TWI801442B - 合併式分壓器正向轉換器 - Google Patents
合併式分壓器正向轉換器 Download PDFInfo
- Publication number
- TWI801442B TWI801442B TW107137420A TW107137420A TWI801442B TW I801442 B TWI801442 B TW I801442B TW 107137420 A TW107137420 A TW 107137420A TW 107137420 A TW107137420 A TW 107137420A TW I801442 B TWI801442 B TW I801442B
- Authority
- TW
- Taiwan
- Prior art keywords
- input voltage
- forward converter
- output
- primary
- winding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M1/342—Active non-dissipative snubbers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/34—Snubber circuits
- H02M1/348—Passive dissipative snubbers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Analogue/Digital Conversion (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
一種正向轉換器包括一輸入電壓源,該輸入電壓源被分割成多個被分割之輸入電壓源,該等被分割之輸入電壓源中之每一者提供該輸入電壓源之一總輸入電壓的一部分。該正向轉換器包括:一輸出電路,該輸出電路具有一輸出電容器;一變壓器,該變壓器具有多個一次繞組、一第二繞組及一馳豫繞組。每一一次繞組與一對應之一次側開關裝置串聯連接。該一次繞組與該對應之一次側開關裝置的一組合與一對應的被分割之電壓源並聯。該二次繞組經由該輸出電路輸出一電壓。該馳豫繞組連接於該等被分割之輸入電壓源或該輸出電容器兩端。一控制器電路基於該輸出電容器兩端之一電壓的指示而控制該等一次側開關裝置以控制自該輸入電壓源至該輸出電容器之電力流。
Description
本發明係有關於合併式分壓器正向轉換器。
開關模式電源供應器(SMPS)廣泛地用於各種工業及消費型電子裝置中以調整來自交流(AC)電源或直流(DC)電源之輸入電壓,使得可將經調整之輸出電壓/電流遞送至電子負載。
組成SMPS之電路通常包括單開關正向轉換器。單開關正向轉換器電路通常在對需要數十至數百伏之具有相對較高之電流的電力的負載供電時使用。單開關正向轉換器電路便利地提供連續之輸出電流及單開關正向轉換器之輸入與單開關正向轉換器之輸出之間的電流隔離。
在單開關正向轉換器應用於將存在較大之輸出對輸出電壓差的情形時,習知單開關正向轉換器具有某些限制。此等限制可被認為包括對高電壓額定值開關之需要及對挑戰性變壓器設計之需要。此等限制可被認為導致單開關正向轉換器之效率降低及大小增加。
在一些實施例中,一種正向轉換器包括一輸入電壓源。該輸入電壓源被分割成多個被分割之輸入電壓源。該等被分割之輸入電壓源中之每一者提供該輸入電壓源之一總輸入電壓的一部分。該正向轉換器包括一輸出電路,該輸出電路包括一第一輸出電路開關裝置、一第二輸出電路開關裝置、一輸出電感器及一輸出電容器。該正向轉換器包括一變壓器,該變壓器具有耦接至一磁芯之多個一次繞組、藉由耦接至該磁芯而電感耦接至該等一次繞組之一二次繞組及電
感耦接至該磁芯之一馳豫繞組。該多個一次繞組中之每一一次繞組與一對應之一次側開關裝置串聯連接。該一次繞組與該對應之一次側開關裝置之一組合與該多個被分割之電壓源中的一對應之被分割之電壓源並聯。該二次繞組被連接以經由該輸出電路輸出一輸出電壓,且該馳豫繞組連接於該多個被分割之輸入電壓源或該輸出電容器兩端。該正向轉換器包括一控制器電路,該控制器電路連接至該等一次側開關裝置中之每一者且適於以控制自該輸入電壓源至該輸出電容器之電力流的一方式來控制該等一次側開關裝置中之每一者,該控制係基於接收到該輸出電容器兩端之一電壓的一指示。
在結合附圖查閱了本揭示案之特定實施方案的以下描述之後,本揭示案之其他態樣及特徵將變成一般熟習此項技術者所顯而易見的。
100、200、300、400、500、600、700、800、1600、1700、1800、1900、2000、2100、2200、2300:正向轉換器
110:輸入電壓源
120:電容性分壓器
122、122-1、122-2、122-N、122-k:電容性裝置
130:變壓器
132、132-1、132-2、132-N、132-k:一次繞組
134:二次繞組
136:馳豫繞組
138:磁化電感器
142、144、162:二極體
146:輸出電感器
148:輸出電容器
150:輸出負載
152:輸出電壓調節器
160、160-1、160-2、160-N:一次側開關裝置
161-1、161-2、161-N:一次側單刀單擲開關
170:控制器電路
180:DC輸入電壓源
190:AC輸入電壓源
192:EMI輸入濾波器
194:全波二極體整流器
210:電流感測電阻器
220:電壓放大器電路
410:電池串
410-1、410-2、410-N、410-k:電池
602:緩衝電阻器
604:緩衝電容器
606:緩衝二極體
902、1002、1102、1202、1302:i L 峰值
904、1004、1104、1204、1304:i Lm 峰值
906、1006、1106、1206、1306:i 1峰值
908、1008、1108、1208、1308:i 2峰值
910、1010、1110、1210:i N 峰值
圖1示意性地示出根據一些實施例之合併式分壓器正向轉換器,其中馳豫繞組連接於一般輸入電壓源兩端。
圖2示意性地示出根據一些實施例的圖1之合併式分壓器正向轉換器,其中該馳豫繞組連接於輸出負載兩端。
圖3示意性地示出根據一些實施例之適於將AC輸入電壓轉換為DC輸出電壓的合併式分壓器正向轉換器,其中馳豫繞組連接於輸入電壓源兩端。
圖4示意性地示出根據一些實施例的圖3之合併式分壓器正向轉換器,其中該馳豫繞組連接於輸出負載兩端。
圖5示意性地示出根據一些實施例之適於將DC輸入電壓轉換為DC輸出電壓的合併式分壓器正向轉換器,其中馳豫繞組連接於輸入埠兩端。
圖6示意性地示出根據一些實施例的圖5之合併式分壓器正向轉換器,其中該馳豫繞組連接於輸出負載兩端。
圖7示意性地示出根據一些實施例的圖1之合併式分壓器正向轉換器,具有形成為電池串之輸入源及連接至該電池串之頂部的馳豫繞組。
圖8示意性地示出根據一些實施例的圖2之合併式分壓器正向轉換器,具有形成為電池串之輸入源及連接於輸出負載兩端之馳豫繞組。
圖9示出根據一些實施例的用於一次側開關之開關信號及用於連續導電操作模式之對應電感器電流波形。
圖10示出根據一些實施例的用於一次側開關之開關信號及用於不連續導電操作模式之對應電感器電流波形。
圖11示出根據一些實施例的用於一次側開關之開關信號及用於另一種不連續導電操作模式之對應電感器電流波形。
圖12示出根據一些實施例的用於一次側開關之開關信號及用於另一種不連續導電操作模式之對應電感器電流波形。
圖13示出根據一些實施例的由圖6之電路中的正向轉換器之使用導致的模擬結果。
圖14示出根據一些實施例的阻斷電壓隨著用於圖5之合併式分壓器正向轉換器的變壓器之一次繞組的數目而減小。
圖15示出根據一些實施例的阻斷電壓隨著用於圖6之合併式分壓器正向轉換器的變壓器之一次繞組的數目而減小。
圖16示意性地示出圖2之合併式分壓器正向轉換器,具有提供代表通過所有一次側開關之電流之電流量測值的電流感測電路之額外實施方案,並且其中馳豫繞組連接於輸出電壓兩端。
圖17示意性地示出根據一些實施例的圖1之合併式分壓器正向轉換器,具有提供代表通過所有一次開關及通過馳豫繞組之電流之電流量測值的電流感測電路之額外實施方案,其中馳豫繞組連接於一般輸入電壓源兩端。
圖18示意性地示出根據一些實施例的圖5之合併式分壓器正向轉換器,具有緩衝電路之額外實施方案,該緩衝電路包括緩衝電阻器、緩衝二極體及緩衝電容器。
圖19示意性地示出根據一些實施例的圖6之合併式分壓器正向轉換器,具有緩衝電路之額外實施方案,該緩衝電路包括緩衝電阻器、緩衝二極體及緩衝電容器。
圖20示意性地示出根據一些實施例的圖5之合併式分壓器正向轉換器,具有緩衝電路之額外實施方案,該緩衝電路包括緩衝二極體、緩衝齊納二極體及緩衝電容器。
圖21示意性地示出根據一些實施例的圖6之合併式分壓器正向轉換器,具有緩衝電路之額外實施方案,該緩衝電路包括緩衝二極體、緩衝齊納二極體及緩衝電容器。
圖22示意性地示出根據一些實施例的圖5之合併式分壓器正向轉換器,具有主動緩衝電路之額外實施方案,該主動緩衝電路包括主動緩衝開關及緩衝電容器。
