TWI786668B - 光學裝置及其製造方法 - Google Patents

光學裝置及其製造方法 Download PDF

Info

Publication number
TWI786668B
TWI786668B TW110120860A TW110120860A TWI786668B TW I786668 B TWI786668 B TW I786668B TW 110120860 A TW110120860 A TW 110120860A TW 110120860 A TW110120860 A TW 110120860A TW I786668 B TWI786668 B TW I786668B
Authority
TW
Taiwan
Prior art keywords
filter
infrared
grid structure
cut
pixel
Prior art date
Application number
TW110120860A
Other languages
English (en)
Other versions
TW202235923A (zh
Inventor
塗宗儒
Original Assignee
采鈺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 采鈺科技股份有限公司 filed Critical 采鈺科技股份有限公司
Publication of TW202235923A publication Critical patent/TW202235923A/zh
Application granted granted Critical
Publication of TWI786668B publication Critical patent/TWI786668B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本發明提供一種光學裝置。該光學裝置包括:複數個紅外截止畫素、複數個紅外穿透畫素、以及複數個網格。該等網格包圍該等紅外截止畫素與該等紅外穿透畫素。每一紅外截止畫素包括一第一格柵結構。本發明亦提供一種光學裝置的製造方法。

Description

光學裝置及其製造方法
本發明係有關於一種光學裝置,特別是有關於一種於紅外截止畫素中具有格柵結構的光學裝置。
對於應用在安全、個人身份驗證及距離量測的非可見光影像感測器,特別是近紅外(NIR)靈敏性影像感測器的需求日益增加。為了使影像感測器適用於近紅外光,提高近紅外靈敏度是重要的。一種提高近紅外靈敏度的方法是在畫素中配置紅外穿透濾光片,然而,此方式會由於橫向串擾(lateral crosstalk)而降低可見影像的品質。
因此,開發一種可降低串擾的光學裝置是眾所期待的。
根據本發明的一實施例,提供一種光學裝置。該光學裝置包括:複數個紅外截止畫素(IR-cut pixels)、複數個紅外穿透畫素(IR-pass pixels)、以及複數個網格。該等網格包圍該等紅外截止畫素與該等紅外穿透畫素。每一紅外截止畫素包括一第一格柵結構。
在部分實施例中,該第一格柵結構的間距(pitch)介於0.1微米至0.7微米之間,且高度介於0.05微米至0.5微米之間。在部分實施例中,每一紅外截止畫素更包括一紅外截止濾光片(IR-cut filter),覆蓋並填入該第一格柵結構中。在部分實施例中,每一紅外截止畫素更包括一彩色濾光片,設置於該紅外截止濾光片上。
在部分實施例中,每一紅外截止畫素更包括一彩色濾光片,覆蓋並填入該第一格柵結構中。在部分實施例中,每一紅外截止畫素更包括一紅外截止濾光片(IR-cut filter),設置於該彩色濾光片上。
在部分實施例中,每一紅外穿透畫素包括一紅外穿透濾光片(IR-pass filter)。在部分實施例中,每一紅外穿透畫素包括一彩色濾光片。
在部分實施例中,該光學裝置更包括複數個微透鏡,位於該等紅外截止畫素與該等紅外穿透畫素上。
在部分實施例中,每一紅外截止畫素更包括一紅外穿透濾光片,且該第一格柵結構設置於該紅外穿透濾光片的上表面。在部分實施例中,該第一格柵結構的間距介於0.1微米至0.7微米之間。在部分實施例中,該間距定義為λ/sin θ,其中λ為入射光的波長,θ為該入射光通過該第一格柵結構的繞射角。在部分實施例中,θ定義為tan -1D/x,其中D為該紅外穿透濾光片的厚度,x為自該紅外截止畫素的中心至該入射光於繞射後進入相鄰紅外穿透畫素的位置之間的距離。
在部分實施例中,該第一格柵結構包括複數個分離部,且該等分離部具有可變的高度及間距。
在部分實施例中,每一紅外截止畫素更包括一第二格柵結構,位於該第一格柵結構下方。在部分實施例中,每一紅外截止畫素更包括一紅外截止濾光片,覆蓋並填入該第二格柵結構中。在部分實施例中,每一紅外截止畫素更包括一彩色濾光片,覆蓋並填入該第二格柵結構中。
在部分實施例中,每一網格包括低折射率(low-refractive-index)有機材料。在部分實施例中,該第一格柵結構與該等網格具有相同材料。
根據本發明的一實施例,提供一種光學裝置的製造方法。該製造方法包括下列步驟:提供一基板,具有複數個網格;蝕刻部分的該等網格,以形成複數個格柵結構,留下部分的該等網格,以定義複數個紅外截止畫素與複數個紅外穿透畫素,其中每一紅外截止畫素包括一格柵結構;形成一紅外截止濾光片,以覆蓋並填入每一紅外截止畫素的該格柵結構中;形成一彩色濾光片,位於每一紅外截止畫素中的該紅外截止濾光片上;以及形成一紅外穿透濾光片,位於每一紅外穿透畫素中。
本發明提供設置於紅外截止畫素(IR-cut pixels)內基板上且具有特定尺寸(例如,特定間距及高度)的格柵結構。當紅外光進入格柵結構時,紅外光在格柵結構內形成共振(波導)模態,並隨之反射出紅外截止畫素。格柵結構的設置可降低紅外光在紅外截止畫素中的穿透率,而增加紅外光在紅外截止畫素中的反射率。因此,不期望紅外光穿透的畫素(例如,紅外截止畫素)不會接收到紅外光,有效降低了串擾(crosstalk)。也就是,大幅提升紅外截止畫素濾除紅外光的能力。
在本發明中,設置在紅外截止畫素內,位於延伸的紅外穿透濾光片(IR-pass filter)中並露出於紅外穿透濾光片且具有適當尺寸的格柵結構可提升分光效果(light-splitting effect)。當具有不同波長的入射光通過格柵結構時,入射光會產生不同的繞射角。特別是,長波長入射光(例如,紅外光)具有較大的繞射角。因此,當紅外光產生繞射並進入紅外穿透濾光片時,由於低折射率的網格具有適當高度,因此,可將紅外光捕捉在紅外穿透濾光片內,進而提升紅外穿透畫素(IR-pass pixels)對紅外光影像資訊的接收。
此外,每一目標畫素所需的影像資訊,例如,紅光資訊、綠光資訊、藍光資訊、及全光資訊可藉由本發明提供的演算法(結合加權因子矩陣(weighting factor matrix)與彩色濾光片馬賽克圖案(color-filter mosaic pattern))而重現。因此,本發明光學裝置可呈現出最真實的顏色。
在以下實施例中參考所附圖式給予實施方式。
在以下描述中詳細描述本發明的光學裝置。在以下的實施方式中,出於解釋的目的,闡述了許多具體細節和實施例以提供對本揭露的透徹理解。闡述以下實施方式中所描述的特定元件和配置,以清楚地描述本揭露。然而,將顯而易見的是,本文所闡述的示例性實施例僅用於說明的目的,且發明概念可以各種形式體現,而不限於那些示例性實施例。此外,不同實施例的圖式可使用相似和/或對應的數字來表示相似和/或對應的元件,以便清楚地描述本揭露。然而,在不同實施​​例的圖式中使用相似和/或對應的數字不暗示不同實施例之間的任何相關性。此外,在本說明書中,例如「設置在第二材料層上/上方的第一材料層」的表達可指第一材料層和第二材料層的直接接觸,或者其可指在第一材料層和第二材料層之間有一或多層中間層的非接觸狀態。在上述情況中,第一材料層可不與第二材料層直接接觸。
此外,在本說明書中,使用相對性的表達。例如「較低」、「底部」、「較高」或「頂部」用於描述一元件相對於另一元件的位置。應理解的是,如果將裝置上下顛倒,則「較低」的元件將變為「較高」的元件。
除非另有定義,否則本文使用的所有技術和科學術語都具有與本發明所屬技術領域中通常知識者一般所理解的相同含義。應理解的是,在各種情況下,在常用字典中定義的術語應被解釋為具有符合本揭露的相對技能和本揭露的背景或上下文的含義,且不應以理想化或過於正式的方式來解釋,除非如此定義。
