TWI796182B - 芯片及芯片測試方法 - Google Patents
芯片及芯片測試方法 Download PDFInfo
- Publication number
- TWI796182B TWI796182B TW111111346A TW111111346A TWI796182B TW I796182 B TWI796182 B TW I796182B TW 111111346 A TW111111346 A TW 111111346A TW 111111346 A TW111111346 A TW 111111346A TW I796182 B TWI796182 B TW I796182B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- coupled
- circuit
- test
- terminal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31712—Input or output aspects
- G01R31/31715—Testing of input or output circuits; test of circuitry between the I/C pins and the functional core, e.g. testing of input or output driver, receiver, buffer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2884—Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/34—Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3187—Built-in tests
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Tests Of Electronic Circuits (AREA)
- Analogue/Digital Conversion (AREA)
- Ceramic Capacitors (AREA)
Abstract
本發明提供一種芯片及芯片測試方法。芯片包括發送端電路以及測試電路。發送端電路包括信號發送單元以及第一信號凸塊。第一信號凸塊耦接信號發送單元。測試電路耦接信號發送單元以及第一信號凸塊之間的電路節點。測試電路包括第一電阻、單位增益緩衝器以及類比至數位轉換器。第一電阻的第一端耦接電路節點。單位增益緩衝器的第一輸入端耦接第一電阻的第二端。單位增益緩衝器的第二輸入端耦接單位增益緩衝器的輸出端。類比至數位轉換器的輸入端耦接單位增益緩衝器的輸出端。本發明的芯片及芯片測試方法可實現有效的芯片測試功能。
Description
本發明是有關於一種芯片及芯片測試方法,可實現有效的芯片的信號發送端的電氣測試功能。
隨著對於芯片的計算量的需求的提升,對於單芯片系統(System on a Chip,SOC)的帶寬和延遲的要求以及對於序列器/解除序列器(SERializer/DESerializer,SERDES)協議的速度也越來越高。對此,傳統的芯片的發送端必須設計大面積的信號凸塊,來因應在高速芯片的製造過程中的可測試性設計(Design for Testability,DFT)的需求,使其可進行相關的電氣測試。因此,傳統的芯片的發送端電路通常占有大面的信號凸塊而造成電路空間的浪費,並且還會有較高的寄生電容的影響。
本發明是針對一種芯片及芯片測試方法,可實現有效的芯片的信號發送端的電氣測試功能。
本發明的芯片包括發送端電路以及測試電路。發送端電
路包括信號發送單元以及第一信號凸塊。第一信號凸塊耦接信號發送單元。測試電路耦接信號發送單元以及第一信號凸塊之間的電路節點。測試電路包括第一電阻、單位增益緩衝器以及類比至數位轉換器。第一電阻的第一端耦接電路節點。單位增益緩衝器的第一輸入端耦接第一電阻的第二端。單位增益緩衝器的第二輸入端耦接單位增益緩衝器的輸出端。類比至數位轉換器的輸入端耦接單位增益緩衝器的輸出端。
本發明的芯片測試方法適於測試芯片。芯片包括發送端電路以及測試電路。發送端電路包括信號發送單元以及第一信號凸塊。信號發送單元耦接第一信號凸塊。測試電路耦接信號發送單元以及第一信號凸塊之間的電路節點。測試電路包括第一電阻、單位增益緩衝器以及類比至數位轉換器。第一電阻的第一端耦接電路節點。單位增益緩衝器的第一輸入端耦接第一電阻的第二端。單位增益緩衝器的第二輸入端耦接單位增益緩衝器的輸出端。類比至數位轉換器的輸入端耦接單位增益緩衝器的輸出端。芯片測試方法包括以下步驟:當信號發送單元輸出直流準位測試信號時,通過單位增益緩衝器的第一輸入端經由第一電阻的第二端接收第一直流準位測試信號;通過單位增益緩衝器的輸出端輸出第二直流準位測試信號至類比至數位轉換器的輸入端;以及通過類比至數位轉換器的輸出端輸出第一數位測試信號。
基於上述,本發明的芯片及芯片測試方法,可在芯片內的信號發送端設置測試電路,以實現有效的信號發送端的電氣測
試功能。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100、300、500、700、800:芯片
101、701、801:第一直流準位測試信號
102、702、802:第二直流準位測試信號
103、703、803:第一數位測試信號
110、310、510、710、810:發送端電路
111、311、511、711、811:信號發送單元