圖23示意性地示出根據一些實施例的圖6之合併式分壓器正向轉換器,具有主動緩衝電路之額外實施方案,該主動緩衝電路包括主動緩衝開關及緩衝電容器。
本申請案主張2018年10月15日申請且發明名稱為「Merged Voltage-Divider Forward Converter」之國際申請案第PCT/IB2018/057988號的優先權,該申請案主張2017年10月27日申請且發明名稱為「Merged Capacitive-Divider
Forward Converter」之美國臨時專利申請案第62/578,192號的優先權,該等申請案全部特此出於所有目的以引用方式併入。
本文中揭示之一些實施例涉及一種合併式分壓器正向轉換器,該合併式分壓器正向轉換器耦接至被分割之輸入電壓源的串聯組合以將輸出電力提供至負載。在一些實施例中,被分割之輸入電壓源的串聯組合包括電容器之串聯組合。輸入電壓源耦接於電容器之串聯組合兩端,且每一電容器用作被分割之輸入電壓源來將總輸入電壓之被分割之電壓位準(即,一部分)提供至該正向轉換器。在其他實施例中,能量源之串聯組合包括電池之串聯組合。每一電池提供被提供至正向轉換器之總輸入電壓的被分割之電壓位準。
藉由變壓器將該正向轉換器之輸入級與該正向轉換器之輸出級電流隔離。如本文中所揭示,該變壓器具有多個一次繞組,且該等一次繞組中之每一者耦接至被分割之輸入電壓源之串聯組合的各別之被分割之電壓源。該等一次繞組中之每一者進一步與各別之一次側開關裝置按串聯組合耦接以控制通過各別之一次繞組的電流。每一串聯組合並聯耦接於各別的被分割之輸入電壓源兩端。歸因於以上實施例中之任一者的較小、被分割之輸入電壓(亦即,電容性分壓器或電池串),可最佳化變壓器之尺寸體積及變壓器之功率效率。變壓器之體積減小可顯著地減小本文中揭示之正向轉換器的體積。藉由減小變壓器磁化電感兩端及正向轉換器之輸出電感器兩端的電壓擺動來達成此類最佳化。
另外,歸因於以上實施例中之任一者的較小、被分割之輸入電壓(亦即,電容性分壓器或電池串),可有利地減小一次側開關裝置之開關電壓。磁性元件兩端之減小之伏秒及減小之開關電壓有利地允許使用相對於習知設計而言大小減小之磁性組件。習知地,基於多位準轉換器之領域中已知的原理,使用大小減小之磁性組件及較低之開關電壓會導致較低之磁性損失及開關損失。更具體而言,可最小化變壓器之體積,藉此允許為一次側開關裝置使用低電壓開關裝
置。通常,此類低電壓開關裝置可為MOSFET、雙極型接面電晶體(BJT)或絕緣閘雙極型電晶體(IGBT)。此外,歸因於相對於BJT及IGBT而言與MOSFET相關聯之較低切換損失、較低導電損失及較低成本,低電壓MOSFET用作一次側開關裝置係所要的。
另外,本文中揭示之正向轉換器有利地減小輸入電流之峰值量值,同時亦降低輸入電流之頻率諧波。此類正向轉換器將輸入功率損失分散在多個一次繞組及一次側開關裝置上。由於峰值輸入電流之量值減小且由於輸入電流之較低頻率諧波消除,可增加本文中描述之(EMI)輸入濾波器的角頻率(參看圖3及圖4)。
另外,可獲得被分割之輸入電壓源兩端的輸入電壓之被動平衡。舉例而言,當相對較小之電壓不平衡條件出現在被分割之輸入電壓源中時,該等一次側開關裝置之一或多個內接二極體可被正向偏壓,因此使電荷能夠自具有最大電壓之電容性裝置/電池重新分配至具有較低電壓之其他電容性裝置/電池。可認為在電荷重新分配期間形成等效電路。該等效電路係LC型,由輸入電容及漏電感組成。此類LC型等效電路可被認為限制峰值電流量值。因此,可獲得最大被動操作輸入電壓平衡。顯著地,最大被動操作輸入電壓不平衡可被示出為小於一次側開關裝置160之內接二極體的正向電壓(通常<1.2伏)。
圖1示出根據一些實施例之正向轉換器100,該正向轉換器被連接以自一般輸入電壓源110接收輸入電壓v 輸入 (t)及將輸出電壓v 輸出 輸出至負載150。一般輸入電壓源110代表AC電壓源或DC電壓源。
正向轉換器100包括具有一定數目(N)個一次繞組之變壓器130,該等一次繞組包括(例如)第一一次繞組132-1、第二一次繞組132-2及第N一次繞組132-N。該等一次繞組可單獨地或共同地與元件符號132相關聯。一次繞組132中之特定者可與元件符號132-k相關聯,其中k係選自包括1至N之整數之
陣列中的整數,其中N為一次繞組132之數目。第一一次繞組132-1具有藉由n p,1表示之匝數;第二一次繞組132-2具有藉由n p,2表示之匝數;且第N一次繞組132-N具有藉由n p,N 表示之匝數。
第一一次繞組132-1電感耦接至變壓器130之二次繞組134。二次繞組134具有藉由n s 表示之匝數。二次繞組134之第一節點連接至第一二極體142(D1)(亦即,第一輸出開關裝置)之陽極,且二次繞組134之第二節點連接到第二二極體144(D2)(亦即,第二輸出開關裝置)之陽極。二極體142、144之陰極彼此連接且連接至輸出電感器146之一個端子(具有藉由L d 表示之值)。雖然使用二極體142、144來實施圖1之特定實施例,但二極體142、144中之每一者可被理解為表示更一般地為開關之裝置,該開關作為單向電壓及單向電流操作。舉例而言,在一些實施例中,二極體142、144中之一者或兩者可改為在主動控制下實施為MOSFET。
輸出電感器146之其他端子連接至輸出電容器148(具有藉由C 輸出 表示之值)之端子且連接至輸出負載150之端子以將輸出電壓v 輸出 提供至輸出負載150。輸出電容器148之其他端子連接至輸出負載150之其他端子且連接至第二二極體144之陽極。
一般輸入電壓源110連接至電容性分壓器120,該電容性分壓器將該一般輸入電壓源110分割成一連串被分割之輸入電壓源,電容性分壓器120之每一電容性裝置係該等被分割之輸入電壓源中之一者。電容性分壓器120具有串聯連接之第一電容性裝置122-1(具有值C 輸入;1)、第二電容性裝置122-2(具有值C 輸入;2)及第N電容性裝置122-N(具有值C 輸入;N )。該等電容性裝置可單獨地或共同地與元件符號122相關聯。該等電容性裝置中之特定者可與元件符號122-k相關聯,其中k係選自包括1至N之整數的陣列中之整數,其中N係一次繞組132之數目及電容性裝置122之數目。電容性裝置122-k具有與之相關聯的各別
電容值C 輸入;k 。在操作中,一般輸入電壓源110用輸入電壓v 輸入 (t)對正向轉換器100供電。電容性分壓器120接收輸入電壓v 輸入 (t)。沿著電容性分壓器120,電容性裝置122中之每一者提供較小、經分割之電壓V 輸入;k 。
正向轉換器100包括N個一次側開關裝置SW 1 160-1至SW N 160-N。圖1示出第一一次側開關裝置SW 1 160-1、第二一次側開關裝置SW 2 160-2及第N一次側開關裝置SW N 160-N。一次側開關裝置160-1至160-N可單獨地或共同地與元件符號160相關聯。一次側開關裝置160中之特定者可與元件符號160-k相關聯,其中k係選自包括1至N之整數之陣列中的整數,其中N為一次繞組132之數目、電容性裝置122之數目及一次側開關裝置160之數目。一次側開關裝置160可有利地以金屬氧化物半導體場效電晶體(MOSFET)之形式提供,該等金氧半場效電晶體可管理相對較小之分壓器電壓V 輸入;k 。
每一一次繞組132-k按串聯組合連接至對應之一次側開關裝置160-k。一次繞組132-k及對應之一次側開關裝置160-k的此等串聯組合中之每一者並聯連接於電容性分壓器120之對應電容性裝置122-k兩端。舉例而言,第一一次繞組132-1與第一一次側開關裝置160-1連接成第一串聯組合,該第一串聯組合並聯連接於第一電容性裝置122-1兩端;第二一次繞組132-2與第二一次側開關裝置160-2連接成第二串聯組合,該第二串聯組合並聯連接於第二電容性裝置122-2兩端,且第N一次繞組132-N與第N一次側開關裝置160-N連接成第N串聯組合,該第N串聯組合並聯連接於第N電容性裝置122-N兩端。
一次側開關裝置160藉由控制器電路170操作性地控制。明確而言,控制器電路170將第一控制信號c 1提供至第一一次側開關裝置160-1,將第二控制信號c 2提供至一次側第二開關裝置160-2,且將第N控制信號c N 提供至第N一次側開關裝置160-N。
當致能一次側開關裝置160-k中之一者(例如,傳導電流)時,對應之一次繞組132-k可藉由示出為具有值L m 之代表性電感器138之磁化電感值L m 表徵,該電感器與第N一次繞組132-N並聯連接。磁化電感值L m 可視致能了一次側開關裝置160中之哪一者而變化。
輸出電壓調節器152接收輸出電壓v 輸出 (t),且調節該輸出電壓以供控制器電路170使用。輸出電壓調節器152可(例如)藉由使用電阻性分壓器(例如,實施傳遞函數,未圖示)與低通一階RC濾波器(未圖示)之組合來調節該輸出電壓。因此,輸出電壓調節器152調節可用於降低輸出電壓且對該輸出電壓進行濾波,之後再藉由控制器電路170接收經調節之輸出電壓。