在敘述中,相對性術語例如「下」、「上」、「水平」、「垂直」、「之下」、「之上」、「頂部」、「底部」等等應被理解為該實施例以及相關圖式中所繪示的方位。此相對性的用語是為了方便說明之用,並不表示所敘述之裝置需以特定方位來製造或運作。此外,關於接合、連接之用語,例如「連接」、「互連」等,除非特別定義,否則可表示兩個結構直接接觸,或者亦可表示兩個結構並非直接接觸,而是有其它結構設置於此兩個結構之間。另外,關於接合、連接之用語,亦可包含兩個結構都可移動,或者兩個結構都固定之實施例。
應理解的是,儘管可在本文中使用術語第一、第二、第三等等,來描述各種元件、組件、區域、膜層、部分和/或區段,但這些元件、組件、區域、膜層、部分和/或區段不應受這些術語所限制。這些術語僅用於區分一元件、組件、區域、膜層、部分或區段與另一元件、組件、區域、膜層、部分或區段。因此,在不脫離本揭露的教示的情況下,以下所討論的第一元件、組件、區域、膜層、部分或區段可被稱為第二元件、組件、區域、膜層、部分或區段。
在說明書中,「約」、「大約」、「大抵」之用語通常表示在一給定值的正負20%之內,或正負10%之內,或正負5%之內,或正負3%之內,或正負2%之內,或正負1%之內,或正負0.5%之內的範圍。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。
以下描述為實施本發明的最佳構想模式。進行該描述的目的是為了說明本發明的一般原理,而不應被認為是限制性的。本發明之範圍當視後附之申請專利範圍所界定者為準。
請參閱第1圖,根據本發明的一實施例,提供一種光學裝置10。第1圖為光學裝置10的剖面示意圖。
如第1圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第1圖中,格柵結構18設置於基板20上。格柵結構18的間距(pitch) P介於大約0.1微米至大約0.7微米之間。格柵結構18的高度H介於大約0.05微米至大約0.5微米之間。在部分實施例中,格柵結構18的材料與網格16的材料相同,例如,低折射率有機材料。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。當紅外光進入格柵結構18時,由於格柵結構18具有特定尺寸(例如,特定間距及高度),使得紅外光在格柵結構18內形成共振(波導)模態,並隨之反射出去。如此可以說,紅外光在紅外截止畫素12中的穿透率非常低,而反射率非常高。因此,可確保不期望紅外光穿透的畫素(例如,紅外截止畫素12)不會接收到紅外光,有效降低了串擾(crosstalk)。在第1圖中,由於格柵結構18的設置,使得紅外截止畫素12濾除紅外光的能力大幅提升。
在第1圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。紅外截止濾光片22覆蓋並填入格柵結構18中。彩色濾光片24設置於紅外截止濾光片22上。每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第2圖,根據本發明的一實施例,提供一種光學裝置10。第2圖為光學裝置10的剖面示意圖。
如第2圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第2圖中,格柵結構18設置於基板20上。格柵結構18的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第2圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。彩色濾光片24覆蓋並填入格柵結構18中。紅外截止濾光片22設置於彩色濾光片24上。每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第3圖,根據本發明的一實施例,提供一種光學裝置10。第3圖為光學裝置10的剖面示意圖。
如第3圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第3圖中,格柵結構18設置於基板20上。格柵結構18的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第3圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22。紅外截止濾光片22覆蓋並填入格柵結構18中。每一紅外穿透畫素14包括彩色濾光片24。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。
請參閱第4圖,根據本發明的一實施例,提供一種光學裝置10。第4圖為光學裝置10的剖面示意圖。
如第4圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第4圖中,格柵結構18設置於基板20上。格柵結構18的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第4圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22。紅外截止濾光片22覆蓋並填入格柵結構18中。每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第5圖,根據本發明的一實施例,提供一種光學裝置10。第5圖為光學裝置10的剖面示意圖。
如第5圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第5圖中,格柵結構18設置於基板20上。格柵結構18的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第5圖中,每一紅外截止畫素12包括彩色濾光片24。彩色濾光片24覆蓋並填入格柵結構18中。每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第6圖,根據本發明的一實施例,提供一種光學裝置10。第6圖為光學裝置10的剖面示意圖。
如第6圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第6圖中,格柵結構18設置於基板20上。格柵結構18的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第6圖中,每一紅外截止畫素12包括彩色濾光片24。彩色濾光片24覆蓋並填入格柵結構18中。每一紅外穿透畫素14包括彩色濾光片24。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。
請參閱第7圖,根據本發明的一實施例,提供一種光學裝置10。第7圖為光學裝置10的剖面示意圖。
如第7圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第7圖中,格柵結構18設置於基板20上。格柵結構18的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第7圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。紅外截止濾光片22覆蓋並填入格柵結構18中。彩色濾光片24設置於紅外截止濾光片22上。每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
在第7圖中,光學裝置10更包括複數個微透鏡(microlenses) 28,覆蓋紅外截止畫素12與紅外穿透畫素14,以利入射光的聚焦。
請參閱第8圖,根據本發明的一實施例,提供一種彩色濾光片馬賽克圖案100。第8圖為彩色濾光片馬賽克圖案100的排列的上視圖。
