TWI784525B - 測量熔融金屬之溫度之裝置及方法 - Google Patents

測量熔融金屬之溫度之裝置及方法 Download PDF

Info

Publication number
TWI784525B
TWI784525B TW110117836A TW110117836A TWI784525B TW I784525 B TWI784525 B TW I784525B TW 110117836 A TW110117836 A TW 110117836A TW 110117836 A TW110117836 A TW 110117836A TW I784525 B TWI784525 B TW I784525B
Authority
TW
Taiwan
Prior art keywords
tube
molten metal
optical fiber
range
temperature
Prior art date
Application number
TW110117836A
Other languages
English (en)
Other versions
TW202200973A (zh
Inventor
谷多 尼音絲
克里斯蒂安 拉德萊特
馬克 殷代赫伯格
法蘭克 史蒂芬
Original Assignee
比利時商賀利氏電測騎士有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比利時商賀利氏電測騎士有限公司 filed Critical 比利時商賀利氏電測騎士有限公司
Publication of TW202200973A publication Critical patent/TW202200973A/zh
Application granted granted Critical
Publication of TWI784525B publication Critical patent/TWI784525B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/006Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/042High-temperature environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiation Pyrometers (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

測量熔融金屬之溫度之裝置及方法 本發明係關於一種測量熔融金屬浴之溫度之裝置,其包含: 光芯線; 管,其中該光芯線至少部分地佈置於該管中,其中該管之外徑在4 mm至8 mm範圍內,且壁厚在0.2 mm至0.5 mm範圍內;及 複數個分離元件,其包含佈置於該管中、彼此間隔開之超過兩個分離元件,且在該等超過兩個分離元件中之兩者之間形成至少一個隔室。 本發明亦關於一種測量熔融金屬浴之溫度之系統及方法。

