TWI780309B - 檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷 - Google Patents

檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷 Download PDF

Info

Publication number
TWI780309B
TWI780309B TW108107910A TW108107910A TWI780309B TW I780309 B TWI780309 B TW I780309B TW 108107910 A TW108107910 A TW 108107910A TW 108107910 A TW108107910 A TW 108107910A TW I780309 B TWI780309 B TW I780309B
Authority
TW
Taiwan
Prior art keywords
wafer
interest
defects
inspection
training
Prior art date
Application number
TW108107910A
Other languages
English (en)
Other versions
TW201945720A (zh
Inventor
迪拉伊 拉密許 高哈恩
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201945720A publication Critical patent/TW201945720A/zh
Application granted granted Critical
Publication of TWI780309B publication Critical patent/TWI780309B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31728Optical aspects, e.g. opto-electronics used for testing, optical signal transmission for testing electronic circuits, electro-optic components to be tested in combination with electronic circuits, measuring light emission of digital circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318544Scanning methods, algorithms and patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本發明提供用於在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之系統及方法。一個方法包含選擇用於檢測一晶圓上之程式化缺陷之一檢驗子系統之一模式,該模式產生具有該等程式化缺陷之最低非缺陷信號及至少一最小信號之該晶圓之輸出。該方法亦包含選擇與用於在該晶圓之檢驗期間檢測該等程式化缺陷之(若干)關照區域互斥之一訓練關照區域。該訓練關照區域比該(等)關照區域產生更少之該非缺陷信號。該方法進一步包含:使用運用該選定模式產生之該輸出在該訓練關照區域中訓練一程式化缺陷檢測方法;及藉由將該經訓練程式化缺陷檢測方法應用至在該(等)關照區域中使用該選定模式產生之該輸出而在該晶圓之該檢驗期間檢測該等程式化缺陷。