112、113、312、313、330、512、513、712、713、730、830:信號凸塊
120、320、520、720、820:測試電路
121、321、521、721、821:單位增益緩衝器
122、322、522、527、722、822、827:第一電阻
123、323、523、723、823:電容
124、524、724、824:類比至數位轉換器
301、701’、801’:第一類比測試信號
302、702’、802’:第二類比測試信號
303、703’、803’:第三類比測試信號
325、725、825:緩衝器
501、801”:控制信號
502、802”:第一漏電流信號
503、803”:第二漏電流信號
504、804”:第二數位測試信號
526、826:開關電路
527、827:第二電阻
S210~S230、S410~S430、S610~S630:步驟
N1:電路節點
圖1是本發明的第一實施例的芯片的電路示意圖。
圖2是本發明的第一實施例的芯片測試方法的流程圖。
圖3是本發明的第二實施例的芯片的電路示意圖。
圖4是本發明的第二實施例的芯片測試方法的流程圖。
圖5是本發明的第三實施例的芯片的電路示意圖。
圖6是本發明的第三實施例的芯片測試方法的流程圖。
圖7是本發明的第四實施例的芯片的電路示意圖。
圖8是本發明的第五實施例的芯片的電路示意圖。
現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於附圖中。只要有可能,相同組件符號在圖式和描述中用來表示相同或相似部分。
圖1是本發明的第一實施例的芯片的電路示意圖。參考圖1,芯片100包括發送端電路110以及測試電路120。測試電路120可對發送端電路110進行電氣測試。在本實施例中,發送端電
路110包括信號發送單元111以及信號凸塊(signal bump)112、113。信號發送單元111可包括驅動器(Driver)電路。信號發送單元111耦接信號凸塊112、113。在本發明的一些實施例中,發送端電路110可包括一個或多個信號凸塊,而不限於圖1所示。在本實施例中,測試電路120耦接信號發送單元111以及信號凸塊112、113之間的電路節點N1。測試電路120包括單位增益緩衝器(Unit gain buffer)121(或稱電壓隨耦器)、第一電阻122、電容123以及類比至數位轉換器(Analog to digital converter,ADC)124。第一電阻122的第一端耦接電路節點N1。單位增益緩衝器121的第一輸入端耦接第一電阻122的第二端。單位增益緩衝器121的第二輸入端耦接單位增益緩衝器121的輸出端。類比至數位轉換器124的輸入端耦接單位增益緩衝器121的輸出端。電容123的第一端耦接第一電阻122的第二端。電容123的第二端耦接參考電壓(例如接地端電壓)。
在本實施例中,第一電阻122可為大電阻,例如具有1K歐姆(ohm)。第一電阻122可用於隔離發送端電路110以及測試電路120。電容123可對從發送端電路110的電路節點N1傳輸至測試電路120的信號進行濾波,以濾除噪聲(noise)。在本實施例中,測試電路120可操作在直流準位測試模式,以接收由發送端電路110的信號發送單元111所述輸出的第一直流準位測試信號101,以產生對應的測試信號供芯片100內的相關處理電路或外部信號測試設備來分析之。
圖2是本發明的第一實施例的芯片測試方法的流程圖。參考圖1及圖2,芯片100可執行如以下步驟S210~S230,以實現直流準位測試功能。在步驟S210,當信號發送單元111輸出第一直流準位測試信號101時(決定用於測試的直流準位),單位增益緩衝器121的第一輸入端經由第一電阻122的第二端接收第一直流準位測試信號101。在本實施例中,第一直流準位測試信號101為類比信號。在步驟S220,單位增益緩衝器121的輸出端輸出第二直流準位測試信號102至類比至數位轉換器124的輸入端。對此,軌到軌(rail-to-rail)的單位增益緩衝器121的輸出端可輸出具有低噪聲及良好線性特性的第二直流準位測試信號102。在步驟S230,類比至數位轉換器124的輸出端輸出第一數位測試信號103。在本實施例中,類比至數位轉換器124可將類比的第二直流準位測試信號102轉換為第一數位測試信號103,以使芯片100內的相關處理電路或外部信號測試設備來可分析數位測試信號103,以獲得芯片100的發送端電路110的有關於直流準位測試信號的電氣測試結果。
另外,在本發明的一些實施例中,在直流準位測試模式中,信號發送單元111可用於輸出差分信號。換言之,信號發送單元111可包括第一輸出端以及第二輸出端。信號發送單元111的第一輸出端可經由電路節點N1耦接信號凸塊112、113,並且信號發送單元111的第二輸出端經由另一電路節點耦接至少另一信號凸塊。芯片100還可包括另一測試電路(與測試電路120具有
相同電路配置),並且另一測試電路耦接所述另一電路節點。如此一來,信號發送單元111的第一輸出端以及第二輸出端可輸出差分測試信號,並且可分別經由不同測試電路來分開進行直流準位測試。