Description

測量熔融金屬之溫度之裝置及方法
本發明係關於一種測量熔融金屬浴之溫度之裝置,其包含光芯線及管。本發明亦關於一種使用相應裝置測量熔融金屬浴之溫度之系統及方法。
在金屬製造製程期間,有若干手段及方法可用於測量冶金容器中熔融金屬浴之溫度。此等測量熔融金屬浴之溫度,尤其電弧爐(EAF)之熔融環境中之鐵或鋼之溫度的手段之一涉及將由金屬管包圍之光纖浸入熔融金屬中。由金屬管包圍之光纖通常亦稱為光芯線。光纖可接收熱輻射且可將來自熔融金屬之熱輻射傳遞至偵測器,例如高溫計。可將適合之儀錶與偵測器相關聯以便測定熔融金屬浴之溫度。
為了測量熔融金屬浴之溫度,可將光芯線饋入熔融金屬浴中,在熔融金屬浴中,光芯線對於預定時間間隔內之連續溫度測量以基本上恆定速率消耗。光芯線之前尖端浸入冶金容器中,在朝向熔融金屬浴之途中首先遇到熱氛圍,接著為渣層,且隨後為熔融金屬浴。一旦溫度測量結束,則可將光芯線之尖端自熔融金屬浴部分迴縮。經迴縮之光芯線之尖端隨後為下一次溫度測量之新前尖端。
EP1857792A1例示性描述一種使用光芯線測量熔融金屬浴之溫度之方法及裝置。
先前技術中已知之許多裝置通常藉由使用位於管中之光纖來建構。光纖線與金屬管之間的間隙通常填充有填充材料以保護光纖線在浸入期間免受來自熔融金屬浴之熱量的影響。可將光芯線及管以相同或不同速度饋入熔融金屬浴中,到達熔融金屬浴中之相同位置。
不幸的是,此建構並不總在整個應用範圍內得到可靠測量。此處,術語應用範圍可用於指進行熔融金屬浴之溫度測量的溫度範圍。具體而言,低溫範圍內之溫度測量與高渣溫度組合會導致輸出資料之變異數很高。舉例而言,普通鋼等級之溫度範圍在1520℃與1700℃之間。然而,大部分相應測量之溫度通常在1550℃與1620℃之間。
因此,需要一種裝置及方法,藉此在整個應用範圍內可獲得更準確的溫度測量,同時使裝置在熔融金屬中之消耗減至最小。
本發明提供一種測量熔融金屬浴之溫度之裝置,其包含: 光芯線; 管,其中該光芯線至少部分地佈置於該管中,其中該管之外徑在4 mm至8 mm範圍內,且壁厚在0.2 mm至0.5 mm範圍內;及 複數個分離元件,其包含佈置於該管中、彼此間隔開之超過兩個分離元件,且在該等超過兩個分離元件中之兩者之間形成至少一個隔室。
此處,術語「光芯線」可用於指可包含於外殼,尤其金屬管中之光纖。外殼可完全圍繞光纖或可至少部分打開,使得外殼不完全圍繞光纖。此外,外殼可至少部分填充有用於應用於熔融金屬中之試劑。此外,光纖可在無外殼之情況下使用。
裝置之管可為金屬管,在金屬管中,光芯線沿其長度延伸。舉例而言,光芯線可佈置於金屬管之中心中且可向金屬管之方向延伸。
根據本發明,管具有: ●  外徑在4 mm至8 mm範圍內,及 ●  壁厚在0.2 mm至0.5 mm範圍內。
管之壁厚較佳在0.3 mm至0.4 mm範圍內。此外,熔融金屬浴中之測試已展示溫度測量之準確度與在溫度測量期間進入熔融金屬浴之冷材料的質量有關。此每單位時間之質量可視裝置之饋入速度及幾何形狀而定。
此外,裝置包含複數個分離元件,其包含佈置於管中之超過兩個分離元件,且在超過兩個分離元件中之兩者之間形成至少一個隔室。
此處,術語「隔室」係指管中不同分離元件之間的體積。
此處,術語「分離元件」係指佈置於管內部,細分管內之體積的部件。
分離元件可實現為佈置於之管內部、包含開口之圓盤形元件,光芯線延伸通過該開口且該開口可至少部分地支撐光芯線。開口較佳在元件中間以支撐位於管之中心的光芯線。然而,在實例中,分離元件亦可具有不同形狀。舉例而言,分離元件可具有立方形、圓柱形、圓錐形、三角形、球形、角錐形、梯形及/或多邊形形狀。在一實例中,裝置包含複數個分離元件,其包含佈置於管中之至少五個分離元件。
分離元件可附接至光芯線或管中之任一者,且可有利地,亦即歸因於其在光芯線與管之間的佈置,使管與光芯線之摩擦減至最小,且因此避免應力。此外,當將裝置饋入熔融金屬中時,光芯線與管可一起移動。因此,當饋入熔融金屬浴中時,光芯線與管之相對移動可減至最小或甚至得到避免。
光芯線及管之速度及位置可基本上相同。
有利地,藉由採用分離元件以在至少任何兩個分離元件之間產生隔室,可有效防止熔融金屬滲透至管中。
有利地,藉由使用如上文所描述之裝置,管以受控方式自浸入端熔融,此產生更準確的溫度測量。實際溫度測量可在管在熔融金屬浴中熔融時進行。
藉由採用如上文所描述之裝置,管在進入熔融金屬浴中之前有利地不熔融。此外,管不自側面熔融,且熔融金屬向管內部之滲透可減至最少,該等滲透將不利地影響溫度測量。
舉例而言,當將裝置插入熔融金屬浴中時,隔室中所含之氣體將由於溫度升高而膨脹。在一實例中,防止鋼進入所需之壓力增加可藉由簡單計算熔融金屬浴中目標浸入深度處之鐵水靜壓力(ferrostatic pressure)來計算。
