TWI791141B - 磁性裝置 - Google Patents

磁性裝置 Download PDF

Info

Publication number
TWI791141B
TWI791141B TW109106677A TW109106677A TWI791141B TW I791141 B TWI791141 B TW I791141B TW 109106677 A TW109106677 A TW 109106677A TW 109106677 A TW109106677 A TW 109106677A TW I791141 B TWI791141 B TW I791141B
Authority
TW
Taiwan
Prior art keywords
magnetic
ferromagnetic
ferromagnetic body
nonmagnetic
boron
Prior art date
Application number
TW109106677A
Other languages
English (en)
Other versions
TW202111874A (zh
Inventor
及川忠昭
李永珉
吉野健一
北川英二
澤田和也
磯田大河
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202111874A publication Critical patent/TW202111874A/zh
Application granted granted Critical
Publication of TWI791141B publication Critical patent/TWI791141B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

實施形態提供一種維持保留特性並減小飽和磁化及膜厚之積之磁性裝置。  實施形態之磁性裝置具備磁阻效應元件。上述磁阻效應元件包含第1強磁性體、第2強磁性體、上述第1強磁性體與上述第2強磁性體之間之第1非磁性體、以及與上述第1非磁性體之間夾著上述第1強磁性體之第2非磁性體。上述第1非磁性體及上述第2非磁性體含有氧化鎂(MgO)。上述第1強磁性體與上述第2非磁性體之界面較上述第1強磁性體與上述第1非磁性體之界面含有更多之硼(B)。

