用於廠內動力。藉此,關閉發電機遮斷器,一邊維持連接到系統的狀態,一邊使送電為0,也就是實現系統無送電運轉(並聯無送電運用)。
本實施形態的水蓄熱系統70係將在低負載運轉時產生之例如鍋爐2的最低負載15%、與蒸氣渦輪4的負載5%之間的差也就是10%輸出相應的上述熱作為高溫水予以蓄熱。具體而言,低負載運轉時,將渦輪旁通管路7的主蒸氣作為熱源,將從冷凝器13供給的冷凝水加熱作為高溫水予以貯存。然後,在之後的放熱運用時(高負載運轉時),將貯存的高溫水朝向脫氣器供給。
藉此,水蓄熱系統70實現長時間的火力發電廠1之系統送出電力降低。又,水蓄熱系統70在低負載運轉後的高負載運轉時,實現切斷朝向低壓給水加熱器16由蒸氣渦輪4進行的低壓抽氣(lb)。藉由切斷低壓抽氣(lb),而可使蒸氣渦輪4之輸出增加相應於切斷的低壓抽氣(lb)之熱量。或者,蒸氣渦輪4的輸出增加量相應的鍋爐蒸氣流量會減少,故可減少朝向鍋爐2投入的燃料量。以下,詳細說明為了實現以上作業的本實施形態之水蓄熱系統70。
水蓄熱系統70係如同圖5的粗線所示,具備:溫水加熱器51;高溫水泵浦52;高溫水槽53;及低溫水槽59。高溫水泵浦52具備:第一高溫水泵浦52A;及第二高溫水泵浦52B。又,水蓄熱系統70具備:蓄熱蒸氣管路55;蓄熱排水管路57;低溫水給水管路49;低溫水貯水管路58;及補給水管路60。
蓄熱蒸氣管路55為將通過從主蒸氣管路6分歧的渦輪旁通管路7之蒸氣供給到溫水加熱器51的管路,並且具備蓄熱蒸氣流量控制閥54。又,蓄熱排水管路57為將由排水分離器31所分離的飽和排水供給到溫水加熱器51的管路,並且具備蓄熱排水流量控制閥56。
低溫水給水管路49為從將從冷凝水泵浦14供給的冷凝水供給到溫水加熱器51之用的冷凝水管路15分歧的管路,並且具備低溫水流量控制閥50。
溫水加熱器51使流入的主蒸氣及飽和排水與所供給的低溫水接觸,而生成高溫水。生成的高溫水例如為140℃。溫水加熱器51例如為混合流入的冷凝水(低溫水)與主蒸氣及飽和排水再加熱的直觸式給水加熱器。
圖1及圖5所示的水蓄熱系統70作為高溫水泵浦52具備第一高溫水泵浦52A、及第二高溫水泵浦52B。第一高溫水泵浦52A將在溫水加熱器51所生成的高溫水輸送到高溫水槽53。第二高溫水泵浦52B將貯存在高溫水槽53的內部之高溫水朝向脫氣器17輸送。尚且,高溫水可朝向脫氣器17單獨以高溫水供給,也可與低壓給水加熱器16出口的低壓給水合流而供給。
尚且,第一高溫水泵浦52A及第二高溫水泵浦52B未必要分別設置,可設置具備雙方的功能之1台或者多台高溫水泵浦52,將溫水加熱器51及高溫水槽53的出口管路分別朝向高溫水泵浦52的入口連接而適當切換運用。
高溫水槽53為貯存在溫水加熱器51所生成的高溫水之水槽。在高溫水槽53的內部貯存的高溫水為約140℃,故高溫水槽53必須具有能夠承受此種高溫水的飽和蒸氣壓之構造,並且必須具有適當的保溫功能以盡量減低從所貯存的高溫水之熱逸散。尚且,高溫水槽53的容量可配合火力發電廠1所要求之每日的低負載運轉時間而在設計階段任意決定。
低溫水貯水管路58為將從冷凝水泵浦14供給的冷凝水朝向低溫水槽59供給之用的管路。所供給的冷凝水貯存在低溫水槽59。
補給水管路60為將貯存在低溫水槽59的低溫水朝向冷凝器13供給之用的管路。
低溫水槽59為將冷凝器13的剩餘水貯存以用於朝向冷凝器13補給的水槽。在本實施形態,具有與高溫水槽53的貯水量同等以上的貯水量。
控制裝置80如同圖7所示,依照來自外部(設置在發電站的控制台81等)的指示、或者來自設置在火力發電廠1內之包含溫度感測器及水位感測器的各種感測器之訊號,而控制火力發電廠1內的各控制閥(閥)之開閉。控制閥例如配合後述的蓄熱運用(低負載運轉)、放熱運用(高負載運轉),而控制開閉。又,控制裝置80也控制各泵浦的輸出。控制裝置80例如具備CPU、記憶體、及記憶裝置,並且藉由將預先儲存在記憶裝置的程式,由CPU載入記憶體予以執行,而實現上述控制。
尚且,火力發電廠1可如同圖2所示的火力發電廠1,將流經再熱蒸氣管路9的蒸氣之一部分繞過蒸氣渦輪4而排出到冷凝器13。此時,將渦輪旁通管路7的連接目的地作為再熱蒸氣管路9的高壓渦輪4A之出口,從再熱蒸氣管路9的中壓渦輪4B入口上游,使低壓渦輪旁通管路10分歧,經由低壓渦輪旁通閥11而朝向冷凝器13連接。
<蓄熱運用> 圖3表示火力發電廠1的蓄熱運用、也就是低負載運轉時的高溫水之貯留形態。低負載運轉時,在鍋爐2所產生的主蒸氣量多於蒸氣渦輪4發電時所消耗的主蒸氣量,而產生剩餘蒸氣。又,鍋爐2以亞臨界狀態運轉,飽和排水連續流入排水分離器31。
控制裝置80接受進行蓄熱運用的指示的話,將蓄熱蒸氣流量控制閥54、蓄熱排水流量控制閥56、及低溫水流量控制閥50設為開啟。藉此,如同圖3的粗線所示,在主蒸氣管路6剩餘的主蒸氣之全量或者一部分經由蓄熱蒸氣管路55及蓄熱蒸氣流量控制閥54而朝向溫水加熱器51供給。又,從排水分離器31流出的飽和排水之全量或者一部分經由蓄熱排水管路57及蓄熱排水流量控制閥56而朝向溫水加熱器51供給。進一步,如同圖3的粗線所示,從冷凝水泵浦14供給的冷凝水之全量或者一部分經由低溫水給水管路49及低溫水流量控制閥50,而作為低溫水朝向溫水加熱器51供給。
在溫水加熱器51,使流入的主蒸氣及飽和排水與低溫水接觸,而生成約140℃的溫水。流入的主蒸氣及飽和排水之量藉由鍋爐2及蒸氣渦輪4的運轉狀態而決定為唯一值。控制裝置80藉由控制低溫水流量控制閥50,而時常控制低溫水流量使得溫水加熱器51的出口之高溫水的溫度成為約140℃。又,控制裝置80藉由控制第一高溫水泵浦52A,而時常控制溫水加熱器51的水位。尚且,由於鍋爐2的運轉狀態之變動等,主蒸氣壓力暫時上升或者排水分離器31的水位暫時上升時,控制裝置80開啟渦輪旁通閥8及排水分離器排水控制閥32,通過這些控制閥,而將剩餘蒸氣及飽和排水朝向冷凝器13排出。藉此,溫水加熱器51可維持一定運轉。