如第8圖所示,彩色濾光片馬賽克圖案(color-filter mosaic pattern) 100可視為類拜耳圖案(Bayer-like pattern)。彩色濾光片馬賽克圖案100包括第一彩色濾光片群組102、第二彩色濾光片群組104、第三彩色濾光片群組106、以及第四彩色濾光片群組108。第一彩色濾光片群組102包括兩個藍色濾光片B與兩個紅外穿透濾光片W,其中兩個藍色濾光片B彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第二彩色濾光片群組104包括兩個綠色濾光片G與兩個紅外穿透濾光片W,其中兩個綠色濾光片G彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第三彩色濾光片群組106包括兩個綠色濾光片G與兩個紅外穿透濾光片W,其中兩個綠色濾光片G彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第四彩色濾光片群組108包括兩個紅色濾光片R與兩個紅外穿透濾光片W,其中兩個紅色濾光片R彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。
請參閱第9圖,根據本發明的一實施例,提供一種彩色濾光片馬賽克圖案100。第9圖為彩色濾光片馬賽克圖案100的排列的上視圖。
如第9圖所示,彩色濾光片馬賽克圖案(color-filter mosaic pattern) 100可視為類拜耳圖案(Bayer-like pattern)。彩色濾光片馬賽克圖案100包括第一彩色濾光片群組102、第二彩色濾光片群組104、第三彩色濾光片群組106、以及第四彩色濾光片群組108。第一彩色濾光片群組102包括三個藍色濾光片B與一個紅外穿透濾光片W,其中一個藍色濾光片B與一個紅外穿透濾光片W彼此以對角線排列,另兩個藍色濾光片B彼此以對角線排列。第二彩色濾光片群組104包括三個綠色濾光片G與一個紅外穿透濾光片W,其中一個綠色濾光片G與一個紅外穿透濾光片W彼此以對角線排列,另兩個綠色濾光片G彼此以對角線排列。第三彩色濾光片群組106包括三個綠色濾光片G與一個紅外穿透濾光片W,其中一個綠色濾光片G與一個紅外穿透濾光片W彼此以對角線排列,另兩個綠色濾光片G彼此以對角線排列。第四彩色濾光片群組108包括三個紅色濾光片R與一個紅外穿透濾光片W,其中一個紅色濾光片R與一個紅外穿透濾光片W彼此以對角線排列,另兩個紅色濾光片R彼此以對角線排列。
請參閱第10圖,根據本發明的一實施例,提供一種彩色濾光片馬賽克圖案100。第10圖為彩色濾光片馬賽克圖案100的排列的上視圖。
如第10圖所示,彩色濾光片馬賽克圖案(color-filter mosaic pattern) 100可視為類拜耳圖案(Bayer-like pattern)。彩色濾光片馬賽克圖案100包括第一彩色濾光片群組102、第二彩色濾光片群組104、第三彩色濾光片群組106、以及第四彩色濾光片群組108。第一彩色濾光片群組102包括兩個藍色濾光片B與兩個紅外穿透濾光片W,其中一個藍色濾光片B與一個紅外穿透濾光片W彼此以對角線排列,另一個藍色濾光片B與另一個紅外穿透濾光片W彼此以對角線排列。第二彩色濾光片群組104包括兩個綠色濾光片G與兩個紅外穿透濾光片W,其中一個綠色濾光片G與一個紅外穿透濾光片W彼此以對角線排列,另一個綠色濾光片G與另一個紅外穿透濾光片W彼此以對角線排列。第三彩色濾光片群組106包括兩個綠色濾光片G與兩個紅外穿透濾光片W,其中一個綠色濾光片G與一個紅外穿透濾光片W彼此以對角線排列,另一個綠色濾光片G與另一個紅外穿透濾光片W彼此以對角線排列。第四彩色濾光片群組108包括兩個紅色濾光片R與兩個紅外穿透濾光片W,其中一個紅色濾光片R與一個紅外穿透濾光片W彼此以對角線排列,另一個紅色濾光片R與另一個紅外穿透濾光片W彼此以對角線排列。
請參閱第11圖,根據本發明的一實施例,提供一種彩色濾光片馬賽克圖案100。第11圖為彩色濾光片馬賽克圖案100的排列的上視圖。
如第11圖所示,彩色濾光片馬賽克圖案(color-filter mosaic pattern) 100可視為類拜耳圖案(Bayer-like pattern)。彩色濾光片馬賽克圖案100包括第一彩色濾光片群組102、第二彩色濾光片群組104、第三彩色濾光片群組106、以及第四彩色濾光片群組108。第一彩色濾光片群組102包括一個藍色濾光片B、一個綠色濾光片G與兩個紅外穿透濾光片W,其中一個藍色濾光片B與一個綠色濾光片G彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第二彩色濾光片群組104包括一個紅色濾光片R、一個綠色濾光片G與兩個紅外穿透濾光片W,其中一個紅色濾光片R與一個綠色濾光片G彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第三彩色濾光片群組106包括一個紅色濾光片R、一個綠色濾光片G與兩個紅外穿透濾光片W,其中一個紅色濾光片R與一個綠色濾光片G彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第四彩色濾光片群組108包括一個藍色濾光片B、一個綠色濾光片G與兩個紅外穿透濾光片W,其中一個藍色濾光片B與一個綠色濾光片G彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。
請參閱第12圖,根據本發明的一實施例,提供一種彩色濾光片馬賽克圖案100。第12圖為彩色濾光片馬賽克圖案100的排列的上視圖。
如第12圖所示,彩色濾光片馬賽克圖案(color-filter mosaic pattern) 100可視為類拜耳圖案(Bayer-like pattern)。彩色濾光片馬賽克圖案100包括第一彩色濾光片群組102、第二彩色濾光片群組104、第三彩色濾光片群組106、以及第四彩色濾光片群組108。第一彩色濾光片群組102包括一個藍色濾光片B、一個紅色濾光片R與兩個紅外穿透濾光片W,其中一個藍色濾光片B與一個紅色濾光片R彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第二彩色濾光片群組104包括一個綠色濾光片G、一個紅色濾光片R與兩個紅外穿透濾光片W,其中一個綠色濾光片G與一個紅色濾光片R彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第三彩色濾光片群組106包括一個綠色濾光片G、一個紅色濾光片R與兩個紅外穿透濾光片W,其中一個綠色濾光片G與一個紅色濾光片R彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第四彩色濾光片群組108包括一個藍色濾光片B、一個紅色濾光片R與兩個紅外穿透濾光片W,其中一個藍色濾光片B與一個紅色濾光片R彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。
請參閱第13圖,根據本發明的一實施例,提供一種彩色濾光片馬賽克圖案100。第13圖為彩色濾光片馬賽克圖案100的排列的上視圖。
如第13圖所示,彩色濾光片馬賽克圖案(color-filter mosaic pattern) 100可視為類拜耳圖案(Bayer-like pattern)。彩色濾光片馬賽克圖案100包括第一彩色濾光片群組102、第二彩色濾光片群組104、第三彩色濾光片群組106、以及第四彩色濾光片群組108。第一彩色濾光片群組102包括一個綠色濾光片G、一個藍色濾光片B與兩個紅外穿透濾光片W,其中一個綠色濾光片G與一個藍色濾光片B彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第二彩色濾光片群組104包括一個紅色濾光片R、一個藍色濾光片B與兩個紅外穿透濾光片W,其中一個紅色濾光片R與一個藍色濾光片B彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第三彩色濾光片群組106包括一個紅色濾光片R、一個藍色濾光片B與兩個紅外穿透濾光片W,其中一個紅色濾光片R與一個藍色濾光片B彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。第四彩色濾光片群組108包括一個綠色濾光片G、一個藍色濾光片B與兩個紅外穿透濾光片W,其中一個綠色濾光片G與一個藍色濾光片B彼此以對角線排列,兩個紅外穿透濾光片W彼此以對角線排列。