Description

磁性裝置
實施形態係關於一種磁性裝置。
已知有一種具有磁性元件之磁性裝置。
本發明欲解決之問題在於提供一種維持保留(retention)特性且減小飽和磁化及膜厚之積之磁性裝置。
實施形態之磁性裝置具備磁阻效應元件。上述磁阻效應元件包含第1強磁性體、第2強磁性體、上述第1強磁性體與上述第2強磁性體之間之第1非磁性體、以及與上述第1非磁性體之間夾著上述第1強磁性體之第2非磁性體。上述第1非磁性體及上述第2非磁性體含有氧化鎂(MgO)。上述第1強磁性體與上述第1非磁性體之界面較上述第1強磁性體與上述第2非磁性體之界面含有更多之硼(B)。
1:磁性記憶裝置
10,10A:記憶胞陣列
11:列選擇電路
12:行選擇電路
13:解碼電路
14:寫入電路
15:讀出電路
16:電壓產生電路
17:輸入輸出電路
18:控制電路
20,40:半導體基板
21,24,27,43,48,50:導電體
22,23,25,26:元件
31,32,34,36:非磁性體
33,35,37:強磁性體
33-1:強磁性體
33-1A:強磁性體
33-1B:強磁性體
33-2:強磁性體
33-2A:強磁性體
33-2B:強磁性體
33-3:強磁性體
33-3A:強磁性體
41:選擇晶體管
42:磁阻效應元件
44:擴散區域
45:絕緣體
46,47,49:接觸插塞
51:層間絕緣膜
I1:強度
I2:強度
L1:強度分佈
P:拐點
圖1係用以說明第1實施形態之磁性記憶裝置之構成之方塊圖。
圖2係用以說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之電路圖。
圖3係用以說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖。
圖4係用以說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖。
圖5係用以說明第1實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。
圖6係用以說明第1實施形態之磁性記憶裝置之記憶層中之硼之分佈之簡圖。
圖7係用以說明第1實施形態之磁性記憶裝置中之磁阻效應元件之製造方法之模式圖。
圖8係用以說明第1實施形態之磁性記憶裝置中之磁阻效應元件之製造方法之模式圖。
圖9係用以說明第1實施形態之效果之模式圖。
圖10係用以說明第1變化例之磁性記憶裝置中之磁阻效應元件之製造方法之模式圖。
圖11係用以說明第2變化例之磁性記憶裝置中之磁阻效應元件之製造方法之模式圖。
圖12係用以說明第3變化例之磁性記憶裝置之記憶胞陣列之構成之模式圖。
圖13係用以說明第3變化例之磁性記憶裝置之記憶胞之構成之剖視圖。
以下,參照圖式對實施形態進行說明。再者,於以下之說明中,對於具有相同功能及構成之構成要素,標註共通之參照符號。又,於將具有共通之參照符號之複數個構成要素加以區分之情形時,對該共通 之參照符號標註附標來加以區分。再者,於無需特別區分複數個構成要素之情形時,僅對該等複數個構成要素標註共通之參照符號,而不標註附標。此處,附標並不限定於下標或上標,例如,包含添加於參照符號末尾之小寫字母、及意指排列之索引等。
1.第1實施形態
對第1實施形態之磁性裝置進行說明。第1實施形態之磁性裝置例如包含垂直磁化方式之磁性記憶裝置,上述磁性記憶裝置將利用磁隧道結(MTJ:Magnetic Tunnel Junction)而具有磁阻效應(Magnetoresistive effect)之元件(亦稱為MTJ元件、或magnetoresistive effect element)用作阻變元件。
於以下之說明中,作為磁性裝置之一例,對上述磁性記憶裝置進行說明。
1.1構成
首先,對第1實施形態之磁性記憶裝置之構成進行說明。
1.1.1磁性記憶裝置之構成
圖1係表示第1實施形態之磁性記憶裝置之構成之方塊圖。如圖1所示,磁性記憶裝置1具備記憶胞陣列10、列選擇電路11、行選擇電路12、解碼電路13、寫入電路14、讀出電路15、電壓產生電路16、輸入輸出電路17、及控制電路18。
記憶胞陣列10具備分別與列(row)、及行(column)之組建立對應之複數個記憶胞MC。具體而言,處於同一列之記憶胞MC連接於同一字元線WL,處於同一行之記憶胞MC連接於同一位元線BL。
列選擇電路11經由字元線WL與記憶胞陣列10連接。對列 選擇電路11供給來自解碼電路13之地址ADD之解碼結果(列地址)。列選擇電路11將與基於地址ADD之解碼結果之列對應之字元線WL設定為選擇狀態。以下,設定為選擇狀態之字元線WL稱為選擇字元線WL。又,除選擇字元線WL以外之字元線WL稱為非選擇字元線WL。
行選擇電路12經由位元線BL與記憶胞陣列10連接。對行選擇電路12供給來自解碼電路13之地址ADD之解碼結果(行地址)。行選擇電路12將基於地址ADD之解碼結果之行設定為選擇狀態。以下,設定為選擇狀態之位元線BL稱為選擇位元線BL。又,除選擇位元線BL以外之位元線BL稱為非選擇位元線BL。
解碼電路13將來自輸入輸出電路17之地址ADD解碼。解碼電路13將地址ADD之解碼結果供給至列選擇電路11、及行選擇電路12。地址ADD包含所選擇之行地址、及列地址。
寫入電路14進行資料向記憶胞MC之寫入。寫入電路14例如包含寫入驅動器(未圖示)。
讀出電路15進行資料自記憶胞MC之讀出。讀出電路15例如包含感測放大器(未圖示)。
電壓產生電路16使用自磁性記憶裝置1之外部(未圖示)提供之電源電壓,產生記憶胞陣列10之各種動作用電壓。例如,電壓產生電路16產生寫入動作時所需之各種電壓,並輸出至寫入電路14。又,例如,電壓產生電路16產生讀出動作時所需之各種電壓,並輸出至讀出電路15。
輸入輸出電路17將來自磁性記憶裝置1之外部之地址ADD傳輸至解碼電路13。輸入輸出電路17將來自磁性記憶裝置1之外部之指令 CMD傳輸至控制電路18。輸入輸出電路17於磁性記憶裝置1之外部與控制電路18之間收發各種控制信號CNT。輸入輸出電路17將來自磁性記憶裝置1之外部之資料DAT傳輸至寫入電路14,並將自讀出電路15傳輸之資料DAT輸出至磁性記憶裝置1之外部。
控制電路18基於控制信號CNT及指令CMD,對磁性記憶裝置1內之列選擇電路11、行選擇電路12、解碼電路13、寫入電路14、讀出電路15、電壓產生電路16、及輸入輸出電路17之動作進行控制。
1.1.2記憶胞陣列之構成
接下來,使用圖2對第1實施形態之磁性記憶裝置之記憶胞陣列之構成進行說明。圖2係表示第1實施形態之磁性記憶裝置之記憶胞陣列之構成之電路圖。於圖2中,字元線WL由包含2個小寫字母(“u”及“d”)與索引(“< >”)之附標分類表示。
如圖2所示,記憶胞MC(MCu及MCd)於記憶胞陣列10內配置為矩陣狀,且與複數條位元線BL(BL<0>、BL<1>、…、BL<N>))中之1條與複數條字元線WLd(WLd<0>、WLd<1>、…、WLd<M>)及WLu(WLu<0>、WLu<1>、…、WLu<M>)中之1條之組建立對應(M及N為任意整數)。即,記憶胞MCd<i、j>(0
Figure 109106677-A0305-02-0006-1
i
Figure 109106677-A0305-02-0006-2
M、0
Figure 109106677-A0305-02-0006-3
j
Figure 109106677-A0305-02-0006-4
N)連接於字元線WLd<i>與位元線BL<j>之間,記憶胞MCu<i、j>連接於字元線WLu<i>與位元線BL<j>之間。