由第一高溫水泵浦52A所供給的高溫水貯存在高溫水槽53。蓄熱運用在高溫水槽53成為滿水的時點或者火力發電廠1的低負載運用結束的時間點結束。控制裝置80監視高溫水槽53的水位,判斷成為滿水時,又,接受表示低負載運用結束的訊號時,將蓄熱蒸氣流量控制閥54、蓄熱排水流量控制閥56,低溫水流量控制閥50的各控制閥設為關閉。高溫水槽53的水位從設置在高溫水槽53的水位感測器取得。
在高溫水槽53貯存高溫水的期間,相應量的水係如同圖3的粗線所示,從低溫水槽59經由補給水管路60,例如藉由差壓等,而朝向冷凝器13供給。
尚且,控制裝置80在蒸氣渦輪4的輸出處在額定負載的5%前後之低負載運轉時,控制以切斷從高壓渦輪4A、中壓渦輪4B、低壓渦輪4C,朝向第二高壓給水加熱器21、第一高壓給水加熱器20、低壓給水加熱器16的抽氣。原因在於,低負載運轉時,在各蒸氣渦輪4,無法得到充分的壓力,不足以將在各給水加熱器內所生成的飽和排水沖向脫氣器或者冷凝器。
又,蒸氣渦輪4處在低負載運轉時,高壓渦輪4A入口主蒸氣溫度及中壓渦輪4B入口再熱蒸氣溫度必須經過適當調整,以避免低壓渦輪4C的排氣蒸氣進入乾燥區域的事態發生。因此,有時在鍋爐2出口的主蒸氣管路6及再熱蒸氣管路9分別設置過熱回降器,而供給減溫噴霧。
即使高溫水槽53成為滿水,也無法結束火力發電廠1的低負載運用,並且在來自鍋爐2的主蒸氣、來自排水分離器31的飽和排水成為剩餘的狀態持續的情況,將該主蒸氣及該飽和排水經由渦輪旁通管路7及排水分離器排水管路33而朝向冷凝器13供給,藉此,可持續火力發電廠1的低負載運轉。然而,此時,流入冷凝器13的蒸氣及排水的熱會朝向海水等冷凝器冷卻介質釋放。
<放熱運用> 圖4表示火力發電廠1的放熱運用、也就是高負載運轉時高溫水的排出形態。在此的高負載運轉一般而言為火力發電廠額定負載的30%以上之運轉。
控制裝置80接受放熱運用的指示的話,使第二高溫水泵浦52B運用。藉此,貯存在高溫水槽53的高溫水藉由第二高溫水泵浦52B朝向冷凝水管路15供給,然後朝向脫氣器17流入。此時,來自冷凝器13的冷凝水如同圖4的粗虛線所示,經由冷凝水管路15而在低壓給水加熱器16加熱之後,可連同高溫水朝向脫氣器17供給,冷凝水的全量或者一部分,可經由低溫水貯水管路58而朝向低溫水槽59貯存。
放熱運用時,停止(切斷)將來自高負載運轉下的低壓渦輪4C之抽氣供給到低壓給水加熱器16的作業,而實現發電機5的輸出增加、或者鍋爐2的燃料消耗量降低。具體而言,控制裝置80在蒸氣渦輪4處在高負載運轉狀態時,將朝向脫氣器17流入的冷凝水之全量或一部分切換為高溫水。隨之,低壓給水加熱器16的通過冷凝水量會降低或被遮斷,故從低壓渦輪4C朝向低壓給水加熱器16供給的抽氣會減少或被切斷。藉此,蒸氣渦輪4可進行抽氣減少量相應量的輸出增加運轉,而使發電機5的輸出增加。此時,在本運轉狀態輸出增加運轉為不需要時,為了將蒸氣渦輪4的負載維持一定,可減少來自鍋爐2的主蒸氣流量,並且減少鍋爐2的燃料消耗量。
尚且,運轉負載降低,脫氣器17的內部溫度下降而低於高溫水溫度時,必須將朝向脫氣器17流入的水之溫度配合脫氣器17的內部溫度而減少。此時,將冷凝水經由低壓給水加熱器16輸送,與從高溫水槽53供給的高溫水混合。
高溫水槽53的水位達到最低水位的時點,放熱運用結束。也就是說,控制裝置80在放熱運用時,監視高溫水槽53的水位,達到預定的最低水位時,使第二高溫水泵浦52B停止。藉此,火力發電廠1朝向普通的電廠運用移動。尚且,在普通的電廠運用,經由第二高溫水泵浦52B的高溫水供給會停止,並且從冷凝水泵浦14的出口朝向低溫水槽59的低溫水供給也會停止,冷凝水的全量經由低壓給水加熱器16而朝向脫氣器17供給。
<水蓄熱系統> 圖5為在火力發電廠1追加設置水蓄熱系統70時的追加設置範圍的說明圖。水蓄熱系統70的追加設置範圍為由圖中的粗線所圖示的範圍。水蓄熱系統70如上述所示主要由溫水加熱器51、高溫水槽53、低溫水槽59及高溫水泵浦52所構成。針對既有的火力發電廠1,運用廠房用地的閒置空間而追加設置水蓄熱系統70,藉此,可刪減建設成本。
接下來,以下例示1000MW級燃煤單元的水蓄熱系統70之概略規格。尚且,低溫水槽59具有與高溫水槽53的貯水量同等以上的貯水量。原因在於,貯存在高溫水槽53的高溫水供給到給水管路時,可將僅對應到該供給量的冷凝水貯存在低溫水槽59。
溫水加熱器 :直觸式給水加熱器
高溫水槽容量 :5×3300m 3(0.3MPa)  計16500m 3
低溫水槽容量 :2×8300m 3(大氣壓)  計16600m 3
蓄熱時間 :約6.0小時
放熱時間 :約5.0小時(100%ECR)
若依照上述規格,則在1000MW級燃煤單元的情況,鍋爐以最低負載15%運用時,將扣除廠內動力分量的5%(50MW)而得之10%負載(100MW)相應的蒸氣・飽和排水的熱予以蓄積,而可實現殘存慣性力的並聯無送電運轉(外部送電0%運轉)。
水蓄熱系統70採用將蓄積的熱連同熱介質朝向脫氣器17返回的方式,故可將大致全量的熱在循環內回收。熔融鹽蓄熱或金屬PCM蓄熱時必須考慮的熱介質與水及/或蒸氣之間的熱交換損耗,採用水蓄熱時不必考慮。然而,貯存在高溫水槽53期間的散熱、蓄熱開始時的配管加熱導致的熱損(依照到放熱為止的時間而異,為3~5%)則必須列入考慮。尚且,由於放熱時朝向脫氣器17的可給水量之限制(質量均衡上的限制),蓄熱時間為約6.0h,相較之下,放熱時間在100%ECR時成為約5.0h。
針對假想為日間運用DSS的傳統電廠與在燃煤火力發電廠具備水蓄熱系統70的本實施形態之火力發電廠1的運用模式予以比較。對於系統,連接有電廠A、B、C的3單元。再生能源的發電量多,並且剩餘電力產生的時間帶(例如日間)之假想運用可如以下所例示。 <以往的電廠> 電廠A:最低負載15%運轉(5%廠內動力、10%送電) 電廠B:DSS運用(電廠暫時停止、再啟動) 電廠C:DSS運用(電廠暫時停止、再啟動) 送電量合計:相當於10%負載 <本實施形態的火力發電廠> 電廠A:並聯無送電運用(最低負載15%運轉(5%廠內動力、10%蓄熱)) 電廠B:並聯無送電運用(最低負載15%運轉(5%廠內動力、10%蓄熱)) 電廠C:並聯無送電運用(最低負載15%運轉(5%廠內動力、10%蓄熱)) 送電量合計:無送電(0%負載)