儘管如此,熔融金屬浴溫度之突然溫升可在此等隔室中產生大約6巴之壓力上升。此種壓力可在熔融製程開始之前導致管側壁中出現裂紋。
此外,已展示藉由減小如上文所定義之管之直徑及壁厚來使每單位長度之質量減至最小有助於獲得更準確的溫度測量。此外,為了在不彎曲及漂浮之情況下進入熔融金屬浴,最小直徑係有利的。
在一實例中,管包含在室溫(RT)下熱導率高於30 W/mK之材料。
此處,術語室溫RT可用於指約20℃之溫度,尤其指16℃至25℃範圍內之溫度。
在一實例中,光芯線與管之間的空間填充有: - 氣體、氣體混合物或 - 填充材料,其包含低密度材料,尤其包含低密度有機材料。
舉例而言,該空間可填充有空氣或惰性氣體。為了使進入管中之熔融金屬(此將導致低輸出值)減至最少,可將填充物材料有利地至少部分佈置於光芯線與管之間的空間中。
此處,術語「低密度」可用於指密度小於2 g/cm3 ,較佳小於1 g/cm3 之材料。
在一實例中,填充材料包含棉、羊毛、大麻、稻殼及/或亞麻。灰分含量小於10%之其他低密度填充材料亦適合。
灰分含量可表示材料已完全燃燒之後剩餘的材料之不燃組分。
在一實例中,管包含包括以下之材料之群中之至少一者的材料或合金:鐵及/或合金化鋼等級。
有利地,上述材料在室溫下之熱導率高於30 W/mK。
在一實例中,管之熱導率與壁厚的乘積大於0.015 W/K。
高熱導率與薄壁之組合可為有利的。以mm為單位之壁厚與熱導率之乘積可有利地高於0.015 W/K。在一個實例中,厚度為0.3 mm之外壁需要熱導率> 50 W/mK之材料。
有利地,所選管材料之熱導率愈高,管加熱期間之溫度分佈將愈均勻。相反,不均勻溫度分佈可能引起管之側壁不受控爆破,導致不希望的熔融金屬進入。
在典型爐中,入口點與熔融金屬浴之間的距離在1至2 m之間的範圍內。
在一實例中,分離元件佈置於管中,彼此間隔開之距離小於爐中之入口點至熔融金屬浴之高度的距離。在此實例中,分離元件可經佈置以在裝置之長度上形成通風路徑。
在一個實例中,分離元件包含聚矽氧(較佳二組分聚矽氧)材料、橡膠材料、皮革材料、軟木材料及/或金屬材料。
為了克服突然壓力上升之不良影響,可選擇小隔室,其暗示在測量期間至少一個隔室饋入爐中。此隔室中之氣體將膨脹,且歸因於熱膨脹壓力將上升。有利地,通風路徑防止鋼及渣自管之側壁進入。在裝置浸入期間,膨脹氣體可通過裝置之浸入端部分排出。
在一替代實例中,分離元件佈置於管中,彼此間隔開之距離大於爐中之入口點至熔融金屬浴之高度的距離。
在此情況下,下一隔室部分佈置於爐內且部分佈置於爐外。有利地,此可防止在總隔室長度上加熱氣體,且因此減小隔室中所獲得之最大壓力以克服突然壓力上升之不良影響。此外,在前述實例中,分離元件可以氣密方式佈置於管中以在光芯線與管內部之間提供密封。
在另一實例中,分離元件佈置於管中,彼此間隔開之距離在2 m至5 m範圍內,較佳距離為3 m至4 m。
在大多數冶金製程中,熔融金屬浴由密度低於熔融金屬浴之渣層覆蓋。舉例而言,在煉鋼製程中,熔融鋼之密度為大約7 g/cm3 ,且渣覆蓋層之密度為大約2 g/cm3 。在轉爐、電弧爐及鋼包精煉爐(ladle furnace)中之處理階段期間,此密度可進一步下降,此歸因於由CO/CO2 氣泡引起之渣發泡。在裝置密度高於浴之情況下,其將傾向於沉至底部,而在密度較低之情況下,其將展示漂浮之傾向。
在一個實例中,裝置包含在0.8 g/cm3 至4 g/cm3 範圍內,尤其在1 g/cm3 至3 g/cm3 範圍內之密度。
為了防止在裝置浸入期間漂浮之風險,材料密度在0.8 g/cm3 至4 g/cm3 範圍內,尤其在1 g/cm3 至3 g/cm3 範圍內係有利的。
電弧爐製程將具有極寬之渣密度範圍。在塌陷相中估計渣厚度為大約30 cm之情況下,渣厚度可在發泡時上升至爐頂。因此,在此製程中使用之裝置需要適用於此範圍以允許獲得準確溫度測量。
本發明亦關於一種系統,其包含如本文所描述之裝置;及饋送構件,用於將裝置之前尖端饋入熔融金屬浴中。系統亦可進一步包含爐,其具有裝置之入口點且容納熔融金屬浴及渣覆蓋層。
本發明進一步關於一種使用如本文所描述之裝置或系統測量熔融金屬浴之溫度之方法,其包含: 以在10 g/s至50 g/s範圍內之饋入速率將用於測量溫度之該裝置饋入該熔融金屬浴中,其中該裝置之前尖端朝向熔融金屬;及 測量該熔融金屬之溫度。
50 g/s之饋入速率可視為最大值。在高溫應用中,需要施加此速度以在熔融金屬浴中達到足夠深度。在低溫應用中,此值可較低。在所有煉鋼應用中,需要最小10 g/s以獲得最小浸入深度。
舉例而言,在電弧爐應用中,可用大約30 g/s之饋入速率獲得大部分準確測量,在鋼包精煉爐應用中所用饋入速率為大約20 g/s且在鋼包應用中所用饋入速率為大約16 g/s。
如上文已描述,可看出溫度測量之準確度與在溫度測量期間進入熔融金屬浴之冷材料的質量有關。此每單位時間之質量可視裝置之饋入速度及幾何形狀而定。