再者,附標“d”及“u”分別係為了方便識別複數個記憶胞MC中之(例如,相對於位元線BL)設置於下方之記憶胞MC及設置於上方之記憶胞MC之附標。關於記憶胞陣列10之立體結構之示例,將於下文敍述。
記憶胞MCd<i、j>包含串聯地連接之開關元件SELd<i、j>及磁阻效應元件MTJd<i、j>。記憶胞MCu<i、j>包含串聯地連接之開關元件SELu<i、j>及磁阻效應元件MTJu<i、j>。
開關元件SEL具有作為開關之功能,上述開關於向對應之磁阻效應元件MTJ進行資料寫入及讀出時,控制向磁阻效應元件MTJ之電流供給。更具體而言,例如,某記憶胞MC內之開關元件SEL於施加至該記憶胞MC之電壓低於閾值電壓Vth之情形時,作為電阻值較大之絕緣體將電流遮斷(成為斷開狀態),於高於閾值電壓Vth之情形時,作為電阻值較小之導電體流通電流(成為接通狀態)。即,開關元件SEL具有如下功能:不論流通之電流之方向如何,均能夠根據施加至記憶胞MC之電壓之大小來開關流通電流還是遮斷電流。
開關元件SEL例如亦可以係2端子型開關元件。於施加至2端子間之電壓為閾值以下之情形時,該開關元件為“高電阻”狀態、例如電性非導通狀態。於施加至2端子間之電壓為閾值以上之情形時,開關元件變為“低電阻”狀態、例如電性導通狀態。不論電壓為哪個極性,開關元件均可具有該功能。例如,該開關元件中可以含有選自由Te(碲)、Se(硒)及S(硫)所組成之群中之至少1種以上之硫族元素。或者,亦可以包含含有上述硫族元素之化合物即硫屬化物。
磁阻效應元件MTJ可利用由開關元件SEL控制供給之電流,將電阻值開關為低電阻狀態與高電阻狀態。磁阻效應元件MTJ作為記憶元件發揮功能,上述記憶元件能夠根據該電阻狀態之變化寫入資料,且能夠將寫入之資料非揮發地保存、讀出。
接下來,使用圖3及圖4對記憶胞陣列10之剖面結構進行說 明。圖3及圖4表示了用以說明第1實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖之一例。圖3及圖4分別係自相互交叉之不同方向觀察記憶胞陣列10之剖視圖。
如圖3及圖4所示,記憶胞陣列10設置於半導體基板20上。於以下之說明中,將與半導體基板20之表面平行之面設為XY平面,將與XY平面垂直之軸設為Z軸。又,於XY平面內,將沿著字元線WL之軸設為X軸,將沿著位元線BL之軸設為Y軸。即,圖3及圖4分別係沿著Y軸及X軸觀察記憶胞陣列10時之剖視圖。
於半導體基板20之上表面上,例如,設置有複數個導電體21。複數個導電體21具有導電性,且作為字元線WLd發揮功能。複數個導電體21例如沿著Y軸排列設置,且分別沿著X軸延伸。再者,於圖3及圖4中,對將複數個導電體21設置於半導體基板20上之情況進行了說明,但並不限定於此。例如,複數個導電體21亦可以不與半導體基板20相接,而向上方隔開設置。
於1個導電體21之上表面上,設置有分別作為磁阻效應元件MTJd發揮功能之複數個元件22。設置於1個導電體21之上表面上之複數個元件22例如沿著X軸排列設置。即,於1個導電體21之上表面,共通地連接有沿X軸排列之複數個元件22。再者,關於元件22之構成之詳細情況,將於下文敍述。
於複數個元件22各自之上表面上,設置有作為開關元件SELd發揮功能之元件23。複數個元件23各自之上表面連接於複數個導電體24中之任一個。複數個導電體24具有導電性,且作為位元線BL發揮功能。複數個導電體24例如沿著X軸排列設置,且分別沿著Y軸延伸。即, 於1個導電體24,共通地連接有沿Y軸排列之複數個元件23。再者,於圖3及圖4中,對複數個元件23分別設置於元件22上及導電體24上之情況進行了說明,但並不限定於此。例如,複數個元件23亦可以分別經由導電性之接觸插塞(未圖示)與元件22及導電體24連接。
於1個導電體24之上表面上,設置有分別作為磁阻效應元件MTJu發揮功能之複數個元件25。設置於1個導電體24之上表面上之複數個元件25例如沿著X軸排列設置。即,於1個導電體24之上表面,共通地連接有沿Y軸排列之複數個元件25。再者,元件25例如具有與元件22同等之構成。
於複數個元件25各自之上表面上,設置有作為開關元件SELu發揮功能之元件26。複數個元件26各自之上表面連接於複數個導電體27中之任一個。複數個導電體27具有導電性,且作為字元線WLu發揮功能。複數個導電體27例如沿著Y軸排列設置,且分別沿著X軸延伸。即,於1個導電體27,共通地連接有沿X軸排列之複數個元件26。再者,於圖3及圖4中,對複數個元件26分別設置於元件25上及導電體27上之情況進行了說明,但並不限定於此。例如,複數個元件26亦可以分別經由導電性之接觸插塞(未圖示)與元件25及導電體27連接。
藉由以如上方式構成,記憶胞陣列10成為2條字元線WLd及WLu之組對應於1條位元線BL之結構。而且,記憶胞陣列10於字元線WLd與位元線BL之間設置有記憶胞MCd,於位元線BL與字元線WLu之間設置有記憶胞MCu。即,記憶胞陣列10具有將複數個記憶胞MC沿著Z軸設置於不同高度之結構。於圖3及圖4中所示之單元結構中,記憶胞MCd與下層建立對應,記憶胞MCu與上層建立對應。即,共通連接於1條位元 線BL之2個記憶胞MC中,設置於位元線BL之上層之記憶胞MC與標註了附標“u”之記憶胞MCu對應,設置於下層之記憶胞MC與標註了附標“d”之記憶胞MCd對應。
1.1.3磁阻效應元件
接下來,使用圖5對第1實施形態之磁性裝置之磁阻效應元件之構成進行說明。圖5係表示第1實施形態之磁性裝置之磁阻效應元件之構成之剖視圖。於圖5中,例如,表示將圖3及圖4所示之磁阻效應元件MTJd沿著與Z軸垂直之平面(例如,XZ平面)切開之剖面之一例。再者,磁阻效應元件MTJu由於具有與磁阻效應元件MTJd同等之構成,故而省略其圖示。
如圖5所示,磁阻效應元件MTJ例如包含作為頂層TOP(Top layer)發揮功能之非磁性體31、作為上覆層CAP(Capping layer)發揮功能之非磁性體32、作為記憶層SL(Storage layer)發揮功能之強磁性體33、作為隧道勢壘層TB(Tunnel barrier layer)發揮功能之非磁性體34、作為參考層RL(Reference layer)發揮功能之強磁性體35、作為間隔層SP(Spacer layer)發揮功能之非磁性體36、作為位移消除層SCL(Shift cancelling layer)發揮功能之強磁性體37、及作為基底層UL(Under layer)發揮功能之非磁性體38。
磁阻效應元件MTJd例如自字元線WLd側朝向位元線BL側(沿Z軸方向)按照非磁性體38、強磁性體37、非磁性體36、強磁性體35、非磁性體34、強磁性體33、非磁性體32、及非磁性體31之順序積層複數層膜。磁阻效應元件MTJu例如自位元線BL側朝向字元線WLu側(沿Z軸方向)按照非磁性體38、強磁性體37、非磁性體36、強磁性體35、非磁性體 34、強磁性體33、非磁性體32、及非磁性體31之順序積層複數層膜。磁阻效應元件MTJd及MTJu例如作為構成磁阻效應元件MTJd及MTJu之磁性體之磁化方向分別朝向相對於膜面垂直之方向之垂直磁化型MTJ元件發揮功能。再者,磁阻效應元件MTJ亦可以於上述各層31~38之間包含未圖示之其他層。
非磁性體31係非磁性之金屬,例如,含有選自銥(Ir)、釕(Ru)、及銠(Rh)中之至少1種元素。非磁性體31於含有上述元素之情形時,與含有鉭(Ta)或鉬(Mo)之情況相比,可具有提高強磁性體33之垂直磁各向異性之功能。