如同上述,就傳統電廠而言,將1個電廠(在此為電廠A)以最低負載15%運轉,剩下的2個電廠(B及C)運用DSS。即使在這種情況,也對系統送電10%。另外,本實施形態的火力發電廠1可在所有的火力發電廠以並聯無送電運用。
也就是說,藉由使用本實施形態的火力發電廠1,3電廠皆可減低送電量直到無送電為止。藉此,可一邊增加再生能源的接收量,一邊避免運用DSS。進一步,在本實施形態的火力發電廠1,藉由將蓄積的熱,在需求尖峰時間帶(例如傍晚)釋放,而可在需求尖峰時,減少(約3~4%)燃料消耗量。
本實施形態的將水蓄熱系統70導入火力發電廠1的優勢如下所述。 (1)協助擴大再生能源運用 由於電廠最低負載降低,而可一邊維持系統慣性力,一邊擴大運用再生能源的比例。 (2)藉由低負載連續運轉而刪減電廠啟動費用 利用廉價的煤炭進行低負載連續運轉,而大幅刪減運用DSS時無法避免的啟動用輕油費用。 (3)避免運用DSS所導致的機器損耗・啟動故障 藉由使發電單元連續運轉,而可避免運用DSS所伴隨的各種風險。 (4)可滿足急速負載上升的要求等 發電機5一邊維持系統並聯,一邊以極低負載連續運轉,故可滿足突發事故等導致的急速負載上升要求。 (5)電廠啟動時的熱回收 可將作為以往啟動損耗而捨棄的熱予以回收・利用。
如以上所說明,本實施形態的火力發電廠1具備水蓄熱系統70,低負載運轉時,將從鍋爐2產生的蒸氣與在蒸氣渦輪4所消耗的蒸氣之間的差相應的主蒸氣及飽和排水的熱作為高溫水貯存在高溫水槽53。又,高負載運轉時,將貯存的高溫水朝向脫氣器17供給。
藉此,本實施形態的火力發電廠1在低負載運轉時,即使在使發電機5(蒸氣渦輪4)的運轉負載減少而低於鍋爐2的最低負載,也可將相應於該差值的熱作為高溫水予以貯存。也就是說,低負載運轉時,可在不浪費的情況之下,使發電機5(蒸氣渦輪4)的運轉負載減少而低於鍋爐2的最低負載。藉此,可實現長時間的火力發電廠1之系統送出電力減少。又,低負載運轉時,可將從燃煤火力發電所朝向電力系統送出的電力,減少到大致0%負載(並聯無送電運用)。
又,藉由將低負載運轉時所貯存的高溫水,於高負載運轉時供給到脫氣器17,而可減少低壓給水加熱器16的負載。藉此,高負載運轉時,可減少或切斷來自蒸氣渦輪4的低壓抽氣。然後,可增加已減少或已切斷的低壓抽氣之熱量相應的蒸氣渦輪4之輸出。或者,維持蒸氣渦輪4的輸出時,能夠就減少或切斷的低壓抽氣之熱量,相應減少來自鍋爐2的蒸氣流量,結果,可刪減對於鍋爐2投入的燃料量。
也就是說,若依照本實施形態,則可提供一種火力發電技術,將火力發電廠的發電機5(蒸氣渦輪4)之運轉負載減少到低於鍋爐最低負載,藉此,降低電廠送電量,進而可一邊維持高運用性,一邊靈活配合再生能源的發電量之變化。
<變形例1> 尚且,在上述實施形態,以火力發電廠1分別具備1個低壓給水加熱器16、及1個第二高壓給水加熱器21的情況為例予以說明,但也可具備多個。
圖8表示火力發電廠1具備4個低壓給水加熱器16、及2個第二高壓給水加熱器21的情況之構成例。
此時,由各蒸氣渦輪4所抽取的抽氣蒸氣及由各蒸氣渦輪4所排出的排氣蒸氣之一部分依照其溫度,而分別供給到不同的處所。
例如,高壓渦輪4A的高壓抽氣蒸氣hb供給到下游側的第二高壓給水加熱器21。從下游側的第二高壓給水加熱器21排出的飽和排水(高壓抽氣蒸氣hb凝結而成者)朝向上游側的第二高壓給水加熱器21供給。高壓渦輪4A的高壓排氣蒸氣he之一部分供給到上游側的第二高壓給水加熱器21。從上游側的第二高壓給水加熱器21排出的飽和排水(高壓抽氣蒸氣hb及高壓排氣蒸氣he凝結而成者)朝向第一高壓給水加熱器20供給。中壓渦輪4B的中壓抽氣蒸氣ib供給到第一高壓給水加熱器20。從第一高壓給水加熱器20排出的飽和排水(高壓抽氣蒸氣hb及中壓抽氣蒸氣ib以及高壓排氣蒸氣he凝結而成者)朝向脫氣器17供給。中壓渦輪4B的中壓排氣蒸氣ie之一部分供給到脫氣器17。低壓渦輪4C的抽氣蒸氣(lb1、lb2、lb3、lb4)從溫度高者依序從各低壓給水加熱器16的下游側供給。從各低壓給水加熱器16排出的飽和排水(抽氣蒸氣凝結而成者)朝向各低壓給水加熱器16的上游之低壓給水加熱器16供給。從最上游的低壓給水加熱器16排出的飽和排水(抽氣蒸氣lb1、lb2、lb3、lb4凝結而成者)朝向冷凝器13供給。
藉此,可配合蒸氣溫度,而對於最適當的給水加熱器供給蒸氣,可不浪費能源而有效率地運用。
<變形例2> 又,在上述實施形態或變形例1,放熱運用時,將從高溫水槽53供給的高溫水之合流點,設置在最下游的低壓給水加熱器16之出口側。例如,可構成為在具備多個低壓給水加熱器16時,設置多個合流點,依照高溫水的溫度而切換。
在本變形例,將從高溫水槽53使高溫水合流到冷凝水管路15的合流點,設置在各低壓給水加熱器16的出口側。藉由冷凝水泵浦14所供給的冷凝水隨著流經低壓給水加熱器16,溫度會上升。在本變形例,使高溫水在不降低低壓給水加熱器16的出口側之冷凝水的溫度之合流點合流。
為了實現以上目標,控制裝置80監視高溫水的溫度,高溫水溫度降低時,將合流點依序朝向低溫度側(一區段上游的低壓給水加熱器16)切換。朝向合流點的低溫度側之切換例如在從高溫水槽53流出的高溫水之溫度在一定時間低於各低壓給水加熱器16的出口溫度的時間點執行。
以下,如同變形例1,舉例具體說明在冷凝水管路15上,於冷凝水泵浦14的下游,從下游側依序以串聯具備4個低壓給水加熱器16A、16B、16C、16D的情況。圖9僅擷取相關處所予以表示。
