TWI823892B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI823892B
TWI823892B TW108102660A TW108102660A TWI823892B TW I823892 B TWI823892 B TW I823892B TW 108102660 A TW108102660 A TW 108102660A TW 108102660 A TW108102660 A TW 108102660A TW I823892 B TWI823892 B TW I823892B
Authority
TW
Taiwan
Prior art keywords
region
layer
conductivity type
disposed
semiconductor
Prior art date
Application number
TW108102660A
Other languages
English (en)
Other versions
TW202029500A (zh
Inventor
恩凱特 庫馬
李家豪
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108102660A priority Critical patent/TWI823892B/zh
Publication of TW202029500A publication Critical patent/TW202029500A/zh
Application granted granted Critical
Publication of TWI823892B publication Critical patent/TWI823892B/zh

Links

Images

Abstract

一種半導體裝置,包含基底、磊晶層、漂移區、射極區、以及集極區。磊晶層設置於基底之上且具有第一導電類型。漂移區設置於磊晶層中且具有第二導電類型,第二導電類型與第一導電類型相反。射極區設置於漂移區之外的磊晶層中。集極區設置於漂移區中。此半導體裝置還包含摻雜區,此摻雜區設置於相鄰漂移區的底面且具有第一導電類型。

Description

半導體裝置及其製造方法
本發明是有關於半導體裝置,且特別是有關於具有高崩潰電壓的半導體裝置及其製造方法。
近年來,隨著半導體積體電路製造技術的發展,對於形成於單一晶片上之控制器、記憶體、低電壓操作電路以及高電壓操作電路等元件的需求也隨之增加,藉以製作出更高積集度之單一晶片系統。
於單一晶片系統內,通常採用了如絕緣閘極雙極性電晶體(insulated gate bipolar transistors,IGBTs)之高電壓元件,以改善功率轉換效率並減少電量的損耗。絕緣閘極雙極性電晶體(IGBT)具有高電流增益(high current gain)、高操作電壓(high operating voltage)與低導通電阻值(low on-state resistance)等,因而適用於高電壓操作之應用。
然而,隨著單一晶片系統的尺寸微縮趨勢,便需要一種絕緣閘極雙極性電晶體元件,其可隨著尺寸微縮趨勢而仍具有一定或增加之電流密度與導通電阻值。
本發明的一些實施例提供半導體裝置,此半導體裝置包含基底、磊晶層、漂移區、射極區、以及集極區。磊晶層設置於基底之上且具有第一導電類型。漂移區設置於磊晶層中且具有第二導電類型,第二導電類型與第一導電類型相反。射極區設置於漂移區之外的磊晶層中。集極區設置於漂移區中。此半導體裝置還包含摻雜區,此摻雜區設置於相鄰漂移區的底面且具有第一導電類型。
本發明的一些實施例提供半導體裝置,此半導體裝置包含基底、磊晶層、漂移區、第一摻雜區、第二摻雜區、以及複數個第三摻雜區。磊晶層設置於基底之上且具有第一導電類型。漂移區設置於磊晶層中且具有第二導電類型,第二導電類型與第一導電類型相反。第一摻雜區設置於漂移區之外的磊晶層中且具有第二導電類型。第二摻雜區設置於漂移區中且具有第一導電類型。這些第三摻雜區設置於相鄰漂移區與磊晶層之間的接面,並且具有第一導電類型。
本發明實施例提供半導體裝置的製造方法,此方法包含提供基底、以及形成磊晶層於基底之上,磊晶層具有第一導電類型。此方法還包含形成摻雜區於磊晶層中、以及形成漂移區於磊晶層中。摻雜區具有第一導電類型且相鄰漂移區的底面。漂移區具有第二導電類型,第二導電類型與第一導電類型相反。此方法還包含形成射極區於漂移區之外的磊晶層中、以及形成集極區於漂移區中。