圖1之正向轉換器100經組態以使用一次側開關裝置160來在電容性分壓器120處接收輸入電壓v 輸入 (t)且連續地且重複地操作,一次繞組132中之每一者經由對應之電容性裝置122使用輸入電壓之一部分V 輸入;k 來產生輸出電壓v 輸出 給正向轉換器100之輸出負載150。請注意,一次側開關裝置160在正向轉換器100之使用期間的操作可按任何順序次序或邏輯次序來執行。
在操作中,控制器電路170可基於從輸出電壓調節器152接收到輸出電容器148兩端之電壓的經調節指示來(經由控制信號c 1,c 2,...,c N )控制一次側開關裝置160。一次側開關裝置160中之每一者可藉由控制器電路170來操作性地控制,以使圖1之正向轉換器100在開啟裝置(亦即,致能)與關閉狀態(亦即,失能)之間連續地且重複地操作。有利地,在正向轉換器100之正常使用期間,一次僅操作一個一次側開關裝置160,藉此使得功率損失能夠分散於所有輸入級組件上。功率損失之此類分散可被認為用於最小化熱點,藉此降低冷卻要求。
正向轉換器100包括與馳豫二極體162(D r )串聯連接之馳豫繞組136。馳豫繞組136具有藉由n r 表示之匝數。雖然馳豫二極體162在所示實施例
中實施為二極體,但馳豫二極體162可被理解為表示更一般地為開關之裝置,該開關作為單向電壓及單向電流操作。舉例來說,在一些實施例中,馳豫二極體162可在主動控制下實施為MOSFET。在圖1中所示之實施例中,馳豫繞組136與馳豫二極體162之串聯組合並聯連接於電容性分壓器120兩端,且因此亦連接於一般輸入電壓源110之端子兩端。因此,一次繞組132與對應之一次側開關裝置160的每一串聯組合未耦接至唯一之馳豫繞組。明確而言,一次繞組132中之一或多者(例如,132-2)未直接連接至馳豫繞組136。另外,一次側開關裝置160中之一或多者未直接連接至馳豫二極體162且因此未經由馳豫二極體162直接耦接至馳豫繞組136。另外,雖然第一一次繞組132-1直接連接至馳豫繞組136,但第一一次側開關裝置160-1未直接連接至馳豫二極體162。而是,第N一次側開關裝置160-N直接連接至馳豫二極體162。
如與正向轉換器一次結構之堆疊(該堆疊要求具有用於該堆疊之每一一次結構的單獨之馳豫繞組及二極體或具有跨過該N個一次繞組中之僅一者的馳豫繞組)相反,將單個馳豫繞組(馳豫繞組136)連接於全輸入電壓源(一般電壓輸入源110)兩端具有多個好處。與多馳豫繞組解決方案相比,圖1中所示之實施例與具有N個馳豫繞組及二極體相比使馳豫所需之組件(例如,二極體及繞組)的數目減少了N-1。第二,圖1中所示之實施例幫助達成電容性分壓器裝置122上之電荷平衡且因此如與前述之其他兩種方法相比達成較高效率。此係由於正向轉換器100之磁化電感能量將對彼等電容性裝置122之串聯組合充電。第三,與習知正向轉換器相比,圖1中所示之實施例使馳豫繞組所需的繞組匝數減少了N分之一,以達成類似之效能及最大之容許占空比(其中對於圖1之實施例,最大占空比係,與對於可用於連接一次側上之一或多個馳豫繞組的正向
轉換器或其他兩種方法為相反)。
在其他實施例中,馳豫繞組136與馳豫二極體162之串聯組合連接至輸出電容器148之端子。舉例而言,圖2示出與圖1之正向轉換器100類似之正向轉換器200,但正向轉換器200經組態以使得馳豫繞組136與馳豫二極體162之串聯組合連接於輸出電容器148之端子兩端。在其他方面,正向轉換器200之態樣與正向轉換器100類似。亦即,正向轉換器200包括一般輸入電壓源110、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。圖2中所示之實施例基於與習知正向轉換器相比為不同之原理來操作。亦即,如與作為產生額外損失之寄生組件相反,變壓器130之磁化電感138有利地用作經由馳豫繞組136將能量傳遞至輸出的裝置。因此,與習知正向轉換器(其中需要具有極高磁化電感之理想變壓器來最小化其磁化電感138之磁化電流且因此最小化磁芯損失以及通過載運磁化電感138電流之組件(即,一次側半導體裝置及一次側變壓器繞組)的電阻損失)相反,變壓器130可有利地被設計成具有小了直至三個數量級的小得多之磁化電感138,因此需要明顯較小之繞組匝數,且藉此減小變壓器體積。此情形係藉由以下事實來實現:能量儲存於磁化電感138中且流經其之電流用於將電力傳遞至輸出而非在馳豫繞組136連接至輸入的方法中在V 輸入 與磁化電感138之間來回發送且最終作為熱來耗散。除了歸因於使用多個一次繞組而導致變壓器大小減小之外,歸因於不同之操作原理而導致變壓器大小減小亦使傳入一次繞組132之輸入電壓減小了N分之一且藉此減小磁芯兩端之伏秒,且對於降壓應用亦減小變壓器分壓比。另外,變壓器130可有利地被設計有與返馳變壓器(返馳變壓器原則上係磁化電感138用於電力傳遞的經耦接之電感器,而非習知正向轉換器所需之真正變壓器)之氣隙類似的氣隙以允許較高之飽和電流。
圖3及圖4示出根據一些實施例的經組態以接收AC電壓之正向轉換器300、400之示例性實施例。正向轉換器300與正向轉換器100類似,且正向轉換器400與正向轉換器200類似。亦即,正向轉換器300、400中之每一者包括具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。如圖3及圖4中所示,當經組態以接收AC電壓時,一般輸入電壓源110可包括AC輸入電壓源190、電磁干擾(EMI)輸入濾波器192及全波二極體整流器194。圖3及圖4之正向轉換器300具有操作性地連接至AC輸入電壓源190的EMI輸入濾波器192以將經濾波之輸入電壓直接地或間接地提供至電容性分壓器120。在圖3及圖4中所示之特定實施例中,EMI輸入濾波器192經由全波二極體整流器194間接地連接至電容性分壓器120。全波二極體整流器194大體上被提供來校正藉由AC輸入電壓源190提供之信號。
在圖3中,馳豫繞組136與馳豫二極體162之串聯組合如圖1中所示連接於正向轉換器300之輸入端子兩端(全波二極體整流器194之端子兩端)。在圖4中,馳豫繞組136與馳豫二極體162之串聯組合如圖2中所示連接於輸出電容器148之端子兩端。
在圖3與圖4中,用更一般之一次側單刀單擲開關裝置來替代一次側MOSFET開關裝置160(圖1及圖2中)。亦即,用第一一次側單刀單擲開關161-1來替代(在圖3及圖4中)第一MOSFET一次側開關裝置160-1(在圖1及圖2中)。另外,用第二一次側單刀單擲開關161-2來替代(在圖3及圖4中)第二一次側MOSFET開關裝置160-2(在圖1及圖2中)。另外,用第N一次側單刀單擲開關161-N來替代(在圖3及圖4中)第N一次側MOSFET開關裝置160-N(在
圖1及圖2中)。此另外說明了對於本文中揭示之每一實施例,一次側開關裝置160可更一般地被描述為可包括FET、MOSFET、BJT、IGBT等之開關。
圖5及圖6示出根據一些實施例的經組態以接收DC電壓輸入之正向轉換器500、600之示例性實施例。正向轉換器500與正向轉換器100類似,且正向轉換器600與正向轉換器200類似。亦即,正向轉換器500、600中之每一者包括具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。如圖5及圖6中所示,當針對DC電壓輸入而組態時,一般輸入電壓源110可實現為DC輸入電壓源180。根據本申請案之態樣,正向轉換器500及正向轉換器600各自連接於DC輸入電壓源180與輸出負載150之間。在圖5中,馳豫繞組136與馳豫二極體162之串聯組合如圖1及圖3中所示連接於正向轉換器500之輸入端子兩端,亦即,連接於DC輸入電壓源180之端子兩端。在圖6中,馳豫繞組136與馳豫二極體162之串聯組合如圖2及圖4中所示連接於輸出電容器148之端子兩端。
圖7及圖8示出根據一些實施例的經組態以接收DC電壓輸入之正向轉換器700、800之額外示例性實施例。正向轉換器700與正向轉換器100類似,且正向轉換器800與正向轉換器200類似。亦即,正向轉換器700、800中之每一者包括具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。如圖7及圖8中所示,當針對DC電壓輸入而組態時,一般輸入電壓源110可實現為輸入電壓源串。在所示之實施例中,該輸入電壓源串實現為電池串410,電池串410中之每一電池提供被分割之輸入電壓。電池串410可藉由串聯組合之N個電池
來實施,該串聯組合包括:第一電池410-1;第二電池410-2;及第N電池410-N。電池串410中之電池中的特定者可與元件符號410-k相關聯,其中k係選自包括1至N之整數的陣列中之整數,其中N係一次繞組132之數目。每一電池410-k提供被分割之輸入電壓V輸入;k 。舉例而言,電池410-1提供電壓V輸入;1、電池410-2提供電壓V輸入;2、且電池410-N提供電壓V輸入;N 。如圖所示,一次繞組132-k與對應之一次側開關裝置160-k的每一串聯組合並聯連接於對應之電池410-k兩端。在圖7中,馳豫繞組136與馳豫二極體162之串聯組合如圖1、圖3及圖5中所示連接於正向轉換器700之輸入端子(現為電池串410之頂部)兩端。在圖8中,馳豫繞組136與馳豫二極體162之串聯組合如圖2、圖4及圖6中所示連接於輸出電容器148之端子兩端。