如同本圖所示,在本變形例,火力發電廠1具備:高溫水合流管路71,使高溫水槽53內的高溫水合流到冷凝水管路15;溫度感測器72A、72B、72C、72D、72E,量測冷凝水的溫度;切換閥73A、73B、73C、73D、73E、73F;及流量控制閥76。又,高溫水合流管路71具備3個分歧點74A、74B、74C。又,高溫水合流管路71在分別設置於各低壓給水加熱器16A、16B、16C、16D的出口側之合流點75A、75B、75C、75D合流。
尚且,以下,在不必區別的情況,分別以低壓給水加熱器16、溫度感測器72,切換閥73、分歧點74、合流點75代表。
分歧點74A為從朝向低壓給水加熱器16A的出口之高溫水合流管路71,與朝向低壓給水加熱器16B、16C、16D的高溫水合流管路71分歧的分歧點。分歧點74B為從朝向低壓給水加熱器16B的出口之高溫水合流管路71,與朝向低壓給水加熱器16C、16D的高溫水合流管路71分歧的分歧點。分歧點74C為從朝向低壓給水加熱器16C的出口之高溫水合流管路71,與朝向低壓給水加熱器16D的高溫水合流管路71分歧的分歧點。
溫度感測器72A、72B,72C,72D分別設置在低壓給水加熱器16A、16B、16C、16D的出口附近,量測出口附近的冷凝水之溫度。溫度感測器72E設置在高溫水槽53的出口與分歧點74A之間,量測從高溫水槽53供給的高溫水之溫度。在本圖,設置在第二高溫水泵浦52B與分歧點74之間。
又,切換閥73A設置在分歧點74A與合流點75A之間,控制對於朝向低壓給水加熱器16A的出口之高溫水合流管路71的流入。切換閥73B設置在分歧點74B與合流點75B之間,控制對於朝向低壓給水加熱器16B的出口之高溫水合流管路71的流入。切換閥73C設置在分歧點74C與合流點75C之間,控制對於朝向低壓給水加熱器16C的出口之高溫水合流管路71的流入。切換閥73D設置在分歧點74C與合流點75D之間,控制對於朝向低壓給水加熱器16D的出口之高溫水合流管路71的流入。流量控制閥76設置在第二高溫水泵浦52B下游,控制高溫水的流量。
控制裝置80依照規定的時間間隔從各溫度感測器72接受溫度資訊,依序比較從溫度感測器72E接受的高溫水溫度與從各溫度感測器72A、72B、72C、72D接受的出口溫度,配合該結果,而切換合流點。
在此,說明藉由控制裝置80進行合流點切換處理的流程。圖10為本變形例的合流點切換處理之處理流程。
尚且,在此,合流點、低壓給水加熱器16皆從下游側起算賦予連續編號。又,合流點、低壓給水加熱器16皆具備N(N為1以上的整數)個。又,n為計數器。然後,將進行切換判斷的「一定時間」定為T1。又,高溫水的溫度及低壓給水加熱器16的出口側之溫度依照規定的時間間隔量測。
控制裝置80首先將計數器初始化(n=1),將歷時計數器Δt初始化(Δt=0)(步驟S1001)。
首先,控制裝置80將第1個合流點設定為欲使用的合流點(稱為使用合流點)(步驟S1002),控制各切換閥73,使得高溫水在該使用合流點合流。
接下來,控制裝置80取得:高溫水溫度TH;及第n個低壓給水加熱器16(比較對象加熱器)的出口側溫度TLn(步驟S1003)。
控制裝置80判別已取得的高溫水溫度TH是否未達出口側溫度TLn(步驟S1004),若高溫水溫度TH為出口側溫度TLn以上(否),則將歷時計數器Δt初始化(步驟S1009),然後返回步驟S1003。
另外,若高溫水溫度TH未達出口側溫度TLn(是),則控制裝置80判斷該狀態是否經過一定時間T1(步驟S1005)。未經過時(否),返回步驟S1003。
另外,經過一定時間時(是),控制裝置80將使用合流點切換到設置在1區段上游的低壓給水加熱器16之出口側的合流點(步驟S1006),控制各切換閥73,使得高溫水在切換後的使用合流點合流。
之後,控制裝置80將計數器n逐步增加1,將歷時計數器Δt初始化(步驟S1007),判斷使用合流點是否成為最上游的合流點(n=N?)(步驟S1008)。若設定在使用合流點的合流點並非最上游的合流點,則返回步驟S1003,重複處理。另外,最上游的合流點設定在使用合流點時,直接結束處理。
將上述的合流點切換處理作為具體例說明。首先,控制裝置80比較高溫水溫度與在溫度感測器72A所取得的出口溫度(TLA)。高溫水溫度為出口溫度TLA以上時,控制裝置80將切換閥73A設為開啟,將切換閥73B、73C、73D設為關閉。藉此,高溫水在合流點75A,也就是在低壓給水加熱器16A的出口側合流到冷凝水管路15。
高溫水溫度在一定時間未達出口溫度TLA的狀態持續時,控制裝置80比較高溫水溫度與在溫度感測器72B所取得的出口溫度(TLB)。高溫水溫度為出口溫度TLB以上時,控制裝置將切換閥73B設為開啟,將切換閥73A、73C、73D設為關閉。藉此,高溫水在合流點75B,也就是在低壓給水加熱器16B出口、與低壓給水加熱器16A的入口之間合流到冷凝水管路15。
高溫水溫度在一定時間未達出口溫度TLB的狀態持續時,控制裝置80比較高溫水溫度與在溫度感測器72C所取得的出口溫度(TLC)。高溫水溫度為出口溫度TLC以上時,控制裝置80將切換閥73C設為開啟,將切換閥73A、73B、73D設為關閉。藉此,高溫水在合流點75C,也就是在低壓給水加熱器16C的出口與低壓給水加熱器16B的入口之間合流到冷凝水管路15。
高溫水溫度在一定時間未達出口溫度TLC的狀態持續的話,控制裝置80將切換閥73D設為開啟,將切換閥73A、73B、73C設為關閉。藉此,高溫水在合流點75D,也就是在低壓給水加熱器16C的出口與低壓給水加熱器16B的入口之間合流到冷凝水管路15。
尚且,控制裝置80可構成為從高溫水槽53供給的高溫水之溫度未達預定的閾值時,開始由切換閥73進行的控制。具體而言,從高溫水槽53供給的高溫水之溫度從140℃降低到100℃時,開始上述的合流點切換處理。