為讓本發明之特徵和優點能更明顯易懂,下文特舉出一些實施例,並配合所附圖式,作詳細說明如下。
以下揭露提供了許多的實施例或範例,用於實施所提供的半導體裝置之不同部件。各組件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一組件形成在第二組件之上,可能包含第一和第二組件直接接觸的實施例,也可能包含額外的組件形成在第一和第二組件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複元件符號及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。
以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標明相似的元件。可以理解的是,在方法的前、中、後可以提供額外的步驟,且一些敘述的步驟可為了該方法的其他實施例被取代或刪除。
儘管一些實施例是以特定的步驟順序進行討論,但這些步驟可以其他合乎邏輯的方式來進行。在不同實施例中,在本發明所描述的階段前、中、後可以提供額外的步驟。可針對不同實施例將所述的一些階段取代或刪除。額外的部件可以加入本發明實施例的半導體裝置中。可取代或刪除以下所述的一些部件。
本發明實施例提供半導體裝置,此半導體裝置包含摻雜區,其形成於相鄰磊晶層與漂移區之間的PN接面。此摻雜區具有與磊晶層相同的導電類型,但與漂移區的導電類型相反。此漂移區有助於將電場分布從射極區重新分布至集極區。因此,得以增強半導體裝置的關閉狀態崩潰電壓(off-state breakdown voltage)和可靠性。
第1-8圖是根據本發明的一些實施例,顯示形成第8圖所示之半導體裝置100在各個不同製程階段的剖面示意圖。
根據一些實施例,提供基底108,如第1圖所示。根據一些實施例,基底108是絕緣體上覆矽(semiconductor-on-insulator,SOI)。基底108包含半導體基底102、形成於半導體基底102之上的絕緣層104、以及形成於絕緣層104之上的半導體層106。在一些實施例中,可透過植氧分離(separation by implantation of oxygen,SIMOX)技術、晶圓接合製程(wafer bonding process)、磊晶層轉移製程(epitaxial layer transfer process)、其他適合的製程、或前述之組合,形成絕緣體上覆矽基底。
在一些實施例中,半導體基底102是矽(Si)基底。在一些實施例中,半導體基底102包含其他元素半導體,例如鍺(Ge);化合物半導體,例如GaN、SiC、GaAs、GaP、InP、InAs及/或InSb;合金半導體,例如SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP、及/或GaInAsP;或前述之組合。
根據一些實施例,半導體基底102是摻雜的。舉例而言,半導體基底102可以是摻雜磷的基底或摻雜砷的基底。舉例而言,半導體基底102可以是摻雜硼的基底。根據一些實施例,半導體層106具有第一導電類型,例如P型,並且半導體基底102具有第二導電類型,例如N型,其中第一導電類型與第二導電類型相反。根據一些實施例,絕緣層104是埋置氧化(buried oxide,BOX)層。
在一些實施例中,半導體層106的厚度範圍在約1微米(μm)至約15微米。在一些實施例中,絕緣層104的厚度範圍在約0.3微米至約5微米。
根據一些實施例,形成第一埋置(buried)層110於半導體層106中且相鄰半導體層106的底面,如第2圖所示。根據一些實施例,第一埋置層110具有第一導電類型,例如P型。在一些實施例中, P型摻雜物包含硼(B)、鎵(Ga)、鋁(Al)、銦(In)離子、或前述之組合。
根據一些實施例,形成第二埋置層112於半導體層106中的第一埋置層110之上,且相鄰半導體層106的上表面,如第2圖所示。根據一些實施例,第二埋置層112具有第二導電類型,例如N型。在一些實施例中,N型摻雜物包含磷(P)、砷(As)、氮(N)、銻(Sb)離子、或前述之組合。第一埋置層110和第二埋置層112的摻雜濃度可以是在任何範圍,可最佳化此範圍以降低背側偏壓效應。如果摻雜濃度太高,則可能惡化崩潰電壓。
根據一些實施例,形成磊晶層114於半導體層106的上表面之上,如第3圖所示。在一些實施例中,磊晶層114由矽(Si)形成。根據一些實施例,磊晶層114具有第一導電類型,例如P型。在一些實施例中,磊晶層114的厚度範圍在約2微米至約15微米。
