TWI784804B - 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法 - Google Patents

時脈重整電路模組、訊號傳輸系統及訊號傳輸方法 Download PDF

Info

Publication number
TWI784804B
TWI784804B TW110143270A TW110143270A TWI784804B TW I784804 B TWI784804 B TW I784804B TW 110143270 A TW110143270 A TW 110143270A TW 110143270 A TW110143270 A TW 110143270A TW I784804 B TWI784804 B TW I784804B
Authority
TW
Taiwan
Prior art keywords
signal transmission
path
circuit
signal
transmission path
Prior art date
Application number
TW110143270A
Other languages
English (en)
Other versions
TW202321861A (zh
Inventor
張峻瑋
蕭景瑞
吳仁鉅
郭育瑋
Original Assignee
群聯電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群聯電子股份有限公司 filed Critical 群聯電子股份有限公司
Priority to TW110143270A priority Critical patent/TWI784804B/zh
Priority to US17/543,741 priority patent/US11757684B2/en
Application granted granted Critical
Publication of TWI784804B publication Critical patent/TWI784804B/zh
Publication of TW202321861A publication Critical patent/TW202321861A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4904Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using self-synchronising codes, e.g. split-phase codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Noise Elimination (AREA)

Abstract

一種時脈重整電路模組、訊號傳輸系統及訊號傳輸方法。時脈重整電路模組包括路徑控制電路與多路徑訊號傳輸電路。多路徑訊號傳輸電路內建第一訊號傳輸路徑及第二訊號傳輸路徑。多路徑訊號傳輸電路可基於第一訊號傳輸頻率與第二訊號傳輸路徑執行上游裝置與下游裝置之間的第一訊號傳輸。在執行第一訊號傳輸之期間,路徑控制電路可偵測在上游裝置與下游裝置之間傳輸的第一資料序列。路徑控制電路可根據第一資料序列控制多路徑訊號傳輸電路切換至基於第一訊號傳輸頻率與第一訊號傳輸路徑執行上游裝置與下游裝置之間的第二訊號傳輸。

