TWI821139B - 鋼液溫度預測方法及其電腦程式產品 - Google Patents
鋼液溫度預測方法及其電腦程式產品 Download PDFInfo
- Publication number
- TWI821139B TWI821139B TW112111114A TW112111114A TWI821139B TW I821139 B TWI821139 B TW I821139B TW 112111114 A TW112111114 A TW 112111114A TW 112111114 A TW112111114 A TW 112111114A TW I821139 B TWI821139 B TW I821139B
- Authority
- TW
- Taiwan
- Prior art keywords
- molten steel
- temperature
- heat
- shell
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 361
- 239000010959 steel Substances 0.000 title claims abstract description 361
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004590 computer program Methods 0.000 title claims description 11
- 230000005855 radiation Effects 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims description 39
- 238000012546 transfer Methods 0.000 claims description 38
- 239000002893 slag Substances 0.000 claims description 19
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 11
- 238000009847 ladle furnace Methods 0.000 abstract 8
- 238000004364 calculation method Methods 0.000 description 37
- 230000006870 function Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000009628 steelmaking Methods 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011449 brick Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Control Of Temperature (AREA)
Abstract
一種用於預測盛鋼桶內之鋼液溫度之方法包含:得到該盛鋼桶的盛鋼桶狀態參數及鋼液的鋼液參數,其中盛鋼桶狀態參數包含盛鋼桶使用次數,且鋼液參數包含鋼液重量及鋼液比熱容;得到在第一時間點量測該鋼液的第一溫度;及利用溫度預測函式對盛鋼桶狀態參數、鋼液參數、第一溫度及第一時間點進行運算而得到鋼液在第一時間點後之第二時間點之預測溫度。溫度預測函式定義鋼液之溫度變化所損失的熱量,其對應至盛鋼桶自身吸熱的第一熱量、盛鋼桶的殼體向外對流與輻射的第二熱量及鋼液頂部物件向外對流與輻射的第三熱量。
Description
本發明是有關於溫度預測方法,且特別是指一種預測盛鋼桶內鋼液的鋼液溫度預測方法及其電腦程式產品。
在煉鋼製程中,鋼液從轉爐吹煉或電爐熔煉完成出鋼後即由盛鋼桶裝載,而在鋼液從盛鋼桶進入鑄模而凝固成所需外型的階段中,鋼液溫度是影響之後成型的關鍵因素之一,適當的鋼液溫度對鋼液成分的正確、雜質介在物的減少、升溫成本的降低以及鑄造過程的順利與最後鑄件的品質有密不可分的影響。故如何能藉由正確得知鋼液溫度而適時的升降溫以妥善控制好鋼液的溫度,是煉鋼廠一直以來的挑戰。
現行鋼液測溫的做法,主要以紙管測溫棒刺入盛鋼桶鋼液渣面,以測量鋼液溫度。然而,以此方式測溫會因紙管測溫棒刺入深度不一、測到較低的渣層溫度、紙管測溫棒故障等因素而導致測量誤差或失敗的機率增加,且紙管測溫棒為單次使用的耗材而無法重複使用,大量使用紙管測溫棒也導致生產成本的顯著增加。