圖3是本發明的第二實施例的芯片的電路示意圖。參考圖3,芯片300包括發送端電路310以及測試電路320。測試電路320可對發送端電路310進行電氣測試。在本實施例中,發送端電路310包括信號發送單元311以及信號凸塊312、313。信號發送單元311可包括驅動器電路。信號發送單元311耦接信號凸塊312、313。在本發明的一些實施例中,發送端電路310可包括一個或多個信號凸塊,而不限於圖3所示。在本實施例中,測試電路320耦接信號發送單元311以及信號凸塊312、313之間的電路節點N1。測試電路320包括單位增益緩衝器321、第一電阻322、電容323以及緩衝器325。第一電阻322的第一端耦接電路節點N1。單位增益緩衝器321的第一輸入端耦接第一電阻322的第二端。單位增益緩衝器321的第二輸入端耦接單位增益緩衝器321的輸出端。緩衝器325的輸入端耦接單位增益緩衝器321的輸出端。緩衝器325的輸出端耦接信號凸塊330。信號凸塊330可耦接芯片300的通用輸入輸出(General Purpose Input Output,GPIO)接腳。電容323的第一端耦接第一電阻322的第二端。電容323的第二端耦接參考電壓(例如接地端電壓)。
在本實施例中,發送端電路310以及測試電路320中具
有部分電路組件與圖1相同,因此其部分電路組件的說明可參照上述圖1實施例的說明,而在此不多加贅述。在本實施例中,測試電路320可操作在類比信號測試模式,以接收由發送端電路310的信號發送單元311所述輸出的第一類比測試信號301,並可產生對應的測試信號供芯片300內的相關處理電路或外部信號測試設備來分析之。值得注意的是,本實施例所述的第一類比測試信號301可為一種低速CMOS信號。
圖4是本發明的第二實施例的芯片測試方法的流程圖。參考圖3及圖4,芯片300可執行如以下步驟S410~S430,以實現低速CMOS信號的測試功能。在步驟S410,當信號發送單元311輸出第一類比測試信號301時,單位增益緩衝器321的第一輸入端經由第一電阻322的第二端接收第一類比測試信號301。在步驟S420,單位增益緩衝器322的輸出端輸出第二類比測試信號302至緩衝器325的輸入端。對此,軌到軌的單位增益緩衝器321的輸出端可輸出具有低噪聲及良好線性特性的第二類比測試信號302。在步驟S430,緩衝器325的輸出端輸出第三類比測試信號303至信號凸塊330。在本實施例中,信號凸塊330可耦接外部信號測試設備,以使外部信號測試設備可接收第三類比測試信號303來進行信號分析,以獲得芯片300的發送端電路310的有關於類比信號的電氣測試結果。
另外,在本發明的一些實施例中,在類比信號測試模式中,信號發送單元311可用於輸出差分信號。換言之,信號發送
單元311可包括第一輸出端以及第二輸出端。信號發送單元311的第一輸出端可經由電路節點N1耦接信號凸塊312、313,並且信號發送單元311的第二輸出端經由另一電路節點耦接至少另一信號凸塊。芯片300還可包括另一測試電路(與測試電路320具有相同電路配置),並且另一測試電路耦接所述另一電路節點。如此一來,信號發送單元311的第一輸出端以及第二輸出端可輸出差分測試信號,並且可分別經由不同測試電路來分開進行類比信號測試。
圖5是本發明的第三實施例的芯片的電路示意圖。參考圖5,芯片500包括發送端電路510以及測試電路520。測試電路520可對發送端電路510進行電氣測試。在本實施例中,發送端電路510包括信號發送單元511以及信號凸塊512、513。信號發送單元511可包括驅動器電路。信號發送單元511耦接信號凸塊512、513。在本發明的一些實施例中,發送端電路510可包括一個或多個信號凸塊,而不限於圖5所示。在本實施例中,測試電路520耦接信號發送單元511以及信號凸塊512、513之間的電路節點N1。測試電路520包括單位增益緩衝器521、第一電阻522、電容523、類比至數位轉換器524、開關電路526以及第二電阻527。第一電阻522的第一端耦接電路節點N1。單位增益緩衝器521的第一輸入端耦接第一電阻522的第二端。單位增益緩衝器521的第二輸入端耦接單位增益緩衝器521的輸出端。類比至數位轉換器524的輸入端耦接單位增益緩衝器521的輸出端。電容523
的第一端耦接第一電阻522的第二端。電容523的第二端耦接參考電壓(例如接地端電壓)。開關電路526的第一端耦接第一電阻522的第二端。第二電阻527的第一端耦接開關電路526的第二端。第二電阻527的第二端耦接參考電壓(例如接地端電壓)。在本實施例中,開關電路526為開關電晶體,但本發明並不限於此。
在本實施例中,發送端電路510以及測試電路520中具有部分電路組件與圖1相同,因此其部分電路組件的說明可參照上述圖1實施例的說明,而在此不多加贅述。在本實施例中,測試電路520可操作在漏電流測試模式,以偵測由發送端電路510的所產生的漏電流,並可產生對應的測試信號供芯片500內的相關處理電路或外部信號測試設備來分析之。
圖6是本發明的第三實施例的芯片測試方法的流程圖。參考圖5及圖6,芯片500可執行如以下步驟S610~S630,以實現漏電流測試功能。在步驟S610,當開關電路526的控制端接收控制信號501而導通時,單位增益緩衝器521的第一輸入端經由第一電阻522的第二端接收第一漏電流信號502。控制信號501為電壓信號。並且,值得注意的是,前述的第一漏電流信號502是指從電路節點N1流經開關電路526以及第二電阻527的漏電流在第二電阻527的所產生的跨壓結果。第一漏電流信號502是一個用於表示漏電流大小的電壓數值的信號。在步驟S620,單位增益緩衝器521的輸出端輸出第二漏電流信號503至類比至數位轉換器524的輸入端。對此,軌到軌的單位增益緩衝器521的輸出端可輸
出具有低噪聲及良好線性特性的第二漏電流信號503。在步驟S630,類比至數位轉換器524的輸出端輸出第二數位測試信號504。在本實施例中,類比至數位轉換器524可將類比的第二漏電流信號503轉換為第二數位測試信號504,以使芯片500內的相關處理電路或外部信號測試設備來可分析第二數位測試信號504,以獲得芯片500的發送端電路510的有關於漏電流的電氣測試結果。