Description

時脈重整電路模組、訊號傳輸系統及訊號傳輸方法
本發明是有關於一種訊號傳輸電路,且特別是有關於一種時脈重整電路模組、訊號傳輸系統及訊號傳輸方法。
隨著印刷電路板上的訊號傳輸速度越來越快,訊號在傳輸過程中產生的衰減也越來越嚴重。因此,實務上往往會在上游元件(upstream component)與下游元件(downstream component)之間加入時脈重整器(Retimer),以延長訊號傳輸距離。然而,在訊號傳輸路徑上增加時脈重整器,雖然可延長訊號傳輸距離,但也會相應增加資料傳輸的延遲時間。此外,在調整訊號傳輸頻率的期間,訊號接收端的等化器(equalizer)電路也需花費一段時間進行校正。因此,如何在調整訊號傳輸頻率的期間提高訊號接收端的等化器校正效率,實為相關領域技術人員所致力研究的課題之一。
本發明提供一種時脈重整電路模組、訊號傳輸系統及訊號傳輸方法,可在調整訊號傳輸頻率的期間提高訊號接收端的等化器校正效率。
本發明的範例實施例提供一種時脈重整電路模組,其適於執行上游裝置與下游裝置之間的訊號傳輸。所述時脈重整電路模組包括路徑控制電路與多路徑訊號傳輸電路。所述多路徑訊號傳輸電路耦接至所述路徑控制電路。所述多路徑訊號傳輸電路內建第一訊號傳輸路徑及第二訊號傳輸路徑。所述多路徑訊號傳輸電路用以基於第一訊號傳輸頻率與所述第二訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第一訊號傳輸。在執行所述第一訊號傳輸之期間,所述路徑控制電路用以偵測在所述上游裝置與所述下游裝置之間傳輸的第一資料序列。所述路徑控制電路更用以根據所述第一資料序列控制所述多路徑訊號傳輸電路切換至基於所述第一訊號傳輸頻率與所述第一訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第二訊號傳輸。
在本發明的一範例實施例中,所述第一訊號傳輸路徑的訊號延遲高於所述第二訊號傳輸路徑的訊號延遲。
在本發明的一範例實施例中,所述第一資料序列帶有指示調整訊號傳輸頻率之資訊。
在本發明的一範例實施例中,在執行所述第二訊號傳輸之後,所述多路徑訊號傳輸電路更用以切換至基於第二訊號傳輸頻率與所述第一訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第三訊號傳輸,並且所述第二訊號傳輸頻率不同於所述第一訊號傳輸頻率。
在本發明的一範例實施例中,在執行所述第三訊號傳輸之期間,所述路徑控制電路更用以偵測在所述上游裝置與所述下游裝置之間傳輸的第二資料序列。所述路徑控制電路更用以根據所述第二資料序列控制所述多路徑訊號傳輸電路切換至基於所述第二訊號傳輸頻率與所述第二訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第四訊號傳輸。
在本發明的一範例實施例中,所述第二資料序列帶有指示等化器校正完成之資訊。
在本發明的一範例實施例中,所述的時脈重整電路模組更包括資料處理電路。所述資料處理電路耦接至所述第一訊號傳輸路徑。在執行所述第二訊號傳輸之期間,所述資料處理電路用以修改經由所述第一訊號傳輸路徑傳輸的第三資料序列,並且所述多路徑訊號傳輸電路更用以經由所述第一訊號傳輸路徑輸出經修改的所述第三資料序列。
在本發明的一範例實施例中,所述第三資料序列帶有等化器電路的設定資訊。
在本發明的一範例實施例中,所述上游裝置與所述下游裝置的至少其中之一用以根據經修改的所述第三資料序列設定等化器電路之參數。
在本發明的一範例實施例中,所述多路徑訊號傳輸電路更包括多工器電路。所述多工器電路耦接至所述路徑控制電路及所述多個訊號傳輸路徑。所述多工器電路用以根據所述路徑控制電路的指示導通所述多個訊號傳輸路徑的其中之一。
在本發明的一範例實施例中,所述時脈重整電路模組更包括訊號接收電路與訊號輸出電路。所述訊號接收電路耦接至所述多路徑訊號傳輸電路的輸入端。所述訊號輸出電路耦接至所述多路徑訊號傳輸電路的輸出端。所述訊號接收電路用以接收第一訊號並輸出第二訊號。所述路徑控制電路更用以導通所述多個訊號傳輸路徑的其中之一作為目標訊號傳輸路徑。所述多路徑訊號傳輸電路更用以基於所述目標訊號傳輸路徑從所述訊號接收電路接收所述第二訊號並輸出第三訊號。所述訊號輸出電路更用以從所述多路徑訊號傳輸電路接收所述第三訊號並輸出第四訊號。
在本發明的一範例實施例中,所述多路徑訊號傳輸電路包括多個處理電路與至少一緩存電路。所述多個處理電路耦接至所述第一訊號傳輸路徑並且用以解析及處理經由所述第一訊號傳輸路徑傳輸的訊號。所述至少一緩存電路耦接至所述第二訊號傳輸路徑並且用以緩存經由所述第二訊號傳輸路徑傳輸的訊號。
在本發明的一範例實施例中,所述第一訊號傳輸路徑為並列訊號傳輸路徑,且所述第二訊號傳輸路徑為串列訊號傳輸路徑。
在本發明的一範例實施例中,所述第一訊號傳輸路徑與第二訊號傳輸路徑皆為並列訊號傳輸路徑。
本發明的範例實施例另提供一種訊號傳輸系統,其包括上游裝置、下游裝置及時脈重整電路模組。所述時脈重整電路模組耦接於所述上游裝置與所述下游裝置之間,以執行所述上游裝置與所述下游裝置之間的訊號傳輸。所述時脈重整電路模組包括多個訊號傳輸路徑。所述時脈重整電路模組用以基於第一訊號傳輸頻率與所述多個訊號傳輸路徑中的第二訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第一訊號傳輸。在執行所述第一訊號傳輸之期間,所述時脈重整電路模組更用以偵測在所述上游裝置與所述下游裝置之間傳輸的第一資料序列。所述時脈重整電路模組更用以根據所述第一資料序列切換至基於所述第一訊號傳輸頻率所述多個訊號傳輸路徑中的第一訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第二訊號傳輸。