本發明的目的是在於提供一種鋼液溫度預測方法及其電腦程式產品,其透過提供在第一時間點所量測到的鋼液溫度,並利用溫度預測函式運算在第一時間點之後的第二時間點之鋼液的預測溫度,而能準確預測盛鋼桶內鋼液溫度,使對於煉鋼製程的操作順暢、減少升溫所需的電能或升溫材料的使用量、鋼液合金成分的控制及減少紙管測溫棒的耗用量等都能有明顯的助益。
本發明之一態樣是在提供一種鋼液溫度預測方法,用於預測盛裝在盛鋼桶內之鋼液的溫度,且由鋼液溫度預測系統執行,鋼液溫度預測方法包含:得到盛鋼桶的盛鋼桶狀態參數及鋼液的鋼液參數,其中盛鋼桶狀態參數包含盛鋼桶使用次數,且鋼液參數包含鋼液重量及鋼液比熱容;得到在第一時間點量測鋼液的第一溫度;以及利用溫度預測函式對盛鋼桶狀態參數、鋼液參數、第一溫度及第一時間點進行運算而得到鋼液在第一時間點後之第二時間點之預測溫度,其中溫度預測函式定義鋼液之溫度變化所損失的熱量,其對應至盛鋼桶自身吸熱的第一熱量、盛鋼桶的殼體向外對流與輻射的第二熱量及鋼液頂部物件向外對流與輻射的第三熱量。
依據本發明的一實施例,溫度預測函式包含盛鋼桶吸熱所致溫降速率、殼體所致溫降速率及鋼液頂部物件所致溫降速率,且得到預測溫度的步驟包含:依據盛鋼桶吸熱所致溫降速率、第一時間點及第二時間點得到盛鋼桶吸熱所致的第一溫降;依據殼體所致溫降速率、第一時間點及第二時間點得到殼體所致的第二溫降;依據鋼液頂部物件所致溫降速率、第一時間點及第二時間點得到鋼液之頂部所致的第三溫降;以及將第一溫度減去第一溫降、第二溫降及第三溫降得到預測溫度。
依據本發明的一實施例,盛鋼桶吸熱所致溫降速率為依據第一熱量除以鋼液重量、鋼液比熱容及時間區間所得到;殼體所致溫降速率為依據第二熱量除以鋼液重量、鋼液比熱容及時間區間所得到;且鋼液頂部物件所致溫降速率為依據第三熱量除以鋼液重量、鋼液比熱容及時間區間所得到。
依據本發明的一實施例,盛鋼桶狀態參數還包含殼體重量、殼體比熱容及盛鋼桶的耐火內襯之耐火比熱容,其中耐火內襯重量可經由盛鋼桶使用次數所得到,第一熱量包含殼體在時間區間吸熱的殼體熱量及耐火內襯在時間區間吸熱的耐火熱量,殼體熱量為依據殼體重量、殼體比熱容及殼體在時間區間的溫度變化所得到,且耐火熱量為依據耐火內襯重量、耐火比熱容及耐火內襯在時間區間的溫度變化所得到。
依據本發明的一實施例,盛鋼桶狀態參數還包含殼體對流熱傳遞係數、殼體面積及殼體放射率,第二熱量包含殼體在時間區間對環境釋放熱量的殼體對流熱量及殼體輻射熱量,殼體對流熱量為在時間區間依據殼體對流熱傳遞係數、殼體面積、殼體溫度相對於環境溫度的變化量所得到,且殼體輻射熱量為在時間區間依據殼體放射率、殼體面積、殼體溫度的四次方相對於環境溫度的四次方的變化量所得到。
依據本發明的一實施例,鋼液溫度預測方法還包含確認鋼液頂部物件。
依據本發明的一實施例,鋼液頂部物件非為上蓋時,鋼液參數還包含鋼液頂部物件對流熱傳遞係數、鋼液頂部物件面積及鋼液頂部物件放射率,第三熱量包含鋼液頂部物件在時間區間對環境釋放熱量的鋼液頂部對流熱量及鋼液頂部輻射熱量,鋼液頂部對流熱量為在時間區間依據鋼液頂部物件對流熱傳遞係數、鋼液頂部物件面積、鋼液頂部溫度相對於環境溫度的變化量所得到,且鋼液頂部輻射熱量為在時間區間依據鋼液頂部物件放射率、鋼液頂部物件面積、鋼液頂部溫度的四次方相對於環境溫度的四次方的變化量所得到。
依據本發明的一實施例,鋼液頂部物件包含鋼液及鋼渣中之一者,鋼液頂部物件對流熱傳遞係數包含鋼液對流熱傳遞係數及鋼渣對流熱傳遞係數中之一者,且鋼液頂部物件放射率包含鋼液放射率及鋼渣放射率中之一者。
依據本發明的一實施例,鋼液頂部物件為上蓋時,盛鋼桶狀態參數還包含上蓋重量、上蓋比熱容、上蓋對流熱傳遞係數、上蓋面積及上蓋放射率,第三熱量包含上蓋在時間區間吸熱的上蓋熱量、上蓋在時間區間對環境釋放熱量的上蓋對流熱量及上蓋輻射熱量,上蓋熱量為依據上蓋重量、上蓋比熱容及上蓋在時間區間的溫度變化所得到,上蓋對流熱量為在時間區間依據上蓋對流熱傳遞係數、上蓋面積、上蓋溫度相對於環境溫度的變化量所得到,且上蓋輻射熱量為在時間區間依據上蓋放射率、上蓋面積、上蓋溫度的四次方相對於環境溫度的四次方的變化量所得到。
本發明之另一態樣是在提供一種用於鋼液溫度預測的電腦程式產品,當電腦載入此電腦程式產品並執行後,可完成如上所述之鋼液溫度預測方法。
以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。