值得注意的是,第二數位測試信號504為類比至數位轉換器524輸出的讀數,其可為電壓值。因此,將其電壓值除以第二電阻527的電阻值,則可獲得漏電值。
另外,在本發明的一些實施例中,在漏電流測試模式中,信號發送單元511可用於輸出共模測試信號。換言之,信號發送單元511可包括第一輸出端以及第二輸出端。信號發送單元511的第一輸出端可經由電路節點N1耦接信號凸塊512、513,並且信號發送單元511的第二輸出端經由另一電路節點耦接至少另一信號凸塊。芯片500還可包括另一測試電路(與測試電路520具有相同電路配置),並且另一測試電路耦接所述另一電路節點。如此一來,信號發送單元511的第一輸出端以及第二輸出端可輸出共模測試信號,並且可分別經由不同測試電路來分開進行漏電流測試。
此外,本實施例的芯片500的測試電路520還可執行如上述圖2實施例的步驟S210~S230,以實現直流準位測試功能。本實施例的芯片500可選擇性執行在直流準位測試模式或漏電流
測試模式。對此,關於直流準位測試模式的說明可參照上述圖1及圖2實施例的說明,因此不多加贅述。
圖7是本發明的第四實施例的芯片的電路示意圖。參考圖7,芯片700包括發送端電路710以及測試電路720。測試電路720可對發送端電路710進行電氣測試。在本實施例中,發送端電路710包括信號發送單元711以及信號凸塊712、713。信號發送單元711可包括驅動器電路。信號發送單元711耦接信號凸塊712、713。在本發明的一些實施例中,發送端電路710可包括一個或多個信號凸塊,而不限於圖7所示。在本實施例中,測試電路720耦接信號發送單元711以及信號凸塊712、713之間的電路節點N1。測試電路720包括單位增益緩衝器721、第一電阻722、電容723、類比至數位轉換器724以及緩衝器725。第一電阻722的第一端耦接電路節點N1。單位增益緩衝器721的第一輸入端耦接第一電阻722的第二端。單位增益緩衝器721的第二輸入端耦接單位增益緩衝器721的輸出端。類比至數位轉換器724的輸入端耦接單位增益緩衝器721的輸出端。緩衝器725的輸入端耦接單位增益緩衝器721的輸出端。緩衝器725的輸出端耦接信號凸塊730。信號凸塊730耦接芯片700的通用輸入輸出接腳。電容723的第一端耦接第一電阻722的第二端。電容723的第二端耦接參考電壓(例如接地端電壓)。
在本實施例中,發送端電路710以及測試電路720中具有部分電路組件與圖1及圖3相同,因此其部分電路組件的說明
可參照上述圖1及圖3實施例的說明,而在此不多加贅述。
值得注意的是,本實施例的芯片700的測試電路720可執行如上述圖2實施例的步驟S210~S230,以實現直流準位測試功能,或者可執行如上述圖4實施例的步驟S410~S430,以實現類比信號測試功能。本實施例的芯片700可選擇性執行在直流準位測試模式或類比信號測試模式。
在直流準位測試模式中,當信號發送單元711輸出第一直流準位測試信號701時(決定用於測試的直流準位),單位增益緩衝器721的第一輸入端經由第一電阻722的第二端接收第一直流準位測試信號701。在本實施例中,第一直流準位測試信號701為類比信號。單位增益緩衝器721的輸出端輸出第二直流準位測試信號702至類比至數位轉換器724的輸入端。對此,軌到軌(rail-to-rail)的單位增益緩衝器721的輸出端可輸出具有低噪聲及良好線性特性的第二直流準位測試信號702。類比至數位轉換器724的輸出端輸出第一數位測試信號703。在本實施例中,類比至數位轉換器724可將類比的第二直流準位測試信號702轉換為第一數位測試信號703,以使芯片700內的相關處理電路或外部信號測試設備來可分析數位測試信號703,以獲得芯片700的發送端電路710的有關於直流準位測試信號的電氣測試結果。
在類比信號測試模式中,當信號發送單元711輸出第一類比測試信號701’時,單位增益緩衝器721的第一輸入端經由第一電阻722的第二端接收第一類比測試信號701’。單位增益緩衝
器722的輸出端輸出第二類比測試信號702’至緩衝器725的輸入端。對此,軌到軌的單位增益緩衝器721的輸出端可輸出具有低噪聲及良好線性特性的第二類比測試信號702’。緩衝器725的輸出端輸出第三類比測試信號703’至信號凸塊730。在本實施例中,信號凸塊730可耦接外部信號測試設備,以使外部信號測試設備可接收第三類比測試信號703’來進行信號分析,以獲得芯片700的發送端電路710的有關於類比信號的電氣測試結果。
關於直流準位測試模式的具體實施方式可參照上述圖1及圖2實施例的說明,並且關於類比信號測試模式的具體實施方式可參照上述圖3及圖4實施例的說明,因此不多加贅述。
圖8是本發明的第五實施例的芯片的電路示意圖。參考圖8,芯片800包括發送端電路810以及測試電路820。測試電路820可對發送端電路810進行電氣測試。在本實施例中,發送端電路810包括信號發送單元811以及信號凸塊812、813。信號發送單元811可包括驅動器電路。信號發送單元811耦接信號凸塊812、813。在本發明的一些實施例中,發送端電路810包括一個或多個信號凸塊,而不限於圖8所示。在本實施例中,測試電路820耦接信號發送單元811以及信號凸塊812、813之間的電路節點N1。測試電路820包括單位增益緩衝器821、第一電阻822、電容823、類比至數位轉換器824、緩衝器825、開關電路826以及第二電阻827。第一電阻822的第一端耦接電路節點N1。單位增益緩衝器821的第一輸入端耦接第一電阻822的第二端。單位