Description

檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷
本發明大體上係關於用於檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷之系統及方法。某些實施例係關於在一晶圓之單晶粒檢驗(SDI)期間使用一暗場檢驗工具檢測此等程式化缺陷。
以下描述及實例不因其等包含於此段落中而被承認係先前技術。
在一半導體製造程序期間之各個步驟使用檢驗程序以檢測晶圓上之缺陷以促進製造程序中之更高良率及因此更高利潤。檢驗始終係製造半導體裝置(諸如IC)之一重要部分。然而,隨著半導體裝置之尺寸減小,檢驗對於可接受半導體裝置之成功製造變得更為重要,此係因為較小缺陷可引起裝置故障。例如,隨著半導體裝置之尺寸減小,具有減小大小之缺陷之檢測已變得必要,此係因為甚至相對小缺陷可引起半導體裝置中之非所要像差。
在一晶圓代工廠之研究及開發環境中,日益存在於在測試工具晶片上程式化缺陷之一趨勢。此方法之原因係基於當前程序步驟理解缺陷之行為及對於用於缺陷檢視之掃描電子顯微鏡(SEM)工具具有更準確缺陷去偏斜。在較小技術節點下,有時需要較小SEM視場(FOV)以觀看所關注缺陷(DOI)。使用一較小FOV以重新檢測一缺陷可使用更佳SEM去偏斜更容易且準確地達成且此係晶圓代工廠使用者想要檢測每一檢驗工具上之此等程式化缺陷之主要原因。
因此,一般言之,缺陷程式化在每一晶粒上且意欲由每一光學檢驗工具檢測以在SEM檢視期間達成準確缺陷去偏斜。缺陷可程式化在一晶粒中之任何處,甚至在晶粒邊角附近之一輸入/輸出區中,該輸入/輸出區可在背景中具有實質上高散射隨機(非重複)邏輯圖案化特徵。一些檢驗工具可使用一陣列演算法用於檢測此等程式化缺陷。檢驗工具(諸如基於雷射之工具)可使用用於檢測晶粒重複缺陷之不同演算法(諸如陣列模式及單晶粒檢驗(SDI)模式)。
然而,當前使用之系統及方法可具有數個缺點。例如,上文描述之缺陷檢測模式可不適用於檢測非重複邏輯區中之缺陷。特定言之,在較舊代之基於雷射之光學檢驗工具中,陣列模式係能夠檢測晶粒重複缺陷之唯一演算法。陣列模式工作之一主要可能性係一經適當傅立葉(Fourier)濾波(FF)之陣列,即,自影像消除全部圖案。第二可能性係一實質上安靜背景。若存在任何其他具有雜訊之背景,則直接實施較舊方法不可行。
因此,開發無上文描述之一或多個缺點之用於在含有非重複邏輯特徵之背景中檢測程式化晶粒重複缺陷之方法及系統將係有利的。
各項實施例之以下描述絕不應解釋為限制隨附發明申請專利範圍之標的。
一項實施例係關於一種經組態以在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之系統。該系統包含一檢驗子系統,該檢驗子系統經組態用於藉由使用光掃描一晶圓且檢測在該掃描期間自該晶圓散射之光而產生該晶圓之輸出。該檢驗子系統經組態用於使用由用於產生該輸出之該檢驗子系統之至少一個參數之不同值定義之多個模式產生該輸出。
該系統亦包含一或多個電腦子系統,該一或多個電腦子系統經組態用於藉由判定用於檢測該晶圓上之程式化缺陷之該檢驗子系統之該多個模式之何者產生具有該等程式化缺陷之最低非缺陷信號及至少一最小信號之該晶圓之該輸出而選擇該多個模式之一者。該(等)電腦子系統亦經組態用於選擇一訓練關照區域。該訓練關照區域與用於在該晶圓之檢驗期間檢測該等程式化缺陷之一或多個關照區域互斥。該訓練關照區域比用於檢測該等程式化缺陷之該一或多個關照區域產生更少之該非缺陷信號。另外,該(等)電腦子系統經組態用於使用由該檢驗子系統使用該多個模式之該選定者產生之該輸出在該訓練關照區域中訓練一程式化缺陷檢測方法。該電腦子系統進一步經組態用於藉由將該經訓練程式化缺陷檢測方法應用至由該檢驗子系統使用該多個模式之該選定者在該一或多個關照區域中產生之該輸出而在該晶圓之該檢驗期間檢測該等程式化缺陷。可如本文中描述般進一步組態該系統。