在一些實施例中,使用磊晶成長製程形成磊晶層114,例如分子束磊晶技術(molecular-beam epitaxy,MBE)、金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶技術(hydride vapor phase epitaxy,HVPE)、或前述之組合。在一些實施例中,在磊晶成長製程期間,原位摻雜磊晶層114。
根據一些實施例,形成隔離部件116和117於磊晶層114的上表面上,如第4圖所示。根據一些實施例,隔離部件116和117彼此隔開,並且具有埋入磊晶層114中的一些部分,以定義出半導體裝置的主動區。根據一些實施例,隔離部件116和117具有高於磊晶層114的上表面的一些部分。
在一些實施例中,隔離部件116和117是場氧化物(field oxide,FOX)、局部矽氧化物(local oxide of silicon,LOCOS)、及/或淺溝槽隔離(shallow trench isolation,STI)結構。在一些實施例中,隔離部件116和117由氧化矽、氮化矽、氮氧化矽、其他適當介電材料、或前述之組合形成。在一些實施例中,隔離部件116和117透過熱氧化製程形成。在一些實施例中,形成隔離部件116和117的步驟包含透過圖案化製程(包含光微影(photolithography)製程和蝕刻製程)形成溝槽、以及透過沉積製程(例如,化學氣相沉積製程(CVD))沉積絕緣材料於磊晶層114之上以填入溝槽。
根據一些實施例,形成一或多個摻雜區118於磊晶層114中,如第4圖所示。摻雜區118的數量範圍在1至20個(例如3個),取決於所得半導體裝置的尺寸。根據一些實施例,這些摻雜區118在平行於磊晶層114的上表面的方向上排列。根據一些實施例,這些摻雜區118被磊晶層114彼此隔開。根據一些實施例,這些摻雜區118等距間隔。在一些實施例中,這些摻雜區118非等距間隔。在一些實施例中,兩個鄰近的摻雜區118的間距範圍在約0.05微米至約5微米。
再者,根據一些實施例,摻雜區118位於大致上相同的深度,其範圍在約0.05微米至約5微米。在一些實施例中,摻雜區118位於隔離部件116正下方。在一些實施例中,摻雜區118並未橫向延伸超出隔離部件116的一端。
如本文中所使用,「約」、「大約」、「大致上」的用語通常意味著在給定數值或範圍的20%之內,較佳地是在10%之內,並且更好地是在5%、3%或2%、或1%、或0.5%之內。值 得注意的是,本文中的數量是大致上的數量,這意味著其中隱含著「約」、「大約」、「大致上」的意思,即使沒有特別提到「約」、「大約」、「大致上」的用語。
根據一些實施例,摻雜區118具有第一導電類型,例如P型。在一些實施例中,摻雜區118的摻雜濃度可大於磊晶層114的摻雜濃度。根據一些實施例,摻雜區118的導電類型與磊晶層114的導電類型相同。在一些實施例中,其中形成摻雜區118之磊晶層114的一些區域的整體濃度大於其中未形成摻雜區118之磊晶層114的一些區域的濃度。
在一些實施例中,形成摻雜區118的步驟包含形成具有一或多個開口的圖案化遮罩層(例如光阻及/或硬遮罩)於磊晶層114的上表面之上、以及通過圖案化遮罩層的開口執行離子植入製程。在一些實施例中,離子植入製程的植入能量範圍在約1000千電子伏特(keV)至約2500keV,並且離子植入製程的劑量範圍在約5E11原子/公分2(atom/cm2)至約1E12atom/cm2。在一些實施例中,在離子植入製程期間,摻雜物通過隔離部件116以形成摻雜區118。在一些實施例中,這些摻雜物118具有大致上相同的濃度。
根據一些實施例,形成漂移(drift)區120於磊晶層114中,如第5圖所示。根據一些實施例,漂移區120自磊晶層114的上表面向下延伸。根據一些實施例,隔離部件116位於漂移區120上。根據一些實施例,漂移區120具有第二導電類型,例如N型。因為漂移區120與磊晶層114具有不同導電類型,漂移區120與磊晶層114之間的PN接面(PN junction)形成於漂移區120的底面。
根據一些實施例,摻雜區118位於相鄰漂移區120的底面。根據一些實施例,漂移區120的底面橫向穿過摻雜區118,如第5圖所示。摻雜區118包含在較上部分和較下部分,較上部分在漂移區120中,而較下部分在漂移區120之外的磊晶層114中。
根據一些實施例,漂移區120的深度範圍在約0.05微米至約5微米。在一些實施例中,透過離子植入製程形成漂移區120。