又,在本變形例,將高溫水溫度、及各低壓給水加熱器16的出口溫度,從低壓給水加熱器16的下游側依序比較,進行切換閥73的控制,但開閉控制不限於此。例如,控制裝置80可比較高溫水溫度、所有的低壓給水加熱器16之出口溫度,而決定使用合流點。此時,在具有未達高溫水溫度並且最接近高溫水溫度的出口溫度之低壓給水加熱器16的出口側之合流點75,控制各切換閥73使得高溫水合流。
尚且,在圖9的範例,高溫水溫度未達低壓給水加熱器16C的出口溫度時,即使未達低壓給水加熱器16D的出口溫度,也在合流點75D合流。例如,進一步,在低壓給水加熱器16D的入口側另外設置合流點,高溫水溫度未達低壓給水加熱器16D的出口溫度時,可控制成在該合流點合流。此時,合流點的數量為N+1,故判斷圖10所示的合流點切換處理之處理流程的步驟S1008中是否為n=N+1。
若藉由本變形例,則放熱運用時,使高溫水槽53內的高溫水與冷凝水管路15合流時,藉由該溫度,而變更合流點。也就是說,此時,在具有未達高溫水溫度並且最接近高溫水溫度的出口溫度之低壓給水加熱器16的出口側,使高溫水合流。藉此,可藉由欲使合流的高溫水,不降低在低壓給水加熱器16所加熱的冷凝水之溫度,即有效運用低壓給水加熱器16及高溫水。
<變形例3> 尚且,在上述實施形態,蓄熱運用時,在溫水加熱器51所生成的高溫水貯存在高溫水槽53。在本變形例,控制成將在溫水加熱器51所生成的高溫水之一部分不朝向高溫水槽53供給,而是朝向脫氣器17供給。
蓄熱運用時,蒸氣渦輪4以極低負載運轉,有時以給水加熱作為目的之抽氣被切斷的同時,脫氣器17的加熱蒸氣會從輔助蒸氣系統供給。原因在於,即使在低負載運轉時,也必須將鍋爐2的排氣溫度維持在一定溫度以上,並且必須對於給水脫氣。尚且,在此運轉狀態,伴隨低壓給水加熱器16的抽氣切斷,朝向脫氣器17流入的冷凝水之溫度會降低,故為了抵銷此一現象,必須使輔助蒸氣量增加。在本變形例,將抽氣被切斷而導致冷凝水朝向脫氣器17流入的溫度之降低,藉由供給溫水加熱器51的出口水予以抵銷。藉此,可抑制火力發電廠1的輔助蒸氣消耗量之增加。
圖11表示火力發電廠1的本變形例相關的處所。如同本圖的粗點線所示,在本變形例,蓄熱運用時,將由溫水加熱器51所生成的高溫水之一部分朝向脫氣器17供給。
尚且,從蓄熱運用時的溫水加熱器51朝向脫氣器17的給水能夠以規定量持續進行。又,朝向脫氣器17供給的冷凝水之溫度降低時,可控制成供給。
若為後者,則火力發電廠1具備:溫度感測器72;流量控制閥76。溫度感測器72量測低壓給水加熱器16的出口側之冷凝水的溫度,並且設置在低壓給水加熱器16的出口側。又,流量控制閥76控制從溫水加熱器51朝向脫氣器17供給高溫水的作業,並且設置在連接高溫水槽53與冷凝水管路15的高溫水合流管路71上。
控制裝置80以規定的時間間隔取得溫度感測器72所量測的溫度資料,並且未達預定的閾值時,發出將流量控制閥76設為開啟的指示,而將高溫水從溫水加熱器51朝向脫氣器17供給。
藉此,來自溫水加熱器51的高溫水混合到冷凝水而供給到脫氣器17,故可使流入脫氣器的冷凝水之溫度上升,而可抑制輔助蒸氣消耗量。
又,上述運用係在配置方面,於輔助蒸氣管路的配管尺寸具有限制的條件下改造既有單元時,或者在新設單元時欲避免輔助蒸氣管路的配管之口徑不必要地增加之情況,特別有用。又,朝向溫水加熱器51的冷凝水供給及朝向脫氣器17的給水並非獨立進行,而是使高溫水的一部分轉而用於朝向脫氣器17的給水,藉此,改造既有單元時,可在冷凝水泵浦14或冷凝水脫鹽裝置的容量範圍內運用。新設單元時,也可將泵浦・裝置類的容量設計成同時滿足朝向溫水加熱器51的冷凝水供給及朝向脫氣器17的給水之作業。然而,泵浦・裝置類容量增加可能會導致成本增加,考慮到這一點,與改造既有單元時相同,較佳為將高溫水的一部分轉而運用於朝向脫氣器17的給水之作業。
<變形例4> 在上述實施形態,設置2個構件也就是高溫水槽53、及低溫水槽59,蓄熱時,在高溫水槽53貯存高溫水,放熱時,將利用後的高溫水貯存在低溫水槽59。然而,不限定於此構成。例如,可具備1個溫躍槽61,而擁有高溫水槽53、及低溫水槽59的功能。
溫躍槽61為在1個水槽內具備高溫水部、低溫水部、及溫躍層,並且可貯存高溫水及低溫水的單槽式水槽。高溫水部位在水槽上部,低溫水部位在水槽下部,高溫水部及低溫水部隔著溫躍層而分隔。
圖12表示火力發電廠1的本變形例相關的處所。如同本圖所示,溫躍槽61具備:高溫水被供給、排出的高溫水出入口;及低溫水被供給、排出的低溫水出入口。
如同圖12的粗線所示,對於高溫水出入口,從溫水加熱器51連接供給溫水的高溫水供給管路64與高溫水合流管路71。另外,對於低溫水出入口,連接與冷凝器13連接的低溫水回流管路62、與從低溫水給水管路49分歧的第二低溫水給水管路63。
蓄熱運用時,在上述實施形態,從冷凝器13對於溫水加熱器51供給冷凝水,由溫水加熱器51生成高溫水再貯存在高溫水槽53。然後,從冷凝器13對於溫水加熱器51供給冷凝水的期間,所供給的冷凝水相應的量之水從低溫水槽59供給到冷凝器13。
在本變形例,與上述實施形態相同,對於溫水加熱器51,從冷凝器13供給冷凝水,在溫水加熱器51生成高溫水,再經由高溫水供給管路64而貯存在溫躍槽61的高溫水部。然而,在本變形例,如同圖13的粗虛線所示,所供給的冷凝水相應的量之水從溫躍槽61的低溫水部,經由低溫水回流管路62而供給到冷凝器13。又,如同點線所示,從溫水加熱器51朝向脫氣器17部分通水。
又,放熱運用時,在上述實施形態,從高溫水槽53對於脫氣器17供給高溫水,相應量的冷凝器13內之冷凝水會經由低溫水貯水管路58而朝向低溫水槽59貯存。另外,在本變形例,如同圖14的粗線所示,從溫躍槽61的高溫水部對於脫氣器17供給高溫水的話,相應量的水如同粗虛線所示,從冷凝器13,由冷凝水管路15的冷凝水泵浦14經由在下游分歧的第二低溫水給水管路63,而供給到溫躍槽61的低溫水部。
在本變形例,溫躍槽61的容量為將高溫水槽53或者低溫水槽59的所需容量加上不影響水槽容量的溫躍層相應容積,並且通常在滿水狀態下運用。