增益緩衝器821的第二輸入端耦接單位增益緩衝器821的輸出端。類比至數位轉換器824的輸入端耦接單位增益緩衝器821的輸出端。緩衝器825的輸入端耦接單位增益緩衝器821的輸出端。緩衝器825的輸出端耦接信號凸塊830。信號凸塊830耦接芯片800的通用輸入輸出接腳。電容823的第一端耦接第一電阻822的第二端。電容823的第二端耦接參考電壓(例如接地端電壓)。開關電路826的第一端耦接第一電阻822的第二端。第二電阻827的第一端耦接開關電路826的第二端。第二電阻827的第二端耦接參考電壓(例如接地端電壓)。在本實施例中,開關電路826為開關電晶體,但本發明並不限於此。
在本實施例中,發送端電路810以及測試電路820中具有部分電路組件與圖1、圖3及圖5相同,因此其部分電路組件的說明可參照上述圖1、圖3及圖5實施例的說明,而在此不多加贅述。
值得注意的是,本實施例的芯片800的測試電路820可執行如上述圖2實施例的步驟S210~S230,以實現直流準位測試功能,或者可執行如上述圖4實施例的步驟S410~S430,以實現類比信號測試功能,或者可執行如上述圖6實施例的步驟S610~S630,以實現漏電流測試功能。本實施例的芯片800可選擇性執行在直流準位測試模式、類比信號測試模式或漏電流測試模式。
在直流準位測試模式中,當信號發送單元811輸出第一
直流準位測試信號801時(決定用於測試的直流準位),單位增益緩衝器821的第一輸入端經由第一電阻822的第二端接收第一直流準位測試信號801。在本實施例中,第一直流準位測試信號801為類比信號。單位增益緩衝器821的輸出端輸出第二直流準位測試信號802至類比至數位轉換器724的輸入端。對此,軌到軌(rail-to-rail)的單位增益緩衝器821的輸出端可輸出具有低噪聲及良好線性特性的第二直流準位測試信號802。類比至數位轉換器824的輸出端輸出第一數位測試信號803。在本實施例中,類比至數位轉換器824可將類比的第二直流準位測試信號802轉換為第一數位測試信號803,以使芯片800內的相關處理電路或外部信號測試設備來可分析數位測試信號803,以獲得芯片800的發送端電路810的有關於直流準位測試信號的電氣測試結果。
類比信號測試模式中,當信號發送單元811輸出第一類比測試信號801’時,單位增益緩衝器821的第一輸入端經由第一電阻822的第二端接收第一類比測試信號801'。單位增益緩衝器822的輸出端輸出第二類比測試信號802’至緩衝器825的輸入端。對此,軌到軌的單位增益緩衝器821的輸出端可輸出具有低噪聲及良好線性特性的第二類比測試信號802’。緩衝器725的輸出端輸出第三類比測試信號803’至信號凸塊830。在本實施例中,信號凸塊830可耦接外部信號測試設備,以使外部信號測試設備可接收第三類比測試信號803’來進行信號分析,以獲得芯片800的發送端電路810的有關於類比信號的電氣測試結果。
漏電流測試模式中,當開關電路826的控制端接收控制信號801”而導通時,單位增益緩衝器821的第一輸入端經由第一電阻822的第二端接收第一漏電流信號802”。並且,值得注意的是,前述的第一漏電流信號802”是指從電路節點N1流經開關電路826以及第二電阻827的漏電流在第二電阻827的所產生的跨壓結果。單位增益緩衝器821的輸出端輸出第二漏電流信號803”至類比至數位轉換器824的輸入端。對此,軌到軌的單位增益緩衝器821的輸出端可輸出具有低噪聲及良好線性特性的第二漏電流信號803”。類比至數位轉換器824的輸出端輸出第二數位測試信號804”。在本實施例中,類比至數位轉換器824可將類比的第二漏電流信號803”轉換為第二數位測試信號804”,以使芯片800內的相關處理電路或外部信號測試設備來可分析第二數位測試信號804”,以獲得芯片800的發送端電路810的有關於漏電流的電氣測試結果。
關於直流準位測試模式的具體實施方式可參照上述圖1及圖2實施例的說明,並且關於類比信號測試模式的具體實施方式可參照上述圖3及圖4實施例的說明,並且關於漏電流測試模式的具體實施方式可參照上述圖5及圖6實施例的說明,因此不多加贅述。
綜上所述,本發明的芯片及芯片測試方法,可透過在芯片內的信號發送端設置有測試電路,以使芯片在的製造過程中的可測試性設計過程中可通過測試電路進行相關的電氣測試,而無
須使用外部測試設備的探針對芯片的發送端電路的信號凸塊進行接觸與測試。因此,本發明的芯片及芯片測試方法可有效降低芯片的信號發送端的信號凸塊的設置面積需求,可降低寄生電容的影響,並且還可提升芯片的信號傳輸速度。
最後應說明的是:以上各實施例僅用以說明本發明的技術方案,而非對其限制;儘管參照前述各實施例對本發明進行了詳細的說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的技術方案進行修改,或者對其中部分或者全部技術特徵進行等同替換;而這些修改或者替換,並不使相應技術方案的本質脫離本發明各實施例技術方案的範圍。
100:芯片
101:第一直流準位測試信號
102:第二直流準位測試信號
103:第一數位測試信號
110:發送端電路
111:信號發送單元
112、113:信號凸塊
120:測試電路
121:單位增益緩衝器
122:第一電阻
123:電容
124:類比至數位轉換器
Claims (20)
- 一種芯片,包括:一發送端電路,包括:一信號發送單元;以及一第一信號凸塊,耦接所述信號發送單元;以及一測試電路,耦接所述信號發送單元以及所述第一信號凸塊之間的一電路節點,並且所述測試電路包括:一第一電阻,其中所述第一電阻的一第一端耦接所述電路節點;一單位增益緩衝器,其中所述單位增益緩衝器的一第一輸入端耦接所述第一電阻的一第二端,所述單位增益緩衝器的一第二輸入端耦接所述單位增益緩衝器的一輸出端;以及一類比至數位轉換器,其中所述類比至數位轉換器的輸入端耦接所述單位增益緩衝器的所述輸出端。