另一實施例係關於一種用於在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之電腦實施方法。該方法包含上文描述之步驟。該方法之步驟由一或多個電腦系統執行。可如本文中進一步描述般進一步執行該方法之各步驟。另外,該方法可包含本文中描述之(若干)任何其他方法之(若干)任何其他步驟。此外,該方法可由本文中描述之該等系統之任何者執行。
另一實施例係關於一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一電腦系統上執行以執行用於在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之一電腦實施方法。該電腦實施方法包含上文描述之方法之步驟。可如本文中描述般進一步組態該電腦可讀媒體。可如本文中進一步描述般執行該電腦實施方法之步驟。另外,可針對其執行該等程式指令之電腦實施方法可包含本文中描述之(若干)任何其他方法之(若干)任何其他步驟。
現參考圖式,應注意,圖未按比例繪製。特定言之,極大地誇大圖之一些元件之尺度以強調元件之特性。亦應注意,該等圖未按相同比例繪製。已使用相同元件符號指示可經類似組態之展示於一個以上圖中之元件。除非本文中另有說明,否則所描述且展示之任何元件可包含任何適合市售元件。
一般言之,本文中描述之實施例係關於一種用於使用用於在基於雷射之暗場(DF)光學檢驗工具上於一非重複邏輯背景中檢測晶粒重複缺陷之一單晶粒檢驗(SDI)方法之新穎方法。如本文中進一步描述,程式化缺陷可位於一晶粒中之任何處,甚至在具有非重複、相對高散射圖案化特徵(諸如非重複邏輯特徵)之區中。因此,由DF工具針對此等程式化缺陷產生之輸出(例如,影像)可歸因於非重複圖案化特徵(其等信號無法由諸如傅立葉濾波之當前可用技術消除)而相對具有雜訊。由於較舊檢測方法可僅用於檢測位於一實質上安靜背景或實質上經適當傅立葉濾波之一背景中之晶粒重複缺陷,故來自非重複圖案化特徵之雜訊尤其成問題。若在任何其他具有雜訊之背景中存在晶粒重複缺陷,則直接實施較舊檢測方法不可行。因而,由於來自非重複特徵之光散射效應可能無法由傅立葉濾波或任何其他技術充分抑制或移除,故位於此等背景中之程式化缺陷可無法由DF工具上之陣列模式檢測。然而,SDI連同用於使程式化缺陷之背景更安靜(例如,具有較少雜訊或具有較少非缺陷信號)之修改提供處理垂直及水平非重複圖案之至少一選項。因此,產生本文中描述之實施例用於在此等背景中之程式化缺陷之SDI。
一項實施例係關於一種經組態以在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之系統。在圖1中展示此一系統之一項實施例。如圖1中展示,系統100包含檢驗子系統102及電腦子系統122。檢驗子系統經組態用於藉由使用光掃描一晶圓且檢測在掃描期間自晶圓散射之光而產生晶圓之輸出。例如,如圖1中展示,檢驗子系統包含光源104。在一項實施例中,檢驗子系統包含經組態以產生用於掃描晶圓之光之一雷射。例如,光源104可包含此項技術中已知之任何適合雷射。以此方式,檢驗子系統可係一雷射掃描光學系統。
來自光源之光由檢驗子系統引導至晶圓106。光源可耦合至任何其他一或多個適合元件(未展示),諸如一或多個聚光透鏡、準直透鏡、中繼透鏡、物鏡、孔徑、光譜濾波器、偏光組件及類似者。如圖1中展示,可按一傾斜入射角將光引導至晶圓。然而,可按任何適合入射角(包含近法向及法向入射角)將光引導至晶圓。另外,可按一個以上入射角依序或同時將光(或多個光束)引導至晶圓。