根據一些實施例,形成第一井區122於磊晶層114中,如第5圖所示。根據一些實施例,第一井區122自磊晶層114的上表面向下延伸。根據一些實施例,第一井區122與漂移區120彼此接觸。在一些實施例中,摻雜區118並未延伸至第一井區122正下方。
根據一些實施例,第一井區122具有第一導電類型,例如P型。在一些實施例中,透過離子植入製程形成第一井區122。
根據一些實施例,形成第二井區124於磊晶層114中的漂移區120中,如第5圖所示。根據一些實施例,第二井區124自磊晶層114的上表面向下延伸。根據一些實施例,第二井區124形成於漂移區120之遠離第一井區122的一側。根據一些實施例,第二井區124具有一部分延伸至隔離部件116下方。
根據一些實施例,第二井區124具有第二導電類型,例如N型。在一些實施例中,透過離子植入製程形成第二井區124。
根據一些實施例,形成閘極結構126於磊晶層114之上,並且部分覆蓋第一井區122和漂移區120,如第6圖所示。根據一些實施例,閘極結構126延伸於隔離部件116上並且部分覆蓋隔離部件116。
在一些實施例中,閘極結構126包含閘極介電層(未顯示)和設置於閘極介電層上的閘極電極層(未顯示)。在一些實施例中,閘極介電層是或者包含氧化矽、氮化矽、或氮氧化矽。在一些實施例中,透過適當氧化製程(例如,乾式氧化製程或濕式氧化製程)、沉積製程(例如,化學氣相沉積製程(CVD)),成長閘極介電層。在一些實施例中,透過熱氧化製程於含氧環境(例如,O2 、H2 O、NO或N2 O)熱成長閘極介電層。
在一些實施例中,閘極介電層是或者包含高介電常數(high-k,例如介電常數大於3.9)介電層,例如氧化鉿(HfO2 )。在一些實施例中,高介電常數介電層包含LaO、AlO、ZrO、TiO、Ta2 O5 、Y2 O3 、SrTiO3 、BaTiO3 、BaZrO、HfZrO、HfLaO、HfTaO、HfSiO、HfSiON、HfTiO、LaSiO、AlSiO、BaTiO3 、SrTiO3 、Al2 O3 、其他適當的高介電常數介電材料、或前述之組合。在一些實施例中,透過熱氧化製程、沉積製程(例如,化學氣相沉積(CVD)、原子層沉積(atomic layer deposition,ALD)、或物理氣相沉積(physical vapor deposition,PVD))、其他適當方法、或前述之組合,形成高介電常數介電層。
在一些實施例中,形成閘極電極層於閘極介電層上。在一些實施例中,閘極電極層是或者包含導電材料,例如多晶矽(polysilicon)或金屬(例如,鎢(W)、鈦(Ti)、鋁(Al)、銅(Cu)、鉬(Mo)、鎳(Ni)、鉑(Pt)、類似金屬、或前述之組合)。在一些實施例中,閘極電極層的形成可透過化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程、電鍍製程、原子層沉積(ALD)製程、其他適當方法、或前述之組合來形成電極材料。接著,透過微影製程和蝕刻製程將電極材料圖案化,以形成閘極電極層。
根據一些實施例,形成射極(emitter)區128和基極(bulk)區130於漂移區120之外的磊晶層114中,如第7圖所示。根據一些實施例,射極區128和基極區130形成於第一井區122中。根據一些實施例,射極區128和基極區130各自從磊晶層114的上表面向下延伸。根據一些實施例,射極區128與基極區130接觸。根據一些實施例,射極區128形成於漂移區120與基極區130之間。
根據一些實施例,射極區128具有第二導電類型,例如N型。根據一些實施例,基極區130具有第一導電類型,例如P型。在一些實施例中,透過各自的離子植入製程形成射極區128和基極區130。
根據一些實施例,形成集極(collector)區132於漂移區120中的第二井區124中,如第7圖所示。根據一些實施例,集極區132自磊晶層114的上表面向下延伸。根據一些實施例,集極區132具有第一導電類型,例如P型。在一些實施例中,透過離子植入製程形成集極區132。
根據一些實施例,形成層間介電(interlayer dielectric,ILD)層134於磊晶層114的上表面之上,如第8圖所示。根據一些實施例,層間介電層134覆蓋閘極結構126和隔離部件116和117。