在第8-13圖中,藍色濾光片B (視為B畫素)接收藍光資訊,綠色濾光片G (視為G畫素)接收綠光資訊,紅色濾光片R (視為R畫素)接收紅光資訊,紅外穿透濾光片W (視為W畫素)接收全光資訊。為了重現每一畫素(包括W畫素、R畫素、G畫素、及B畫素)中所有需要的資訊(包括全光、紅光、綠光、及藍光資訊),於是對從每一畫素實際提取的資訊進行演算。請參閱第14-16圖,根據本發明的一實施例,藉由演算法重現目標畫素的部分所需資訊。第14圖為示例性彩色濾光片馬賽克圖案100 (類拜耳圖案)的排列的上視圖;第15圖顯示與彩色濾光片馬賽克圖案100相對應的加權因子矩陣200;第16圖顯示加權因子矩陣200與彩色濾光片馬賽克圖案100的結合。第14圖顯示在彩色濾光片馬賽克圖案100中紅色濾光片,例如,R11、R15、R22、R51、及R55的分布。值得注意的是,目標畫素110所需的紅光資訊是藉由收集從目標畫素110周圍的紅色畫素(例如,R11、R15、R22、R51、及R55)提取的資訊計算而來的。第15圖顯示在加權因子矩陣200中,不同加權因子,例如,W11、W12、W13、W14、W15、W21、W22、W23、W24、W25、W31、W32、W33、W34、W35、W41、W42、W43、W44、W45、W51、W52、W53、W54、及W55的分布。加權因子W33對應的權值為3。加權因子W22、W23、W24、W32、W34、W42、W43、及W44對應的權值為2。加權因子W11、W12、W13、W14、W15、W21、W25、W31、W35、W41、W45、W51、W52、W53、W54、及W55對應的權值為1。也就是,目標畫素110對應權值為3的加權因子W33,紅色畫素R11對應權值為1的加權因子W11,紅色畫素R15對應權值為1的加權因子W15,紅色畫素R22對應權值為2的加權因子W22,紅色畫素R51對應權值為1的加權因子W51,紅色畫素R55對應權值為1的加權因子W55。在第16圖中,彩色濾光片馬賽克圖案100與相對應的加權因子矩陣200進一步結合並藉由以下公式計算目標畫素110所需的紅光資訊。 R=(R11
Figure 02_image001
W11+R15
Figure 02_image003
W15+R22
Figure 02_image003
W22+R51
Figure 02_image003
W51+R55
Figure 02_image003
W55)/(W11+W15+W22+W51+W55)
在上述公式中,R代表--目標畫素110所需的紅光資訊,R11、R15、R22、R51、及R55代表--從目標畫素110周圍的紅色畫素(R11、R15、R22、R51、及R55)提取的紅光資訊,W11、W15、W22、W51、及W55代表--與從紅色畫素(R11、R15、R22、R51、及R55)提取的紅光資訊相對應的加權因子。經計算後,可獲得目標畫素110所需的紅光資訊。
在部分實施例中,目標畫素110所需的其他資訊,例如,綠光資訊、藍光資訊、及全光資訊亦可依此方式計算獲得。在部分實施例中,亦可指定其他畫素為目標畫素以計算其所需資訊。經演算法計算後,可重現每一畫素所有需要的資訊。也就是,本發明光學裝置可藉此呈現出最真實的顏色。
請參閱第17A-17E圖,根據本發明的一實施例,提供一種光學裝置的製造方法。第17A-17E圖為光學裝置製造方法的剖面示意圖。
首先,如第17A圖所示,提供基板20,其上設置有複數個網格16。
接著,如第17B圖所示,蝕刻部分的網格16,以形成複數個格柵結構18,留下部分的網格16,以進一步定義複數個紅外截止畫素(IR-cut pixels) 12與複數個紅外穿透畫素(IR-pass pixels) 14。值得注意的是,每一紅外截止畫素12包括一個格柵結構18。
接著,如第17C圖所示,形成紅外截止濾光片(IR-cut filter) 22,以覆蓋並填入每一紅外截止畫素12的格柵結構18中。
接著,如第17D圖所示,形成彩色濾光片24,位於每一紅外截止畫素12中的紅外截止濾光片22上。
接著,如第17E圖所示,形成紅外穿透濾光片(IR-pass filter) 26,位於每一紅外穿透畫素14中。至此,即製作完成本發明光學裝置10。
請參閱第18圖,根據本發明的一實施例,提供一種光學裝置10。第18圖為光學裝置10的剖面示意圖。
如第18圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第18圖中,每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。格柵結構18設置於延伸部26a中並露出於延伸部26a。格柵結構18的間距(pitch) P介於大約0.1微米至大約0.7微米之間。間距P定義為λ/sin θ (也就是,P=λ/sin θ)。在此公式中,λ為入射光IL的波長,θ為入射光IL通過格柵結構18的繞射角。此外,θ定義為tan -1D/x (也就是,θ=tan -1D/x)。在此公式中,D為紅外穿透濾光片26的延伸部26a的厚度,x為自相鄰紅外截止畫素12的中心C至入射光IL於繞射後進入紅外穿透畫素14的位置PS之間的距離。在部分實施例中,格柵結構18的材料與網格16的材料相同,例如,低折射率(low-refractive-index)有機材料。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第18圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。彩色濾光片24設置於紅外截止濾光片22上。在部分實施例中,網格16的高度h與紅外截止濾光片22加上彩色濾光片24的高度h’相同。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
設置於紅外穿透濾光片26的延伸部26a中並露出於延伸部26a且具有適當尺寸的格柵結構18可提升分光效果(light-splitting effect)。當具有不同波長的入射光IL通過格柵結構18時,入射光IL會產生不同的繞射角θ。長波長入射光(例如,紅外光)具有較大的繞射角θ。當紅外光產生繞射並進入紅外穿透濾光片26時,由於網格16具有適當高度,因此,可將紅外光捕捉在紅外穿透濾光片26內,進而提升紅外穿透畫素14對紅外光影像資訊的接收。
請參閱第19圖,根據本發明的一實施例,提供一種光學裝置10。第19圖為光學裝置10的剖面示意圖。
如第19圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第19圖中,每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。格柵結構18設置於延伸部26a中並露出於延伸部26a。格柵結構18的尺寸及材料類似第18圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第19圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。紅外截止濾光片22設置於彩色濾光片24上。在部分實施例中,網格16的高度h與紅外截止濾光片22加上彩色濾光片24的高度h’相同。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第20圖,根據本發明的一實施例,提供一種光學裝置10。第20圖為光學裝置10的剖面示意圖。
如第20圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第20圖中,每一紅外穿透畫素14包括彩色濾光片24。光學裝置10更包括紅外穿透濾光片(IR-pass filter) 26,覆蓋紅外截止畫素12與紅外穿透畫素14。格柵結構18設置於紅外穿透濾光片26中並露出於紅外穿透濾光片26。格柵結構18的尺寸及材料類似第18圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第20圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22。在部分實施例中,網格16的高度h與紅外截止濾光片22的高度h CUT相同。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第21圖,根據本發明的一實施例,提供一種光學裝置10。第21圖為光學裝置10的剖面示意圖。