圖9示出根據一些實施例的回應於藉由控制器電路170產生之控制信號c1至c N 的用於一次側開關裝置160之簡化示例性開關信號及對應之電感器電流波形,其中馳豫繞組136與馳豫二極體162之串聯組合連接於輸出電容器148之端子兩端。波形c包括對應於控制信號c 1 至c N 之聚集的一連串脈衝。亦即,波形c之每一脈衝對應於一或多個控制信號c 1 至c N 之脈衝。圖9之開關波形繪示了針對在輸出電感器146電流i L 係連續且磁化電感138電流i LM 係連續時之情況的操作之連續導電模式(CCM)。亦即,電流i L 及i LM 中之每一者維持大於0之值。
當回應於控制信號c 1之高值而致能第一一次側開關裝置160-1時,第一二極體142被正向偏壓且傳導電流,而第二二極體144及馳豫二極體162被逆向偏壓。在此期間,通過磁化電感138之電流i Lm 緩升至i Lm 峰值904。i Lm 峰值904在本文中被稱作I Lmp 。此外,通過輸出電感器146之電流i L 亦緩升至i L 峰值902。i L 峰值902在本文中被稱作I p 。i L 峰值902說明了其中輸出電感器146以
CCM模式操作之操作模式。此外,可根據+來確定通過第一一次
繞組132-1之電流i 1的i 1峰值906。另外,可根據+來確定通過第
二一次繞組132-2之電流i 2的i 2峰值908,且可根據I Lmp +來確定通過第N一次繞組132-N之電流i N 的i N 峰值910。
當未致能一次側開關裝置160中之任一者時,第一二極體142被逆向偏壓,亦即,第一二極體142處於關閉狀態。此事件對應於圖9之控制信號c 1,c 2,...,c N 的低值。在此種情況中,只要電感器電流i L 仍為正的,則第二二極體144被正向偏壓,亦即,第二二極體144處於開啟狀態。另外,只要磁化電感器電流i Lm 仍為正的,則馳豫二極體162被正向偏壓,亦即,馳豫二極體162亦處於開啟狀態。第二二極體144傳導流經輸出電感器146之電流i L ,而馳豫二極體162傳導流經磁化電感器138之電流i Lm 。在此時間間隔期間,如圖9中所示,通過磁化電感138之電流i Lm 緩降,且輸出電感器146之電流i L 亦緩降。
根據圖1中所示之實施例,在馳豫二極體162處於開啟狀態時,磁化電流i Lm 流回到一般輸入電壓源110。在圖2中所示之實施例中,在馳豫二極體162處於開啟狀態時,磁化電流i Lm 流到輸出負載150。
圖10、圖11及圖12中呈現之開關波形繪示了操作之各種不連續導電模式(DCM)。操作之DCM係其中磁化電流i Lm 或輸出電感器電流i L 中之任一者係不連續的模式之名稱。類似地,可藉由在操作之CCM與操作之DCM之間的邊界處操作兩個磁化電流或輸出電感器電流中之任一者來達成操作之邊界導電模式(BCM)。若在操作之BCM中一次側開關裝置160、161之開啟時間延遲使得在磁化電感138兩端之電壓或輸出電感器146兩端之電壓在各別電流變為零之後達到最小值,則可達成操作之準諧振(QR)模式。
圖10示出根據一些實施例的回應於藉由控制器電路170產生之控制信號c1至c N 的用於一次側開關裝置160/161之簡化示例性開關信號及對應之電感器電流波形,其中馳豫繞組136與馳豫二極體162之串聯組合連接於輸出電容器148之端子兩端。在圖10中,通過磁化電感138之電流i Lm 緩升至藉由元件符號1004表示之i Lm 峰值I Lmp 。此外,通過輸出電感器146之電流i L 亦緩升至藉由元件符號1002表示之i L 峰值I p 。I p 1002表示輸出電感器146之DCM操作模式,其中電流i L 必須在穩態操作期間在每個開關循環時達到零。此外,可以與前文參考圖9中之峰值描述之相同方式來確定通過第一一次繞組132-1之電流i 1的i 1峰值1006、通過第二一次繞組132-2之電流i 2的i 2峰值1008及通過第N繞組132-N之電流i N 的i N 峰值1010。
圖11示出根據一些實施例的回應於藉由控制器電路170產生之控制信號c1至c N 的用於一次側開關裝置160之簡化示例性開關信號及對應之電感器電流波形,其中馳豫繞組136與馳豫二極體162之串聯組合連接於一般輸入電壓源110之實施例兩端或連接於輸出電容器148之端子兩端。在圖11中,通過磁化電感138之電流i Lm 緩升至藉由元件符號1104表示之i Lm 峰值I Lmp 。I Lmp 1104表示磁化電感L m 138之DCM操作模式,其中電流必須在穩態操作期間在每個開關循環時達到零。此外,通過輸出電感器146之電流i L 亦緩升至藉由元件符號1102表示之i L 峰值I p 。此外,可以與前文參考圖9中之峰值描述之相同方式來確定通過第一一次繞組132-1之電流i 1的i 1峰值1106、通過第二一次繞組132-2之電流i 2的i 2峰值1108及通過第N一次繞組132-N之電流i N 的i N 峰值1110。
如圖9至圖11中所示,磁化電感138可按DCM(不連續導電模式)、QR(准諧振模式)、BCM(邊界導電模式)或CCM(連續導電模式)操作。操作模式之選擇取決於i)藉由二次繞組134、二極體142、144及輸出電感器146形成之降壓型電路及ii)藉由馳豫繞組136及馳豫二極體162形成之降壓升壓型電路的
應用、輸入對輸出電壓比、負載電流及輸出電力遞送分割及大小設定之總體設計最佳化。此有利之靈活性與習知正向轉換器操作方式相反,藉以習知正向轉換器之變壓器的磁化電感必須僅以DCM模式操作以避免變壓器之磁芯飽和及最小化導電損失。
在習知正向轉換器中,類似於關於二次側整流器裝置之降壓轉換器來控制轉換器一次側開關裝置,且類似於降壓轉換器藉由占空比來控制習知正向轉換器之輸出電壓DC位準,其中歸因於變壓器匝數比,而具有額外之倍增因數。因此,習知正向轉換器之輸出DC電壓位準藉由以下方程式來確定:v 輸出 =,其中D係在以BCM或CCM模式操作時之占空比。降壓型功率級可按DCM、BCM或CCM模式操作,但占空比具有限制。然而,為了避免變壓器之磁芯飽和,必須藉由設計來保證習知正向轉換器之變壓器的磁化電感僅按DCM模式操作,導致習知正向轉換器之占空比的限制(如正向轉換器之輸出電感器所看到的)小於。亦即,降壓型電路係指經由輸出電感器146執行電力傳遞之電路組件。輸出電感器146可按DCM、BCM或CCM模式操作。降壓升壓型電路係指經由磁化電感L m 138執行電力傳遞之電路。在習知正向轉換器之情況中,磁化電感L m 必須以DCM模式操作(亦即,通過磁化電感L m 之電流在每個循環時必須變為零)。
在本文中揭示之正向轉換器的一些實施例中,操作原理且因此控制機制不同於如下文描述之習知正向轉換器的操作原理及控制機制。亦即,在二次側上具有馳豫繞組的本文中揭示之正向轉換器(例如,正向轉換器200、400、600、800、1600、1900、2100、2300)具有多位準、串聯連接之一次側級,該一次側級藉由一次側開關裝置160/161及一次側繞組132形成。此一次側級藉由將電力遞送至負載之兩個並聯電路共用及同時使用,該等並聯電路係i)藉由二次繞組134、
二極體142、144及輸出電感器146形成之降壓型電路及ii)藉由馳豫繞組136及馳豫二極體162形成之降壓升壓型電路。因此,此類正向轉換器可據稱為具有串聯輸入、並聯輸出拓撲。如先前所闡釋,控制器電路170可經組態以按CCM、BCM或DCM操作並聯輸出中之每一者。藉由馳豫繞組136及馳豫二極體162形成之降壓升壓型電路亦可按QR模式操作以在其開啟轉變時減少一次側開關裝置160/161之開關損失且因此最小化開關損失。如本揭示案中所描述,串聯連接之輸入允許半導體電壓額定值減小、每一一次側裝置之開關頻率減小、熱在多個裝置上之分散及變壓器大小減小。
當降壓型輸出(輸出電感器146電流i L )按BCM或DCM模式操作時,藉由以下方程式來控制和管理輸出電壓DC:,其中D係輸出電感器146所看到之占空比。當磁化電感138按BCM或CCM操作時,藉由以下方程式來控制和管理輸出電壓v 輸出 DC:,其中D係磁化電感138所看到之占空比,且D'係一次側開關裝置關閉時間占空比,等於1-D。因此,藉由對於給定V 輸入 及V 輸出 來設計變壓器繞組比,可將兩個電感器138、146中之任一者或兩者推動到CCM以如圖9至圖11中所示遞送較高負載電流。此選擇取決於變壓器130、輸出電感器146之設計及二極體142、144、162及一次側開關裝置160/161之選擇以在給定負載電流以及輸入及輸出電壓之情況下對於特定應用達成最大效率及最小之體積。操作模式之決定因素係,其中<1導致輸出電感器146(降壓型輸出)在磁化電感138(降壓升壓型輸出)之前被推動到CCM,其中磁化電感138在穩態操作期間按DCM操作,並且對於>1之情況,反之亦然。因此,在n r 、n s 及占空比已知之情況下,控制器電路170選擇操作模式以最大化效率,且為了最佳化動態效能,控制器電路170可在模式切換時在不同之動態模式之間切換。
為了使磁化電感138按DCM操作模式來操作,本文中所描述之實施