在一些實施例中,層間介電層134是或者包含一或多的單層或多層介電層,例如氧化矽、氮化矽、氮氧化矽、四乙氧基矽烷(tetraethoxysilane,TEOS)、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數(low-k)介電材料、及/或其他適當介電材料。在一些實施例中,低介電常數(low-k)介電材料包含氟化矽酸鹽玻璃(fluorinated silica glass,FSG)、氫矽倍半氧烷(hydrogen silsesquioxane,HSQ)、摻雜碳的氧化矽、非晶氟化碳、聚對二甲苯(parylene)、苯並環丁烯(bis-benzocyclobutenes,BCB)、或聚醯亞胺(polyimide)。在一些實施例中,可透過化學氣相沉積(CVD)(例如,高密度電漿化學氣相沉積(high-density plasma CVD,HDPCVD)、常壓化學氣相沉積(atmospheric pressure chemical vapor deposition,APCVD)、低壓化學氣相沉積(low-pressure CVD,LPCVD)、或電漿增強化學氣相沉積(plasma enhanced CVD,PECVD))、旋轉塗佈製程、其他適當製程、或前述之組合,形成層間介電層134。
根據一些實施例,形成內連線結構於磊晶層114的上表面之上,如第8圖所示。根據一些實施例,內連線結構包含接觸插塞(contact plug)136a、 136b和136c,他們穿過層間介電層134且分別落在射極區128、基極區130、和集極區132上。根據一些實施例,內連線結構還包含射極電極138和集極電極140。根據一些實施例,射極電極138透過接觸插塞136a和136b與射極區128和基極區130電性連接。根據一些實施例,集極電極140透過接觸插塞136c與集極區132電性連接。
在一些實施例中,形成內連線結構的步驟包含使用光微影製程(包含例如光阻塗佈、軟烘烤、曝光、曝光後烘烤、顯影等)、蝕刻製程(例如,濕式蝕刻製程、乾式蝕刻製程、或前述之組合)、其他適當技術、或前述之組合,形成接觸開口(未顯示)於層間介電層134中。
在一些實施例中,填充導電材料於接觸開口中以形成接觸插塞136a、 136b和136c。在一些實施例中,用於接觸插塞136a、 136b和136c的導電材料包含金屬材料(例如,鎢(W)、鋁(Al)、或銅(Cu))、金屬合金、多晶矽、其他適當導電材料、或前述之組合。
在一些實施例中,接觸插塞136a、 136b和136c的形成可透過物理氣相沉積(PVD)(例如,蒸鍍(evaporation)或濺鍍(sputtering))、電鍍製程、原子層沉積(ALD)製程、其他適當製程、或前述之組合沉積導電材料。之後,執行化學機械研磨(chemical mechanical polishing,CMP)製程或回蝕刻製程,以移除過量的導電材料來形成接觸插塞136a、 136b和136c。
在一些實施例中,在填充接觸插塞136a、 136b和136c的導電材料之前,可形成阻障(barrier)層(未顯示)於開口的側壁和底部上,以防止接觸插塞136a、 136b和136c的導電材料擴散至層間介電層134中。阻障層也可做為黏著(adhesive)或膠黏(glue)層。阻障層的材料可以是氮化鈦(TiN)、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鎢(W)、氮化鎢(WN)、其他適當材料、或前述之組合。可透過物理氣相沉積(PVD)(例如,蒸鍍或濺鍍)、電鍍製程、原子層沉積(ALD)製程、其他適當製程、或前述之組合,沉積阻障層材料來形成阻障層。
在一些實施例中,形成射極電極138和集極電極140於層間介電層134之上。在一些實施例中,射極電極138和集極電極140是或者包含銅(Cu)、鎢(W)、銀(Ag)、錫(Sn)、鎳(Ni)、鈷(Co)、鉻(Cr)、鈦(Ti)、鉛(Pb)、金(Au)、鉍(Bi)、銻(Sb)、鋅(Zn)、鋯(Zr)、鎂(Mg)、銦(In)、碲(Te)、鎵(Ga)、其他適當金屬材料、前述之合金、或前述之組合。在一些實施例中,射極電極138和集極電極140包含TiN/AlCu/TiN的堆疊結構。
在一些實施例中,使用物理氣相沉積(PVD)(例如,蒸鍍或濺鍍)、電鍍製程、原子層沉積(ALD)製程、其他適當製程、或前述之組合,形成毯覆(blanket)金屬層(未顯示)於層間介電層134之上。之後,透過圖案化製程將毯覆金屬層圖案化,以形成射極電極138和集極電極140。在一些實施例中,圖案化製程包含光微影製程(包含例如光阻塗佈、軟烘烤、曝光、曝光後烘烤、顯影等)、蝕刻製程(例如,濕式蝕刻製程、乾式蝕刻製程、其他適當技術、或前述之組合)、其他適當技術、或前述之組合。