若依照本變形例,則藉由使用溫躍槽61,可在水槽設置的相關作業中節省空間,在發電用地受限的情況下特別有用。又,若溫躍槽61價格便宜,則相較於個別設置水槽,可降低成本。
尚且,溫躍槽61設計成耐受高溫水的飽和壓力之構造,並且可一邊避免水槽內的高溫水與低溫水混合,一邊分別流出流入,故朝向溫躍槽61的高溫水部及低溫水部連接的管路構成及其運用係與個別設置高溫水槽53及低溫水槽59的情況相同。
<變形例5> 在上述實施形態,作為鍋爐2,舉例說明在低負載條件以外於超臨界狀態使用超臨界鍋爐的情況,但鍋爐種類不限於此。例如,可在所有的負載使用於亞臨界狀態運用的亞臨界鍋爐。
亞臨界鍋爐如同圖15的粗線所示,取代排水分離器31,具備蒸氣鼓34、連續排放槽37、閃蒸槽38、及間歇排放管路39。
蒸氣鼓34分離蒸氣與飽和水(飽和排水)。所分離的蒸氣流入過熱器36,飽和排水則流入連續排放槽37。飽和排水在連續排放槽37經由氣液分離及蒸氣回收而流入閃蒸槽38。尚且,設置在蒸氣鼓34的間歇排放管路39用於避免啟動時鍋爐水膨脹導致鼓液位上升及用於鍋爐水質惡化時排放鍋爐水。
尚且,流入連續排放槽37的飽和排水之一部分成為閃蒸氣,供給到脫氣器17,作為脫氣器17的加熱蒸氣之一部分予以利用。
尚且,使用亞臨界鼓時,蓄熱排水管路57從間歇排放管路39分歧。然後,蓄熱運用時,由蒸氣鼓34所分離的飽和排水之全量或者一部分經由從間歇排放管路39分歧的蓄熱排水管路57及蓄熱排水流量控制閥56而朝向溫水加熱器51供給。
蓄熱運用時,亞臨界鍋爐也與使用超臨界鍋爐的情況相同,在主蒸氣管路6剩餘的主蒸氣之全量或者一部分經由蓄熱蒸氣管路55及蓄熱蒸氣流量控制閥54而朝向溫水加熱器51供給。蓄熱運用時,溫水加熱器51將該主蒸氣、及從蒸氣鼓34供給的飽和排水作為熱源,由從冷凝器13供給的冷凝水生成高溫水。
尚且,在亞臨界鍋爐,基於燃料投入量及主蒸氣流量,而決定從蒸氣鼓34排出的排水量。蒸氣鼓34的液位控制由鼓液位控制閥進行。由於運轉狀態的變動導致鼓液位暫時上升時,除了鼓液位控制閥的控制,必要時也開閉間歇排放閥。
也就是說,控制裝置80監控鼓液位,鼓液位在一定時間以上為規定的閾值以上時,減少鼓液位控制閥的開度,而控制流入給水量。又,可開啟間歇排放閥,作為間歇排放而排出飽和排水。鼓液位從設置在蒸氣鼓34的水位感測器取得。
<變形例6> 溫水加熱器51的熱源不限定於渦輪旁通蒸氣。例如,可為通過再熱蒸氣管路的再熱蒸氣,也可為來自各蒸氣渦輪4的抽氣或排氣。
尚且,各變形例可經過組合。例如,上述實施形態的火力發電廠1可具備至少以下任一構成:具備多個低壓給水加熱器16,藉由高溫水的溫度而切換高溫水合流管路71的合流目的地之構成;可部分通水之構成;取代高溫水槽53及低溫水槽59而使用溫躍槽61之構成;使用亞臨界鍋爐之構成;及作為溫水加熱器51的熱源,使用各種蒸氣之構成。
1:火力發電廠 2:鍋爐 4:蒸氣渦輪 4A:高壓渦輪 4B:中壓渦輪 4C:低壓渦輪 5:發電機 6:主蒸氣管路 7:渦輪旁通管路 8:渦輪旁通閥 9:再熱蒸氣管路 10:低壓渦輪旁通管路 11:低壓渦輪旁通閥 12:中壓渦輪排氣管路 13:冷凝器 14:冷凝水泵浦 15:冷凝水管路 16:低壓給水加熱器 16A:低壓給水加熱器 16B:低壓給水加熱器 16C:低壓給水加熱器 16D:低壓給水加熱器 17:脫氣器 18:給水泵浦 19:送水管路 20:第一高壓給水加熱器 21:第二高壓給水加熱器 31:排水分離器 32:排水分離器排水控制閥 33:排水分離器排水管路 34:蒸氣鼓 35:再熱器 36:過熱器 37:連續排放槽 38:閃蒸槽 39:間歇排放管路 49:低溫水給水管路 50:低溫水流量控制閥 51:溫水加熱器 52:高溫水泵浦 52A:第一高溫水泵浦 52B:第二高溫水泵浦 53:高溫水槽 54:蓄熱蒸氣流量控制閥 55:蓄熱蒸氣管路 56:蓄熱排水流量控制閥 57:蓄熱排水管路 58:低溫水貯水管路 59:低溫水槽 60:補給水管路 61:溫躍槽 62:低溫水回流管路 63:第二低溫水給水管路 64:高溫水供給管路 70:水蓄熱系統 71:高溫水合流管路 72:溫度感測器 72A:溫度感測器 72B:溫度感測器 72C:溫度感測器 72D:溫度感測器 72E:溫度感測器 73A:切換閥 73B:切換閥 73C:切換閥 73D:切換閥 74:分歧點 74A:分歧點 74B:分歧點 74C:分歧點 75:合流點 75A:合流點 75B:合流點 75C:合流點 75D:合流點 76:流量控制閥 80:控制裝置 81:控制台
[圖1]圖1為一實施形態的火力發電廠的概略構成圖。
[圖2]圖2為一實施形態中類似的火力發電廠的概略構成圖。
[圖3]圖3為一實施形態的火力發電廠的蓄熱運轉時運用的一例。
[圖4]圖4為一實施形態的火力發電廠的放熱運轉時運用的一例。
[圖5]圖5為表示一實施形態的水蓄熱系統之範圍的概略構成圖。
[圖6]圖6為說明一實施形態的火力發電廠之輔助蒸氣管路之用的概略構成圖。
[圖7] 圖7為一實施形態的火力發電廠之控制裝置的概略構成圖。 [圖8] 圖8為一實施形態的變形例1之火力發電廠的概略構成圖。 [圖9] 圖9為一實施形態的變形例2之火力發電廠之相關處所的概略構成圖。 [圖10] 圖10為一實施形態的變形例2之火力發電廠之合流點切換處理的流程圖。 [圖11] 圖11為說明一實施形態的變形例3之火力發電廠之部分通水之用的說明圖。 [圖12] 圖12為一實施形態的變形例4之火力發電廠之相關處所的概略構成圖。 [圖13] 圖13為說明一實施形態的變形例4之火力發電廠之蓄熱運用之用的說明圖。 [圖14] 圖14為說明一實施形態的變形例4之火力發電廠之放熱運用之用的說明圖。 [圖15] 圖15為一實施形態的變形例5之火力發電廠之相關處所的概略構成圖。
1:火力發電廠