圖1為依據本發明實施例之鋼液溫度預測系統100的功能方塊示意圖。鋼液溫度預測系統100用於預測盛裝在盛鋼桶內之鋼液的溫度,其包含人機介面模組110、第一熱量計算模組120、第二熱量計算模組130、第三熱量計算模組140和鋼液溫度預測計算模組150,其中第一熱量計算模組120用以計算盛鋼桶自身吸熱,第二熱量計算模組130用以計算盛鋼桶之殼體散熱,而第三熱量計算模組140用以計算鋼液頂部物件散熱。具體而言,鋼液溫度預測系統100可以電腦裝置來實施,此電腦裝置可包含人機介面、記憶體、處理器和硬碟等,但不限於此。人機介面可以是例如顯示器、滑鼠和鍵盤等,其用以實現前述人機介面模組110的功能,以供操作人員輸入參數並顯示資訊供操作人員觀看。記憶體用以儲存多個指令,而處理器用以載入這些指令,以從硬碟取得操作所需的資料來實現前述第一熱量計算模組120、第二熱量計算模組130、第三熱量計算模組140和鋼液溫度預測計算模組150的功能。
圖2為依據一示例之盛鋼桶200的立體剖視圖。盛鋼桶200用以盛載高溫融熔鋼液,其包含殼體210及耐火內襯220。盛鋼桶200概呈圓柱狀,且在盛鋼桶200中,耐火內襯220是設置在殼體210的內壁面,其厚度會隨著盛鋼桶200使用次數的增加而減少。在一些實施例中,耐火內襯220的材料可以是鋁鎂磚、鎂碳磚、鎂鉻磚或其他類似的耐高溫材料,且在每次使用盛鋼桶200後,耐火內襯220的厚度減少大約0.3毫米至0.8毫米的範圍。此外,耐火內襯220減少的厚度也與盛鋼桶200每次盛載鋼液的時間相關。
圖3為依據本發明實施例之鋼液溫度預測方法300的流程示意圖。以下有關鋼液溫度預測方法300之說明以應用在鋼液溫度預測系統100預測盛裝在盛鋼桶200內鋼液的溫度為例,但所屬技術領域中具有通常知識者亦可依據以下說明將鋼液溫度預測方法300應用在其他相似的預測系統上以預測盛裝在盛鋼桶200或其他類似盛鋼桶內鋼液的溫度。首先,在步驟S310中,得到盛鋼桶200的盛鋼桶狀態參數及鋼液的鋼液參數,且確認鋼液頂部物件。操作人員可藉由人機介面模組110輸入盛鋼桶狀態參數及鋼液參數。進一步地,操作人員可確認鋼液頂部物件後再藉由人機介面模組110輸入至鋼液溫度預測系統100,或是藉由攝像裝置拍攝盛鋼桶200之頂部影像且透過影像辨識後將辨識結果輸入至鋼液溫度預測系統100。
盛鋼桶狀態參數包含盛鋼桶使用次數、盛鋼桶尺寸、殼體重量、初始耐火內襯重量、殼體比熱容、耐火比熱容、殼體對流熱傳遞係數、殼體面積、和殼體放射率。需說明的是,盛鋼桶尺寸包含殼體尺寸及耐火內襯初始尺寸,且殼體210與環境接觸的殼體面積(底壁面積及側壁面積)可由殼體尺寸所得到。此外,由於耐火內襯220的厚度會隨著使用盛鋼桶200的次數增加而減少,因此耐火內襯重量可依據初始耐火內襯重量、耐火內襯初始尺寸及盛鋼桶使用次數所得到。鋼液參數包含鋼液重量及鋼液比熱容。
鋼液頂部物件可為上蓋、鋼液或鋼渣。若盛鋼桶200蓋上上蓋,則鋼液頂部物件即為上蓋,且盛鋼桶狀態參數還包含上蓋重量、上蓋比熱容、上蓋對流熱傳遞係數、上蓋面積及上蓋放射率。上蓋面積為上蓋與環境接觸的面積。若盛鋼桶200未蓋上上蓋,則鋼液頂部物件為鋼液或鋼渣,且鋼液參數還包含鋼液頂部物件對流熱傳遞係數、鋼液頂部物件面積及鋼液頂部物件放射率。鋼液頂部物件對流熱傳遞係數包含鋼液對流熱傳遞係數或鋼渣對流熱傳遞係數,且鋼液頂部物件放射率包含鋼液放射率或鋼渣放射率。若鋼液頂部物件為鋼液,則鋼液頂部物件對流熱傳遞係數為鋼液對流熱傳遞係數、鋼液頂部物件面積為鋼液與環境接觸的表面面積,且鋼液頂部物件放射率為鋼液放射率。相對地,若鋼液頂部物件為鋼渣,則鋼液頂部物件對流熱傳遞係數為鋼渣對流熱傳遞係數、鋼液頂部物件面積為鋼渣與環境接觸的表面面積,且鋼液頂部物件放射率為鋼渣放射率。
接著在步驟S320中,得到在第一時間點量測盛鋼桶200內之鋼液的第一溫度。在此步驟中,可由操作人員或機器使用紙管測溫棒刺入盛鋼桶內之鋼液以得到第一溫度,再輸入至鋼液溫度預測系統100,因此,鋼液溫度預測系統100可從人機介面模組110得到第一溫度。
在步驟S330中,利用溫度預測函式對盛鋼桶狀態參數、鋼液參數、第一溫度及第一時間點進行運算而得到鋼液在第一時間點後之第二時間點之預測溫度。溫度預測函式定義盛載在盛鋼桶200內之鋼液的溫度變化所損失的熱量,其對應至盛鋼桶200自身吸熱的第一熱量、殼體210向外對流與輻射的第二熱量及鋼液頂部物件向外對流與輻射的第三熱量。第一熱量所致鋼液之第一溫降的計算由第一熱量計算模組120所執行,第二熱量所致鋼液之第二溫降的計算由第二熱量計算模組130所執行,且第三熱量所致鋼液之第三溫降的計算由第三熱量計算模組140所執行;接著由鋼液溫度預測計算模組150匯整第一溫降、第二溫降及第三溫降以得到鋼液在第二時間點之預測溫度。