例的準則係D<,其中對於習知正向轉換器,D係<。然而,如所闡釋,如與習知正向轉換器相反,本文中揭示之正向轉換器的實施例不需要用於磁化電感138之DCM操作。
圖12示出根據一些實施例的回應於藉由控制器電路170產生之控制信號c1至c N 的用於一次側開關裝置160/161之簡化示例性開關信號及對應之電感器電流波形,其中馳豫繞組136與馳豫二極體162之串聯組合連接於一般輸入電壓源110之實施例兩端或連接於輸出電容器148之端子兩端。在圖12中,通過磁化電感138之電流i Lm 緩升至藉由元件符號1204表示之i Lm 峰值I Lmp 。I Lmp 1204對應於磁化電感L m 138之DCM操作模式,其中電流必須在穩態操作期間在每個開關循環時達到零。此外,通過輸出電感器146之電流i L 亦緩升至藉由元件符號1202表示之i L 峰值I p 。此外,可以與前文參考圖9中之峰值描述之相同方式來確定通過第一一次繞組132-1之電流i 1的i 1峰值1206、通過第二一次繞組132-2之電流i 2的i 2峰值1208及通過第N一次繞組132-N之電流i k 的i k 峰值1210。
圖13示出根據一些實施例的代表圖6之正向轉換器600之使用的示例性模擬結果之圖,其中兩個一次繞組與以下參數一起使用(N=2):V ds =400V;v 輸出 =20V;I 負載 =8A;L m =60μH;L d =33μH;n p;1 =6;n p;2 =6;n s =5;n r =3。圖13之前兩個波形示出了在正向轉換器600根據圖11中所示之波形操作(亦即,(降壓型功率級之)輸出電感器146按CCM模式操作且(降壓升壓型功率級之)磁化電感L m 138按DCM模式操作)時的一次側開關裝置160-1及160-2之控制(閘驅動)信號c 1及c 2。在致能一次側開關裝置160中之一者時,第一二極體142傳導輸出電感器146之電流i L 。當使所有一次側開關裝置160失能時,電流i L 通
過第二二極體144。在圖13中,磁化電感L m 138按DCM模式操作。當致能一次側開關裝置160中之一者時,對磁化電感L m 138充電。當使所有一次側開關裝置160失能時,電流i LM 傳導通過馳豫繞組136及馳豫二極體D r 162,直至磁化電感L m 138被完全排放為止。
圖13之第三波形示出DC輸入電壓源180之電壓V 輸入 及輸入電容器122-1、122-2之電壓V 輸入;1及V 輸入;2。可看到,當使用兩個一次繞組時,兩個輸入電容器122-1、122-2之電壓等於輸入電壓之一半。
圖13之第四波形示出磁化電感138之電流i Lm 。顯著地,如圖13中所繪示,此電流係不連續的。實際上,磁化電感138之電流i Lm 示出為0A之基線1302至1.5A之i Lm 峰值1304。
圖13之第五波形示出輸出電感器146之電流i L 。顯著地,如圖13中所繪示,此電流係連續的。實際上,輸出電感器146之電流i L 示出為6A之基線1306至9A之i L 峰值1308。因此,圖13之模擬波形表示圖11之不連續導電模式,其中僅一個電感器電流係不連續的。圖13之第六及第七波形示出電流i D1 及i D2 ,該等電流表示第一二極體142及第二二極體144之各別電流。圖13之第八波形示出電流i Dr ,該電流表示通過馳豫二極體D r 162之電流。圖13之第九波形示出V輸出。
圖14係根據一些實施例的具有示出一次側開關裝置160之阻斷電壓隨著一次繞組132之數目N而變之示例性曲線的圖。參看圖14,可看到,開關之阻斷電壓隨著N(一次繞組132之數目)增加而減小。基於其中圖5之正向轉換器500用於降壓轉換比之情形用以下參數來計算圖14中所示之圖:V 輸入 =400V;V 輸出 =20V;並且。在圖5中所示之電路中,藉由以下方程式來給出一次側開關裝置160-k之阻斷電壓V ds;k :
在方程式(1)中,V 輸入 係DC輸入電壓源180之電壓,N係一次繞組132之數目,亦即,輸入電容器122之數目,n p;k 表示第k一次繞組132-k之匝數(在本申請案之一個態樣中,對於所有一次繞組,此值係相等的,亦即,n p;1=n p;2=...=n p;N ),n r 表示馳豫繞組136之匝數。
圖15係根據一些實施例的具有示出一次側開關之阻斷電壓隨著一次繞組132之數目N而變之示例性曲線的圖。參看圖15,可看到,開關之阻斷電壓隨著N(一次繞組132之數目)增加而減小。基於其中圖6之正向轉換器600用於降壓轉換比之情形來用以下參數計算圖15中所示之圖:V 輸入 =400V;V 輸入 =20V;並且。在圖6中所示之電路中,藉由以下方程式來給出一次側開關裝置160之阻斷電壓V ds;k :
在方程式(2)中,V 輸出 係輸出電壓之值。
圖16示出根據一些實施例之正向轉換器1600,該正向轉換器與圖2之正向轉換器200類似。亦即,正向轉換器1600包括一般輸入電壓源110、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器1600包括連接於一般輸入電壓源110與電容性分壓器120之間的電流感測電阻器210。電壓放大器電路220經組態以量測電流感測電阻器210兩端之電壓差且將電流之指示提供給控制器電路170。可認為提供給控制器電路170之電流的指示代表通過一次側開關裝置160中之任一者的電流。有利地,儘管使用單個電流感測電阻器210,但可量測通過一次側開關裝置160中之任一者的電流。因此,根據所揭示之方法,不需要每一次側開關
裝置160一個電流感測電阻器。另外,亦經由電流感測電阻器210來檢測與一次側開關裝置160之內接二極體電流相關聯的電流。
控制器電路170可基於自輸出電壓調節器152接收到輸出電容器148兩端之電壓的經調節指示及自電壓放大器電路220接收到經由電流感測電阻器210量測之電流的指示來(經由控制信號c 1,c 2,...,c N )控制一次側開關裝置160/161。
圖17示出根據一些實施例之正向轉換器1700,該正向轉換器與圖1之正向轉換器100類似。亦即,正向轉換器1700包括一般輸入電壓源110、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器1700包括連接於一般輸入電壓源110與電容性分壓器120之間的與圖16之電流感測電阻器類似的電流感測電阻器,其中在此處所示的該電流感測裝置之實施方案具有電流感測電阻器210。電壓放大器電路220經配置以量測電流感測電阻器210兩端之電壓差且將電流之指示提供給控制器電路170。可認為提供給控制器電路170之電流的指示代表通過一次側開關裝置160中之任一者的電流及通過馳豫繞組136之電流。控制器電路170可基於自輸出電壓調節器152接收到輸出電容器148兩端之電壓的經調節指示及自電壓放大器電路220接收到經由電流感測電阻器210量測之電流的指示來(經由控制信號c 1,c 2,...,c N )控制一次側開關裝置160/161。
根據一些實施例,圖18至圖23中所示之正向轉換器包括與對應之一次繞組相關聯的電壓緩衝電路。便利地,該電壓緩衝電路可適於減少對應之一次側開關裝置兩端的電壓過沖且排放變壓器漏電感。
圖18示出根據一些實施例之正向轉換器1800,該正向轉換器與圖5之正向轉換器500類似。亦即,正向轉換器1800包括DC輸入電壓源180、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、二極體142、144、一次側開關裝置160、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器1800包括連接於第N一次繞組132-N兩端之被動緩衝電路。該被動緩衝電路包括與緩衝電容器604(C sn )及緩衝電阻器602(R sn )之並聯組合串聯的緩衝二極體606(D sn )。
圖19示出根據一些實施例之正向轉換器1900,該正向轉換器與圖6之正向轉換器600類似。亦即,正向轉換器1900包括DC輸入電壓源180、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、二極體142、144、一次側開關裝置160、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器1900包括連接於第N一次繞組132-N兩端之被動緩衝電路,自圖18中熟知該被動緩衝電路。
圖20示出根據一些實施例之正向轉換器2000,該正向轉換器與圖5之正向轉換器500類似。亦即,正向轉換器2000包括DC輸入電壓源180、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器2000包括連接於第N一次繞組132-N兩端之被動緩衝電路。該被動緩衝電路包括與緩衝電容器604及緩衝齊納二極體608(DZ sn )之並聯組合串聯的緩衝二極體606。
圖21示出根據一些實施例之正向轉換器2100,該正向轉換器與圖6之正向轉換器600類似。亦即,正向轉換器2100包括DC輸入電壓源180、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器2100包括連接於第N一次繞組132-N兩端之被動緩衝電路,自圖20中熟知該被動緩衝電路。