檢驗子系統可經組態以依任何適合方式使光掃描遍及晶圓。例如,檢驗子系統可包含經組態以引起光掃描遍及晶圓之一掃描子系統(未展示)。在一個此實例中,檢驗子系統可包含在檢驗期間其上安置晶圓106之一載物台。掃描子系統可包含可經組態以移動晶圓,使得光可掃描遍及晶圓之任何適合機械及/或機器人總成(其包含一載物台)。另外或替代地,檢驗子系統可經組態使得檢驗子系統之一或多個光學元件執行光遍及晶圓之某一掃描。掃描晶圓引起檢驗子系統之照明以在檢測自晶圓散射之光時追蹤晶圓上方之一路徑。
自晶圓106散射之光可在掃描期間由檢驗子系統之多個通道之一或多者收集及檢測。按相對接近法向之角度自晶圓106散射之光可由透鏡108收集。透鏡108可包含如圖1中展示之一折射光學元件。另外,透鏡108可包含一或多個折射光學元件及/或一或多個反射光學元件。由透鏡108收集之光可經引導至檢測器110。檢測器110可包含此項技術中已知之任何適合檢測器,諸如一電荷耦合裝置(CCD)或另一類型之成像檢測器。檢測器110經組態以產生回應於由透鏡108收集之散射光之輸出。因此,透鏡108及檢測器110形成檢驗子系統之一個通道。檢驗子系統之此通道可包含此項技術中已知之任何其他適合光學組件(未展示),諸如一傅立葉濾波組件、一光譜濾波器、一偏光組件及類似者。
按不同角度自晶圓106散射之光可由透鏡112收集。透鏡112可如上文描述般組態。由透鏡112收集之光可經引導至檢測器114,該檢測器114可如上文描述般組態。檢測器114經組態以產生回應於由透鏡112收集之散射光之輸出。因此,透鏡112及檢測器114可形成檢驗子系統之另一通道。此通道亦可包含上文描述之任何其他光學組件(未展示)。在一些實施例中,透鏡112可經組態以收集按自約20度至約70度之極角自晶圓散射之光。另外,透鏡112可經組態為經組態以收集按約360度之方位角自晶圓散射之光之一反射光學組件(未展示)。
圖1中展示之檢驗子系統亦可包含一或多個其他通道(未展示)。例如,檢驗子系統可包含經組態為一側通道之一額外通道,該額外通道可包含本文中描述之光學組件之任何者,諸如一透鏡及一檢測器。可如本文中描述般進一步組態透鏡及檢測器。在一個此實例中,側通道可經組態以收集且檢測自入射平面散射出來之光(例如,側通道可包含在實質上垂直於入射平面之一平面中居中之一透鏡及經組態以檢測由透鏡收集之光之一檢測器)。
藉由掃描晶圓而產生之輸出可包含任何適合輸出且可取決於用於執行掃描之檢驗子系統及/或檢驗配方之組態而變動。例如,輸出可包含(例如,在DF檢驗系統之情況中)回應於自晶圓散射之光之信號、資料、影像或影像資料。
由(若干)檢測器在掃描期間產生之輸出可經提供至電腦子系統122。電腦子系統可以任何適合方式耦合至各檢測器。例如,電腦子系統可(例如,藉由由圖1中之虛線展示之一或多個傳輸媒體,其或其等可包含此項技術中已知之任何適合傳輸媒體)耦合至各檢測器,使得電腦子系統可接收由檢測器產生之輸出。在晶圓之掃描期間由檢測器產生之輸出可包含本文中描述之任何輸出。檢驗子系統可經組態用於可能與一或多個其他檢驗模式(例如,一孔徑檢驗模式)組合之DF檢驗。
電腦子系統122可經組態以使用(若干)檢測器之輸出執行如本文中描述之數個功能及本文中進一步描述之任何其他功能。此電腦子系統在本文中亦可被稱為(若干)電腦系統。本文中描述之(若干)電腦子系統或(若干)系統之各者可採取各種形式,包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路設備、網際網路設備或其他裝置。一般言之,術語「電腦系統」可經廣泛定義以涵蓋具有執行來自一記憶體媒體之指令之一或多個處理器之任何裝置。(若干)電腦子系統或(若干)系統亦可包含此項技術中已知之任何適合處理器(諸如一平行處理器)。另外,該(等)電腦子系統或該(等)系統可包含具有高速處理及軟體之一電腦平台(作為一獨立工具或一網路工具)。