在本發明的一範例實施例中,在執行所述第二訊號傳輸之後,所述時脈重整電路模組更用以切換至基於第二訊號傳輸頻率與所述第一訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第三訊號傳輸,並且所述第二訊號傳輸頻率不同於所述第一訊號傳輸頻率。
在本發明的一範例實施例中,在執行所述第三訊號傳輸之期間,所述時脈重整電路模組更用以偵測在所述上游裝置與所述下游裝置之間傳輸的第二資料序列。所述時脈重整電路模組更用以根據所述第二資料序列切換至基於所述第二訊號傳輸頻率與所述第二訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第四訊號傳輸。
在本發明的一範例實施例中,在執行所述第二訊號傳輸之期間,所述時脈重整電路模組更用以修改經由所述第一訊號傳輸路徑傳輸的第三資料序列,並且所述多路徑訊號傳輸電路更用以經由所述第一訊號傳輸路徑輸出經修改的所述第三資料序列。
在本發明的一範例實施例中,所述上游裝置與所述下游裝置的至少其中之一用以根據經修改的所述第三資料序列設定等化器電路之參數。
在本發明的一範例實施例中,所述時脈重整電路模組包括路徑控制電路與多工器電路。所述多工器電路耦接至所述路徑控制電路。所述多工器電路用以根據所述路徑控制電路的指示導通所述多個訊號傳輸路徑的其中之一。
在本發明的一範例實施例中,所述時脈重整電路模組包括路徑控制電路、多路徑訊號傳輸電路、訊號接收電路及訊號輸出電路。所述多路徑訊號傳輸電路耦接至所述路徑控制電路。所述訊號接收電路耦接至所述多路徑訊號傳輸電路的輸入端。所述訊號輸出電路耦接至所述多路徑訊號傳輸電路的輸出端。所述多路徑訊號傳輸電路包括所述多個訊號傳輸路徑。所述訊號接收電路用以接收第一訊號並輸出第二訊號。所述路徑控制電路用以導通所述多個訊號傳輸路徑的其中之一作為目標訊號傳輸路徑。所述多路徑訊號傳輸電路用以基於所述目標訊號傳輸路徑從所述訊號接收電路接收所述第二訊號並輸出第三訊號。所述訊號輸出電路更用以從所述多路徑訊號傳輸電路接收所述第三訊號並輸出第四訊號。
在本發明的一範例實施例中,所述時脈重整電路模組包括多個處理電路與至少一緩存電路。所述多個處理電路耦接至所述第一訊號傳輸路徑並且用以解析與處理經由所述第一訊號傳輸路徑傳輸的訊號。所述至少一緩存電路耦接至所述第二訊號傳輸路徑並且用以緩存經由所述第二訊號傳輸路徑傳輸的訊號。
本發明的範例實施例另提供一種訊號傳輸方法,其用於時脈重整電路模組。所述訊號傳輸方法包括:基於第一訊號傳輸頻率與所述時脈重整電路模組的多個訊號傳輸路徑中的第二訊號傳輸路徑執行上游裝置與下游裝置之間的第一訊號傳輸;在執行所述第一訊號傳輸之期間,偵測在所述上游裝置與所述下游裝置之間傳輸的第一資料序列;以及根據所述第一資料序列切換至基於所述第一訊號傳輸頻率與所述多個訊號傳輸路徑中的第一訊號傳輸路徑執行所述上游裝置與所述下游裝置之間的第二訊號傳輸。
基於上述,時脈重整電路模組可基於第一訊號傳輸頻率與多個訊號傳輸路徑中的第二訊號傳輸路徑執行上游裝置與下游裝置之間的第一訊號傳輸。在執行第一訊號傳輸之期間,時脈重整電路模組可偵測在上游裝置與下游裝置之間傳輸的第一資料序列。根據所述第一資料序列,時脈重整電路模組可切換至基於所述第一訊號傳輸頻率與所述多個訊號傳輸路徑中的第一訊號傳輸路徑執行上游裝置與下游裝置之間的第二訊號傳輸。透過在訊號傳輸頻率發生改變之前就提早切換訊號傳輸路徑,可在調整訊號傳輸頻率的期間有效提高訊號接收端的等化器校正效率。
以下提出多個範例實施例來說明本發明,然而本發明不僅限於所例示的多個範例實施例。又範例實施例之間也允許有適當的結合。在本案說明書全文(包括申請專利範圍)中所使用的「耦接」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。此外,「訊號」一詞可指至少一電流、電壓、電荷、溫度、資料、或任何其他一或多個訊號。
圖1是根據本發明的範例實施例所繪示的訊號傳輸系統的示意圖。請參照圖1,訊號傳輸系統100包括時脈重整(retiming)電路模組10、上游(upstream)裝置11及下游(downstream)裝置12。時脈重整電路模組10適於耦接於上游裝置11與下游裝置12之間,以執行上游裝置11與下游裝置12之間的訊號傳輸(即,將從上游裝置11接收到的訊號傳送至下游裝置12,或者將從下游裝置12接收到的訊號傳送至上游裝置11)。例如,時脈重整電路模組10可包括時脈重整器(retimer)或具類似功能的電路模組。例如,上游裝置11與下游裝置12可包括任意支援訊號傳輸功能的電子元件。
在一範例實施例中,時脈重整電路模組10可用以對上游裝置11與下游裝置12之間傳輸的訊號執行訊號緩存(buffering)、訊號重取樣(resampling)、訊號的序列轉並列(serial to parallel, S2P)、訊號的並列轉序列(parallel to serial, P2S)、訊號內容解析、訊號內容修改及訊號重送等訊號處理,以延長上游裝置11與下游裝置12之間的訊號傳輸距離及/或提高上游裝置11與下游裝置12之間的訊號傳輸品質。此外,時脈重整電路模組10、上游裝置11及下游裝置12可設置於一或多個電路板上。