在一些實施例中,可以分開形成接觸插塞136a、 136b和136c、射極電極138、和集極電極140。在其他一些實施例中,可透過雙鑲嵌(dual damascene)製程同時形成接觸插塞136a、 136b和136c、射極電極138、和集極電極140。
根據一些實施例,在形成內連線結構之後,製得半導體裝置100。根據一些實施例,半導體裝置100是橫向型絕緣閘極雙極性電晶體(IGBT)裝置。
在本發明實施例中,半導體裝置100包含基底102、具有第一導電類型的磊晶層114、具有第二導電類型的漂移區120、以及射極區128、集極區132。第二導電類型與第一導電類型相反。磊晶層114設置於基底102之上。漂移區120設置於磊晶層114中。射極區128設置於漂移區120之外的磊晶層114中。集極區132設置於漂移區120中。
在本發明實施例中,半導體裝置100還包含具有第一導電類型的摻雜區118。摻雜區118設置於相鄰漂移區120的底面。
本發明實施例提供至少以下幾個優點優於傳統的絕緣閘極雙極性電晶體(IGBT)裝置。形成於相鄰磊晶層114與漂移區120之間的PN接面的摻雜區118,其具有與磊晶層114相同的摻雜類型,但與漂移區120的導電類型相反。與並未形成摻雜區118的情況相比,摻雜區118可提供額外的第一導電類型的摻雜物於PN接面附近,從而與漂移區120形成較大區域的空乏區。再者,摻雜區118有助於將電場分布自射極區128重新分布至集極區132,從而減少靠近射極區128的電場峰值,並且增加射極區128與集極區132之間的電位能(電場對距離的積分面積)。因此,得以增強半導體裝置的關閉狀態崩潰電壓和可靠性。
此外,對於較大尺寸的半導體裝置而言,與形成單一個較長的摻雜區118相比,形成複數個彼此隔開的摻雜區118可精準地提供額外的第一導電類型的摻雜物於PN接面附近。因此,得以進一步增強半導體裝置的關閉狀態崩潰電壓和可靠性。
第9和10圖是根據本發明的一些實施例,顯示半導體裝置200和300的剖面示意圖。為了簡潔明確起見,其中相同於前述第8圖的實施例的部件係使用相同的標號並省略其說明。
第9圖所示之實施例與前述第8圖之實施例的差別在於,第9圖中的摻雜區118完全形成於漂移區120中。根據一些實施例,這些摻雜區118被漂移區120彼此隔開。根據一些實施例,相較於漂移區120的上表面,摻雜區118位於更靠近漂移區120的底面。在一些實施例中,摻雜區118的水平高度低於第二井區124。
第10圖所示之實施例與前述第8圖之實施例的差別在於,第10圖中的摻雜區118完全形成於漂移區120下方的磊晶層114中。根據一些實施例,這些摻雜區118被磊晶層114彼此隔開。根據一些實施例,相較於磊晶層114的底面,摻雜區118設置於更靠近漂移區120的底面。
綜上所述,半導體裝置包含摻雜區,其形成於相鄰磊晶層與漂移區之間的PN接面。此摻雜區具有與磊晶層相同的導電類型,但與漂移區的導電類型相反。此漂移區有助於將電場分布從射極區重新分布至集極區。因此,得以增強半導體裝置的關閉狀態崩潰電壓和可靠性。
以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。
100、200、300:半導體裝置102:半導體基底104:絕緣層106:半導體層108:基底110:第一埋置層112:第二埋置層114:磊晶層116、117:隔離部件118:摻雜區120:漂移區122:第一井區124:第二井區126:閘極結構128:射極區130:基極區132:集極區134:層間介電層136a、136b、136c:接觸插塞138:射極電極140:集極電極
藉由以下詳細描述和範例配合所附圖式,可以更加理解本發明實施例。為了使圖式清楚顯示,圖式中各個不同的元件可能未依照比例繪製,其中: 第1-8圖是根據本發明的一些實施例,顯示形成半導體裝置在各個不同中間階段的剖面示意圖。 第9圖是根據本發明的一些實施例,顯示半導體裝置的剖面示意圖。 第10圖是根據本發明的一些實施例,顯示半導體裝置的剖面示意圖。
100:半導體裝置
102:半導體基底
104:絕緣層
106:半導體層
108:基底
110:第一埋置層
112:第二埋置層
114:磊晶層
116、117:隔離部件
118:摻雜區
120:漂移區
122:第一井區
124:第二井區
126:閘極結構
128:射極區
130:基極區
132:集極區
134:層間介電層
136a、136b、136c:接觸插塞
138:射極電極
140:集極電極