若系統包含一個以上電腦子系統(未展示),則不同電腦子系統可彼此耦合,使得可在電腦子系統之間發送影像、資料、資訊、指令等。例如,不同電腦子系統可藉由可包含此項技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體彼此耦合。兩個或兩個以上此等電腦子系統亦可藉由一共用電腦可讀儲存媒體(未展示)而有效地耦合。
檢驗子系統經組態用於使用由用於產生輸出之檢驗子系統之至少一個參數之不同值定義之多個模式產生輸出(例如,影像)。一般言之,一「模式」由用於產生一晶圓之影像之檢驗子系統之參數之值(或用於產生晶圓之影像之輸出)定義。因此,不同模式可在檢驗子系統之至少一個參數之值方面不同。
不同模式可使用不同照明參數,諸如用於照明之光之不同波長、入射角、偏光等或其等之某一組合。模式可以任何適合方式(例如,藉由針對不同模式使用不同光源或不同照明通道、不同光譜濾波器、不同偏光組件等)在(若干)照明參數方面不同。模式可亦或替代地在收集/檢測之任何一或多個可更改參數(例如,收集/檢測之角度、波長、偏光等)方面不同。模式可以任何適合方式(例如,藉由改變定位於經收集/經檢測散射光之路徑中之偏光組件)在收集/檢測參數方面不同。模式亦可在檢驗子系統之任何其他一或多個可更改參數方面不同。
應注意,在本文中提供圖1以大體上繪示可包含於本文中描述之系統實施例中之一檢驗子系統之一組態。顯然,可更改本文中描述之檢驗子系統組態以如在設計一商業檢驗系統時通常執行般最佳化檢驗子系統之效能。另外,可使用諸如商業上可購自加利福尼亞州米爾皮塔斯市KLA-Tencor之Puma 9xxx系列之工具之一現有檢驗系統(例如,藉由將本文中描述之功能性添加至一現有檢驗系統)實施本文中描述之系統。對於一些此等系統,本文中描述之方法可提供為系統之選用功能性(例如,除了系統之其他功能性之外)。替代地,可「從頭開始」設計本文中描述之系統以提供一全新系統。
在一實施例中,由電腦子系統執行之程式化缺陷檢測方法包含一單晶粒檢驗(SDI)方法。一般言之,SDI包含使用輸出及一第一單元大小產生晶圓之第一影像資料且使用輸出及一第二單元大小產生晶圓之第二影像資料。以此方式,不同於其中參考影像來自鄰近晶粒之共同多晶粒(或晶粒間)檢驗方法,SDI應用來自相同晶粒但不同單元之參考像素。可如本文中進一步描述般判定第一單元大小及第二單元大小。
SDI亦包含組合對應於晶圓上之實質上相同位置之第一影像資料及第二影像資料,藉此產生晶圓之額外影像資料。以此方式,可在逐個位置基礎上組合第一影像資料及第二影像資料。組合第一影像資料及第二影像資料產生晶圓之不同影像資料,該不同影像資料可接著如本文中進一步描述般使用(例如,用於缺陷檢測)。例如,組合第一影像資料及第二影像資料可包含使用第一影像資料及第二影像資料執行「影像融合」。換言之,晶圓之新影像資料可自晶圓之兩個其他影像資料「融合」。另外,由於針對具有不同單元大小之單元產生第一影像資料及第二影像資料,故本文中描述之融合步驟可被稱為「單元融合」。在SDI中,不在組合步驟之前執行缺陷檢測。
SDI尤其可用於組合針對含有在輸出中可見之重複圖案化特徵之晶圓上之一晶粒之一區產生之第一影像資料及第二影像資料。例如,不同於一陣列區,在具有重複圖案化特徵之周邊區中,可將單元視為重複圖案。因此,可在形成於具有一重複圖案之一晶圓上之晶粒之一周邊或其他非陣列區中執行如本文中描述之SDI。