時脈重整電路模組10可包括路徑控制電路110與多路徑訊號傳輸電路120。路徑控制電路110耦接至多路徑訊號傳輸電路120。多路徑訊號傳輸電路120可包括訊號傳輸路徑(亦稱為第一訊號傳輸路徑)101與訊號傳輸路徑(亦稱為第二訊號傳輸路徑)102。路徑控制電路110可在不同時間點指示多路徑訊號傳輸電路120基於訊號傳輸路徑101與102的其中之一來執行上游裝置11與下游裝置12之間的訊號傳輸。
在一範例實施例中,訊號傳輸路徑101的訊號延遲可高於訊號傳輸路徑102的訊號延遲。因此,訊號傳輸路徑101亦稱為長延遲路徑(long latency path)或資料分析路徑,且訊號傳輸路徑102相對於訊號傳輸路徑101亦稱為短延遲路徑(short latency path)。在一範例實施例中,訊號傳輸路徑101的訊號延遲高於訊號傳輸路徑102的訊號延遲,表示訊號傳輸路徑101的訊號傳輸速度低於訊號傳輸路徑102的訊號傳輸速度。
在一範例實施例中,訊號傳輸路徑101為並列訊號傳輸路徑,且訊號傳輸路徑102為串列訊號傳輸路徑。例如,訊號傳輸路徑101可包括多個平行訊號傳輸通道,以執行平行訊號傳輸。訊號傳輸路徑102則僅包含單一訊號傳輸通道,而無法執行平行訊號傳輸。
在一範例實施例中,訊號傳輸路徑101與102皆為並列訊號傳輸路徑。例如,訊號傳輸路徑101可包括多個第一平行訊號傳輸通道,訊號傳輸路徑102可包括多個第二平行訊號傳輸通道,且訊號傳輸路徑101與102皆可執行平行訊號傳輸。第一平行訊號傳輸通道的總數可相同或不同於第二平行訊號傳輸通道的總數。
圖2是根據本發明的範例實施例所繪示的時脈重整電路模組的示意圖。請參照圖1與圖2,時脈重整電路模組10可包括路徑控制電路110、多路徑訊號傳輸電路120、訊號接收電路210及訊號輸出電路220。訊號接收電路210耦接至多路徑訊號傳輸電路120的輸入端。訊號輸出電路220耦接至多路徑訊號傳輸電路120的輸出端。
訊號接收電路210可接收訊號(亦稱為第一訊號)S1並輸出訊號(亦稱為第二訊號)S2。訊號S1可包括上游裝置11發出且欲傳送給下游裝置12的訊號,或者由下游裝置12發出且欲傳送給上游裝置11的訊號。
多路徑訊號傳輸電路120可包括多工器電路103。多工器電路103耦接至路徑控制電路110、訊號傳輸路徑101、訊號傳輸路徑102及訊號輸出電路220。路徑控制電路110可控制多工器電路103導通訊號傳輸路徑101與102的其中之一。例如,多工器電路103可發送訊號(亦稱為選擇訊號)SEL至多工器電路103。多工器電路103可響應於訊號SEL導通訊號傳輸路徑101或102。所導通的訊號傳輸路徑可被視為目標訊號傳輸路徑。例如,假設目標訊號傳輸路徑為訊號傳輸路徑101,則訊號傳輸路徑101中的至少一個訊號通道可被用於接收訊號S2並輸出訊號S3。或者,假設目標訊號傳輸路徑為訊號傳輸路徑102,則訊號傳輸路徑102中的至少一個訊號通道可被用於接收訊號S2並輸出訊號S3。
多路徑訊號傳輸電路120可基於目標訊號傳輸路徑從訊號接收電路210接收訊號S2並輸出訊號(亦稱為第三訊號)S3。例如,多工器電路103可從訊號傳輸路徑101與102的其中之一接收訊號S3並訊號S3傳遞至訊號輸出電路220。
訊號輸出電路220可從多路徑訊號傳輸電路120接收訊號S3並輸出訊號(亦稱為第四訊號)S4。例如,假設訊號S1是由上游裝置11發出,則根據訊號S1所輸出的訊號S4會被傳輸至下游裝置12。或者,假設訊號S1是由下游裝置12發出,則根據訊號S1所輸出的訊號S4會被傳輸至上游裝置11。
在一範例實施例中,訊號傳輸路徑101上的電路的總數(及/或電路複雜度)可高於訊號傳輸路徑102上的電路的總數(及/或電路複雜度)。因此,訊號傳輸路徑101的訊號延遲可高於訊號傳輸路徑102的訊號延遲。
在一範例實施例中,訊號傳輸路徑101上的電路可用以對經由訊號傳輸路徑101傳輸的訊號進行訊號的分析與調整。在一範例實施例中,訊號傳輸路徑102上的電路可用以緩存經由訊號傳輸路徑102傳輸的訊號,但無法執行訊號的分析與調整。
圖3是根據本發明的範例實施例所繪示的第一訊號傳輸路徑與第二訊號傳輸路徑的示意圖。請參照圖3,訊號傳輸路徑101上的電路(亦稱為處理電路)可包括對齊(alignment)電路31、彈性緩存器(elastic buffer)32、恢復(de-scramble)電路33、抗扭斜(de-skew)電路34、資料處理電路35及混碼(scramble)電路36。對齊電路31、彈性緩存器32、恢復電路33、抗扭斜電路34、資料處理電路35及混碼電路36可耦接至訊號傳輸路徑101並用以解析與處理經由訊號傳輸路徑101傳輸的訊號。亦即,訊號S2在通過訊號傳輸路徑101時可被電路31~36的至少其中之一解析及/或處理,例如,執行訊號對齊、緩存、恢復(de-scramble)、抗扭斜(de-skew)、訊號內容分析、訊號內容修改及/或混碼(scramble)。訊號S3可於訊號傳輸路徑101的輸出端輸出。此外,電路31~36的總數及類型皆可根據實務需求調整,本發明不加以限制。
另一方面,訊號傳輸路徑102上的電路可包括電路(亦稱為緩存電路)37。緩存電路37耦接至訊號傳輸路徑102並用以緩存經由訊號傳輸路徑102傳輸的訊號。例如,訊號S2在通過訊號傳輸路徑102時可被緩存電路37中,然後訊號S3可於訊號傳輸路徑102的輸出端輸出。此外,電路37的總數及類型皆可根據實務需求調整,本發明不加以限制。