- 如請求項1所述的芯片,其中當所述信號發送單元輸出一第一直流準位測試信號時,所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收所述第一直流準位測試信號,其中所述單位增益緩衝器的所述輸出端輸出一第二直流準位測試信號至所述類比至數位轉換器的所述輸入端,以使所述類比至數位轉換器的一輸出端輸出一第一數位測試信號。
- 如請求項1所述的芯片,其中所述測試電路還包括: 一緩衝器,其中所述緩衝器的輸入端耦接所述單位增益緩衝器的所述輸出端,並且所述緩衝器的輸出端耦接一第二信號凸塊。
- 如請求項3所述的芯片,其中當所述信號發送單元輸出一第一類比測試信號時,所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收所述第一類比測試信號,其中所述單位增益緩衝器的所述輸出端輸出一第二類比測試信號至所述緩衝器的所述輸入端,以使所述緩衝器的所述輸出端輸出一第三類比測試信號至所述第二信號凸塊。
- 如請求項3所述的芯片,其中所述第二信號凸塊耦接所述芯片的一通用輸入輸出接腳。
- 如請求項3所述的芯片,其中所述測試電路還包括:一開關電路,其中所述開關電路的第一端耦接所述第一電阻的所述第二端;以及一第二電阻,其中所述第二電阻的一第一端耦接所述開關電路的一第二端,並且所述第二電阻的一第二端耦接一第一參考電壓。
- 如請求項6所述的芯片,其中當所述開關電路的一控制端接收一控制信號而導通時,所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收一第一漏電流信號,其中所述單位增益緩衝器的所述輸出端輸出一第二漏電流信號至所述類比至數位轉換器的所述輸入端,以使所述類比至數位轉換器的一輸出端輸出一第二數位測試信號。
- 如請求項6所述的芯片,其中所述開關電路為一開關電晶體。
- 如請求項1所述的芯片,其中所述測試電路還包括:一開關電路,其中所述開關電路的一第一端耦接所述第一電阻的所述第二端;以及一第二電阻,其中所述第二電阻的一第一端耦接所述開關電路的一第二端,並且所述第二電阻的一第二端耦接一第一參考電壓。
- 如請求項9所述的芯片,其中當所述開關電路的一控制端接收一控制信號而導通時,所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收一第一漏電流信號,其中所述單位增益緩衝器的所述輸出端輸出一第二漏電流信號至所述類比至數位轉換器的所述輸入端,以使所述類比至數位轉換器的一輸出端輸出一第二數位測試信號。
- 如請求項10所述的芯片,其中所述開關電路為一開關電晶體。
- 如請求項1所述的芯片,其中所述測試電路還包括:一電容,其中所述電容的一第一端耦接所述第一電阻的所述第二端,並且所述電容的第二端耦接一第二參考電壓。
- 如請求項1所述的芯片,其中所述信號發送單元的一第一輸出端經由所述電路節點耦接所述第一信號凸塊,並且所述信號發送單元的一第二輸出端經由另一電路節點耦接另一第一信號凸塊,其中所述芯片還包括另一測試電路,並且所述另一測試電路耦接所述另一電路節點。
- 如請求項13所述的芯片,其中當所述測試電路以及所述另一測試電路分別進行一測試操作時,所述信號發送單元通過所述第一輸出端以及所述第二輸出端輸出一差分測試信號或一共模測試信號。
- 如請求項1所述的芯片,其中所述第一信號凸塊的數量為一個或多個。
- 一種芯片測試方法,其中所述芯片包括一發送端電路以及一測試電路,所述發送端電路包括一信號發送單元以及一第一信號凸塊,所述信號發送單元耦接所述第一信號凸塊,所述測試電路耦接所述信號發送單元以及所述第一信號凸塊之間的一電路節點,所述測試電路包括一第一電阻、一單位增益緩衝器以及一類比至數位轉換器,所述第一電阻的第一端耦接所述電路節點,所述單位增益緩衝器的一第一輸入端耦接所述第一電阻的一第二端,所述單位增益緩衝器的一第二輸入端耦接所述單位增益緩衝器的一輸出端,所述類比至數位轉換器的一輸入端耦接所述單位增益緩衝器的所述輸出端,所述芯片測試方法包括: 當所述信號發送單元輸出一第一直流準位測試信號時,通過所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收所述第一直流準位測試信號;通過所述單位增益緩衝器的所述輸出端輸出一第二直流準位測試信號至所述類比至數位轉換器的所述輸入端;以及通過所述類比至數位轉換器的輸出端輸出一第一數位測試信號。
- 如請求項16所述的芯片測試方法,其中所述測試電路還包括一緩衝器,所述緩衝器的一輸入端耦接所述單位增益緩衝器的所述輸出端,並且所述緩衝器的一輸出端耦接一第二信號凸塊,所述芯片測試方法還包括:當所述信號發送單元輸出一第一類比測試信號時,通過所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收所述第一類比測試信號;通過所述單位增益緩衝器的所述輸出端輸出一第二類比測試信號至所述緩衝器的所述輸入端;以及通過所述緩衝器的所述輸出端輸出一第三類比測試信號至所述第二信號凸塊。
- 如請求項17所述的芯片測試方法,其中所述測試電路還包括一開關電路以及一第二電阻,所述開關電路的一第一端耦接所述第一電阻的所述第二端,所述第二電阻的一第一端耦 接所述開關電路的一第二端,所述第二電阻的一第二端耦接一第一參考電壓,所述芯片測試方法還包括:當所述開關電路的控制端接收一控制信號而導通時,通過所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收一第一漏電流信號;通過所述單位增益緩衝器的所述輸出端輸出一第二漏電流信號至所述類比至數位轉換器的所述輸入端;以及通過所述類比至數位轉換器的一輸出端輸出一第二數位測試信號。