SDI進一步包含使用額外影像資料檢測晶圓上之缺陷。使用額外影像資料在晶圓上檢測之缺陷可包含此項技術中已知之任何缺陷且可取決於晶圓之一或多個特性(例如,晶圓層或在檢驗之前對晶圓執行之程序)而變動。使用額外影像資料檢測缺陷可包含將一或多個缺陷檢測臨限值應用至額外影像資料。例如,可比較額外影像資料與一或多個缺陷檢測臨限值。一或多個缺陷檢測臨限值可用於做出關於在額外影像資料中之一像素是否有缺陷之一決策。
用於檢測晶圓上之缺陷之一或多個缺陷檢測臨限值可係可包含於一檢驗配方中之一或多個缺陷檢測演算法之(若干)缺陷檢測臨限值。應用至額外影像資料之一或多個缺陷檢測演算法可包含(若干)任何適合缺陷檢測演算法且可取決於(例如)對晶圓執行之檢驗之類型而變動。可應用至額外影像資料之適合缺陷檢測演算法之實例包含由市售檢驗系統(諸如來自KLA-Tencor之檢驗系統)使用之分段自動定限(SAT)及多晶粒自動定限(MDAT)。以此方式,當涉及缺陷檢測時,可將額外影像資料視作任何其他影像資料。
SDI通常使用一或多個關照區域群組(CAG)執行。在SDI設置期間,系統可自動地放置用於SDI之影像框且在一CA晶粒視圖中將影像框展示給一使用者。系統可接著藉由抓取在影像框位置處之影像而抓取且量測單元大小。
藉由在SDI中依像素級組合(或融合)資訊,可增強來自所關注缺陷(DOI)之弱信號強度,此係因為雜訊被大大地抑制。例如,依像素級融合資訊,藉此利用量值(強度)及相位(相關)資訊兩者藉由透過利用其等各自重合及非重合而抑制雜訊及擾亂點事件而實現具有弱信號之缺陷之提取。以此方式,SDI之一個優點係相較於第一影像資料及第二影像資料,在額外影像資料中,圖案雜訊可大大地減少,同時相較於第一影像資料及第二影像資料,在額外影像資料中,缺陷信雜比(S/N)經改良。因而,無法在第一影像資料或第二影像資料中檢測之一缺陷可變得可在由影像相關產生之對應額外影像資料中檢測。以此方式,SDI可用於增強晶圓檢驗系統之DOI可檢測性。
因此,SDI實質上不同於其他DF檢驗方法。例如,在一些DF檢驗方法中,現有陣列模式演算法可用於一個晶粒之檢驗。然而,DF陣列模式限於相對安靜陣列區且區域強度比較限於一固定5像素x5像素鄰區(neighborhood)。相比之下,如本文中描述,SDI可在相對安靜陣列區中使用且可基於經檢驗之晶圓及將在其上檢測之缺陷選擇單元大小。例如,可基於在晶圓上之重複缺陷之間之距離選擇單元大小,使得所使用之單元大小實現該等重複缺陷之檢測。另外,用於陣列區中之比較之單元大小不固定且可在如本文中描述之一逐個晶圓基礎上(例如,基於陣列區中之鄰近重複缺陷之間之距離)判定。因此,SDI可有利地依據許多不同晶圓及重複缺陷調適。
由本文中描述之實施例執行之SDI方法可如在於2015年4月14日頒予Huang等人之美國專利第9,008,410號中描述般進一步執行,該專利以宛如全文陳述引用之方式併入本文中。可如此專利中描述般進一步組態本文中描述之實施例。
在另一實施例中,程式化缺陷包含在晶圓上之一晶粒之一區中之晶粒重複缺陷,且該區包含非重複邏輯圖案化特徵。程式化缺陷可包含「重複缺陷(repeaters或repeating defects)」在於程式化缺陷在晶圓上之多個晶粒(或每一晶粒)中之相同或實質上相同位置處重複。作為重複缺陷之非程式化缺陷之實例包含由用於將一設計之多個例項列印於一晶圓上之一遮罩或倍縮光罩上之一非預期缺陷引起之缺陷。然而,可有意地在遮罩或倍縮光罩上程式化一缺陷(例如)以研究一程序步驟且如本文中進一步描述般用於實質上準確掃描電子顯微鏡(SEM)去偏斜。若程式化缺陷係存在於全部晶粒中之對應位置處之重複缺陷,則缺陷將因晶粒間減除而遺漏。然而,若單元大小如上文描述般設定,則全部缺陷(包含超過雜訊底限之重複缺陷(即,具有大於雜訊底限之信號之全部缺陷))可由本文中描述之實施例捕捉。