如第21圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第21圖中,每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。格柵結構18設置於延伸部26a中並露出於延伸部26a。格柵結構18的尺寸及材料類似第18圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第21圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22。在部分實施例中,網格16的高度h與紅外截止濾光片22的高度h CUT相同。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第22圖,根據本發明的一實施例,提供一種光學裝置10。第22圖為光學裝置10的剖面示意圖。
如第22圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第22圖中,每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。格柵結構18設置於延伸部26a中並露出於延伸部26a。格柵結構18的尺寸及材料類似第18圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第22圖中,每一紅外截止畫素12包括彩色濾光片24。在部分實施例中,網格16的高度h與彩色濾光片24的高度h CF相同。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第23圖,根據本發明的一實施例,提供一種光學裝置10。第23圖為光學裝置10的剖面示意圖。
如第23圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第23圖中,每一紅外穿透畫素14包括彩色濾光片24。光學裝置10更包括紅外穿透濾光片(IR-pass filter) 26,覆蓋紅外截止畫素12與紅外穿透畫素14。格柵結構18設置於紅外穿透濾光片26中並露出於紅外穿透濾光片26。格柵結構18的尺寸及材料類似第18圖中的格柵結構18,此處不再重述。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第23圖中,每一紅外截止畫素12包括彩色濾光片24。在部分實施例中,網格16的高度h與彩色濾光片24的高度h CF相同。在部分實施例中,在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第24圖,根據本發明的一實施例,提供一種光學裝置10。第24圖為光學裝置10的剖面示意圖。
如第24圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第24圖中,每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。格柵結構18設置於延伸部26a中並露出於延伸部26a。格柵結構18包括複數個分離部,例如,第一分離部18’、第二分離部18’’、以及第三分離部18’’’。第一分離部18’位於紅外截止畫素12的中心C,第三分離部18’’’鄰近紅外截止畫素12的邊緣E,第二分離部18’’位於第一分離部18’與第三分離部18’’’之間。該些分離部具有可變的間距(屬於多週期(multi-period)結構),例如,第一分離部18’與第二分離部18’’之間的間距S1大於第二分離部18’’與第三分離部18’’’之間的間距S2。在部分實施例中,格柵結構18的材料與網格16的材料相同,例如,低折射率有機材料。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第24圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。彩色濾光片24設置於紅外截止濾光片22上。在部分實施例中,網格16的高度h與紅外截止濾光片22加上彩色濾光片24的高度h’相同。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第25圖,根據本發明的一實施例,提供一種光學裝置10。第25圖為光學裝置10的剖面示意圖。
如第25圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括格柵結構18。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第25圖中,每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。格柵結構18設置於延伸部26a中並露出於延伸部26a。格柵結構18包括複數個分離部,例如,第一分離部18’、第二分離部18’’、以及第三分離部18’’’。第一分離部18’位於紅外截止畫素12的中心C,第三分離部18’’’鄰近紅外截止畫素12的邊緣E,第二分離部18’’位於第一分離部18’與第三分離部18’’’之間。該些分離部具有可變的高度(屬於多階(multi-order)結構)。該些分離部(例如,18’、18’’、及18’’’)的高度自紅外截止畫素12的中心C至邊緣E遞增,例如,第三分離部18’’’的高度h3大於第二分離部18’’的高度h2,第二分離部18’’的高度h2大於第一分離部18’的高度h1。在部分實施例中,該些分離部(例如,18’、18’’、及18’’’)的高度自紅外截止畫素12的中心C至邊緣E遞減,例如,第一分離部18’的高度h1大於第二分離部18’’的高度h2,第二分離部18’’的高度h2大於第三分離部18’’’的高度h3 (未圖示)。在部分實施例中,格柵結構18的材料與網格16的材料相同,例如,低折射率有機材料。格柵結構18設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第25圖中,每一紅外截止畫素12包括彩色濾光片24。在部分實施例中,網格16的高度h與彩色濾光片24的高度h CF相同。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第26圖,根據本發明的一實施例,提供一種光學裝置10。第26圖為光學裝置10的剖面示意圖。
如第26圖所示,光學裝置10包括複數個紅外截止畫素(IR-cut pixels) 12、複數個紅外穿透畫素(IR-pass pixels) 14、以及複數個網格16。每一紅外截止畫素12包括兩個格柵結構,例如,第一格柵結構18a與第二格柵結構18b。網格16設置於基板20上,包圍紅外截止畫素12與紅外穿透畫素14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
在第26圖中,第一格柵結構18a設置於基板20上。第一格柵結構18a的尺寸及材料類似第1圖中的格柵結構18,此處不再重述。第一格柵結構18a設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。
在第26圖中,每一紅外截止畫素12包括紅外截止濾光片(IR-cut filter) 22與彩色濾光片24。紅外截止濾光片22覆蓋並填入第一格柵結構18a中。彩色濾光片24設置於紅外截止濾光片22上。每一紅外穿透畫素14包括紅外穿透濾光片(IR-pass filter) 26。紅外穿透濾光片26進一步朝遠離基板20的方向延伸並覆蓋相鄰的紅外截止畫素12,以於相鄰的紅外截止畫素12上形成延伸部26a。第二格柵結構18b設置於延伸部26a中並露出於延伸部26a。第二格柵結構18b的尺寸及材料類似第18圖中的格柵結構18,此處不再重述。同樣地,第二格柵結構18b設計用於濾除紅外光(例如,850nm或940nm),但本發明不限於此。在部分實施例中,網格16的高度h與紅外截止濾光片22加上彩色濾光片24的高度h’相同。在部分實施例中,紅外截止濾光片22表示可濾除紅外光的濾光片。在部分實施例中,彩色濾光片24包括紅色(R)濾光片、綠色(G)濾光片、或藍色(B)濾光片。在部分實施例中,紅外穿透濾光片26表示可允許紅外光通過的濾光片。
請參閱第27A-27E圖,根據本發明的一實施例,提供一種光學裝置的製造方法。第27A-27E圖為光學裝置製造方法的剖面示意圖。