非磁性體32係含有氧化鎂(MgO)之非磁性體,可具有體心立方(bcc:Body-centered cubic)系結晶結構(膜面配向為(001)面之NaCl結晶結構)。非磁性體32於強磁性體33之結晶化處理中作為晶種材發揮功能,上述晶種材成為用以使結晶質之膜自與強磁性體33之界面生長之核。又,非磁性體32於含有氧化鎂(MgO)之情形時,與含有稀土類氧化物之情況相比,於強磁性體33之結晶化處理中更具有保持與強磁性體33之界面之平坦性之功能。再者,由於氧化鎂(MgO)具有絕緣性,故而自降低電阻之觀點來看,較理想的是非磁性體32之膜厚最大為幾奈米(nm)。
非磁性體32亦可以進而含有硼(B)。非磁性體32中所含之硼(B)例如藉由於強磁性體33之結晶化處理中自強磁性體33擴散,而分佈到非磁性體32內。
強磁性體33具有強磁性,且於與膜面垂直之方向具有磁化容易軸方向。強磁性體33沿著Z軸具有朝向位元線BL側、字元線WL側中之任一個方向之磁化方向。強磁性體33含有鐵(Fe)、鈷(Co)、及鎳(Ni)中 之至少任一種,強磁性體33進而含有硼(B)。更具體而言,例如,強磁性體33含有鐵鈷硼(FeCoB)或硼化鐵(FeB),且可具有體心立方系結晶結構。
又,強磁性體33被設計成飽和磁化(Ms)與膜厚(t)之積即磁化(Mst)之值小於規定值。更具體而言,例如,強磁性體33以磁化(Mst)之值小於2.5e-4emu/cm2之方式適當調整組成或膜厚等。
再者,強磁性體33內之硼(B)之含量沿著Z軸不均勻,而是連續地變化。
圖6係用以說明第1實施形態之磁性裝置之包含記憶層之區域中之硼(B)之含量之簡圖。於圖6中,橫軸表示磁阻效應元件MTJ之沿著Z軸之位置,縱軸表示與該位置之硼(B)之含量對應之指標(強度:Intensity)。這種沿著Z軸表示之硼(B)之強度分佈L1例如可利用電子能量損耗能譜法(EELS:Electron Energy Loss Spectroscopy)等而獲取。
如圖6所示,磁阻效應元件MTJ內之硼(B)之強度可自非磁性體34(於圖6中表述為34(TB))經由強磁性體33(於圖6中表述為33(SL))朝向非磁性體32(於圖6中表述為32(CAP))下降。更具體而言,例如,若將非磁性體32與強磁性體33之界面中之硼(B)之強度設為I1,將強磁性體33與非磁性體34之界面中之硼(B)之強度設為I2,則強度I1低於強度I2。又,於強磁性體33內,例如,於與非磁性體34之界面附近具有硼(B)之強度相對較高之區域,於與非磁性體32之界面附近具有硼(B)之強度相對較低之區域。例如,強度分佈L1可自非磁性體34朝向非磁性體32單調遞減,於該兩界面附近之區域間,可具有拐點P。非磁性體34可含有較非磁性體32更多之硼(B)。
再次參照圖5,對磁阻效應元件MTJ之構成進行說明。
非磁性體34係非磁性之絕緣體,例如含有氧化鎂(MgO),如上所述,可進而含有硼(B)。非磁性體34與非磁性體32同樣地,具有膜面配向為(001)面之NaCl結晶結構,且作為晶種材發揮功能,上述晶種材於強磁性體33之結晶化處理中成為用以使結晶質之膜自與強磁性體33之界面生長之核。非磁性體34設置於強磁性體33與強磁性體35之間,與這2個強磁性體一起形成磁隧道結。
強磁性體35具有強磁性,且於與膜面垂直之方向具有磁化容易軸方向。強磁性體35沿著Z軸具有朝向位元線BL側、字元線WL側中之任一個方向之磁化方向。強磁性體35例如含有鐵(Fe)、鈷(Co)、及鎳(Ni)中之至少任一種。又,強磁性體35亦可以進而含有硼(B)。更具體而言,例如,強磁性體35含有鐵鈷硼(FeCoB)或硼化鐵(FeB),可具有體心立方系結晶結構。強磁性體35之磁化方向固定,於圖5之示例中,朝向強磁性體37之方向。再者,所謂「磁化方向固定」,係指磁化方向不會因可使強磁性體33之磁化方向反轉之大小之電流(自旋轉矩)而變化。
再者,於圖5中雖然省略了圖示,但強磁性體35亦可以係包括複數個層之積層體。具體而言,例如,構成強磁性體35之積層體亦可以係如下結構:具有含有上述鐵鈷硼(FeCoB)或硼化鐵(FeB)之層作為與非磁性體34之界面層,且於該界面層與非磁性體36之間介隔非磁性之導電體積層其他強磁性體。構成強磁性體35之積層體內之非磁性導電體例如可含有選自鉭(Ta)、鉿(Hf)、鎢(W)、鋯(Zr)、鉬(Mo)、鈮(Nb)、及鈦(Ti)中之至少1種金屬。構成強磁性體35之積層體內之其他強磁性體例如可包含選自鈷(Co)與鉑(Pt)之多層膜(Co/Pt多層膜)、鈷(Co)與鎳(Ni)之多層膜 (Co/Ni多層膜)、及鈷(Co)與鈀(Pd)之多層膜(Co/Pd多層膜)中之至少1種多層膜。
非磁性體36係非磁性之導電體,例如含有選自釕(Ru)、鋨(Os)、銥(Ir)、釩(V)、及鉻(Cr)中之至少1種元素。
強磁性體37具有強磁性,且於與膜面垂直之方向具有磁化容易軸方向。強磁性體37沿著Z軸具有朝向位元線BL側、字元線WL側中之任一個方向之磁化方向。強磁性體37之磁化方向與強磁性體35同樣地被固定,於圖5之示例中,朝向強磁性體35之方向。強磁性體37例如含有選自鈷鉑(CoPt)、鈷鎳(CoNi)、及鈷鈀(CoPd)中之至少1種合金。強磁性體37與強磁性體35同樣地,亦可以係包括複數個層之積層體。於該情形時,強磁性體37例如可包含選自鈷(Co)與鉑(Pt)之多層膜(Co/Pt多層膜)、鈷(Co)與鎳(Ni)之多層膜(Co/Ni多層膜)、及鈷(Co)與鈀(Pd)之多層膜(Co/Pd多層膜)中之至少1種多層膜。
強磁性體35及37利用非磁性體36而反強磁性地結合。即,強磁性體35及37以相互具有反平行之磁化方向之方式結合。因此,於圖5之示例中,強磁性體35及37之磁化方向朝向相互面對之方向。將這種強磁性體35、非磁性體36、及強磁性體37之結合結構稱為SAF(Synthetic Anti-Ferromagnetic,合成反強磁性)結構。藉此,強磁性體37可抵消強磁性體35之漏磁場對強磁性體33之磁化方向帶來之影響。因此,抑制因強磁性體35之漏磁場等而導致強磁性體33之磁化之反轉容易度產生非對稱性(即,強磁性體33之磁化方向反轉時之反轉容易度於自一者向另一者反轉之情形時與沿其相反方向反轉之情形時不同)。
非磁性體38係非磁性之導電體,具有作為使與位元線BL或 字元線WL之電連接性提高之電極之功能。又,非磁性體38例如含有高熔點金屬。所謂高熔點金屬,例如,表示熔點較鐵(Fe)及鈷(Co)高之材料,例如,含有選自鋯(Zr)、鉿(Hf)、鎢(W)、鉻(Cr)、鉬(Mo)、鈮(Nb)、鈦(Ti)、鉭(Ta)、釩(V)、釕(Ru)、及鉑(Pt)中之至少1種元素。
於第1實施形態中,採用自旋注入寫入方式,該自旋注入寫入方式係直接向這種磁阻效應元件MTJ流通寫入電流,利用該寫入電流對記憶層SL及參考層RL注入自旋轉矩,控制記憶層SL之磁化方向及參考層RL之磁化方向之方式。磁阻效應元件MTJ可根據記憶層SL及參考層RL之磁化方向之相對關係是平行還是反平行,而取低電阻狀態及高電阻狀態中之任一狀態。
若向磁阻效應元件MTJ沿圖5中之箭頭A1方向、即自記憶層SL朝向參考層RL之方向,流通某大小之寫入電流Ic0,則記憶層SL及參考層RL之磁化方向之相對關係為平行。於該平行狀態之情形時,磁阻效應元件MTJ之電阻值最低,磁阻效應元件MTJ被設定為低電阻狀態。該低電阻狀態被稱為「P(Parallel,平行)狀態」,例如規定為資料“0”之狀態。
又,若對磁阻效應元件MTJ沿圖5中之箭頭A2方向、即自參考層RL朝向記憶層SL之方向(與箭頭A1相反之方向),流通大於寫入電流Ic0之寫入電流Ic1,則記憶層SL及參考層RL之磁化方向之相對關係為反平行。於該反平行狀態之情形時,磁阻效應元件MTJ之電阻值最高,磁阻效應元件MTJ被設定為高電阻狀態。該高電阻狀態被稱為「AP(Anti-Parallel,反平行)狀態」,例如規定為資料“1”之狀態。