有利地,藉由用如該方法中所定義之饋入速度饋入如上文所描述之裝置,可獲得更準確的溫度測量。
在一實例中,光芯線及管以相同速度一起饋入熔融金屬浴中。
在下文中,描述兩個有利實例:
在第一實例中,驗證獲得準確溫度測量所需的饋入速率。可將裝置以800 mm/s之速度饋入熔融金屬浴中,至300 mm之深度,該裝置包含光芯線及外徑為6 mm且壁厚為0.3 mm的低碳鋼管,密度為大約1.6 g/cm3 。大約1.6 g/cm3 之密度對應於44.1 g/m之質量。在此速度下,測量將在總應用範圍內準確。有利地,所選組態將保留在熔融金屬中且將朝熔融金屬-渣界面方向漂浮。
關於第一實例,獲得以下實例參數: 時間= 300 mm / 800 mm/s= 0.375 s 質量= 44.1 g/m * 0.3 m =13.2 g 質量/時間=13.2 g/ 0.375 s = 35.2 g/s
在第二實例中,確定獲得準確溫度測量的最大饋入速度。可將裝置以728 mm/s之最大速度饋入熔融金屬浴中,至400 mm之深度,該裝置密度為大約2.2 g/cm3 (對應於68.6 g/m),具有外徑為7 mm且壁厚為0.4 mm之低碳鋼管。直至此速度,測量將在總應用範圍內可靠。所選組態將保留在熔融金屬中,且將朝熔融金屬-渣界面方向漂浮。
關於第二實例,獲得以下實例參數: 質量= 68.6 g/m * 0.4 m = 27.4 g 時間= 27.4 g/ 50 g/s= 0.54 s 速度= 400 mm/ 0.54 s = 728 mm/s。
圖1展示根據本發明之一實施例的測量熔融金屬浴15之溫度之系統的示意圖。
如圖1中所示,系統包含裝置1,其至少部分位於線圈9上且至少部分自線圈9退繞以便進行測量。裝置1之第一端連接至高溫計11,其又可連接至電腦系統(圖中未示)以處理用裝置1獲得之資料。如圖1中所示,裝置1藉由饋送器13通過導管17饋入具有入口點19且含有熔融金屬浴15之容器中。裝置1自線圈9延伸至入口點19之部分的溫度可視為低溫,其可為在室溫至100℃範圍內的溫度。一旦沿熔融金屬浴15之方向通過入口點19,則首先遇到高達1700℃或甚至更高之熱氛圍,接著為渣層16,其後為熔融金屬浴15。進入容器之入口點19可配備有吹槍(圖1中未示)以防止金屬及渣滲透至裝置1中。浸入熔融金屬浴15中之裝置1之前尖端將熔融,且在此熔融階段期間可獲得溫度測量。熔融金屬15內裝置1之前尖端所覆蓋之距離由LMM 指示。進行測量之後,裝置1位於熱氛圍中且延伸穿過渣層16之部分可向線圈9之方向反饋且可再用於下一次測量。容器內裝置1之前尖端所覆蓋之距離由圖1中之LMEAS 指示。圖1中亦展示渣層-氛圍界面SAI及熔融金屬-渣層界面MSI。
圖2展示指示在測量熔融金屬之溫度之前、期間及之後,裝置之前尖端浸入之位置-時間圖的示意圖。為了本發明解釋,圖2之位置-時間圖展示簡化情況,其中假定裝置之前尖端在測量期間不熔融。圖1中所示之入口點視為容器之入口點及測量之參考點。圖2中展示容器內覆蓋之距離LMEAS ,以及熔融金屬內前尖端所覆蓋之距離LMM ,及進行一次溫度測量通常消耗之裝置長度LC 。序列將以位於容器之入口點處之裝置的新前尖端結束。裝置長度LMM 浸入熔融金屬浴15中,且前饋距離隨熔融金屬浴中之長度減小以獲得返回距離。
圖3A及圖3B展示在測量序列期間根據本發明之第一實施例及第二實施例之裝置1、1'的示意圖。圖3A及圖3B展示裝置自入口點19饋入熔融金屬浴15中之部分。
在兩個實施例中,裝置1、1'包含佈置於管5、5'中之超過兩個分離元件7a、7a'、7b、7b'、7n',其在分離元件7a、7a'、7b、7b'、7n'中之兩者之間形成至少一個隔室。
圖3A展示根據具有具大隔室之組態之第一實施例的裝置1。對於根據第一實施例之組態,分離元件7a、7b圍繞光芯線3佈置於管5中,彼此間隔開之距離大於入口點19至熔融金屬-渣層界面MSI之距離。在所示組態中,隔室之長度經選擇,其方式為使得在容器整個長度上無封閉隔室定位於容器中。在入口點19配備有吹槍(圖中未示)之情況下,容器內之一小部分可視為冷的。如圖3A中所示,隔室在兩個分離元件7a、7b之間形成,其中第一分離元件7a處於冷區,且相對的第二分離元件7b處於熱區。
圖3B展示根據具有具小隔室之組態之第二實施例的裝置1'。此處,分離元件7a'、7b'、7n'佈置於管5'中,彼此間隔開之距離小於爐中之入口點19至熔融金屬-渣層界面MSI的距離。在圖3B中所示之實施例中,分離元件7a'、7b'、7n'至少部分透氣,以便形成自浸入端向線圈方向之通風路徑(圖3B中未示)。
圖4展示用來驗證圖3A及圖3B中所示之裝置1、1'之管5、5'中所佈置之分離元件7a、7b、7a'、7n'所形成的隔室之氣密性之系統的示意圖。