圖22示出根據一些實施例之正向轉換器2200,該正向轉換器與圖5之正向轉換器500類似。亦即,正向轉換器2200包括一般輸入電壓源180、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器2200包括連接於第N一次繞組132-N兩端之主動緩衝電路。該主動緩衝電路包括緩衝電容器604與主動緩衝開關610之串聯組合。
圖23示出根據一些實施例之正向轉換器2300,該正向轉換器與圖6之正向轉換器600類似。亦即,正向轉換器2100包括DC輸入電壓源180、具有電容性裝置122之電容性分壓器120、具有一次繞組132及二次繞組134之變壓器130、一次側開關裝置160、二極體142、144、輸出電感器146、輸出電容器148、輸出負載150、輸出電壓調節器152、控制器電路170、馳豫繞組136及馳豫二極體162。另外,正向轉換器2300包括連接於第N一次繞組132-N兩端之主動緩衝電路,自圖22中熟知該主動緩衝電路。
本申請案之上述實施方案意欲僅為實例。在不偏離本申請案之範疇的情況下,熟習此項技術者可對特定實施方案實施變更、修改及變化,本申請案之範疇藉由所附申請專利範圍限定。
100:正向轉換器
110:輸入電壓源
120:電容性分壓器
122-1、122-2、122-N:電容性裝置
130:變壓器
132-1、132-2、132-N:一次繞組
134:二次繞組
136:馳豫繞組
138:磁化電感器
142、144、162:二極體
146:輸出電感器
148:輸出電容器
150:輸出負載
152:輸出電壓調節器
160-1、160-2、160-N:一次側開關裝置
170:控制器電路
Claims (17)
- 一種正向轉換器,該正向轉換器包括:一輸入電壓源,該輸入電壓源被分割成複數個被分割之輸入電壓源,該等被分割之輸入電壓源中之每一者提供該輸入電壓源之一總輸入電壓的一部分;一輸出電路,該輸出電路包括一第一輸出電路開關裝置、一第二輸出電路開關裝置、一輸出電感器及一輸出電容器;一變壓器,該變壓器具有耦接至一磁芯之複數個一次繞組、藉由耦接至該磁芯而電感耦接至該複數個一次繞組的一二次繞組及電感耦接至該磁芯之一馳豫繞組,其中該複數個一次繞組中之每一一次繞組與一對應之一次側開關裝置串聯連接,該一次繞組與該對應之一次側開關裝置之一組合與該複數個被分割之輸入電壓源中的一對應之被分割之電壓源並聯,該二次繞組被連接以經由該輸出電路輸出一輸出電壓,且該馳豫繞組連接於該複數個被分割之輸入電壓源或該輸出電容器兩端;一控制器電路,該控制器電路連接至該等一次側開關裝置中之每一者且適於以控制自該輸入電壓源至該輸出電容器之電力流的一方式來控制該等一次側開關裝置中之每一者,該控制係基於接收到該輸出電容器兩端之一輸出電壓的一指示;及一電壓緩衝電路,該電壓緩衝電路由一被動緩衝電路組成,該被動緩衝電路由一二極體、一電容器及一齊納二極體組成;及其中:該電壓緩衝電路並聯連接於該複數個一次繞組中之一者兩端;及該電壓緩衝電路經組態以減少該等一次側開關裝置中之一或多者兩端的一電壓過沖及排放該變壓器之一變壓器漏電感。
- 如請求項1之正向轉換器,該正向轉換器進一步包括: 一電容性分壓器,該電容性分壓器連接至該輸入電壓源且適於經由利用複數個串聯連接之電容性裝置來將該輸入電壓源之該總輸入電壓分割成該複數個被分割之輸入電壓源,該等串聯連接之電容性裝置中之每一者係該複數個被分割之輸入電壓源中的一被分割之輸入電壓源。
- 如請求項2之正向轉換器,其中:該等一次側開關裝置用於在該複數個串聯連接之電容性裝置中平衡該輸入電壓源之該總輸入電壓的各別部分。
- 如請求項2之正向轉換器,該正向轉換器進一步包括:一電流感測裝置,該電流感測裝置連接於該輸入電壓源與該電容性分壓器之間以量測通過該等一次側開關裝置之一電流;其中該控制係進一步基於接收到藉由該電流感測裝置量測之該電流的一指示。
- 如請求項1之正向轉換器,該正向轉換器進一步包括:複數個電池,該複數個電池連接成電池之一串聯連接,電池之該串聯連接係該輸入電壓源,該複數個電池中之每一電池係該複數個被分割之輸入電壓源中的一被分割之輸入電壓源。
- 如請求項1之正向轉換器,其中:該控制器電路經組態以一次僅致能一個一次側開關裝置。
- 如請求項1之正向轉換器,其中:該等一次側開關裝置中之一或多者包括一金屬氧化物半導體場效電晶體。
- 如請求項1之正向轉換器,其中:該等一次側開關裝置中之一或多者包括一雙極型接面電晶體。
- 如請求項1之正向轉換器,其中:該等一次側開關裝置中之一或多者包括一絕緣閘雙極型電晶體。
- 如請求項1之正向轉換器,其中:該輸入電壓源提供交流電力,該正向轉換器進一步包括一二極體整流器及一輸入濾波器。
- 如請求項1之正向轉換器,其中:該輸入電壓源提供直流電力。
- 如請求項1之正向轉換器,其中:該馳豫繞組經由一二極體而連接於該複數個被分割之輸入電壓源兩端。
- 如請求項1之正向轉換器,其中:該控制器電路經組態以連續地且重複地操作連接至該複數個一次繞組的該等一次側開關裝置中之每一者。
- 如請求項1之正向轉換器,其中:該控制器電路經組態以按一連續導電模式來操作該複數個一次繞組中之一一次繞組的一磁化電感。
- 如請求項1之正向轉換器,其中:該控制器電路經組態以按一不連續導電模式來操作該複數個一次繞組中之一一次繞組的一磁化電感。
- 如請求項1之正向轉換器,其中:該控制器電路經組態以按一邊界導電模式來操作該複數個一次繞組中之一一次繞組的一磁化電感。
- 一種正向轉換器,該正向轉換器包括:一輸入電壓源,該輸入電壓源被分割成複數個被分割之輸入電壓源,該等被分割之輸入電壓源中之每一者提供該輸入電壓源之一總輸入電壓的一部分;一輸出電路,該輸出電路包括一第一輸出電路開關裝置、一第二輸出電路開關裝置、一輸出電感器及一輸出電容器; 一變壓器,該變壓器具有耦接至一磁芯之複數個一次繞組、藉由耦接至該磁芯而電感耦接至該複數個一次繞組的一二次繞組及電感耦接至該磁芯之一馳豫繞組,其中該複數個一次繞組中之每一一次繞組與一對應之一次側開關裝置串聯連接,該一次繞組與該對應之一次側開關裝置之一組合與該複數個被分割之輸入電壓源中的一對應之被分割之電壓源並聯,該二次繞組被連接以經由該輸出電路輸出一輸出電壓,且由該馳豫繞組及一二極體所組成之一串聯組合係連接於該輸出電容器兩端;且一控制器電路,該控制器電路連接至該等一次側開關裝置中之每一者且適於以控制自該輸入電壓源至該輸出電容器之電力流的一方式來控制該等一次側開關裝置中之每一者,該控制係基於接收到該輸出電容器兩端之一輸出電壓的一指示。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762578192P | 2017-10-27 | 2017-10-27 | |
US62/578,192 | 2017-10-27 | ||
PCT/IB2018/057988 WO2019082018A1 (en) | 2017-10-27 | 2018-10-15 | DIRECT TRANSFER CONVERTER WITH FUSED VOLTAGE DIVIDER |
WOPCT/IB2018/057988 | 2018-10-15 | ||
??PCT/IB2018/057988 | 2018-10-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201924203A TW201924203A (zh) | 2019-06-16 |
TWI801442B true TWI801442B (zh) | 2023-05-11 |
Family
ID=66246250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107137420A TWI801442B (zh) | 2017-10-27 | 2018-10-23 | 合併式分壓器正向轉換器 |
Country Status (3)
Country | Link |
---|---|
US (2) | US11329567B2 (zh) |
TW (1) | TWI801442B (zh) |
WO (1) | WO2019082018A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11228246B1 (en) | 2018-03-09 | 2022-01-18 | Vicor Corporation | Three-phase AC to DC isolated power conversion with power factor correction |
CN108900083B (zh) * | 2018-06-05 | 2020-09-18 | 华为技术有限公司 | 功率转换器及相关系统 |