- 如請求項16所述的芯片測試方法,其中所述測試電路還包括一開關電路以及一第二電阻,所述開關電路的一第一端耦接所述第一電阻的所述第二端,所述第二電阻的一第一端耦接所述開關電路的一第二端,所述第二電阻的一第二端耦接一第一參考電壓,所述芯片測試方法還包括:當所述開關電路的一控制端接收一控制信號而導通時,通過所述單位增益緩衝器的所述第一輸入端經由所述第一電阻的所述第二端接收一第一漏電流信號;通過所述單位增益緩衝器的所述輸出端輸出一第二漏電流信號至所述類比至數位轉換器的所述輸入端;以及通過所述類比至數位轉換器的一輸出端輸出一第二數位測試信號。
- 如請求項16所述的芯片測試方法,其中所述信號發送單元的一第一輸出端經由所述電路節點耦接所述第一信號凸塊,並且所述信號發送單元的一第二輸出端經由另一電路節點耦接另一第一信號凸塊,所述芯片還包括另一測試電路,並且所述另一測試電路耦接所述另一電路節點,所述芯片測試方法包括:當所述測試電路以及所述另一測試電路分別進行一測試操作時,通過所述信號發送單元通過所述第一輸出端以及所述第二輸出端輸出一差分測試信號或一共模測試信號。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111461009.9A CN113884862B (zh) | 2021-12-03 | 2021-12-03 | 芯片及芯片测试方法 |
CN202111461009.9 | 2021-12-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI796182B true TWI796182B (zh) | 2023-03-11 |
TW202323840A TW202323840A (zh) | 2023-06-16 |
Family
ID=79016307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111111346A TWI796182B (zh) | 2021-12-03 | 2022-03-25 | 芯片及芯片測試方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11835595B2 (zh) |
CN (1) | CN113884862B (zh) |
TW (1) | TWI796182B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW380207B (en) * | 1997-12-12 | 2000-01-21 | Advantest Corp | Voltage applied current measuring circuit for IC tester |
CN101471142A (zh) * | 2007-12-27 | 2009-07-01 | 恩益禧电子股份有限公司 | 半导体集成电路器件及其测试方法 |
CN105790765A (zh) * | 2015-01-14 | 2016-07-20 | 联发科技股份有限公司 | 差分模数转换器及用于将模拟信号转换为数字信号的方法 |
TW201802795A (zh) * | 2016-03-09 | 2018-01-16 | 半導體能源硏究所股份有限公司 | 半導體裝置、顯示裝置及電子裝置 |
US20200233039A1 (en) * | 2019-01-22 | 2020-07-23 | Knowles Electronics, Llc | Leakage current detection from bias voltage supply of microphone assembly |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2845205B2 (ja) * | 1996-08-09 | 1999-01-13 | 日本電気株式会社 | フォトマスク検査装置 |
US6313658B1 (en) * | 1998-05-22 | 2001-11-06 | Micron Technology, Inc. | Device and method for isolating a short-circuited integrated circuit (IC) from other IC's on a semiconductor wafer |
US7228479B2 (en) * | 2004-09-01 | 2007-06-05 | Syntest Technologies, Inc. | IEEE Std. 1149.4 compatible analog BIST methodology |
JP2010118408A (ja) * | 2008-11-11 | 2010-05-27 | Nec Electronics Corp | 半導体装置、半導体装置の試験方法 |
US8686736B2 (en) * | 2010-11-23 | 2014-04-01 | Infineon Technologies Ag | System and method for testing a radio frequency integrated circuit |
-
2021