驗證氣密性之所示系統包含壓力調節器21、流量計23、閥25及壓力計27。為了測試,可將所示裝置1、1'中之任一者連接至系統。然而,熟習此項技術者應知道,亦存在可用於驗證隔室之氣密性的替代手段。
為了獲得準確測量,至少具有具大隔室之組態之裝置1的隔室應為氣密的。可藉由測試個別分離元件7a、7a'、7n'之氣密性以展示在0.8巴下之反壓來測試隔室之「氣密性」。根據經驗,可以說隔室之長度愈長,此壓力應愈高。已展示高達熱區中長度之倍長的室長展示有利結果,反壓超過0.9巴。含有機化合物之分離元件可導致熱區中氣體形成。此等分離元件可能在測量序列期間燃燒且產生通風路徑。基於測試包含20個分離元件之裝置1',圖4中所示之連接至系統的裝置1'可展示0.2至0.8巴之反壓。基於利用包含單個分離元件之裝置1的測試,圖4中緊靠著裝置1'展示之裝置1可展示> 0.9巴之反壓。
作為一實例,下文描述一種使用圖4中所示之系統驗證氣密性之方法,後續步驟如下: 1. 在閥25關閉之情況下將壓力調節器21設置為1巴超壓; 2. 打開閥25且將流量計23設置為5 l/min; 3. 將試樣1、1'連接至系統;及 4. 在壓力計27上測量壓力。
圖5A至圖5C展示根據第一實施例之裝置1的示意圖。特定而言,圖5A至圖5C展示裝置1自入口點19饋入熔融金屬浴15中之部分。自左手側至右手側,圖中例示性展示將裝置1浸入熔融金屬浴15中之三個階段。
在圖5A中,展示分離元件7b定位於熱氛圍中。可藉由分離元件7b防止金屬及渣滲透至裝置1之前尖端中。可防止管5中之高壓,因為前尖端可通風至熔融金屬浴15中且下一隔室部分佈置於冷區中。在測量序列之後,芯線在熔融金屬浴15中之部分將熔融,且在下一測量序列之情況下,裝置1之新前尖端將如圖5B中所示定位。同樣,金屬及渣滲透由分離元件7b避免,且下一隔室中之超壓經減小,因為隔室部分佈置於冷區中。圖5B中所示之序列結束之後,新前尖端將如圖5C中所示定位。在此測量序列期間,分離元件7b將進入熔融金屬浴15,且管5將在隔室中之內部壓力變得過高之前熔融。圖5C中所示之序列結束之後,下一次測量將再次類似於圖5A中所示之序列。
圖6A至圖6C展示根據本發明之實施例的分離元件7、7'、7''之不同組態的示意圖。熟習此項技術者將知道,在本文所描述之實例中,不同組態可在管內一起使用。
在圖6A中,展示分離元件7,其透氣且具有圍繞用於光芯線(圖6A中未示)之中心開口佈置的通風路徑8。所示組態允許光芯線在饋送序列期間裝置彎曲及拉直的過程中相對移動。
在圖6B中,展示分離元件7',其透氣且具有佈置於分離元件7'表面中之通風路徑8',其中當安置於管內時,分離元件7'與裝置之管接觸。
在圖6C中,展示透氣的分離元件7'',其中通風路徑8''藉由選擇透氣材料而產生。
圖7A至圖7C展示根據本發明之實施例之裝置1、1'、1''的示意圖。每一圖中之箭頭指示裝置1、1'、1''進入熔融金屬浴(圖7A至圖7C中未示)中之浸入方向。
圖7A展示裝置1,其具有佈置於管5與光芯線3之間的空間中之填充材料4。填充材料4可為具有低密度之材料,諸如棉。
圖7B展示裝置1',其中通風路徑8'藉由佈置於光芯線3'之外徑中的孔隙而產生。
圖7C展示裝置1'',其具有可提供氣密密封之分離元件7a''、7b'',及佈置於分離元件7a''、7b''之間不與管5''直接接觸的額外分離元件7c''、7d''。
1,1',1'':裝置 3,3',3'':光芯線 4:填充材料 5,5',5'':管 7-7'',7a-7n'':分離元件 8,8',8'':通風路徑 9:線圈 11:高溫計 13:饋送器 15,15':熔融金屬浴 16,16':渣層 17:導管 19:入口點 21:壓力調節器 23:流量計 25:閥 27:壓力計 LMEAS :測量距離 LMM :熔融金屬中之距離 LC :在熔融金屬中消耗之裝置長度 MSI:熔融金屬-渣層界面 SAI:渣層-氛圍界面
本發明之基本想法將隨後參照圖式中所示之實施例更詳細地描述。在本文中: 圖1   展示根據本發明之一實施例的測量熔融金屬浴之溫度之系統的示意圖; 圖2   展示指示在測量熔融金屬之溫度之前、期間及之後,裝置之前尖端浸入的示意性位置-時間圖; 圖3A、圖3B 展示根據本發明之第一實施例及第二實施例之裝置的示意圖; 圖4   展示驗證根據本發明之實施例的隔室之氣密性之系統的示意圖; 圖5A至圖5C 展示根據本發明之第一實施例之裝置浸入熔融金屬浴中的示意圖; 圖6A至圖6C 展示根據本發明之實施例的分離元件之不同組態的示意圖;及 圖7A至圖7C 展示根據本發明之實施例之裝置的示意圖。
1:裝置
3:光芯線
5:管
7a,7b:分離元件
15:熔融金屬浴
16:渣層
19:入口點
MSI:熔融金屬-渣層界面
SAI:渣層-氛圍界面