再者,於以下之說明中,按照上述資料之規定方法進行說 明,但資料“1”及資料“0”之規定方式並不限定於上述示例。例如,亦可以將P狀態規定為資料“1”,將AP狀態規定為資料“0”。
1.2磁阻效應元件之製造方法
接下來,對第1實施形態之磁性記憶裝置之磁阻效應元件之製造方法進行說明。於以下之說明中,關於磁阻效應元件MTJ內之各構成要素中非磁性體34(隧道勢壘層TB)以上之層之製造方法特別進行說明,關於積層於較非磁性體34靠下層之構成則省略說明。
圖7及圖8係用以說明第1實施形態之磁性記憶裝置之磁阻效應元件之製造方法之模式圖。於圖7及圖8中,表示強磁性體33藉由退火處理而自非晶狀態成為結晶狀態之過程。
如圖7所示,非磁性體34、強磁性體33、非磁性體32、及非磁性體31於半導體基板20之上方依次積層。
如上所述,非磁性體34及32具有膜面配向為(001)面之NaCl結晶結構。藉此,於與強磁性體33之界面中,非磁性體34及32中,鎂(Mg)與氧(O)交替地排列。
強磁性體33例如係組成不同之3層強磁性體(33-3、33-2、及33-1)以非晶狀態積層。
更具體而言,首先,於非磁性體34之上表面上形成強磁性體33-3。強磁性體33-3例如含有鐵鈷硼(FeCoB)。
接著,於強磁性體33-3之上表面上形成強磁性體33-2。強磁性體33-2例如含有鐵(Fe)。
接著,於強磁性體33-2之上表面上形成強磁性體33-1。強磁性體33-1例如含有鈷(Co)。
強磁性體33-1、33-2、及33-3各自之組成、以及膜厚以作為積層體之強磁性體33之磁化Mst之值小於2.5e-4emu/cm2之方式適當調整。
然後,於強磁性體33-1之上表面上形成非磁性體32。非磁性體32例如藉由利用濺鍍使氧化鎂(MgO)堆積於強磁性體33-1上而形成。於該情形時,非磁性體32內之氧化鎂(MgO)可按化學計量(Stoichiometric)(即,鎂(Mg)不過度氧化地)形成。再者,非磁性體32並不限定於藉由濺鍍形成,亦可以藉由CVD(Chemical Vapor Deposition,化學氣相沈積)等形成。
接著,如圖8所示,對圖7中積層之各層進行退火處理。具體而言,藉由自外部對各層施加熱,使強磁性體33自非晶質向結晶質轉換。此處,非磁性體34及32發揮控制強磁性體33之結晶結構之配向之作用。即,強磁性體33將非磁性體34及32作為晶種材而使結晶結構生長(結晶化處理)。又,非磁性體32發揮抑制強磁性體33於界面中凝聚,維持界面之平坦性之作用。藉此,強磁性體33可獲得較大之隧道磁阻比(TMR:Tunnel mangetoresistive ratio),並且可於強磁性體33與非磁性體34及32之兩界面中表現較大之垂直磁各向異性。
再者,伴隨著藉由退火處理產生之強磁性體33之結晶化,以硼(B)為首之強磁性體33內之各元素向周圍之層(強磁性體33-2及33-1、以及非磁性體34及32等)擴散。藉此,強磁性體33-1與強磁性體33-2之間之界面、及強磁性體33-2與強磁性體33-3之間之界面可變得實質上無法判別。藉由擴散,以硼(B)為首之強磁性體33內之各元素之含量沿著Z軸成為連續之分佈。更具體而言,形成如下分佈:於設置有強磁性體33-3之區 域較多地含有硼(B),且自設置有強磁性體33-2之區域朝向設置有強磁性體33-1之區域,硼(B)變少。
1.3.本實施形態之效果
根據第1實施形態,磁阻效應元件可維持保留特性且減小飽和磁化及膜厚之積。以下使用圖9對本效果進行說明。
圖9係用以說明第1實施形態之效果之圖。於圖9中,橫軸取記憶層SL中之磁化(Mst)之大小,縱軸取記憶層SL中之各向異性磁場(Hk)之大小,繪製線L2、L3、及L4。線L2與第1實施形態中之記憶層SL之特性對應,線L3及L4與較較例中之記憶層SL之特性對應。作為與線L3符合之示例,可舉出上覆層CAP中含有稀土類氧化物而非氧化鎂(MgO)之情況。作為與線L4符合之示例,可舉出如下情況:形成不刻意含有硼(B)之強磁性體(例如,刻意含有鐵(Fe)或鈷(Co)之層),於不刻意含有硼(B)之強磁性體之上表面上形成刻意含有硼(B)之強磁性體(例如,刻意含有鐵鈷硼(FeCoB)之層),於刻意含有硼(B)之強磁性體之上表面上形成含有氧化鎂(MgO)之上覆層CAP。
作為評估記憶層SL之特性之指標之一,例如,可使用Ic/△。Ic係寫入電流之大小,△係保留特性。為了高效率地記憶資料,較佳為寫入電流Ic更小,保留特性△更大。即,為了高效率地記憶資料,要求減小指標Ic/△。又,作為評估記憶層SL之特性之又一指標之一,例如可使用寫入錯誤率WER。一般而言,寫入錯誤率WER係磁化Mst越小則越能改善。
保留特性△和磁化Mst與各向異性磁場Hk之積相關。因此,圖9中,於磁化Mst較小之區域(例如,磁化Mst未達2.5e-4emu/cm2之 區域β)中,越是具有各向異性磁場Hk較大之特性之記憶層SL,越能減小指標Ic/△。
如圖9所示,線L3相對於線L2,於磁化Mst大於2.5e-4emu/cm2之區域α中,磁化Mst與各向異性磁場Hk之積(即保留特性△)較大。然而,於磁化Mst小於2.5e-4emu/cm2之區域β中,由於記憶層SL之凝聚而Hk減小,故而保留△(Mst×Hk)變小。這是因為:於與線L3對應之構成(上覆層CAP中含有稀土類氧化物之構成)中,若記憶層SL之膜厚t變薄,則於記憶層SL之結晶化處理中,於記憶層SL與上覆層CAP之界面中記憶層SL內之物質凝聚,從而該界面之平坦性劣化。如此,於區域β中,上覆層CAP中含有氧化鎂(MgO)之情況與含有稀土類氧化物之情況相比可更為減小指標Ic/△,且可改善寫入錯誤率WER。
又,線L4因於上覆層CAP中含有氧化鎂(MgO),故而與區域α相比,區域β之保留特性△未劣化。然而,線L4相對於線L2,整體上位於左下側,保留特性△之絕對值較小。這是因為與線L4對應之記憶層SL之構成為於不刻意含有硼(B)之強磁性體之上層形成刻意含有硼(B)之強磁性體之多層結構所致。如此,記憶層SL於成膜時,於刻意含有硼(B)之強磁性體之上層形成不刻意含有硼(B)之強磁性體之情況、與於不刻意含有硼(B)之強磁性體之上層形成刻意含有硼(B)之強磁性體之情況相比,可更為減小指標Ic/△,且改善寫入錯誤率WER。
於第1實施形態中,磁阻效應元件MTJ係將非磁性體34、強磁性體33、及非磁性體32依次積層於半導體基板20之上方。非磁性體32含有氧化鎂(MgO)。藉此,非磁性體32可於使強磁性體33結晶化時,促進強磁性體33之結晶結構之生長,並且維持與強磁性體33之界面之平坦 性。因此,即使於被設計成強磁性體33之磁化(Mst)小於2.5e-4emu/cm2之情形時,亦能抑制凝聚。因此,與上覆層CAP中含有稀土類氧化物之情況(與圖9中之線L3對應)相比,可於區域β中獲得較大之各向異性磁場(Hk),進而可維持較大之保留特性△。而且,可一面維持該較大之保留特性△,一面亦改善寫入錯誤率WER。
又,強磁性體33於成膜時係沿著Z軸將刻意含有硼(B)之強磁性體33-3與不刻意含有硼(B)之強磁性體33-1及33-2積層而形成。藉此,結晶化後之強磁性體33成為與非磁性體34之界面較與非磁性體32之界面含有更多之硼(B)之分佈。因此,和記憶層SL(與圖9中之線L4對應)相比,可獲得更高之垂直磁各向異性,上述記憶層SL成為與上覆層CAP之界面較與隧道勢壘層TB之界面含有更多之硼(B)之分佈。
因此,可維持保留特性△,且減小磁化Mst。