在一範例實施例中,路徑控制電路110可耦接至訊號傳輸路徑101並根據訊號傳輸路徑101上傳遞的訊號來發送訊號SEL,以切換目標訊號傳輸路徑。例如,路徑控制電路110可耦接於恢復電路33的輸出端並根據恢復電路33的輸出產生訊號SEL。
在一範例實施例中,上游裝置11與下游裝置12之間可基於不同的訊號傳輸頻率(例如,2.5GT/s、8GT/s、16GT/s及/或32GT/s)來相互傳輸訊號。在改變訊號傳輸頻率的期間,路徑控制電路110可切換目標訊號傳輸路徑。
圖4是根據本發明的範例實施例所繪示的調整訊號傳輸頻率的示意圖。請參照圖4,假設上游裝置11與下游裝置12之間的訊號傳輸頻率從2.5GT/s逐漸提高至32GT/s。在訊號傳輸頻率從2.5GT/s改變至8GT/s、從8GT/s改變至16GT/s及從16GT/s改變至32GT/s的期間,上游裝置11與下游裝置12之間的訊號傳輸鏈路可依序處於L0狀態(即正常傳輸資料之狀態)、用於傳輸速率改變的恢復(recovery)狀態、用於等化器(equalizer)校正的恢復狀態、整體恢復狀態以及鏈路交握(handshake)完成後的L0狀態。其中,L0狀態及用於傳輸速率改變的恢復狀態是操作於先前的訊號傳輸頻率(例如2.5GT/s),而用於等化器校正的恢復狀態、整體恢復狀態以及鏈路交握完成後的L0狀態則是操作於新的訊號傳輸頻率(例如8GT/s)。
圖5是根據本發明的範例實施例所繪示的在改變訊號傳輸頻率的期間切換訊號傳輸路徑的示意圖。請參照圖1、圖2及圖5,訊號501用以表示在上游裝置11與下游裝置12之間傳輸的訊號。在訊號傳輸期間510,路徑控制電路110可將目標訊號傳輸路徑設定為低延遲的訊號傳輸路徑102。在訊號傳輸期間510,多路徑訊號傳輸電路120可基於特定訊號傳輸頻率(亦稱為第一訊號傳輸頻率)與訊號傳輸路徑102執行上游裝置11與下游裝置12之間的訊號傳輸(亦稱為第一訊號傳輸)。
在執行第一訊號傳輸之期間(即訊號傳輸期間510),路徑控制電路110可偵測在上游裝置11與下游裝置12之間傳輸的特定資料序列(亦稱為第一資料序列或第一訓練序列)TS(1)。例如,資料序列TS(1)可帶有指示調整訊號傳輸頻率之資訊。例如,資料序列TS(1)可包含至少一個指示位元,其位元值為“1”可用以指示在上游裝置11與下游裝置12之間的訊號傳輸頻率將被調整。
根據資料序列TS(1),在時間點T(1),路徑控制電路110可將目標訊號傳輸路徑從訊號傳輸路徑102切換為訊號傳輸路徑101。在時間點T(1)之後的訊號傳輸期間520,多路徑訊號傳輸電路120可基於第一訊號傳輸頻率與訊號傳輸路徑101執行上游裝置11與下游裝置12之間的訊號傳輸(亦稱為第二訊號傳輸)。
爾後,在時間點T(2),上游裝置11與下游裝置12之間的訊號傳輸頻率(即訊號傳輸速率)發生改變。例如,在訊號傳輸期間520,上游裝置11與下游裝置12之間是基於新的訊號傳輸頻率(亦稱為第二訊號傳輸頻率)來傳輸訊號。第二訊號傳輸頻率不同於第一訊號傳輸頻率。例如,假設第一訊號傳輸頻率為2.5GT/s,則第二訊號傳輸頻率可為8GT/s。在時間點T(2)之後的訊號傳輸期間530,多路徑訊號傳輸電路120可基於第二訊號傳輸頻率與訊號傳輸路徑101執行上游裝置11與下游裝置12之間的訊號傳輸(亦稱為第三訊號傳輸)。
在執行第三訊號傳輸之期間(即訊號傳輸期間530),路徑控制電路110可偵測在上游裝置11與下游裝置12之間傳輸的特定資料序列(亦稱為第二資料序列或第二訓練序列)TS(2)。例如,資料序列TS(2)可帶有指示等化器校正完成之資訊。例如,資料序列TS(2)可包含至少一個指示位元,其位元值為“0”可用以指示在上游裝置11與下游裝置12之間的等化器校正階段已完成。
根據資料序列TS(2),在時間點T(3),路徑控制電路110可將目標訊號傳輸路徑從訊號傳輸路徑101切換回低延遲的訊號傳輸路徑102。在時間點T(3)之後的訊號傳輸期間540,多路徑訊號傳輸電路120可基於第二訊號傳輸頻率與訊號傳輸路徑102執行上游裝置11與下游裝置12之間的訊號傳輸(亦稱為第四訊號傳輸)。至此,上游裝置11與下游裝置12之間單次的訊號傳輸頻率的改變操作(例如訊號傳輸頻率從2.5GT/s改變至8GT/s、從8GT/s改變至16GT/s或從16GT/s改變至32GT/s)已完成。
在一範例實施例中,無論是訊號傳輸路徑101或102被導通,訊號傳輸路徑101上的電路(例如圖3的電路31~36)皆可持續用以分析經由訊號傳輸路徑101傳輸的訊號S2。在一範例實施例中,在執行第一訊號傳輸之期間(即訊號傳輸期間510),路徑控制電路110可經由訊號傳輸路徑101偵測資料序列TS(1)。類似的,在執行第三訊號傳輸之期間(即訊號傳輸期間530),路徑控制電路110可經由訊號傳輸路徑101偵測資料序列TS(2)。
以圖3為例,在一範例實施例中,路徑控制電路110可根據在訊號傳輸路徑101上傳遞的訊號來偵測資料序列TS(1)及/或TS(2)。例如,路徑控制電路110可根據恢復電路33的輸出(例如分析恢復電路33的輸出)來偵測資料序列TS(1)及/或TS(2)。
在一範例實施例中,在執行第二訊號傳輸之期間(即訊號傳輸期間520),多路徑訊號傳輸電路120可修改經由訊號傳輸路徑101傳輸的特定資料序列(亦稱為第三資料序列)EQP。然後,多路徑訊號傳輸電路120可經由訊號傳輸路徑101輸出經修改的資料序列EQP。例如,資料序列EQP可帶有訊號接收端的等化器電路的設定資訊(例如等化器電路的設定參數)。例如,假設當前傳輸中的訊號是由上游裝置11傳送給下游裝置12,則訊號接收端為下游裝置12。或者,假設當前傳輸中的訊號是由下游裝置12傳送給上游裝置11,則訊號接收端為上游裝置11。例如,訊號接收端可根據此設定資訊來校正等化器電路。例如,在一範例實施例中,上游裝置11與下游裝置12的至少其中之一可根據經修改的資料序列EQP(或所述設定資訊)來設定等化器電路的參數。