Claims (28)

  1. 一種測量熔融金屬浴之溫度之裝置,其包含:光芯線,其中該光芯線係指包含於金屬管中之光纖;管,其中該光芯線至少部分地佈置於該管中,其中該管之外徑在4mm至8mm範圍內,且壁厚在0.2mm至0.5mm範圍內,其中當將該裝置饋入熔融金屬中時,該光芯線與該管一起移動;及複數個分離元件,其包含佈置於該管中、彼此間隔開之超過兩個分離元件,且在該等超過兩個分離元件中之兩者之間形成至少一個隔室,其中該等分離元件佈置於該光芯線與該管之間,且附接至該光芯線或該管中之任一者。
  2. 如請求項1之裝置,其中該管包含在室溫RT下熱導率高於30W/mK之材料。
  3. 如請求項2之裝置,其中該管之熱導率與壁厚的乘積大於0.015W/K。
  4. 如請求項1之裝置,其中該光芯線與該管之間的空間填充有:氣體、氣體混合物,或填充材料,其包含低密度材料。
  5. 如請求項4之裝置,其中該填充材料包含低密度有機材料。
  6. 如請求項2之裝置,其中該光芯線與該管之間的空間填充有:氣體、氣體混合物,或填充材料,其包含低密度材料。
  7. 如請求項3之裝置,其中該光芯線與該管之間的空間填充有:氣體、氣體混合物,或填充材料,其包含低密度材料。
  8. 如請求項4之裝置,其中該填充材料包含棉、羊毛、大麻、稻殼及/或亞麻。
  9. 如請求項1之裝置,其中該管包含包括以下之材料之群中之至少一者的材料或合金:鐵及/或合金化鋼等級。
  10. 如請求項1至9中任一項之裝置,其中該等分離元件佈置於該管中,彼此間隔開之距離小於爐中之入口點至該熔融金屬浴之高度的距離。
  11. 如請求項10之裝置,其中該等分離元件經佈置以在該裝置之長度上形成通風路徑。
  12. 如請求項1至9中任一項之裝置,其中該等分離元件佈置於該管中,彼此間隔開之距離大於爐中之入口點至該熔融金屬浴之高度的距離。
  13. 如請求項12之裝置,其中該等分離元件以氣密方式佈置於該管中以在該光芯線與該管之內部之間提供密封。
  14. 如請求項1至9中任一項之裝置,其中該等分離元件佈置於該管中,彼此間隔開之距離在2m至5m範圍內。
  15. 如請求項1至9中任一項之裝置,其中該等分離元件佈置於該管中,彼此間隔開之距離為3m至4m。
  16. 如請求項1至9中任一項之裝置,其中該等分離元件包含聚矽氧材料、橡膠材料、皮革材料、軟木材料及/或金屬材料。
  17. 如請求項1至9中任一項之裝置,其中該等分離元件包含二組分聚矽氧材料。
  18. 如請求項10之裝置,其中該等分離元件包含聚矽氧材料、橡膠材料、皮革材料、軟木材料及/或金屬材料。
  19. 如請求項12之裝置,其中該等分離元件包含聚矽氧材料、橡膠材料、皮革材料、軟木材料及/或金屬材料。
  20. 如請求項14之裝置,其中該等分離元件包含聚矽氧材料、橡膠材 料、皮革材料、軟木材料及/或金屬材料。
  21. 如請求項1至9中任一項之裝置,其中該裝置包含在0.8g/cm3至4g/cm3範圍內之密度。
  22. 如請求項10之裝置,其中該裝置包含在0.8g/cm3至4g/cm3範圍內之密度。
  23. 如請求項12之裝置,其中該裝置包含在0.8g/cm3至4g/cm3範圍內之密度。
  24. 如請求項14之裝置,其中該裝置包含在0.8g/cm3至4g/cm3範圍內之密度。
  25. 如請求項16之裝置,其中該裝置包含在0.8g/cm3至4g/cm3範圍內之密度。
  26. 如請求項1至9中任一項之裝置,其中該裝置包含在1g/cm3至3g/cm3範圍內之密度。
  27. 一種測量熔融金屬浴之溫度之系統,其包含:如請求項1至26中任一項之裝置;及饋送構件,其用於將該裝置之前尖端饋入熔融金屬浴中。
  28. 一種測量熔融金屬浴之溫度之方法,其使用如請求項1至26中任一項之裝置或如請求項27之系統,該方法包含:以在10g/s至50g/s範圍內之饋入速率將用於測量溫度之該裝置饋入該熔融金屬浴中,其中該裝置之前尖端朝向熔融金屬;及測量該熔融金屬之溫度。
TW110117836A 2020-06-22 2021-05-18 測量熔融金屬之溫度之裝置及方法 TWI784525B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20181481.1A EP3929548A1 (en) 2020-06-22 2020-06-22 Device and method for measuring a temperature of a molten metal
EP20181481.1 2020-06-22