- 2021-12-03 CN CN202111461009.9A patent/CN113884862B/zh active Active
-
2022
- 2022-03-25 TW TW111111346A patent/TWI796182B/zh active
- 2022-08-11 US US17/885,549 patent/US11835595B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW380207B (en) * | 1997-12-12 | 2000-01-21 | Advantest Corp | Voltage applied current measuring circuit for IC tester |
CN101471142A (zh) * | 2007-12-27 | 2009-07-01 | 恩益禧电子股份有限公司 | 半导体集成电路器件及其测试方法 |
CN105790765A (zh) * | 2015-01-14 | 2016-07-20 | 联发科技股份有限公司 | 差分模数转换器及用于将模拟信号转换为数字信号的方法 |
TW201802795A (zh) * | 2016-03-09 | 2018-01-16 | 半導體能源硏究所股份有限公司 | 半導體裝置、顯示裝置及電子裝置 |
US20200233039A1 (en) * | 2019-01-22 | 2020-07-23 | Knowles Electronics, Llc | Leakage current detection from bias voltage supply of microphone assembly |
Also Published As
Publication number | Publication date |
---|---|
TW202323840A (zh) | 2023-06-16 |
CN113884862B (zh) | 2022-02-22 |
CN113884862A (zh) | 2022-01-04 |
US11835595B2 (en) | 2023-12-05 |
US20230176141A1 (en) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190178934A1 (en) | Pin Connection Testing System For Connector, And Method Thereof | |
US20100327904A1 (en) | Semiconductor integrated circuit | |
JP2006250586A (ja) | 半導体集積回路、およびその試験方法 | |
JP4848004B2 (ja) | 双方向データ伝送を行う通信回路 | |
TWI796182B (zh) | 芯片及芯片測試方法 | |
CN111999565A (zh) | 一种电容测量电路 | |
JP3871676B2 (ja) | Lsi検査方法および装置、並びにlsiテスタ | |
TWI792960B (zh) | 晶片及晶片測試方法 | |
CN116055654B (zh) | Mipi d_phy信号解析电路及方法、电子设备 | |
US8855176B1 (en) | Serializer/deserializer apparatus with loopback configuration and methods thereof | |
TWI492209B (zh) | 驅動電路 | |
TWI780004B (zh) | 訊號偵測電路以及訊號偵測方法 | |
WO2022206733A1 (zh) | 信号传输网络、芯片及信号处理装置 | |
CN116699357A (zh) | 信号检测电路以及信号检测方法 | |
US8576099B2 (en) | Digital-to-analog converter (DAC) with common mode tracking and analog-to-digital converter (ADC) functionality to measure DAC common mode voltage | |
TWI467199B (zh) | 測試裝置 | |
US7952359B2 (en) | Test apparatus having bidirectional differential interface | |
CN215866982U (zh) | 一种d类功放输出开短路检测电路 | |
TW202117319A (zh) | 能夠於直流耦合模式下執行複數種測試的測試系統、傳送器與接收器 | |
KR20240036227A (ko) | 송수신 회로 및 그를 포함하는 테스트 장치 | |
US11606113B2 (en) | Transceiver performing internal loopback test and operation method thereof | |
US11340295B2 (en) | Partitioned force-sense system for test equipment | |
JP3830914B2 (ja) | A/d変換器用の繰り返し性のセルを含むモノリシックチップの集積回路 | |
TW201928369A (zh) | 差分時脈信號的測試系統及其方法 | |
WO2019194066A1 (ja) | 受信デバイス、伝送システム、自動車 |