JP6930669B2 (ja) * | 2018-11-01 | 2021-09-01 | 株式会社村田製作所 | スイッチングコンバータ |
TWI714355B (zh) | 2019-11-18 | 2020-12-21 | 捷拓科技股份有限公司 | 單階雙切式寬輸入範圍電源轉換電路 |
US11876445B2 (en) * | 2020-10-05 | 2024-01-16 | Infineon Technologies Austria Ag | Trans-inductance multi-phase power converters and control |
CN112152457B (zh) * | 2020-10-15 | 2021-05-25 | 华源智信半导体(深圳)有限公司 | 开关电源与电子设备 |
TWI748777B (zh) * | 2020-12-02 | 2021-12-01 | 遠東科技大學 | 具升壓及降壓功能之直流電源轉換器 |
EE202100018A (et) * | 2021-06-30 | 2023-02-15 | Tallinna Tehnikaülikool | Jõuelektroonikaseade sisendina kasutatava vahelduvvoolu muundamiseks alalisvooluks |
US20230369969A1 (en) * | 2021-11-19 | 2023-11-16 | Virginia Tech Intellectual Properties, Inc. | Voltage-balancing non-isolated high-step-down-ratio power supply |
CN114726227B (zh) * | 2022-06-08 | 2022-08-30 | 苏州明纬科技有限公司 | 反激式电路和电源 |
CN115179789A (zh) * | 2022-06-21 | 2022-10-14 | 华为数字能源技术有限公司 | 功率转换装置、充电桩、车载充电器和电动汽车 |
CN117353585B (zh) * | 2023-09-27 | 2024-08-20 | 南京酷科电子科技有限公司 | 一种带有变压器的电能转换装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007104881A (ja) * | 2005-10-07 | 2007-04-19 | Sanken Electric Co Ltd | スイッチング電源装置 |
JP2008187817A (ja) * | 2007-01-30 | 2008-08-14 | Fuji Electric Systems Co Ltd | 直流電源装置 |
US20100182810A1 (en) * | 2007-08-22 | 2010-07-22 | Sanken Electric Co., Ltd. | Alternating-current power supply device |
TW201535951A (zh) * | 2014-01-22 | 2015-09-16 | Linear Techn Inc | 順向轉換器中二次側同步整流器之預測及反應控制 |
WO2016101058A1 (en) * | 2014-12-23 | 2016-06-30 | The Governing Council Of The University Of Toronto | Flyback converter |
TW201640796A (zh) * | 2015-03-13 | 2016-11-16 | 亞提克聖德技術股份有限公司 | 具有用於促進電容器間絕能耗電荷傳輸的電感器之直流對直流變壓器 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5812001B2 (ja) * | 1974-11-25 | 1983-03-05 | 株式会社クラレ | スグレタクツゾコヨウバンジヨウザイリヨウノ セイゾウホウ |
GB2152770B (en) * | 1983-11-15 | 1987-04-29 | Yokogawa Hokushin Electric | Dc/dc converter |
US4890210A (en) * | 1988-11-15 | 1989-12-26 | Gilbarco, Inc. | Power supply having combined forward converter and flyback action for high efficiency conversion from low to high voltage |
JPH05161350A (ja) * | 1991-12-04 | 1993-06-25 | Sharp Corp | スイッチング直流電源装置 |
US5621623A (en) * | 1994-01-28 | 1997-04-15 | Fujitsu Limited | DC-DC converter using flyback voltage |
US5646832A (en) * | 1994-06-28 | 1997-07-08 | Harris Corporation | Power factor corrected switching power supply |
US5864473A (en) * | 1996-07-03 | 1999-01-26 | Operating Technical Electronics, Inc. | Dual stage AC to DC switching power supply with high voltage, low current intermediate DC and low voltage, high current regulated DC output |
US6043636A (en) * | 1997-10-20 | 2000-03-28 | Diversified Technologies, Inc. | Voltage transient suppression |
WO2001086794A1 (en) * | 2000-05-10 | 2001-11-15 | Sony Corporation | Resonant switching power supply circuit with voltage doubler output |
US20040022080A1 (en) * | 2000-06-16 | 2004-02-05 | Harald Weinmeier | Switching transformer |
US6760236B2 (en) * | 2002-09-04 | 2004-07-06 | Chih-Hung Hsieh | Third winding reset forward converter |
US7006364B2 (en) * | 2004-03-15 | 2006-02-28 | Delta Electronics, Inc. | Driving circuit for DC/DC converter |
EP2327142A1 (en) | 2008-08-22 | 2011-06-01 | ABB Inc. | Stacked flyback converter with independent current loop control |
KR101315207B1 (ko) * | 2011-04-07 | 2013-10-08 | (주) 이이시스 | 대기전력을 최소화하기 위한 플라이백 방식의 교류-직류 컨버터를 이용한 전원장치 |
US20160277017A1 (en) * | 2011-09-13 | 2016-09-22 | Fsp Technology Inc. | Snubber circuit |
US8941962B2 (en) * | 2011-09-13 | 2015-01-27 | Fsp Technology Inc. | Snubber circuit and method of using bipolar junction transistor in snubber circuit |
US10090772B2 (en) | 2012-03-08 | 2018-10-02 | Massachusetts Institute Of Technology | Resonant power converters using impedance control networks and related techniques |
EP2693620A2 (en) * | 2012-08-03 | 2014-02-05 | Samsung Electro-Mechanics Co., Ltd. | Single stage forward-flyback converter and power supply apparatus |