Publications (2)

Publication Number Publication Date
TW202200973A TW202200973A (zh) 2022-01-01
TWI784525B true TWI784525B (zh) 2022-11-21

Family

ID=71130833

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117836A TWI784525B (zh) 2020-06-22 2021-05-18 測量熔融金屬之溫度之裝置及方法

Country Status (12)

Country Link
US (1) US11959813B2 (zh)
EP (1) EP3929548A1 (zh)
JP (1) JP7385627B2 (zh)
CN (1) CN113834575A (zh)
AU (1) AU2021202570B2 (zh)
BR (1) BR102021008129A2 (zh)
CA (1) CA3116359C (zh)
MX (1) MX2021007412A (zh)
RU (1) RU2768559C1 (zh)
TW (1) TWI784525B (zh)
UA (1) UA128625C2 (zh)
ZA (1) ZA202103706B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929548A1 (en) * 2020-06-22 2021-12-29 Heraeus Electro-Nite International N.V. Device and method for measuring a temperature of a molten metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820189A (zh) * 2003-07-09 2006-08-16 贺利氏电子耐特国际股份公司 测量熔融物质的冷却曲线的方法和装置
US20070268477A1 (en) * 2006-05-19 2007-11-22 Heraeus Electro-Nite International N.V. Method and device for measuring the temperature of a molten metal bath
US20110280278A1 (en) * 2010-05-17 2011-11-17 Heraeus Electro-Nite International N.V. Sensor Arrangement for Temperature Measurement and Method for Measurement
TW201506366A (zh) * 2013-04-30 2015-02-16 Heraeus Electro Nite Int 用於測量熔融金屬之溫度的方法或裝置
TW201715264A (zh) * 2015-10-14 2017-05-01 賀利氏電測騎士國際公司 用於量測熔融鋼浴之溫度的可消耗性光纖

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS477945U (zh) * 1971-02-17 1972-09-29
JPS5316936Y2 (zh) 1972-01-17 1978-05-06
US4444516A (en) * 1982-02-02 1984-04-24 Vanzetti Infrared And Computer Systems, Inc. Infrared temperature probe for high pressure use
US4697463A (en) * 1983-12-09 1987-10-06 Research Laboratories Of Australia Pty. Ltd. Method of and means for testing flow properties of magnetic toners
JPH0663854B2 (ja) * 1985-07-26 1994-08-22 大同特殊鋼株式会社 被熱物の温度測定装置
US5035511A (en) * 1990-04-10 1991-07-30 The Babcock & Wilcox Company Distributed fiber optic temperature sensor based on time domain transmission
JPH075043A (ja) * 1992-12-07 1995-01-10 Seiichi Okuhara 光学的温度測定装置の受光部
JP3158839B2 (ja) 1994-02-22 2001-04-23 日本鋼管株式会社 溶融金属の温度測定装置および温度測定方法
JP3175510B2 (ja) * 1994-06-29 2001-06-11 日本鋼管株式会社 光ファイバーによる高温液体の測温装置
JP3351120B2 (ja) * 1994-09-12 2002-11-25 日本鋼管株式会社 光ファイバ温度計による出銑口での溶銑温度測定法
SE9503873L (sv) * 1995-11-02 1997-04-21 Reflex Instr Ab Anordning för att avkänna elastisk deformation hos ett verktygskaft i en verktygsmaskin
JPH09159534A (ja) * 1995-12-05 1997-06-20 Nkk Corp 溶融金属又は溶融スラグの温度測定装置及びその測定方 法
JP3824119B2 (ja) 1998-08-19 2006-09-20 東京窯業株式会社 ガス吹きプラグ
US6769805B2 (en) * 1998-08-25 2004-08-03 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
JP2000186961A (ja) 1998-12-24 2000-07-04 Nkk Corp 光ファイバ用の先端ガイド装置及び溶融金属の温度測定方法
GB9916022D0 (en) * 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
US6784429B2 (en) * 2002-04-19 2004-08-31 Energy Research Company Apparatus and method for in situ, real time measurements of properties of liquids
ES2310368T3 (es) * 2004-09-10 2009-01-01 Lios Technology Gmbh Calibracion de un sistema de medicion por retrodifusion optica de fmcw.
DE102005061675B3 (de) * 2005-12-21 2007-07-26 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Konverter mit einem Behälter zur Aufnahme geschmolzenen Metalls und einer Messvorrichtung zur optischen Temperaturbestimmung des geschmolzenen Metalls
CA2549084A1 (en) * 2006-05-31 2007-11-30 Itf Laboratories Inc. Fiber bragg grating humidity sensor with enhanced sensitivity
JP2010071666A (ja) 2008-09-16 2010-04-02 Sinfonia Technology Co Ltd 気密溶解設備
US8740455B2 (en) * 2010-12-08 2014-06-03 Baker Hughes Incorporated System and method for distributed environmental parameter measurement
GB2495132B (en) * 2011-09-30 2016-06-15 Zenith Oilfield Tech Ltd Fluid determination in a well bore
EP2954295A4 (en) * 2013-02-08 2017-03-29 Jyoti Goda Apparatus and methods for continuous temperature measurement of molten metals
EP2940441B1 (en) * 2014-04-30 2020-01-01 Heraeus Electro-Nite International N.V. Device for measuring the temperature of a molten metal
WO2016100370A1 (en) * 2014-12-15 2016-06-23 Weatherford Technology Holdings, Llc Dual-ended distributed temperature sensor with temperature sensor array
CN104568217A (zh) * 2014-12-26 2015-04-29 中国船舶重工集团公司第七一五研究所 一种耐高压、高精度光纤光栅温度传感方法
EP3051262B1 (en) 2015-01-28 2018-07-25 Heraeus Electro-Nite International N.V. Feeding device for an optical fiber for measuring the temperature of a melt
GB2543319A (en) 2015-10-14 2017-04-19 Heraeus Electro Nite Int Cored wire, method and device for the production
EP3290881B1 (en) 2016-09-01 2019-08-07 Heraeus Electro-Nite International N.V. Method for feeding an optical cored wire and immersion system to carry out the method
GB2558223B (en) * 2016-12-22 2021-03-31 Heraeus Electro Nite Int Method for measuring a temperature of a molten metal bath
CN109211412A (zh) * 2017-06-30 2019-01-15 沈阳泰合蔚蓝科技股份有限公司 用于测量熔融金属温度的温度测量装置与温度测量方法
DE102018000615A1 (de) * 2018-01-26 2019-08-01 Minkon GmbH Verwendung eines Lichtwellenleiters zur optischen Messung der Temperatur einer Hochtemperaturschmelze
EP3929548A1 (en) * 2020-06-22 2021-12-29 Heraeus Electro-Nite International N.V. Device and method for measuring a temperature of a molten metal
EP3957414A1 (en) * 2020-08-20 2022-02-23 Heraeus Electro-Nite International N.V. Device and system for measuring a temperature of a molten metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1820189A (zh) * 2003-07-09 2006-08-16 贺利氏电子耐特国际股份公司 测量熔融物质的冷却曲线的方法和装置
US20070268477A1 (en) * 2006-05-19 2007-11-22 Heraeus Electro-Nite International N.V. Method and device for measuring the temperature of a molten metal bath
US20110280278A1 (en) * 2010-05-17 2011-11-17 Heraeus Electro-Nite International N.V. Sensor Arrangement for Temperature Measurement and Method for Measurement
TW201506366A (zh) * 2013-04-30 2015-02-16 Heraeus Electro Nite Int 用於測量熔融金屬之溫度的方法或裝置
TW201715264A (zh) * 2015-10-14 2017-05-01 賀利氏電測騎士國際公司 用於量測熔融鋼浴之溫度的可消耗性光纖