Claims (18)

  1. 一種半導體裝置,包括:一基底,是一半導體上覆絕緣體(SOI)基底且包括:一半導體基底;一絕緣層,設置於該半導體基底之上;以及一半導體層,設置於該絕緣層之上,該半導體層具有一第一導電類型;一第一埋置(buried)層,設置於該半導體層中,該第一埋置層具有該第一導電類型;一第二埋置層,設置於該半導體層中的該第一埋置層之上,該第二埋置層具有一第二導電類型;一磊晶層,設置於該第二埋置層之上,該磊晶層具有該第一導電類型;一漂移區,設置於該磊晶層中,該漂移區具有該第二導電類型,該第二導電類型與該第一導電類型相反;一射極(emittor)區,設置於該漂移區之外的該磊晶層中;一集極(collector)區,設置於該漂移區中;以及一摻雜區,設置於相鄰該漂移區的底面,該摻雜區具有該第一導電類型。
  2. 如申請專利範圍第1項所述之半導體裝置,其中該摻雜區設置於該漂移區中,且相較於該漂移區的上表面更靠近該漂移區的該底面。
  3. 如申請專利範圍第1項所述之半導體裝置,其中該摻 雜區包含在該漂移區中的一部分和在該漂移區之外的一部份。
  4. 如申請專利範圍第1項所述之半導體裝置,其中該摻雜區設置於該漂移區下方的該磊晶層中。
  5. 如申請專利範圍第1項所述之半導體裝置,其中該射極區具有該第二導電類型,且該集極區具有該第一導電類型。
  6. 如申請專利範圍第1項所述之半導體裝置,更包括:一閘極結構,設置於該磊晶層之上,其中該閘極結構部分覆蓋該漂移區。
  7. 如申請專利範圍第6項所述之半導體裝置,更包括:一井區,設置於該磊晶層中且相鄰該漂移區,該井區具有該第一導電類型,其中該射極區設置於該井區中;以及一基極(bulk)區,設置於該井區中且相鄰於該射極區,該基極區具有該第一導電類型;其中該閘極結構部分覆蓋該井區。
  8. 如申請專利範圍第6項所述之半導體裝置,更包括:一隔離部件,設置於該漂移區上,其中該閘極結構部分覆蓋該隔離部件。
  9. 如申請專利範圍第1項所述之半導體裝置,更包括:一井區,設置於該漂移區中,該井區具有該第二導電類型,其中該集極區設置於該井區中。
  10. 如申請專利範圍第1項所述之半導體裝置,其中該第一導電類型是P型且該第二導電類型是N型。
  11. 一種半導體裝置,包括: 一基底,是一半導體上覆絕緣體(SOI)基底且包括:一半導體基底;一絕緣層,設置於該半導體基底之上;以及一半導體層,設置於該絕緣層之上,該半導體層具有一第一導電類型;一第一埋置(buried)層,設置於該半導體層中,該第一埋置層具有該第一導電類型;一第二埋置層,設置於該半導體層中的該第一埋置層之上,該第二埋置層具有一第二導電類型;一磊晶層,設置於該第二埋置層之上,該磊晶層具有該第一導電類型;一漂移區,設置於該磊晶層中,該漂移區具有該第二導電類型,該第二導電類型與該第一導電類型相反;一第一摻雜區,設置於該漂移區之外的該磊晶層中,該第一摻雜區具有該第二導電類型;一第二摻雜區,設置於該漂移區中,該第二摻雜區具有該第一導電類型;以及複數個第三摻雜區,設置於相鄰該漂移區與該磊晶層之間的一接面(junction),該等第三摻雜區具有該第一導電類型。
  12. 如申請專利範圍第11項所述之半導體裝置,其中該等第三摻雜區彼此隔開。
  13. 如申請專利範圍第11項所述之半導體裝置,其中該等第三摻雜區位於相同的一深度。
  14. 如申請專利範圍第11項所述之半導體裝置,其中該等第三摻雜區具有相同的一濃度。
  15. 如申請專利範圍第11項所述之半導體裝置,更包括:一隔離部件,設置於該漂移區上,其中該等第三摻雜區設置於該隔離部件正下方;以及一閘極結構,部分覆蓋該隔離部件。
  16. 如申請專利範圍第11項所述之半導體裝置,其中該半導體裝置是一絕緣閘極雙極性電晶體(IGBT)。
  17. 一種半導體裝置的製造方法,包括:提供一基底,該基底是一半導體上覆絕緣體(SOI)基底且包括:一半導體基底;一絕緣層,設置於該半導體基底之上;以及一半導體層,設置於該絕緣層之上,該半導體層具有一第一導電類型;形成一第一埋置(buried)層於該半導體層中,該第一埋置層具有該第一導電類型;形成一第二埋置層於該半導體層中的該第一埋置層之上,該第二埋置層具有一第二導電類型;形成一磊晶層於該第二埋置層之上,其中該磊晶層具有該第一導電類型;形成一摻雜區於該磊晶層中,其中該摻雜區具有該第一導電類型;形成一漂移區於該磊晶層中,其中該漂移區具有該第二導電類型,該第二導電類型與該第一導電類型相反,其中該摻雜區相鄰該漂移 區的底面;形成一射極區於該漂移區之外的該磊晶層中;以及形成一集極區於該漂移區中。
  18. 如申請專利範圍第17項所述之半導體裝置的製造方法,其中形成該摻雜區包含一離子植入製程,該離子植入製程使用範圍在1000千電子伏特(keV)至2500keV的一植入能量、以及5E11原子/公分2至1E12原子/公分2的一劑量。
TW108102660A 2019-01-24 2019-01-24 半導體裝置及其製造方法 TWI823892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108102660A TWI823892B (zh) 2019-01-24 2019-01-24 半導體裝置及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108102660A TWI823892B (zh) 2019-01-24 2019-01-24 半導體裝置及其製造方法