又,根據第1實施形態,於非磁性體32之上表面上,進而形成非磁性體31。非磁性體31含有選自銥(Ir)、釕(Ru)、及銠(Rh)中之至少1種元素。藉此,與非磁性體31含有鉭(Ta)或鉬(Mo)來代替上述元素之情況相比,於區域β中,可進一步提高記憶層SL之各向異性磁場Hk。
2.變化例等
再者,並不限定於上述第1實施形態,而能夠應用各種變化。以下,對能夠應用於上述第1實施形態之幾個變化例進行說明。再者,為了方便說明,主要對與第1實施形態之差異點進行說明。
2.1第1變化例
對上述第1實施形態中之強磁性體33係於含有鐵(Fe)之強磁性體33-2之上表面上形成含有鈷(Co)之強磁性體33-1之情況進行了說 明,但並不限定於此。
圖10係用以說明第1變化例之磁性記憶裝置中之磁阻效應元件之製造方法之模式圖。圖10與第1實施形態中之圖7對應。
如圖10所示,強磁性體33例如係將組成不同之3層強磁性體(33-3A、33-2A、及33-1A)於非晶狀態下積層。
更具體而言,首先,於非磁性體34之上表面上形成強磁性體33-3A。強磁性體33-3A例如含有鐵鈷硼(FeCoB)。
接著,於強磁性體33-3A之上表面上形成強磁性體33-2A。強磁性體33-2A例如含有鈷(Co)。
接著,於強磁性體33-2A之上表面上形成強磁性體33-1A。強磁性體33-1A例如含有鐵(Fe)。
強磁性體33-1A、33-2A、及33-3A各自之組成、以及膜厚以作為積層體之強磁性體33之磁化Mst之值小於2.5e-4emu/cm2之方式適當調整。
然後,於強磁性體33-1A之上表面上形成含有氧化鎂(MgO)之非磁性體32。
如以上所述,於形成強磁性體33-3A~33-1A之後使強磁性體33結晶化之情形時,強磁性體33內之硼(B)之分佈亦與第1實施形態中所示之圖6之強度分佈L1同等。即,於以含有鐵(Fe)之層與含有鈷(Co)之2個強磁性體之上下關係與第1實施形態相反之方式成膜之情形時,亦可發揮與第1實施形態同等之效果。
2.2第2變化例
又,對上述第1實施形態中之強磁性體33形成有3層強磁性 體33-1~33-3之情況進行了說明,但並不限定於此。
圖11係用以說明第2變化例之磁性記憶裝置中之磁阻效應元件之製造方法之模式圖。圖11與第1實施形態中之圖7對應。
如圖11所示,強磁性體33例如係將組成不同之2層強磁性體(33-2B、及33-1B)於非晶狀態下積層。
更具體而言,首先,於非磁性體34之上表面上形成強磁性體33-2B。強磁性體33-2B例如含有鐵鈷硼(FeCoB)。
接著,於強磁性體33-2B之上表面上形成強磁性體33-1B。強磁性體33-1B例如含有鈷鐵(CoFe)。
強磁性體33-1B及33-2B各自之組成、以及膜厚以作為積層體之強磁性體33之磁化Mst之值小於2.5e-4emu/cm2之方式適當調整。
然後,於強磁性體33-1B之上表面上,形成含有氧化鎂(MgO)之非磁性體32。
如以上所述,於形成強磁性體33-2B及33-1B之後使強磁性體33結晶化之情形時,強磁性體33內之硼(B)之分佈亦與第1實施形態中所示之圖6之強度分佈L1同等。即,於將作為不刻意含有硼(B)之強磁性體而含有鐵(Fe)及鈷(Co)之化合物之強磁性體於刻意含有硼(B)之強磁性體之上表面上成膜之情形時,亦可發揮與第1實施形態同等之效果。
2.3第3變化例
又,對於上述第1實施形態中之記憶胞MC應用2端子型開關元件作為開關元件SEL之情況進行了說明,但亦可以應用MOS(Metal oxide semiconductor,金屬氧化物半導體)晶體管作為開關元件SEL。即,記憶胞陣列並不限定於在Z方向之不同高度具有複數個記憶胞MC之 結構,而能夠應用任意之陣列結構。
圖12係用以說明第3變化例之磁性記憶裝置之記憶胞陣列之構成之電路圖。圖12與第1實施形態之圖1中所說明之磁性記憶裝置1中之記憶胞陣列10對應。
如圖12所示,記憶胞陣列10A具備分別與列及行建立對應之複數個記憶胞MC。而且,處於同一列之記憶胞MC連接於同一字元線WL,處於同一行之記憶胞MC之兩端連接於同一位元線BL及同一源極線/BL。
圖13係用以說明變化例之磁性記憶裝置之記憶胞之構成之剖視圖。圖13與第1實施形態之圖3及圖4中所說明之記憶胞MC對應。再者,於圖13之示例中,記憶胞MC由於不積層於半導體基板上,故而未標註“u”及“d”等附標。
如圖13所示,記憶胞MC設置於半導體基板40上,且包含選擇晶體管41(Tr)及磁阻效應元件42(MTJ)。選擇晶體管41設置為於向磁阻效應元件42進行資料寫入及讀出時控制電流之供給及停止之開關。磁阻效應元件42之構成與第1實施形態之圖5所示之磁阻效應元件MTJ同等。
選擇晶體管41具備作為字元線WL發揮功能之柵極(導電體43)、以及於該柵極之沿著x軸之兩端設置於半導體基板40上之1對源極區域或漏極區域(擴散區域44)。導電體43設置於絕緣體45上,該絕緣體45作為設置於半導體基板40上之柵極絕緣膜發揮功能。導電體43例如沿著y軸延伸,且共通連接於沿著y軸排列之其他記憶胞MC之選擇晶體管(未圖示)之柵極。導電體43例如沿著x軸排列。設置於選擇晶體管41之第1端之擴散區域44上,設置有接觸插塞46。接觸插塞46連接於磁阻效應元件42之 下表面(第1端)上。於磁阻效應元件42之上表面(第2端)上設置有接觸插塞47,於接觸插塞47之上表面上,連接於作為位元線BL發揮功能之導電體48。導電體48例如沿著x軸延伸,且共通連接於沿著x軸排列之其他記憶胞之磁阻效應元件(未圖示)之第2端。設置於選擇晶體管41之第2端之擴散區域44上,設置有接觸插塞49。接觸插塞49連接於作為源極線/BL發揮功能之導電體50之下表面上。導電體50例如沿著x軸延伸,且例如共通連接於沿著x軸排列之其他記憶胞之選擇晶體管(未圖示)之第2端。導電體48及50例如沿著y軸排列。導電體48例如位於導電體50之上方。再者,於圖13中雖然省略,但導電體48及50係相互避開物理性及電性之干擾而配置。選擇晶體管41、磁阻效應元件42、導電體43、48、及50、以及接觸插塞46、47、及49由層間絕緣膜51被覆。再者,相對於磁阻效應元件42沿著x軸或y軸排列之其他磁阻效應元件(未圖示)例如設置於同一階層上。即,於記憶胞陣列10A內,複數個磁阻效應元件42例如配置於XY平面上。
藉由以如上方式構成,對於開關元件SEL應用作為3端子型開關元件之MOS晶體管而並非2端子型開關元件之情況,亦能發揮與第1實施形態同等之效果。
2.4其他
又,對上述實施形態及變化例中敍述之記憶胞MC係將磁阻效應元件MTJ設置於開關元件SEL之下方之情況進行了說明,但亦可以將磁阻效應元件MTJ設置於開關元件SEL之上方。
進而,於上述第1實施形態及各變化例中,作為具備磁阻效應元件之磁性裝置之一例,對具備MTJ元件之磁性記憶裝置進行了說明,但並不限定於此。例如,磁性裝置包含感測器或介質等需要具有垂直 磁各向異性之磁性元件之其他器件。該磁性元件例如係至少包含圖5中所說明之非磁性體32、強磁性體33、非磁性體34、及強磁性體35之元件。
對本發明之幾個實施形態進行了說明,但該等實施形態係作為示例而提出者,並非意圖限定發明之範圍。該等新穎之實施形態能以其他各種形態實施,於不脫離發明主旨之範圍內,可進行各種省略、置換、變更。該等實施形態或其變化包含於發明之範圍或主旨中,並且包含於申請專利範圍所記載之發明及其均等之範圍內。
[相關申請]
本申請享有以日本專利申請2019-165228號(申請日:2019年9月11日)為基礎申請之優先權。本申請藉由參照該基礎申請而包含基礎申請之所有內容。
32,34:非磁性體
33:強磁性體
I1:強度
I2:強度
L1:強度分佈
P:拐點