首先,如第27A圖所示,提供基板20,其上設置有複數個網格16。網格16定義複數個紅外截止畫素(IR-cut pixels) 12與複數個紅外穿透畫素(IR-pass pixels) 14。在部分實施例中,網格16包括任何適合的低折射率(low-refractive-index)有機材料。
接著,如第27B圖所示,形成紅外截止濾光片(IR-cut filter) 22,位於每一紅外截止畫素12中。
接著,如第27C圖所示,形成彩色濾光片24,位於每一紅外截止畫素12中的紅外截止濾光片22上。
接著,如第27D圖所示,形成紅外穿透濾光片(IR-pass filter) 26,位於每一紅外穿透畫素14中,並朝遠離基板20的方向延伸覆蓋相鄰的紅外截止畫素12。
接著,如第27E圖所示,設置格柵結構18於紅外穿透濾光片26中並使其露出於紅外穿透濾光片26。在部分實施例中,格柵結構18的材料與網格16的材料相同,例如,低折射率有機材料。至此,即製作完成本發明光學裝置10。
本發明提供設置於紅外截止畫素(IR-cut pixels)內基板上且具有特定尺寸(例如,特定間距及高度)的格柵結構。當紅外光進入格柵結構時,紅外光在格柵結構內形成共振(波導)模態,並隨之反射出紅外截止畫素。格柵結構的設置可降低紅外光在紅外截止畫素中的穿透率,而增加紅外光在紅外截止畫素中的反射率。因此,不期望紅外光穿透的畫素(例如,紅外截止畫素)不會接收到紅外光,有效降低了串擾(crosstalk)。也就是,大幅提升紅外截止畫素濾除紅外光的能力。
在本發明中,設置在紅外截止畫素內,位於延伸的紅外穿透濾光片(IR-pass filter)中並露出於紅外穿透濾光片且具有適當尺寸的格柵結構可提升分光效果(light-splitting effect)。當具有不同波長的入射光通過格柵結構時,入射光會產生不同的繞射角。特別是,長波長入射光(例如,紅外光)具有較大的繞射角。因此,當紅外光產生繞射並進入紅外穿透濾光片時,由於低折射率的網格具有適當高度,因此,可將紅外光捕捉在紅外穿透濾光片內,進而提升紅外穿透畫素(IR-pass pixels)對紅外光影像資訊的接收。
此外,每一目標畫素所需的影像資訊,例如,紅光資訊、綠光資訊、藍光資訊、及全光資訊可藉由本發明提供的演算法(結合加權因子矩陣(weighting factor matrix)與彩色濾光片馬賽克圖案(color-filter mosaic pattern))而重現。因此,本發明光學裝置可呈現出最真實的顏色。
雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,本揭露所屬技術領域中具有通常知識者可從本揭露實施例內容中理解,現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以與在此處所述實施例中實現大抵相同功能或獲得大抵相同結果者皆可根據本揭露實施例使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。此外,本揭露之保護範圍當視後附之申請專利範圍所界定為準。
10:光學裝置 12:紅外截止畫素 14:紅外穿透畫素 16:網格 18:格柵結構 18’:格柵結構的第一分離部 18’’:格柵結構的第二分離部 18’’’:格柵結構的第三分離部 18a:第一格柵結構 18b:第二格柵結構 20:基板 22:紅外截止濾光片 24:彩色濾光片 26:紅外穿透濾光片 26a:紅外穿透濾光片的延伸部 28:微透鏡 100:彩色濾光片馬賽克圖案 102:第一彩色濾光片群組 104:第二彩色濾光片群組 106:第三彩色濾光片群組 108:第四彩色濾光片群組 110:目標畫素 200:加權因子矩陣 B:藍色濾光片(畫素) C:紅外截止畫素的中心 D:紅外穿透濾光片的延伸部的厚度 E:紅外截止畫素的邊緣 G:綠色濾光片(畫素) H:格柵結構的高度 h:網格的高度 h’:紅外截止濾光片加上彩色濾光片的高度 h1:格柵結構第一分離部的高度 h2:格柵結構第二分離部的高度 h3:格柵結構第三分離部的高度 h CF:彩色濾光片的高度 h CUT:紅外截止濾光片的高度 IL:入射光 P:格柵結構的間距 PS:入射光於繞射後進入紅外穿透畫素的位置 R:紅色濾光片(畫素) R11,R15,R22,R51,R55:紅色濾光片(畫素) S1:格柵結構第一分離部與第二分離部之間的間距 S2:格柵結構第二分離部與第三分離部之間的間距 W:紅外穿透濾光片(畫素) W11,W12,W13,W14,W15,W21,W22,W23,W24,W25,W31,W32,W33,W34,W35,W41,W42,W43,W44,W45,W51,W52,W53,W54,W55:加權因子 x:自相鄰紅外截止畫素的中心至入射光於繞射後進入紅外穿透畫素的位置之間的距離 λ:入射光的波長 θ:入射光通過格柵結構的繞射角
藉由閱讀後續的實施方式和範例並參考所附圖式,可更完全地理解本發明,其中: 第1圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第2圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第3圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第4圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第5圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第6圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第7圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第8圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第9圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第10圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第11圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第12圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第13圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第14圖係根據本發明的一實施例,一種彩色濾光片馬賽克圖案排列的上視圖; 第15圖係根據本發明的一實施例,顯示與彩色濾光片馬賽克圖案相對應的加權因子矩陣; 第16圖係根據本發明的一實施例,顯示加權因子矩陣與彩色濾光片馬賽克圖案的結合; 第17A-17E圖係根據本發明的一實施例,一種光學裝置製造方法的剖面示意圖; 第18圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第19圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第20圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第21圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第22圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第23圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第24圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第25圖係根據本發明的一實施例,一種光學裝置的剖面示意圖; 第26圖係根據本發明的一實施例,一種光學裝置的剖面示意圖;以及 第27A-27E圖係根據本發明的一實施例,一種光學裝置製造方法的剖面示意圖。
10:光學裝置
12:紅外截止畫素
14:紅外穿透畫素
16:網格
18:格柵結構
20:基板
22:紅外截止濾光片
24:彩色濾光片
26:紅外穿透濾光片
H:格柵結構的高度
P:格柵結構的間距