圖4為圖3中步驟S330之子步驟S331-S337的流程示意圖。在本示例中,溫度預測函式包含盛鋼桶吸熱所致溫降速率、殼體所致溫降速率和鋼液頂部物件所致溫降速率。
首先,在子步驟S331中,第一熱量計算模組120依據盛鋼桶200在時間區間自身吸熱的第一熱量除以鋼液重量、鋼液比熱容及時間區間得到盛鋼桶吸熱所致溫降速率。第一熱量計算模組120再依據盛鋼桶吸熱所致溫降速率、第一時間點及第二時間點得到鋼液由盛鋼桶吸熱所致的第一溫降。第一溫降和盛鋼桶吸熱所致溫降速率的公式如下所示:
,以及
,
其中
為第一溫降,
為第一時間點,
為第二時間點,
為盛鋼桶吸熱所致溫降速率,
為第一熱量,
為鋼液重量,
為鋼液比熱容,
為時間區間。
上述鋼液重量、鋼液比熱容可從步驟S310得到。
進一步地,盛鋼桶在盛裝鋼液後,其吸收鋼液所提供的熱量(第一熱量)與盛裝鋼液的時間正相關。第一熱量包含殼體在時間區間吸熱的殼體熱量及耐火內襯在時間區間吸熱的耐火熱量。殼體熱量為依據殼體重量、殼體比熱容及殼體在時間區間的溫度變化所得到。耐火熱量為依據耐火內襯重量、耐火比熱容及耐火內襯在時間區間的溫度變化所得到。第一熱量的公式如下所示:
,
其中
為殼體重量,
為殼體比熱容,
為殼體在時間區間的溫度變化,
為耐火內襯重量,
為耐火比熱容,
為耐火內襯在時間區間的溫度變化。
上述殼體重量、殼體比熱容、耐火內襯重量、耐火比熱容可從步驟S310得到。殼體在時間區間的溫度變化可藉由溫度感測器在時間區間量測殼體的溫度而計算出;或是預先藉由溫度感測器量測殼體的溫度再以電腦模擬的方式建立殼體的熱模型,再根據熱模型推論殼體在時間區間的溫度變化。類似地,耐火內襯在時間區間的溫度變化可藉由溫度感測器在時間區間量測耐火內襯的溫度而計算出;或是預先藉由溫度感測器量測耐火內襯的溫度再以電腦模擬的方式建立耐火內襯的熱模型,再根據熱模型推論耐火內襯在時間區間的溫度變化。應注意的是,本發明實施例之殼體和耐火內襯在時間區間的溫度變化並不限於由上述方式得到。
接著在子步驟S332中,第二熱量計算模組130依據殼體向外對流與輻射形成的第二熱量除以鋼液重量、鋼液比熱容及時間區間得到殼體所致溫降速率,且再依據殼體所致溫降速率、第一時間點及第二時間點得到鋼液由殼體所致的第二溫降。第二溫降和殼體所致溫降速率的公式如下所示:
,以及
,
其中
為第二溫降,
為殼體所致溫降速率,
為第二熱量。
上述鋼液重量、鋼液比熱容可從步驟S310得到。
進一步地,第二熱量包含殼體在時間區間對環境釋放熱量的殼體對流熱量及殼體輻射熱量。殼體對流熱量為在時間區間依據殼體對流熱傳遞係數、殼體面積、殼體溫度相對於環境溫度的變化量所得到。殼體輻射熱量為在時間區間依據殼體放射率、殼體面積、殼體溫度的四次方相對於環境溫度的四次方的變化量所得到。第二熱量的公式如下所示:
,
其中
為殼體對流熱傳遞係數,
為殼體面積,
為殼體溫度,
為環境溫度,
為殼體放射率,
為斯特凡-波茲曼常數(Stefan-Boltzmann Constant)。
為時間
的函式。
上述殼體對流熱傳遞係數、殼體面積、殼體放射率可從步驟S310得到。斯特凡-波茲曼常數可預先儲存至第二熱量計算模組130。殼體溫度可藉由溫度感測器在時間區間量測殼體的溫度所得到;或是以建立的殼體的熱模型所推論來得到。環境溫度可藉由溫度感測器在時間區間量測環境的溫度所得到。
圖5為殼體溫度、殼體所致溫降速率與盛鋼桶使用次數的關係圖。在圖5中,殼體溫度與盛鋼桶使用次數的關係以虛線表示,殼體所致溫降速率與盛鋼桶使用次數的關係以實線表示。由圖5可知,在盛鋼桶使用次數為150次以內,殼體溫度隨著盛鋼桶使用次數近似線性而增加,且殼體所致溫降速率亦大致隨著盛鋼桶使用次數而增加。因此,在盛鋼桶使用次數為盛鋼桶可使用之最大次數以內,殼體溫度可經由使用次數推算出而不需量測或減少量測次數,而殼體所致溫降速率又可經由殼體溫度推算出。
回到圖3和圖4,在子步驟S333中,第三熱量計算模組140依據步驟S310中確認鋼液頂部物件的結果來確認鋼液頂部物件是否為上蓋。若鋼液頂部物件非為上蓋,則接著進行子步驟S334;反之,若鋼液頂部物件為上蓋,則接著進行子步驟S335。
在子步驟S334中,第三熱量計算模組140依據步驟S310中確認鋼液頂部物件的結果以確認鋼液頂部物件為鋼液或鋼渣,且再依據鋼液頂部物件向外對流與輻射形成的第三熱量除以鋼液重量、鋼液比熱容及時間區間得到鋼液頂部物件所致溫降速率。鋼液頂部物件所致溫降速率的公式如下所示:
,
其中R
3為鋼液頂部物件所致溫降速率,W
3為第三熱量。