2:鍋爐
4:蒸氣渦輪
4A:高壓渦輪
4B:中壓渦輪
4C:低壓渦輪
5:發電機
6:主蒸氣管路
7:渦輪旁通管路
8:渦輪旁通閥
9:再熱蒸氣管路
12:中壓渦輪排氣管路
13:冷凝器
14:冷凝水泵浦
15:冷凝水管路
16:低壓給水加熱器
17:脫氣器
18:給水泵浦
19:送水管路
20:第一高壓給水加熱器
21:第二高壓給水加熱器
31:排水分離器
32:排水分離器排水控制閥
33:排水分離器排水管路
35:再熱器
36:過熱器
49:低溫水給水管路
50:低溫水流量控制閥
51:溫水加熱器
52:高溫水泵浦
52A:第一高溫水泵浦
52B:第二高溫水泵浦
53:高溫水槽
54:蓄熱蒸氣流量控制閥
55:蓄熱蒸氣管路
56:蓄熱排水流量控制閥
57:蓄熱排水管路
58:低溫水貯水管路
59:低溫水槽
60:補給水管路
70:水蓄熱系統

Claims (10)

  1. 一種火力發電廠,具備:鍋爐;蒸氣渦輪,由來自前述鍋爐的蒸氣所驅動;渦輪旁通管路,用於輸送繞過前述蒸氣渦輪的蒸氣;冷凝器,冷卻前述蒸氣渦輪的排氣而生成冷凝水;低壓給水加熱器:將前述冷凝水藉由來自前述蒸氣渦輪的抽氣蒸氣予以加熱;及脫氣器,將前述冷凝水藉由前述抽氣蒸氣予以脫氣,該火力發電廠具備:溫水加熱器,以前述渦輪旁通管路的主蒸氣作為熱源,使從前述冷凝器供給的前述冷凝水成為高溫水;高溫水槽,貯存該高溫水;及高溫水泵浦,將前述高溫水槽所貯存的前述高溫水輸送到前述低壓給水加熱器的下游或前述脫氣器,前述鍋爐具備:排水分離器,將火爐出口的氣液混合水予以氣液分離,前述溫水加熱器也將由前述排水分離器予以氣液分離的飽和排水作為前述熱源。
  2. 如請求項1的火力發電廠,其中前述溫水加熱器為混合前述冷凝水與前述主蒸氣的直觸式給水加熱器。
  3. 如請求項1或2的火力發電廠,其中前述鍋爐具備:蒸氣鼓,分離蒸氣與飽和水,前述溫水加熱器也將來自前述蒸氣鼓的間歇排放作為前述熱源。
  4. 如請求項1或2的火力發電廠,其還具備:低溫水槽,將前述冷凝器的剩餘水貯存以用於朝向前述冷凝器補給水,並且具有與前述高溫水槽的貯水量同等以上的貯水量。
  5. 如請求項1或2的火力發電廠,其中前述高溫水槽為可將前述高溫水、及低溫水隔著溫躍層貯存的溫躍槽,作為前述低溫水,將前述冷凝器的剩餘水貯存以用於朝向前述冷凝器補給水。
  6. 如請求項1或2的火力發電廠,其中在將前述冷凝水從前述冷凝器輸送到前述脫氣器的冷凝水管路,以串聯的方式具備多個前述低壓給水加熱器,還具備:高溫水合流管路,配合前述高溫水的溫度也就是高溫水溫度,使該高溫水在多個前述低壓給水加熱器之中,出口側的前述冷凝水之溫度下降最少的合流點合流,前述合流點分別設置在多個前述低壓給水加熱器之出口側的前述冷凝水管路。
  7. 一種火力發電廠的控制方法,其為如請求項1至6中任一項的火力發電廠的控制方法,在前述火力發電廠以低負載運轉時,將相當於前述鍋爐的產生蒸氣與在前述蒸氣渦輪的消耗蒸氣之間的差的主蒸氣作為前述熱源,而生成前述高溫水,然後貯存在前述高溫水槽, 在前述火力發電廠以高負載運轉時,將貯存在前述高溫水槽的前述高溫水朝向前述脫氣器供給。
  8. 如請求項7的火力發電廠的控制方法,其中在前述蒸氣渦輪以低負載運轉時,進一步,將在前述溫水加熱器所生成的前述高溫水之一部分配合前述脫氣器的溫度供給到前述脫氣器。
  9. 如請求項7或8的火力發電廠的控制方法,其中前述火力發電廠在將前述冷凝水從前述冷凝器輸送到前述脫氣器的冷凝水管路,以串聯的方式具備多個前述低壓給水加熱器,並且還具備合流點,分別被設置在使前述高溫水合流的多個前述低壓給水加熱器之出口側的前述冷凝水管路,而使前述高溫水合流,在前述火力發電廠以高負載運轉時,配合前述高溫水的溫度,使該高溫水在多個前述低壓給水加熱器之中,出口側的前述冷凝水之溫度下降最少的合流點合流。
  10. 如請求項9的火力發電廠的控制方法,其中將多個前述低壓給水加熱器之中最下游的低壓給水加熱器作為比較對象加熱器,並且將使前述高溫水合流的前述合流點設定在該比較對象加熱器的出口側之合流點,以規定的時間間隔,比較前述高溫水的溫度與該比較對象加熱器的出口側之前述冷凝水的溫度,在預定的期 間,當前述高溫水的溫度未達前述冷凝水的溫度時,重複以下處理:將使前述高溫水合流的前述合流點,切換到前述比較對象加熱器的一區段上游側之前述低壓給水加熱器的出口側,然後將一區段上游側的該低壓給水加熱器作為前述比較對象加熱器。
TW111105630A 2021-02-16 2022-02-16 火力發電廠以及火力發電廠的控制方法 TWI824415B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021022766 2021-02-16
JP2021-022766 2021-02-16
JP2021-169753 2021-10-15
JP2021169753A JP7374159B2 (ja) 2021-02-16 2021-10-15 火力発電プラントおよび火力発電プラントの制御方法

Publications (2)

Publication Number Publication Date
TW202248568A TW202248568A (zh) 2022-12-16
TWI824415B true TWI824415B (zh) 2023-12-01

Family

ID=82931758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105630A TWI824415B (zh) 2021-02-16 2022-02-16 火力發電廠以及火力發電廠的控制方法

Country Status (2)

Country Link
TW (1) TWI824415B (zh)