以圖3為例,在一範例實施例中,資料處理電路35可用以偵測並修改經由訊號傳輸路徑101傳輸的資料序列EQP。例如,資料處理電路35可從訊號傳輸路徑101傳輸的訊號中擷取資料序列EQP。根據訊號接收端的裝置資訊(例如裝置類型及/或裝置型號),資料處理電路35可對所擷取資料序列EQP中的等化器電路的設定資訊進行修改(例如優化)。然後,資料處理電路35可經由訊號傳輸路徑101將修改後的資料序列EQP傳送給訊號接收端。
在一範例實施例中,相較於原始的資料序列EQP,修改後的資料序列EQP可包含更加符合當前訊號接收端需要的等化器電路的設定資訊,從而可有效提高訊號接收端執行等化器校正的效率。例如,假設原始的資料序列EQP是指示訊號接收端從等化器電路的第一組設定參數來進行測試與校正,但實際上訊號接收端針對調整後的訊號傳輸頻率(即第二訊號傳輸頻率)的等化器電路的最佳設定參數明顯不會是所述第一組設定參數。因此,修改後的資料序列EQP可指示訊號接收端從第n組設定參數(且n大於1)(即略過第一組設定參數)開始校正等化器電路或者執行其他優化後的校正程序。
此外,在圖5的範例實施例中,在發生訊號傳輸頻率改變之前就提早將目標訊號傳輸路徑切換至訊號傳輸路徑101,亦可提早將優化過的等化器電路之校正參數提供給訊號接收端。藉此,可在調整訊號傳輸頻率的期間有效提高訊號接收端的等化器校正效率。
須注意的是,前述範例實施例所提及的時脈重整電路模組10中所有電路的設置與耦接方式僅為範例,而非用以限制本發明。在部分範例實施例中,時脈重整電路模組10中所有電路的設置與耦接方式皆可以根據實務需求調整。此外,在部分範例實施例中,更多有用的電路及/或電子元件皆可以被加入至時脈重整電路模組10中或者用以取代時脈重整電路模組10中特定的電路及/或電子元件,視實務需求而定。
須注意的是,時脈重整電路模組10中可包含多組路徑控制電路110與多路徑訊號傳輸電路120之組合,以負責處理與傳輸不同傳輸方向的訊號。例如,時脈重整電路模組10中的一組多組路徑控制電路110與多路徑訊號傳輸電路120之組合可負責處理與傳輸上游裝置11向下游裝置12傳輸的訊號,而時脈重整電路模組10中的另一組多組路徑控制電路110與多路徑訊號傳輸電路120之組合則負責處理與傳輸下游裝置12向上游裝置11傳輸的訊號。
圖6是根據本發明的範例實施例所繪示的訊號傳輸方法的流程圖。請參照圖6,在步驟S601中,基於第一訊號傳輸頻率與時脈重整電路模組的多個訊號傳輸路徑中的第二訊號傳輸路徑執行上游裝置與下游裝置之間的第一訊號傳輸。在步驟S602中,在執行第一訊號傳輸之期間,偵測在上游裝置與下游裝置之間傳輸的第一資料序列。在步驟S603中,根據第一資料序列,切換至基於第一訊號傳輸頻率與所述多個訊號傳輸路徑中的第一訊號傳輸路徑執行上游裝置與下游裝置之間的第二訊號傳輸。
需注意的是,圖6中各步驟可以實作為多個程式碼或是電路,本發明不加以限制。此外,圖6的方法可以搭配以上範例實施例使用,也可以單獨使用,本發明不加以限制。
綜上所述,本發明的範例實施例可在實際改變訊號傳輸頻率之前就提早將上游裝置與該下游裝置之間的訊號傳輸路徑切換至長延遲路徑,以提高訊號接收端的等化器校正效率。此外,在完成訊號接收端的等化器校正之後,再迅速將所述訊號傳輸路徑切換回短延遲路徑。藉此,在盡可能減少訊號傳輸延遲的前提下,本發明的範例實施例可在調整訊號傳輸頻率的期間,有效提高訊號接收端的等化器校正效率。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:訊號傳輸系統 10:時脈重整電路模組 11:上游裝置 12:下游裝置 110:路徑控制電路 120:多路徑訊號傳輸電路 101,102:訊號傳輸路徑 103:多工器電路 210:訊號接收電路 220:訊號輸出電路 S1,S2,S3,S4,SEL,501:訊號 31:對齊電路 32:彈性緩存器 33:恢復電路 34:抗扭斜電路 35:資料處理電路 36:混碼電路 37:緩存電路 510,520,530,540:訊號傳輸期間 T(1),T(2),T(3):時間點 TS(1),TS(2),EQP:資料序列 S601:步驟(基於第一訊號傳輸頻率與時脈重整電路模組的多個訊號傳輸路徑中的第二訊號傳輸路徑執行上游裝置與下游裝置之間的第一訊號傳輸) S602:步驟(在執行第一訊號傳輸之期間,偵測在上游裝置與下游裝置之間傳輸的第一資料序列) S603:步驟(根據第一資料序列,切換至基於第一訊號傳輸頻率與所述多個訊號傳輸路徑中的第一訊號傳輸路徑執行上游裝置與下游裝置之間的第二訊號傳輸)
圖1是根據本發明的範例實施例所繪示的訊號傳輸系統的示意圖。 圖2是根據本發明的範例實施例所繪示的時脈重整電路模組的示意圖。 圖3是根據本發明的範例實施例所繪示的第一訊號傳輸路徑與第二訊號傳輸路徑的示意圖。 圖4是根據本發明的範例實施例所繪示的調整訊號傳輸頻率的示意圖。 圖5是根據本發明的範例實施例所繪示的在改變訊號傳輸頻率的期間切換訊號傳輸路徑的示意圖。 圖6是根據本發明的範例實施例所繪示的訊號傳輸方法的流程圖。
100:訊號傳輸系統
10:時脈重整電路模組
11:上游裝置
12:下游裝置
110:路徑控制電路
120:多路徑訊號傳輸電路
101,102:訊號傳輸路徑