進一步地,第三熱量包含鋼液頂部物件在時間區間對環境釋放熱量的鋼液頂部對流熱量及鋼液頂部輻射熱量。鋼液頂部對流熱量為在時間區間依據鋼液頂部物件對流熱傳遞係數、鋼液頂部物件面積、鋼液頂部溫度相對於環境溫度的變化量所得到。鋼液頂部輻射熱量為在時間區間依據鋼液頂部物件放射率、鋼液頂部物件面積、鋼液頂部溫度的四次方相對於環境溫度的四次方的變化量所得到。第三熱量的公式如下所示:
,
其中
為鋼液頂部物件對流熱傳遞係數,
為鋼液頂部物件面積,
為鋼液頂部溫度,
為鋼液頂部物件放射率。
為時間
的函式。
上述鋼液頂部物件對流熱傳遞係數、鋼液頂部物件面積、鋼液頂部物件放射率可從步驟S310得到,斯特凡-波茲曼常數可預先儲存至第三熱量計算模組140,鋼液頂部溫度可藉由熱像儀在時間區間量測鋼液頂部的溫度所得到。環境溫度可藉由溫度感測器在時間區間量測環境的溫度所得到。須說明的是,若鋼液頂部物件為鋼液,則鋼液頂部物件對流熱傳遞係數和鋼液頂部物件放射率為對應至鋼液的參數;若鋼液頂部物件為鋼渣,則鋼液頂部物件對流熱傳遞係數和鋼液頂部物件放射率為對應至鋼渣的參數。
在子步驟S335中,第三熱量計算模組140依據上蓋自身吸熱及上蓋向外對流與輻射形成的第三熱量除以鋼液重量、鋼液比熱容及時間區間得到鋼液頂部物件所致溫降速率。鋼液頂部物件所致溫降速率的公式如同上述鋼液頂部物件所致溫降速率R
3公式所示。
進一步地,子步驟S335中的第三熱量包含上蓋熱量、上蓋對流熱量及上蓋輻射熱量。上蓋熱量為依據上蓋重量、上蓋比熱容及上蓋在時間區間的溫度變化所得到。上蓋對流熱量為在時間區間依據上蓋對流熱傳遞係數、上蓋面積、上蓋溫度相對於環境溫度的變化量所得到。上蓋輻射熱量為在時間區間依據上蓋放射率、上蓋面積、上蓋溫度的四次方相對於環境溫度的四次方的變化量所得到。第三熱量的公式如下所示:
,
其中
為上蓋重量,
為上蓋比熱容,
為上蓋在時間區間的溫度變化,
為上蓋對流熱傳遞係數,
為上蓋面積,
為上蓋溫度,
為上蓋放射率。
為時間
的函式。
上述上蓋重量、上蓋比熱容、上蓋對流熱傳遞係數、上蓋面積、上蓋放射率可從步驟S310得到。上蓋在時間區間的溫度變化可藉由溫度感測器在時間區間量測上蓋的溫度進而計算出,溫度感測器例如熱電偶溫度計、紅外線測溫計、熱像儀或其他溫度感測器。環境溫度可藉由溫度感測器在時間區間量測環境的溫度所得到。
在子步驟S336中,第三熱量計算模組140再依據鋼液頂部物件所致溫降速率、第一時間點及第二時間點得到鋼液由鋼液頂部物件所致的第三溫降。第三溫降的公式如下所示:
,
其中T
3為第三溫降,R
3為鋼液頂部物件所致溫降速率。
在子步驟S337中,鋼液溫度預測計算模組150接收第一熱量計算模組120計算的第一溫降、第二熱量計算模組130計算的第二溫降、第三熱量計算模組140計算的第三溫降,且將第一溫度減去第一溫降、第二溫降及第三溫降而得到預測溫度。預測溫度的公式如下所示:
,
其中
為預測溫度,
為第一溫度。
回到圖3,接著在步驟S340,人機介面模組110將預測溫度輸出,以供操作人員觀看。
圖6為使用鋼液溫度預測方法300在各爐次、案例所得到的鋼液預測溫度與對應鋼液實際量測溫度的散佈圖,其中橫軸和縱軸分別對應鋼液的實際量測溫度和預測溫度,從圖6可看出,所有在散佈圖中的坐標點都趨近實際量測溫度與預測溫度相等的直線,代表在各爐次、案例所得到的預測溫度均接近實際量測溫度。此外,表一是自煉鋼產線任意抽選一日之生產前20爐次的測試結果。由表一也可看出,在所有爐次的實際量測溫度與預測溫度之間的溫差均在攝氏±10度的誤差範圍內,證明本發明之具有高度準確性。
表一
爐次 | 實際量測溫度(°C) | 預測溫度(°C) | 溫差(°C) |
1 | 1639 | 1638 | 1 |
2 | 1604 | 1605 | -1 |
3 | 1613 | 1619 | -6 |
4 | 1601 | 1603 | -2 |
5 | 1613 | 1617 | -4 |
6 | 1612 | 1608 | 4 |
7 | 1608 | 1606 | 2 |
8 | 1604 | 1609 | -5 |
9 | 1615 | 1622 | -7 |
10 | 1612 | 1612 | 0 |
11 | 1610 | 1606 | 4 |
12 | 1605 | 1606 | -1 |
13 | 1634 | 1637 | -3 |
14 | 1608 | 1605 | 3 |
15 | 1602 | 1601 | 1 |
16 | 1626 | 1621 | 5 |
17 | 1630 | 1632 | -2 |
18 | 1613 | 1615 | -2 |