Also Published As

Publication number Publication date
US11959813B2 (en) 2024-04-16
BR102021008129A2 (pt) 2022-03-03
AU2021202570B2 (en) 2022-05-19
EP3929548A1 (en) 2021-12-29
RU2768559C1 (ru) 2022-03-24
CN113834575A (zh) 2021-12-24
AU2021202570A1 (en) 2022-01-20
JP2022001867A (ja) 2022-01-06
JP7385627B2 (ja) 2023-11-22
CA3116359A1 (en) 2021-12-22
UA128625C2 (uk) 2024-09-04
ZA202103706B (en) 2022-09-28
MX2021007412A (es) 2021-12-23
US20210396602A1 (en) 2021-12-23
TW202200973A (zh) 2022-01-01
KR20210157901A (ko) 2021-12-29
CA3116359C (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US8038344B2 (en) Converter with a container for receiving molten metal and with a measurement device for the optical temperature determination of the molten metal and method for the temperature determination in such a converter
TWI784525B (zh) 測量熔融金屬之溫度之裝置及方法
JP6122902B2 (ja) 溶融金属の温度を測定するための装置
US20070268477A1 (en) Method and device for measuring the temperature of a molten metal bath
FI77731B (fi) Nedsaenkbar maetsond foer maetningar av metaller i vaetskeform.
US20120082183A1 (en) Drop-in probe
JP2014044202A (ja) 溶融金属内の試料採取用の測定プローブ
US4881824A (en) Immersible probe
KR102714590B1 (ko) 용탕의 온도를 측정하는 장치 및 방법
JP4616456B2 (ja) 溶融金属温度測定用の浸漬型光ファイバ放射温度計及び溶融金属の温度測定方法
JP2023552324A (ja) 溶融金属浴の温度値を決定するための方法及びシステム
SK280801B6 (sk) Zátka na metalurgickú lejaciu nádobu
JP2006030201A (ja) 信号ライン用のガイドシステム、温度及びあるいは濃度測定用の装置及び使用
JP7338335B2 (ja) 温度測定器具
JP2003129123A (ja) 真空脱ガス装置における真空槽の内径推定方法および高さ制御方法
JP3351120B2 (ja) 光ファイバ温度計による出銑口での溶銑温度測定法
JP2024504084A (ja) 溶融金属浴の温度値を決定するための方法及びシステム
JPH063196A (ja) 測温・溶融金属処理兼用ランス
JP2023553370A (ja) 溶融金属浴の一連の温度値を決定するための方法及びシステム
JPH10170166A (ja) 製錬炉のランス管理方法およびランス管理装置
JPS58208649A (ja) 耐火物壁の溶損検知方法