KR101478778B1 (ko) * | 2013-08-27 | 2015-01-02 | 한국전기연구원 | 고전압 발생 전원장치 |
WO2016011119A1 (en) * | 2014-07-17 | 2016-01-21 | Balanstring Technology, Llc | Balancing series-connected electrical energy units |
EP3295465A4 (en) | 2015-03-13 | 2018-11-07 | Rompower Energy Systems, Inc. | Method and apparatus for obtaining soft switching in all the switching elements through current shaping and intelligent control |
JP6471550B2 (ja) * | 2015-03-17 | 2019-02-20 | サンケン電気株式会社 | スナバ回路 |
US10879805B2 (en) | 2015-09-22 | 2020-12-29 | Infineon Technologies Austria Ag | System and method for a switched-mode power supply having a transformer with a plurality of primary windings |
US11187758B2 (en) | 2016-10-19 | 2021-11-30 | San Diego State University Research Foundation | Methods and circuitry for fault detection and automatic equalizers for battery packs |
CN106787021B (zh) | 2017-03-16 | 2023-11-17 | 山东大学 | 一种基于多绕组变压器的电池组均衡器模块化系统及方法 |
-
2018
- 2018-10-15 WO PCT/IB2018/057988 patent/WO2019082018A1/en active Application Filing
- 2018-10-23 TW TW107137420A patent/TWI801442B/zh active
-
2020
- 2020-04-15 US US16/849,153 patent/US11329567B2/en active Active
-
2022
- 2022-04-04 US US17/657,852 patent/US11979091B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007104881A (ja) * | 2005-10-07 | 2007-04-19 | Sanken Electric Co Ltd | スイッチング電源装置 |
JP2008187817A (ja) * | 2007-01-30 | 2008-08-14 | Fuji Electric Systems Co Ltd | 直流電源装置 |
US20100182810A1 (en) * | 2007-08-22 | 2010-07-22 | Sanken Electric Co., Ltd. | Alternating-current power supply device |
TW201535951A (zh) * | 2014-01-22 | 2015-09-16 | Linear Techn Inc | 順向轉換器中二次側同步整流器之預測及反應控制 |
WO2016101058A1 (en) * | 2014-12-23 | 2016-06-30 | The Governing Council Of The University Of Toronto | Flyback converter |
TW201640796A (zh) * | 2015-03-13 | 2016-11-16 | 亞提克聖德技術股份有限公司 | 具有用於促進電容器間絕能耗電荷傳輸的電感器之直流對直流變壓器 |
Also Published As
Publication number | Publication date |
---|---|
US20200244175A1 (en) | 2020-07-30 |
US11329567B2 (en) | 2022-05-10 |
US20220231610A1 (en) | 2022-07-21 |
TW201924203A (zh) | 2019-06-16 |
US11979091B2 (en) | 2024-05-07 |
WO2019082018A1 (en) | 2019-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI801442B (zh) | 合併式分壓器正向轉換器 | |
EP2884646B1 (en) | Multiple-output DC/DC converter and power supply having the same | |
US6917527B2 (en) | Switching power supply | |
US10686378B2 (en) | High-efficiency regulated buck-boost converter | |
US20180337610A1 (en) | PWM Controlled Resonant Converter | |
US8385089B2 (en) | Multiple-output switching power supply unit | |
US9729068B2 (en) | Switching mode converter | |
EP2670037A1 (en) | Switching power supply device | |
US7149096B2 (en) | Power converter with interleaved topology | |
Araujo et al. | Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier | |
US11606037B2 (en) | Detection circuit and switching converter | |
Do et al. | Two-channel interleaved buck LED driver using current-balancing capacitor | |
US8933675B2 (en) | Two-inductor based AC-DC offline power converter with high efficiency | |
KR20120032318A (ko) | 절연형 벅 부스트 dc?dc 컨버터 | |
Wu et al. | A versatile OCP control scheme for discontinuous conduction mode flyback AC/DC converters | |
JP2016086562A (ja) | 電源回路 | |
Reshma et al. | Design and implementation of an isolated switched-mode power supply for led application | |
JP6393962B2 (ja) | スイッチング電源装置 | |
US11329566B2 (en) | DC power supply circuit that enhances stability of output voltage | |
Hwu et al. | An isolated high step-up converter with continuous input current and LC snubber | |
KR101813778B1 (ko) | 하이브리드 방식 led 전원장치 | |
KR101023576B1 (ko) | 소프트 스위칭 하프브릿지 직류-직류 컨버터 및 이를 이용한 스위칭 전원장치 | |
KR20200097722A (ko) | 절연형 스위칭 전원 공급 장치 | |
JP2019122132A (ja) | 絶縁型スイッチング電源 | |
Zwicker | Generation of multiple isolated bias rails for IGBT inverters using flyback/sepic/cuk combination |