Claims (10)

  1. 一種光學裝置,包括:複數個紅外截止畫素,其中每一紅外截止畫素包括一第一格柵結構;複數個紅外穿透畫素;以及複數個網格,包圍該等紅外截止畫素與該等紅外穿透畫素,其中每一紅外截止畫素更包括一紅外截止濾光片與一彩色濾光片,該紅外截止濾光片覆蓋並填入該第一格柵結構中,且該彩色濾光片設置於該紅外截止濾光片上;或者該彩色濾光片覆蓋並填入該第一格柵結構中,且該紅外截止濾光片設置於該彩色濾光片上。
  2. 如請求項1所述的光學裝置,其中該第一格柵結構的間距介於0.1微米至0.7微米之間,且高度介於0.05微米至0.5微米之間。
  3. 如請求項1所述的光學裝置,其中每一紅外穿透畫素包括一紅外穿透濾光片或一彩色濾光片。
  4. 如請求項1所述的光學裝置,更包括複數個微透鏡,位於該等紅外截止畫素與該等紅外穿透畫素上。
  5. 如請求項1所述的光學裝置,其中每一紅外截止畫素更包括一紅外穿透濾光片,該第一格柵結構設置於該紅外穿透濾光片的上表面,且該第一格柵結構的間距介於0.1微米至0.7微米之間。
  6. 如請求項5所述的光學裝置,其中該間距定義為λ/sin θ,λ為入射光的波長,θ為該入射光通過該第一格柵結構的繞射角,其中θ定義為tan-1 D/x,D為該紅外穿透濾光片的厚度,x為 自該紅外截止畫素的中心至該入射光於繞射後進入相鄰紅外穿透畫素的位置之間的距離。
  7. 如請求項5所述的光學裝置,其中每一紅外截止畫素更包括一第二格柵結構與一紅外截止濾光片,該第二格柵結構位於該第一格柵結構下方,且該紅外截止濾光片覆蓋並填入該第二格柵結構中。
  8. 如請求項5所述的光學裝置,其中每一紅外截止畫素更包括一第二格柵結構與一彩色濾光片,該第二格柵結構位於該第一格柵結構下方,且該彩色濾光片覆蓋並填入該第二格柵結構中。
  9. 如請求項1所述的光學裝置,其中每一網格包括低折射率有機材料,且該第一格柵結構與該等網格具有相同材料。
  10. 一種光學裝置的製造方法,包括:提供一基板,具有複數個網格;蝕刻部分的該等網格,以形成複數個格柵結構,留下部分的該等網格,以定義複數個紅外截止畫素與複數個紅外穿透畫素,其中每一紅外截止畫素包括一格柵結構;形成一紅外截止濾光片,以覆蓋並填入每一紅外截止畫素的該格柵結構中;形成一彩色濾光片,位於每一紅外截止畫素中的該紅外截止濾光片上;以及形成一紅外穿透濾光片,位於每一紅外穿透畫素中。
TW110120860A 2021-03-12 2021-06-09 光學裝置及其製造方法 TWI786668B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/199,987 US11796723B2 (en) 2021-03-12 2021-03-12 Optical devices
US17/199,987 2021-03-12