Publications (2)

Publication Number Publication Date
TW202029500A TW202029500A (zh) 2020-08-01
TWI823892B true TWI823892B (zh) 2023-12-01

Family

ID=73002707

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108102660A TWI823892B (zh) 2019-01-24 2019-01-24 半導體裝置及其製造方法

Country Status (1)

Country Link
TW (1) TWI823892B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475870B1 (en) * 2001-07-23 2002-11-05 Taiwan Semiconductor Manufacturing Company P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture
TW200527701A (en) * 2003-12-30 2005-08-16 Fairchild Semiconductor Power semiconductor devices and methods of manufacture
US6958515B2 (en) * 2000-12-31 2005-10-25 Texas Instruments Incorporated N-channel LDMOS with buried p-type region to prevent parasitic bipolar effects
TW201230207A (en) * 2010-11-24 2012-07-16 Semiconductor Components Ind Semiconductor device and method for making the semiconductor device
TW201631765A (zh) * 2015-02-18 2016-09-01 旺宏電子股份有限公司 具有內埋層之半導體裝置及其製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958515B2 (en) * 2000-12-31 2005-10-25 Texas Instruments Incorporated N-channel LDMOS with buried p-type region to prevent parasitic bipolar effects
US6475870B1 (en) * 2001-07-23 2002-11-05 Taiwan Semiconductor Manufacturing Company P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture
US6770951B2 (en) * 2001-07-23 2004-08-03 Taiwan Semiconductor Manufacturing Company P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture
TW200527701A (en) * 2003-12-30 2005-08-16 Fairchild Semiconductor Power semiconductor devices and methods of manufacture
TW201230207A (en) * 2010-11-24 2012-07-16 Semiconductor Components Ind Semiconductor device and method for making the semiconductor device
TW201631765A (zh) * 2015-02-18 2016-09-01 旺宏電子股份有限公司 具有內埋層之半導體裝置及其製造方法

Also Published As

Publication number Publication date
TW202029500A (zh) 2020-08-01

Similar Documents

Publication Publication Date Title
US10249630B2 (en) Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors
TWI579925B (zh) 半導體結構及其製造方法
US10629532B2 (en) Integrated circuit structure having gate contact and method of forming same
US10832983B2 (en) Semiconductor device having a trench type device isolation film and method for fabricating the same
US20210375891A1 (en) Semiconductor chip
CN107910269B (zh) 功率半导体器件及其制造方法
CN107910266B (zh) 功率半导体器件及其制造方法
US20190214307A1 (en) Integration of vertical-transport transistors and planar transistors
CN110767749A (zh) 半导体结构及其形成方法
US20210408049A1 (en) Semiconductor chip
US20240015985A1 (en) Semiconductor chip
CN107910268B (zh) 功率半导体器件及其制造方法
TWI823892B (zh) 半導體裝置及其製造方法
US10600909B2 (en) Semiconductor devices and methods for fabricating the same
CN111564488B (zh) 半导体装置及其制造方法
US11348997B2 (en) Semiconductor devices and methods for fabricating the same
TWI678728B (zh) 半導體裝置及其製造方法
TWI684213B (zh) 半導體結構及其形成方法
CN111146284B (zh) 半导体装置及其制造方法
US20190305128A1 (en) Semiconductor structure and method for forming the same
TWI834121B (zh) 半導體元件及其形成方法
US20220352015A1 (en) Glue layer etching for improving device performance and providing contact isolation
US20230207682A1 (en) Semiconductor device and method forming the same
US20230411498A1 (en) Method for fabricating semiconductor device
US20240105554A1 (en) Transistors with via-to-backside power rail spacers