WO (1) WO2022176846A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394011A (ja) * 1986-10-08 1988-04-25 Hitachi Ltd 高温水貯留槽を有する蒸気発電プラント
CN106123086A (zh) * 2016-07-06 2016-11-16 华北电力大学 带有蓄热装置的热电联产机组及其调峰方法
CN206724274U (zh) * 2017-05-11 2017-12-08 赫普热力发展有限公司 一种热电厂调峰系统
US20180328231A1 (en) * 2016-03-25 2018-11-15 Mitsubishi Hitachi Power Systems, Ltd. Thermal power generation system and control method for same
CN110735676A (zh) * 2019-10-25 2020-01-31 西安交通大学 一种采用补水箱的燃煤机组灵活性调节系统及调节方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394011A (ja) * 1986-10-08 1988-04-25 Hitachi Ltd 高温水貯留槽を有する蒸気発電プラント
US20180328231A1 (en) * 2016-03-25 2018-11-15 Mitsubishi Hitachi Power Systems, Ltd. Thermal power generation system and control method for same
CN106123086A (zh) * 2016-07-06 2016-11-16 华北电力大学 带有蓄热装置的热电联产机组及其调峰方法
CN206724274U (zh) * 2017-05-11 2017-12-08 赫普热力发展有限公司 一种热电厂调峰系统
CN110735676A (zh) * 2019-10-25 2020-01-31 西安交通大学 一种采用补水箱的燃煤机组灵活性调节系统及调节方法

Also Published As

Publication number Publication date
TW202248568A (zh) 2022-12-16
WO2022176846A1 (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
US7367192B2 (en) Combined cycle plant
RU2595192C2 (ru) Электростанция с встроенным предварительным нагревом топливного газа
RU2563447C2 (ru) Способ работы электростанции комбинированного цикла с когенерацией и электростанция комбинированного цикла для реализации этого способа
JP4540472B2 (ja) 廃熱式蒸気発生装置
RU2516068C2 (ru) Газотурбинная установка, утилизационный парогенератор и способ эксплуатации утилизационного парогенератора
US20120272649A1 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°c and forced-flow steam generator
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
KR101322359B1 (ko) 가스 및 증기 터빈 시스템의 시동 방법
US20100313564A1 (en) Turbine blade
CA2397612C (en) Gas and steam turbine installation
JP5183305B2 (ja) 汽力発電設備における起動バイパス系統
US9677429B2 (en) Steam power plant with high-temperature heat reservoir
CN109312635B (zh) 冷凝物再循环
GB2453849A (en) Steam power plant with additional bypass pipe used to control power output
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
US10208630B2 (en) Method for operating a steam power plant and steam power plant for conducting said method
JP7374159B2 (ja) 火力発電プラントおよび火力発電プラントの制御方法
JP2001329806A (ja) 複合サイクルプラント
TWI824415B (zh) 火力發電廠以及火力發電廠的控制方法
JP4898722B2 (ja) 石炭ガス化複合発電設備
JP4718333B2 (ja) 貫流式排熱回収ボイラ
JPH112105A (ja) コンバインドサイクル発電プラント
JP4842071B2 (ja) 貫流式排熱回収ボイラの運転方法、ならびに発電設備の運転方法
CN116806287A (zh) 火力发电设备以及火力发电设备的控制方法
JP2019173696A (ja) コンバインドサイクル発電プラント、およびその運転方法