19 | 1627 | 1627 | 0 |
20 | 1618 | 1621 | -3 |
上述鋼液溫度預測方法300可由包含多個程式指令的電腦程式產品實現。電腦程式產品可為在網路上傳輸的檔案,亦可儲存於非暫態電腦可讀取儲存媒體中。電腦程式產品所包含的此些程式指令被載入電子計算裝置(例如上述的鋼液溫度預測系統100)後,電腦程式執行如上所述的鋼液溫度預測方法300。進一步地,非暫態電腦可讀取儲存媒體可為例如唯讀記憶體(Read Only Memory;ROM)、快閃記憶體、軟碟、硬碟、光碟(Compact Disk;CD)、數位多功能光碟(Digital Versatile Disc;DVD)、隨身碟、可由網路存取的資料庫或其他類似的電子產品。
綜上所述,本發明之鋼液溫度預測方法可準確預測盛鋼桶內鋼液溫度,對於煉鋼製程的操作順暢、升溫電能或升溫材料的使用量、鋼液合金成分的控制及紙管測溫棒的耗用量,都能有明顯的助益。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
100:鋼液溫度預測系統
110:人機介面模組
120:第一熱量計算模組
130:第二熱量計算模組
140:第三熱量計算模組
150:鋼液溫度預測計算模組
200:盛鋼桶
210:殼體
220:耐火內襯
300:鋼液溫度預測方法
S310,S320,S330,S340:步驟
S331~S337:子步驟
為了更完整了解實施例及其優點,現參照結合所附圖式所做之下列描述,其中:
圖1為依據本發明實施例之鋼液溫度預測系統的功能方塊示意圖;
圖2為盛鋼桶的立體剖視圖;
圖3為依據本發明實施例之鋼液溫度預測方法的流程示意圖;
圖4為圖3中得到預測溫度之步驟中各子步驟的流程示意圖;
圖5為殼體溫度、殼體所致溫降速率與盛鋼桶使用次數的關係圖;以及
圖6為使用鋼液溫度預測方法在各爐次、案例所得到的鋼液預測溫度與對應鋼液實際量測溫度的散佈圖。
300:鋼液溫度預測方法
S310,S320,S330,S340:步驟
Claims (9)
- 一種鋼液溫度預測方法,用於預測盛裝在一盛鋼桶內之一鋼液的溫度,且由一鋼液溫度預測系統執行,該鋼液溫度預測方法包含:得到該盛鋼桶的一盛鋼桶狀態參數及該鋼液的一鋼液參數,其中該盛鋼桶狀態參數包含一盛鋼桶使用次數,且該鋼液參數包含一鋼液重量及一鋼液比熱容;得到在一第一時間點量測該鋼液的一第一溫度;以及利用一溫度預測函式對該盛鋼桶狀態參數、該鋼液參數、該第一溫度及該第一時間點進行運算而得到該鋼液在該第一時間點後之一第二時間點之一預測溫度,其中該溫度預測函式定義該鋼液之溫度變化所損失的熱量,其對應至該盛鋼桶自身吸熱的一第一熱量、該盛鋼桶的一殼體向外對流與輻射的一第二熱量及一鋼液頂部物件向外對流與輻射的一第三熱量;其中該溫度預測函式包含一盛鋼桶吸熱所致溫降速率、一殼體所致溫降速率及一鋼液頂部物件所致溫降速率,且得到該預測溫度的步驟包含:依據該盛鋼桶吸熱所致溫降速率、該第一時間點及該第二時間點得到該盛鋼桶吸熱所致的一第一溫降;依據該殼體所致溫降速率、該第一時間點及該第二時間點得到該殼體所致的一第二溫降;依據該鋼液頂部物件所致溫降速率、該第一時間點及該第二時間點得到該鋼液之頂部所致的一第三溫降;以及 將該第一溫度減去該第一溫降、該第二溫降及該第三溫降得到該預測溫度。
- 如請求項1所述之鋼液溫度預測方法,其中該盛鋼桶吸熱所致溫降速率為依據該第一熱量除以該鋼液重量、該鋼液比熱容及一時間區間所得到;該殼體所致溫降速率為依據該第二熱量除以該鋼液重量、該鋼液比熱容及該時間區間所得到;且該鋼液頂部物件所致溫降速率為依據該第三熱量除以該鋼液重量、該鋼液比熱容及該時間區間所得到。
- 如請求項2所述之鋼液溫度預測方法,其中該盛鋼桶狀態參數還包含一殼體重量、一殼體比熱容及該盛鋼桶的一耐火內襯之一耐火比熱容,其中一耐火內襯重量可經由該盛鋼桶使用次數所得到,該第一熱量包含該殼體在該時間區間吸熱的一殼體熱量及該耐火內襯在該時間區間吸熱的一耐火熱量,該殼體熱量為依據該殼體重量、該殼體比熱容及該殼體在該時間區間的溫度變化所得到,且該耐火熱量為依據該耐火內襯重量、該耐火比熱容及該耐火內襯在該時間區間的溫度變化所得到。
- 如請求項2所述之鋼液溫度預測方法,其中該盛鋼桶狀態參數還包含一殼體對流熱傳遞係數、一殼體面積及一殼體放射率,該第二熱量包含該殼體在該時間區 間對環境釋放熱量的一殼體對流熱量及一殼體輻射熱量,該殼體對流熱量為在該時間區間依據該殼體對流熱傳遞係數、該殼體面積、一殼體溫度相對於一環境溫度的變化量所得到,且該殼體輻射熱量為在該時間區間依據該殼體放射率、該殼體面積、該殼體溫度的四次方相對於該環境溫度的四次方的變化量所得到。