Claims (29)

  1. 一種時脈重整電路模組,適於執行上游裝置與下游裝置之間的訊號傳輸,該時脈重整電路模組包括: 路徑控制電路;以及 多路徑訊號傳輸電路,耦接至該路徑控制電路, 其中該多路徑訊號傳輸電路內建第一訊號傳輸路徑及第二訊號傳輸路徑, 該多路徑訊號傳輸電路用以基於第一訊號傳輸頻率與該第二訊號傳輸路徑執行該上游裝置與該下游裝置之間的第一訊號傳輸, 在執行該第一訊號傳輸之期間,該路徑控制電路用以偵測在該上游裝置與該下游裝置之間傳輸的第一資料序列,並且 該路徑控制電路更用以根據該第一資料序列控制該多路徑訊號傳輸電路切換至基於該第一訊號傳輸頻率與該第一訊號傳輸路徑執行該上游裝置與該下游裝置之間的第二訊號傳輸。
  2. 如請求項1所述的時脈重整電路模組,其中該第一訊號傳輸路徑的訊號延遲高於該第二訊號傳輸路徑的訊號延遲。
  3. 如請求項1所述的時脈重整電路模組,其中該第一資料序列帶有指示調整訊號傳輸頻率之資訊。
  4. 如請求項1所述的時脈重整電路模組,其中在執行該第二訊號傳輸之後,該多路徑訊號傳輸電路更用以切換至基於第二訊號傳輸頻率與該第一訊號傳輸路徑執行該上游裝置與該下游裝置之間的第三訊號傳輸,並且該第二訊號傳輸頻率不同於該第一訊號傳輸頻率。
  5. 如請求項4所述的時脈重整電路模組,其中在執行該第三訊號傳輸之期間,該路徑控制電路更用以偵測在該上游裝置與該下游裝置之間傳輸的第二資料序列,並且 該路徑控制電路更用以根據該第二資料序列控制該多路徑訊號傳輸電路切換至基於該第二訊號傳輸頻率與該第二訊號傳輸路徑執行該上游裝置與該下游裝置之間的第四訊號傳輸。
  6. 如請求項5所述的時脈重整電路模組,其中該第二資料序列帶有指示等化器校正完成之資訊。
  7. 如請求項1所述的時脈重整電路模組,更包括: 資料處理電路,耦接至該第一訊號傳輸路徑, 其中在執行該第二訊號傳輸之期間,該資料處理電路用以修改經由該第一訊號傳輸路徑傳輸的第三資料序列,並且該多路徑訊號傳輸電路更用以經由該第一訊號傳輸路徑輸出經修改的該第三資料序列。
  8. 如請求項7所述的時脈重整電路模組,其中該第三資料序列帶有等化器電路的設定資訊。
  9. 如請求項7所述的時脈重整電路模組,其中該上游裝置與該下游裝置的至少其中之一用以根據經修改的該第三資料序列設定等化器電路之參數。
  10. 如請求項1所述的時脈重整電路模組,其中該多路徑訊號傳輸電路更包括: 多工器電路,耦接至該路徑控制電路及該多個訊號傳輸路徑, 其中該多工器電路用以根據該路徑控制電路的指示導通該多個訊號傳輸路徑的其中之一。
  11. 如請求項1所述的時脈重整電路模組,其中該時脈重整電路模組更包括: 訊號接收電路,耦接至該多路徑訊號傳輸電路的輸入端;以及 訊號輸出電路,耦接至該多路徑訊號傳輸電路的輸出端, 其中該訊號接收電路用以接收第一訊號並輸出第二訊號, 該路徑控制電路更用以導通該多個訊號傳輸路徑的其中之一作為目標訊號傳輸路徑, 該多路徑訊號傳輸電路更用以基於該目標訊號傳輸路徑從該訊號接收電路接收該第二訊號並輸出第三訊號, 該訊號輸出電路更用以從該多路徑訊號傳輸電路接收該第三訊號並輸出第四訊號。
  12. 如請求項1所述的時脈重整電路模組,其中該多路徑訊號傳輸電路包括: 多個處理電路,耦接至該第一訊號傳輸路徑並且用以解析及處理經由該第一訊號傳輸路徑傳輸的訊號;以及 至少一緩存電路,耦接至該第二訊號傳輸路徑並且用以緩存經由該第二訊號傳輸路徑傳輸的訊號。
  13. 如請求項1所述的時脈重整電路模組,其中該第一訊號傳輸路徑為並列訊號傳輸路徑,且該第二訊號傳輸路徑為串列訊號傳輸路徑。
  14. 如請求項1所述的時脈重整電路模組,其中該第一訊號傳輸路徑與第二訊號傳輸路徑皆為並列訊號傳輸路徑。
  15. 一種訊號傳輸系統,包括: 上游裝置; 下游裝置;以及 時脈重整電路模組,耦接於該上游裝置與該下游裝置之間,以執行該上游裝置與該下游裝置之間的訊號傳輸, 其中該時脈重整電路模組包括多個訊號傳輸路徑, 該時脈重整電路模組用以基於第一訊號傳輸頻率與該多個訊號傳輸路徑中的第二訊號傳輸路徑執行該上游裝置與該下游裝置之間的第一訊號傳輸, 在執行該第一訊號傳輸之期間,該時脈重整電路模組更用以偵測在該上游裝置與該下游裝置之間傳輸的第一資料序列,並且 該時脈重整電路模組更用以根據該第一資料序列切換至基於該第一訊號傳輸頻率該多個訊號傳輸路徑中的第一訊號傳輸路徑執行該上游裝置與該下游裝置之間的第二訊號傳輸。
  16. 如請求項15所述的訊號傳輸系統,其中該第一訊號傳輸路徑的訊號延遲高於該第二訊號傳輸路徑的訊號延遲。
  17. 如請求項15所述的訊號傳輸系統,其中該第一資料序列帶有指示調整訊號傳輸頻率之資訊。
  18. 如請求項15所述的訊號傳輸系統,其中在執行該第二訊號傳輸之後,該時脈重整電路模組更用以切換至基於第二訊號傳輸頻率與該第一訊號傳輸路徑執行該上游裝置與該下游裝置之間的第三訊號傳輸,並且該第二訊號傳輸頻率不同於該第一訊號傳輸頻率。
  19. 如請求項15所述的訊號傳輸系統,其中在執行該第三訊號傳輸之期間,該時脈重整電路模組更用以偵測在該上游裝置與該下游裝置之間傳輸的第二資料序列,並且 該時脈重整電路模組更用以根據該第二資料序列切換至基於該第二訊號傳輸頻率與該第二訊號傳輸路徑執行該上游裝置與該下游裝置之間的第四訊號傳輸。
  20. 如請求項19所述的訊號傳輸系統,其中該第二資料序列帶有指示等化器校正完成之資訊。
  21. 如請求項15所述的訊號傳輸系統,其中在執行該第二訊號傳輸之期間,該時脈重整電路模組更用以修改經由該第一訊號傳輸路徑傳輸的第三資料序列,並且該多路徑訊號傳輸電路更用以經由該第一訊號傳輸路徑輸出經修改的該第三資料序列。
  22. 如請求項21所述的訊號傳輸系統,其中該第三資料序列帶有等化器電路的設定資訊。
  23. 如請求項21所述的訊號傳輸系統,其中該上游裝置與該下游裝置的至少其中之一用以根據經修改的該第三資料序列設定等化器電路之參數。
  24. 如請求項15所述的訊號傳輸系統,其中該時脈重整電路模組包括: 路徑控制電路;以及 多工器電路,耦接至該路徑控制電路, 其中該多工器電路用以根據該路徑控制電路的指示導通該多個訊號傳輸路徑的其中之一。
  25. 如請求項15所述的訊號傳輸系統,其中該時脈重整電路模組包括: 路徑控制電路; 多路徑訊號傳輸電路,耦接至該路徑控制電路; 訊號接收電路,耦接至該多路徑訊號傳輸電路的輸入端;以及 訊號輸出電路,耦接至該多路徑訊號傳輸電路的輸出端, 其中該多路徑訊號傳輸電路包括該多個訊號傳輸路徑, 該訊號接收電路用以接收第一訊號並輸出第二訊號, 該路徑控制電路用以導通該多個訊號傳輸路徑的其中之一作為目標訊號傳輸路徑, 該多路徑訊號傳輸電路用以基於該目標訊號傳輸路徑從該訊號接收電路接收該第二訊號並輸出第三訊號, 該訊號輸出電路更用以從該多路徑訊號傳輸電路接收該第三訊號並輸出第四訊號。
  26. 如請求項15所述的訊號傳輸系統,其中該時脈重整電路模組包括: 多個處理電路,耦接至該第一訊號傳輸路徑並且用以解析與處理經由該第一訊號傳輸路徑傳輸的訊號;以及 至少一緩存電路,耦接至該第二訊號傳輸路徑並且用以緩存經由該第二訊號傳輸路徑傳輸的訊號。
  27. 如請求項15所述的訊號傳輸系統,其中該第一訊號傳輸路徑為並列訊號傳輸路徑,且該第二訊號傳輸路徑為串列訊號傳輸路徑。
  28. 如請求項15所述的訊號傳輸系統,其中該第一訊號傳輸路徑與第二訊號傳輸路徑皆為並列訊號傳輸路徑。
  29. 一種訊號傳輸方法,用於時脈重整電路模組,該訊號傳輸方法包括: 基於第一訊號傳輸頻率與該時脈重整電路模組的多個訊號傳輸路徑中的第二訊號傳輸路徑執行上游裝置與下游裝置之間的第一訊號傳輸; 在執行該第一訊號傳輸之期間,偵測在該上游裝置與該下游裝置之間傳輸的第一資料序列;以及 根據該第一資料序列切換至基於該第一訊號傳輸頻率與該多個訊號傳輸路徑中的第一訊號傳輸路徑執行該上游裝置與該下游裝置之間的第二訊號傳輸。
TW110143270A 2021-11-19 2021-11-19 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法 TWI784804B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110143270A TWI784804B (zh) 2021-11-19 2021-11-19 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法
US17/543,741 US11757684B2 (en) 2021-11-19 2021-12-07 Retiming circuit module, signal transmission system, and signal transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110143270A TWI784804B (zh) 2021-11-19 2021-11-19 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法