Claims (18)

  1. 一種磁性裝置,其具備積層體,上述積層體包含:第1強磁性體;第2強磁性體;上述第1強磁性體與上述第2強磁性體之間之第1非磁性體;及第2非磁性體;且上述第2非磁性體與上述第1非磁性體之間夾著上述第1強磁性體,上述第1非磁性體及上述第2非磁性體含有氧化鎂(MgO),上述第1強磁性體與上述第1非磁性體之界面較上述第1強磁性體與上述第2非磁性體之界面含有更多之硼(B),且上述第1強磁性體之膜厚與飽和磁化之積小於2.5e-4emu/cm2
  2. 如請求項1之磁性裝置,其中上述積層體進而包含第3非磁性體,上述第3非磁性體與上述第1強磁性體之間夾著上述第2非磁性體,上述第3非磁性體含有選自銥(Ir)、釕(Ru)、及銠(Rh)中之至少1種元素。
  3. 如請求項1之磁性裝置,其中上述第1強磁性體包含第1部分、及上述第1部分與上述第2非磁性體之間之第2部分, 上述第1強磁性體之上述第1部分較上述第1強磁性體之上述第2部分含有更多之硼(B)。
  4. 如請求項1之磁性裝置,其中上述第1強磁性體與上述第1非磁性體及上述第2非磁性體相接。
  5. 如請求項4之磁性裝置,其中上述第2強磁性體與上述第1非磁性體相接。
  6. 如請求項1之磁性裝置,其中上述第1強磁性體及上述第2強磁性體含有選自鐵(Fe)、鈷(Co)、及鎳(Ni)中之至少1種元素。
  7. 如請求項1之磁性裝置,其中上述第1強磁性體根據自上述第1強磁性體流向上述第2強磁性體之第1電流而成為第1電阻值,根據自上述第2強磁性體流向上述第1強磁性體之第2電流而成為第2電阻值。
  8. 如請求項7之磁性裝置,其中上述第1電阻值小於上述第2電阻值。
  9. 如請求項1之磁性裝置,其中上述第1強磁性體設置於上述第2強磁性體之上方。
  10. 如請求項1之磁性裝置,其中上述磁性裝置具備記憶胞,上述記憶胞包含:磁阻效應元件,其包含上述積層體;以及開關元件,其與上述積層體串聯地連接。
  11. 如請求項10之磁性裝置,其中上述開關元件包含二端子型開關元件。
  12. 一種磁性裝置,其具備積層體,上述積層體包含:第1強磁性體;第2強磁性體;上述第1強磁性體與上述第2強磁性體之間之第1非磁性體;及第2非磁性體;且上述第2非磁性體與上述第1非磁性體之間夾著上述第1強磁性體,上述第1非磁性體及上述第2非磁性體含有氧化鎂(MgO),上述第1強磁性體與上述第1非磁性體之界面較上述第1強磁性體與上述第2非磁性體之界面含有更多之硼(B),且上述第1強磁性體內所含之硼(B)之量自上述第1非磁性體朝向上述第 2非磁性體單調遞減。
  13. 一種磁性裝置,其具備積層體,上述積層體包含:第1強磁性體;第2強磁性體;上述第1強磁性體與上述第2強磁性體之間之第1非磁性體;及第2非磁性體;且上述第2非磁性體與上述第1非磁性體之間夾著上述第1強磁性體,上述第1非磁性體及上述第2非磁性體含有氧化鎂(MgO),上述第1強磁性體與上述第1非磁性體之界面較上述第1強磁性體與上述第2非磁性體之界面含有更多之硼(B),且上述第1非磁性體較上述第2非磁性體含有更多之硼(B)。
  14. 如請求項12或13之磁性裝置,其中上述積層體進而包含第3非磁性體,上述第3非磁性體與上述第1強磁性體之間夾著上述第2非磁性體,上述第3非磁性體含有選自銥(Ir)、釕(Ru)、及銠(Rh)中之至少1種元素。
  15. 如請求項12或13之磁性裝置,其中上述第1強磁性體包含:第1部分、及上述第1部分與上述第2非磁性體之間之第2部分, 上述第1強磁性體之上述第1部分較上述第1強磁性體之上述第2部分含有更多之硼(B)。
  16. 一種磁性裝置,其具備積層體,上述積層體包含:第1強磁性體;第2強磁性體;上述第1強磁性體與上述第2強磁性體之間之第1非磁性體;第2非磁性體;第3強磁性體;及上述第2強磁性體與上述第3強磁性體之間之第4非磁性體;上述第2非磁性體與上述第1非磁性體之間夾著上述第1強磁性體,上述第1非磁性體及上述第2非磁性體含有氧化鎂(MgO),上述第1強磁性體與上述第1非磁性體之界面較上述第1強磁性體與上述第2非磁性體之界面含有更多之硼(B),上述第2強磁性體與上述第3強磁性體具有朝向互不相同之方向之磁化,且上述第4非磁性體含有選自釕(Ru)、鋨(Os)、銥(Ir)、釩(V)、及鉻(Cr)中之至少1種元素。
  17. 如請求項16之磁性裝置,其中上述第3強磁性體設置於上述第2強磁性體之下方。
  18. 如請求項16之磁性裝置,其中上述積層體進而包含第3非磁性體,上述第3非磁性體與上述第1強磁性體之間夾著上述第2非磁性體,且上述第3非磁性體含有選自銥(Ir)、釕(Ru)、及銠(Rh)中之至少1種元素。
TW109106677A 2019-09-11 2020-03-02 磁性裝置 TWI791141B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-165228 2019-09-11
JP2019165228A JP2021044369A (ja) 2019-09-11 2019-09-11 磁気装置