Publications (2)

Publication Number Publication Date
TW202235923A TW202235923A (zh) 2022-09-16
TWI786668B true TWI786668B (zh) 2022-12-11

Family

ID=83193687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120860A TWI786668B (zh) 2021-03-12 2021-06-09 光學裝置及其製造方法

Country Status (2)

Country Link
US (1) US11796723B2 (zh)
TW (1) TWI786668B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114024A (en) * 2009-06-23 2011-04-16 Nokia Corp Color filters for sub-diffraction limit sensors
CN110137195A (zh) * 2019-05-16 2019-08-16 芯盟科技有限公司 图像传感器及其形成方法
CN110729314A (zh) * 2018-07-17 2020-01-24 联华电子股份有限公司 光学感测装置
CN111048535A (zh) * 2018-10-15 2020-04-21 联华电子股份有限公司 影像传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808023B2 (en) * 2005-08-24 2010-10-05 Aptina Imaging Corporation Method and apparatus providing integrated color pixel with buried sub-wavelength gratings in solid state imagers
US7714368B2 (en) * 2006-06-26 2010-05-11 Aptina Imaging Corporation Method and apparatus providing imager pixel array with grating structure and imager device containing the same
US7858921B2 (en) * 2008-05-05 2010-12-28 Aptina Imaging Corporation Guided-mode-resonance transmission color filters for color generation in CMOS image sensors
US9945718B2 (en) * 2015-01-07 2018-04-17 Semiconductor Components Industries, Llc Image sensors with multi-functional pixel clusters
US11069730B2 (en) * 2016-09-02 2021-07-20 Sony Semiconductor Solutions Corporation Solid-state imaging apparatus, method for manufacturing the same, and electronic device
TWI756388B (zh) * 2017-03-24 2022-03-01 日商富士軟片股份有限公司 結構體、近紅外線透射濾波層形成用組成物及光感測器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201114024A (en) * 2009-06-23 2011-04-16 Nokia Corp Color filters for sub-diffraction limit sensors
CN110729314A (zh) * 2018-07-17 2020-01-24 联华电子股份有限公司 光学感测装置
CN111048535A (zh) * 2018-10-15 2020-04-21 联华电子股份有限公司 影像传感器
CN110137195A (zh) * 2019-05-16 2019-08-16 芯盟科技有限公司 图像传感器及其形成方法

Also Published As

Publication number Publication date
US11796723B2 (en) 2023-10-24
TW202235923A (zh) 2022-09-16
US20220291431A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US9853073B2 (en) Image sensor for producing vivid colors and method of manufacturing the same
JP5121764B2 (ja) 固体撮像装置
JP6813319B2 (ja) 色分離素子を含むイメージセンサ、およびイメージセンサを含む撮像装置
TWI548072B (zh) 像素陣列之介電阻障
JP6166640B2 (ja) 固体撮像装置、その製造方法及びカメラ
JP5037044B2 (ja) カラー・イメージ・センサ
EP3147959B1 (en) Method of manufacturing an optical apparatus including an optical functional layer having high refractive index
US11323608B2 (en) Image sensors with phase detection auto-focus pixels
JP2009534700A (ja) マイクロ−構造スペクトルフィルター及び画像センサー
KR100628231B1 (ko) 사각 마이크로렌즈를 갖는 이미지 센서 및 그 제조방법
US9673241B2 (en) Light-condensing unit, solid-state image sensor, and image capture device
JP2014138142A (ja) 固体撮像素子および撮像装置
CN107037519A (zh) 分色器结构及其制造方法、图像传感器及光学设备
KR100900682B1 (ko) 이미지센서 및 그 제조방법
TW201608712A (zh) 影像感測裝置及其製造方法
US8848092B2 (en) Solid-state imaging device and electronic apparatus
KR100720461B1 (ko) 이미지 센서 및 그의 제조방법
US9293488B2 (en) Image sensing device
TWI786668B (zh) 光學裝置及其製造方法
JP4784052B2 (ja) 固体撮像素子
US20210091130A1 (en) Image sensor with micro-structured color filter
US9257469B2 (en) Color imaging device
JP7364066B2 (ja) 撮像素子及び撮像装置
WO2023021632A1 (ja) 光学素子、撮像素子及び撮像装置
WO2022113363A1 (ja) 光学素子、撮像素子及び撮像装置