Publications (2)

Publication Number Publication Date
TWI784804B true TWI784804B (zh) 2022-11-21
TW202321861A TW202321861A (zh) 2023-06-01

Family

ID=85794645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110143270A TWI784804B (zh) 2021-11-19 2021-11-19 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法

Country Status (2)

Country Link
US (1) US11757684B2 (zh)
TW (1) TWI784804B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201610695A (zh) * 2014-06-27 2016-03-16 英特爾公司 通用串列匯流排(usb)3.1重定時器存在檢測與索引之方法及設備
US20170017604A1 (en) * 2015-07-17 2017-01-19 Parade Technologies, Ltd. System transparent retimer
TW201734823A (zh) * 2016-03-21 2017-10-01 英特爾公司 帶內重定時器暫存器的存取之技術
CN109857690A (zh) * 2019-01-03 2019-06-07 华为技术有限公司 驱动器的应用系统、驱动器和数据传输方法
CN111193525A (zh) * 2018-10-25 2020-05-22 达尔科技股份有限公司 多路径时钟及数据恢复
TW202020675A (zh) * 2018-10-12 2020-06-01 南韓商三星電子股份有限公司 電腦系統
WO2020133537A1 (zh) * 2018-12-29 2020-07-02 华为技术有限公司 一种跨时钟域处理电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004165B (zh) 2020-01-22 2024-07-05 华为技术有限公司 一种用于执行重定时的装置以及路径切换的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201610695A (zh) * 2014-06-27 2016-03-16 英特爾公司 通用串列匯流排(usb)3.1重定時器存在檢測與索引之方法及設備
US20170017604A1 (en) * 2015-07-17 2017-01-19 Parade Technologies, Ltd. System transparent retimer
US20190171607A1 (en) * 2015-07-17 2019-06-06 Parade Technologies, Ltd. System transparent retimer
TW201734823A (zh) * 2016-03-21 2017-10-01 英特爾公司 帶內重定時器暫存器的存取之技術
TW202020675A (zh) * 2018-10-12 2020-06-01 南韓商三星電子股份有限公司 電腦系統
CN111193525A (zh) * 2018-10-25 2020-05-22 达尔科技股份有限公司 多路径时钟及数据恢复
WO2020133537A1 (zh) * 2018-12-29 2020-07-02 华为技术有限公司 一种跨时钟域处理电路
CN109857690A (zh) * 2019-01-03 2019-06-07 华为技术有限公司 驱动器的应用系统、驱动器和数据传输方法

Also Published As

Publication number Publication date
US11757684B2 (en) 2023-09-12
US20230164008A1 (en) 2023-05-25
TW202321861A (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
US7570659B2 (en) Multi-lane receiver de-skewing
US7434114B2 (en) Method of compensating for a byte skew of PCI express and PCI express physical layer receiver for the same
US7450676B2 (en) Synchronization of data links in a multiple link receiver
CN100367695C (zh) 快速周边组件互连装置的数据接收系统
CN107087132B (zh) 接收器及信号传输方法
CN113364450B (zh) 校准电路与其相关的校准方法
KR20150132855A (ko) 데이터 심볼 천이 기반 클록킹을 가진 멀티-와이어 오픈 드레인 링크
WO2012127575A1 (ja) 伝送遅延差補正方法,通信装置および通信システム
TWI784804B (zh) 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法
US7801184B2 (en) Adaptive method for training a source synchronous parallel receiver
Li et al. Efficient implementation of the data link layer at the receiver of JESD204B
JP2010145172A (ja) 半導体集積回路、及びそのテスト方法
CN114070779B (zh) 时钟重整电路模块、信号传输系统及信号传输方法
JP5704988B2 (ja) 通信装置
US7428283B2 (en) Data recovery algorithm using data position detection and serial data receiver adopting the same
US11190331B1 (en) Data alignment in physical layer device
TWI813062B (zh) 時脈重整電路模組、訊號傳輸系統及訊號傳輸方法
US20080168338A1 (en) Parity error detecting circuit and method
WO2013095526A1 (en) Block aligner-based dead cycle deskew method and apparatus
KR100602872B1 (ko) Pci 익스프레스 프로토콜용 다중채널 스큐 제거 장치
CN114024893A (zh) 时钟重整电路模块、信号传输系统及信号传输方法
US11907004B2 (en) Configurable transmitter device based on data rate
US20240333559A1 (en) Adaptive Preset-Based Feed-Forward Equalization
Hops et al. Non-deterministic DUT behavior during functional testing of high speed serial busses: challenges and solutions
US20110161536A1 (en) Method for high speed data transfer