- 如請求項2所述之鋼液溫度預測方法,還包含確認該鋼液頂部物件。
- 如請求項5所述之鋼液溫度預測方法,其中該鋼液頂部物件非為一上蓋時,該鋼液參數還包含一鋼液頂部物件對流熱傳遞係數、一鋼液頂部物件面積及一鋼液頂部物件放射率,該第三熱量包含該鋼液頂部物件在該時間區間對環境釋放熱量的一鋼液頂部對流熱量及一鋼液頂部輻射熱量,該鋼液頂部對流熱量為在該時間區間依據該鋼液頂部物件對流熱傳遞係數、該鋼液頂部物件面積、一鋼液頂部溫度相對於一環境溫度的變化量所得到,且該鋼液頂部輻射熱量為在該時間區間依據該鋼液頂部物件放射率、該鋼液頂部物件面積、該鋼液頂部溫度的四次方相對於該環境溫度的四次方的變化量所得到。
- 如請求項6所述之鋼液溫度預測方法,其中該鋼液頂部物件包含該鋼液及一鋼渣中之一者,該鋼液頂 部物件對流熱傳遞係數包含一鋼液對流熱傳遞係數及一鋼渣對流熱傳遞係數中之一者,且該鋼液頂部物件放射率包含一鋼液放射率及一鋼渣放射率中之一者。
- 如請求項5所述之鋼液溫度預測方法,其中該鋼液頂部物件為一上蓋時,該盛鋼桶狀態參數還包含一上蓋重量、一上蓋比熱容、一上蓋對流熱傳遞係數、一上蓋面積及一上蓋放射率,該第三熱量包含該上蓋在該時間區間吸熱的一上蓋熱量、該上蓋在該時間區間對環境釋放熱量的一上蓋對流熱量及一上蓋輻射熱量,該上蓋熱量為依據該上蓋重量、該上蓋比熱容及該上蓋在該時間區間的溫度變化所得到,該上蓋對流熱量為在該時間區間依據該上蓋對流熱傳遞係數、該上蓋面積、一上蓋溫度相對於一環境溫度的變化量所得到,且該上蓋輻射熱量為在該時間區間依據該上蓋放射率、該上蓋面積、該上蓋溫度的四次方相對於該環境溫度的四次方的變化量所得到。
- 一種用於鋼液溫度預測的電腦程式產品,當電腦載入此電腦程式產品並執行後,可完成如請求項1至8中任一項所述之鋼液溫度預測方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112111114A TWI821139B (zh) | 2023-03-24 | 2023-03-24 | 鋼液溫度預測方法及其電腦程式產品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112111114A TWI821139B (zh) | 2023-03-24 | 2023-03-24 | 鋼液溫度預測方法及其電腦程式產品 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI821139B true TWI821139B (zh) | 2023-11-01 |
TW202439221A TW202439221A (zh) | 2024-10-01 |
Family
ID=89722279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112111114A TWI821139B (zh) | 2023-03-24 | 2023-03-24 | 鋼液溫度預測方法及其電腦程式產品 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI821139B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102355963B (zh) * | 2009-03-17 | 2013-10-09 | 新日铁住金株式会社 | 连续铸造用铸模铜板的温度测量方法和装置 |
CN105710333A (zh) * | 2016-03-08 | 2016-06-29 | 黄力 | 大型耐热钢炉底辊身的离心铸造工艺 |
TWI762264B (zh) * | 2021-04-01 | 2022-04-21 | 中國鋼鐵股份有限公司 | 用於預測鋼液溫度的方法 |
EP4009020A1 (en) * | 2020-12-02 | 2022-06-08 | Heraeus Electro-Nite International N.V. | Method and system for determining a series of temperature values of a molten metal bath |
-
2023