Publications (2)

Publication Number Publication Date
TW202111874A TW202111874A (zh) 2021-03-16
TWI791141B true TWI791141B (zh) 2023-02-01

Family

ID=74849795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109106677A TWI791141B (zh) 2019-09-11 2020-03-02 磁性裝置

Country Status (4)

Country Link
US (1) US11316095B2 (zh)
JP (1) JP2021044369A (zh)
CN (1) CN112490263A (zh)
TW (1) TWI791141B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044369A (ja) * 2019-09-11 2021-03-18 キオクシア株式会社 磁気装置
JP2023039612A (ja) * 2021-09-09 2023-03-22 キオクシア株式会社 磁気記憶装置及び磁気記憶装置の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249202A1 (en) * 2014-02-28 2015-09-03 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429480B2 (ja) 2007-04-24 2014-02-26 日本電気株式会社 磁気抵抗素子、mram、及び磁気センサー
US9006704B2 (en) 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
JP5768498B2 (ja) 2011-05-23 2015-08-26 ソニー株式会社 記憶素子、記憶装置
KR101446338B1 (ko) * 2012-07-17 2014-10-01 삼성전자주식회사 자기 소자 및 그 제조 방법
US9184374B2 (en) 2013-03-22 2015-11-10 Kazuya Sawada Magnetoresistive element
US9269890B2 (en) 2013-03-22 2016-02-23 Masahiko Nakayama Magnetoresistance effect element with shift canceling layer having pattern area greater than that of storage layer
US9293695B2 (en) 2013-09-09 2016-03-22 Koji Ueda Magnetoresistive element and magnetic random access memory
CN106463611B (zh) 2014-03-13 2020-03-27 东芝存储器株式会社 磁阻元件
US9281466B2 (en) * 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
JP6291370B2 (ja) * 2014-07-02 2018-03-14 株式会社東芝 歪検出素子、圧力センサ、マイクロフォン、血圧センサ及びタッチパネル
US9184375B1 (en) * 2014-07-03 2015-11-10 Samsung Electronics Co., Ltd. Magnetic junctions using asymmetric free layers and suitable for use in spin transfer torque memories
US9620561B2 (en) 2014-09-05 2017-04-11 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method thereof
US9305576B2 (en) 2014-09-09 2016-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element
US9608199B1 (en) 2015-09-09 2017-03-28 Kabushiki Kaisha Toshiba Magnetic memory device
US20170263679A1 (en) 2016-03-11 2017-09-14 Kabushiki Kaisha Toshiba Magnetic memory device
US9947862B2 (en) 2016-03-14 2018-04-17 Toshiba Memory Corporation Magnetoresistive memory device
US10263178B2 (en) 2016-09-15 2019-04-16 Toshiba Memory Corporation Magnetic memory device
US20180269043A1 (en) 2017-03-17 2018-09-20 Toshiba Memory Corporation Magnetron sputtering apparatus and film formation method using magnetron sputtering apparatus
JP2018163921A (ja) 2017-03-24 2018-10-18 東芝メモリ株式会社 磁気記憶装置
US10014465B1 (en) 2017-04-03 2018-07-03 Headway Technologies, Inc. Maintaining coercive field after high temperature anneal for magnetic device applications with perpendicular magnetic anisotropy
JP2019054095A (ja) 2017-09-14 2019-04-04 東芝メモリ株式会社 磁気抵抗素子
US10622552B2 (en) * 2017-11-02 2020-04-14 Everspin Technologies, Inc. Magnetoresistive stacks and methods therefor
JP2020043224A (ja) 2018-09-11 2020-03-19 キオクシア株式会社 磁気装置
JP2020043282A (ja) * 2018-09-13 2020-03-19 キオクシア株式会社 記憶装置
JP2021044369A (ja) * 2019-09-11 2021-03-18 キオクシア株式会社 磁気装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249202A1 (en) * 2014-02-28 2015-09-03 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices

Also Published As

Publication number Publication date
US20210074908A1 (en) 2021-03-11
US11316095B2 (en) 2022-04-26
JP2021044369A (ja) 2021-03-18
TW202111874A (zh) 2021-03-16
CN112490263A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
US10854252B2 (en) Magnetic storage device with a stack of magnetic layers including iron (Fe) and cobalt (co)
JP7204549B2 (ja) 磁気装置
JP2018152432A (ja) 磁気記憶装置
US11462680B2 (en) Magnetic storage device
US10937947B2 (en) Magnetic memory device with a nonmagnet between two ferromagnets of a magnetoresistive effect element
US10943632B2 (en) Magnetic storage device
TWI791141B (zh) 磁性裝置
TWI698865B (zh) 磁性記憶裝置
US10978636B2 (en) Magnetic storage device
US11832528B2 (en) Magnetic memory device
TWI794931B (zh) 磁性記憶裝置
US10867650B2 (en) Magnetic storage device
TW202412346A (zh) 磁性記憶體裝置
JP2023140671A (ja) 磁気記憶装置