- 2023-03-24 TW TW112111114A patent/TWI821139B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102355963B (zh) * | 2009-03-17 | 2013-10-09 | 新日铁住金株式会社 | 连续铸造用铸模铜板的温度测量方法和装置 |
CN105710333A (zh) * | 2016-03-08 | 2016-06-29 | 黄力 | 大型耐热钢炉底辊身的离心铸造工艺 |
EP4009020A1 (en) * | 2020-12-02 | 2022-06-08 | Heraeus Electro-Nite International N.V. | Method and system for determining a series of temperature values of a molten metal bath |
TWI762264B (zh) * | 2021-04-01 | 2022-04-21 | 中國鋼鐵股份有限公司 | 用於預測鋼液溫度的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0244186Y2 (zh) | ||
JP2007071686A (ja) | 容器壁の温度又は熱流束の推定方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体、並びに容器壁厚みの推定方法 | |
JP4579820B2 (ja) | 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。 | |
RU2678549C2 (ru) | Способ и устройство измерения уровней чугуна и шлака в доменной печи | |
Fredman et al. | Two-dimensional dynamic simulation of the thermal state of ladles | |
TWI821139B (zh) | 鋼液溫度預測方法及其電腦程式產品 | |
JP5068559B2 (ja) | 容器壁状態の管理方法、装置、及びコンピュータプログラム | |
JP4753374B2 (ja) | 容器壁の厚み推定方法、装置、コンピュータプログラム | |
JP5064433B2 (ja) | 容器内表面の熱流束の推定方法、装置及びプログラム | |
JP2008267986A (ja) | 測温装置、溶融装置、溶融装置の製造方法、及び溶融装置監視システム | |
KR102531803B1 (ko) | 용광로의 내화물 라이닝의 마모를 모니터링하기 위한 방법 | |
Fredman | Heat transfer in steelmaking ladle refractories and steel temperature | |
CN105463142B (zh) | 一种高炉炉缸内铁水温度测量的方法 | |
JP4681127B2 (ja) | 湯面高さ検知装置、方法、及びコンピュータ読み取り可能な記憶媒体 | |
JP2016221537A (ja) | 溶融金属保持容器の温度管理方法、溶融金属保持容器の耐火物層厚さ管理方法、溶融金属保持容器内の溶融金属温度管理方法、溶融金属保持容器の温度管理装置及び溶融金属保持容器の温度管理プログラム | |
JP4743781B2 (ja) | 容器の内壁面の温度及び熱流束の推定方法、装置、並びにコンピュータプログラム | |
CN207035808U (zh) | 一种具有测温装置的回转窑 | |
JP2002266011A (ja) | 高炉の炉内状況推定方法 | |
JPH11316118A (ja) | 耐火物の厚さ推定方法 | |
JP2019126834A (ja) | 設備監視装置、設備監視方法、およびプログラム | |
TW202134612A (zh) | 高爐內壁結塊之監視方法 | |
JP6702014B2 (ja) | 電気炉におけるスクラップ溶け落ち判定方法、電気炉における炉壁損耗量推定方法、プログラム及びシステム | |
Wu et al. | Steel temperature compensating model with multi-factor coupling based on ladle thermal state | |
JP3728050B2 (ja) | 高炉炉底状況の推定方法 | |
JP5233679B2 (ja) | 凝固欠陥予測解析の精度検証方法 |