可藉由(例如)使用一電子設計自動化(EDA)工具來修改晶圓之一設計之設計資料(例如,電腦輔助設計(CAD))更改或產生設計而有意地產生程式化缺陷。可在一倍縮光罩或遮罩上列印經更改或產生設計,可接著使用該經更改或產生設計以經由一微影程序將設計轉印至一晶圓。可以任何適合方式使用含有程式化缺陷之設計產生倍縮光罩或遮罩。倍縮光罩或遮罩可包含此項技術中已知之任何適合倍縮光罩或遮罩。可以此項技術中已知之任何適合方式執行微影程序,且晶圓可包含此項技術中已知之任何適合晶圓。
圖2展示程式化缺陷在一晶圓上之一晶粒之一區中之位置之一項實施例之一粗略示意圖。如圖2中展示,一晶圓上之一晶粒之區200可包含數個組件,該數個組件包含邏輯區塊202、區塊204及206、匯流排208、匯流排210及匯流排212。區塊204及206可包含任何適合裝置區塊,諸如輸入區塊、輸出區塊、控制器、電源裝置、緩衝器及含有任何適合裝置圖案化特徵之類似者。在一些實施例中,程式化缺陷位於形成於晶圓上之一晶粒中之一輸入/輸出(I/O)區中。例如,圖2中展示之區塊可在可具有實質上高散射隨機(非重複)圖案化特徵之晶粒邊角附近之一I/O區中含有I/O裝置及圖案化特徵。然而,程式化缺陷所處之晶粒之區可具有此項技術中已知之任何適合組態。如圖2中進一步展示,程式化缺陷可能所處之晶粒區域係一相對稀疏區(即,存在不含有任何圖案化特徵之相對大區域)。
如圖2中進一步展示,可存在9個程式化缺陷214,各程式化缺陷214位於其自身之缺陷單元216中。程式化缺陷單元可佔用區中之一相對小區域。例如,圖2中展示之區可具有約400微米×約300微米之尺寸,而缺陷單元可具有約9微米寬×8微米高之尺寸。鄰近缺陷單元之間之間距可係約5微米。程式化缺陷可具有約0.25微米之一大小。然而,上文之尺寸可基於晶圓上之晶粒之設計定製。換言之,本文中描述之實施例不限於晶粒及程式化缺陷之任何特定設計。另外,雖然將各程式化缺陷展示為具有相同形狀及大小,但一些程式化缺陷可具有彼此不同之形狀、尺寸或任何其他特性。以此方式,針對其等執行本文中描述之步驟之程式化缺陷可具有任何特性及晶粒中之任何位置,但是本文中描述之實施例對於其背景(即,包圍缺陷之大約小於數十微米之一相對小區域)含有非重複圖案化特徵之程式化缺陷尤其有利。
在一些實施例中,一或多個關照區域之各者包含多個缺陷單元,且多個缺陷單元之各者包含程式化缺陷之至少一者。圖2中展示之9個缺陷單元可配置成3×3之群組,且關照區域可經繪製為涵蓋3個單元之群組中之缺陷單元。換言之,針對9個程式化缺陷單元,總共繪製3個關照區域,其中各關照區域涵蓋3個程式化缺陷單元。關照區域之各者含有晶圓上之互斥區域。換言之,無程式化缺陷之關照區域在晶圓上彼此重疊。以此方式,由於全部9個程式化缺陷將通常在檢驗期間被檢測,故以使得涵蓋全部9個缺陷之一方式繪製關照區域。
圖2中展示之影像218表示程式化缺陷之一者之一SEM影像可能看似如何之一實例。可使用一相對小FOV (例如,約1微米)獲取SEM影像。
在一些實施例中,程式化缺陷位於晶圓上之一晶粒之一區中,且區包含引起在一或多個關照區域中產生之輸出含有無法由傅立葉濾波消除之非缺陷信號之圖案化特徵。例如,圖3繪示傅立葉濾波對圖2中展示之程式化缺陷之效應。(雖然在圖3中僅展示圖2之程式化缺陷單元之一子集,但若缺陷單元全部具有如期望之相同設計,則缺陷單元之全部將展現此行為)。如圖3中展示,在傅立葉濾波之前,程式化缺陷單元之影像300包含歸因於缺陷單元中之非重複圖案化特徵之在影像之頂部及底部邊緣處之亮散射302、歸因於缺陷單元中之重複圖案化特徵之亮散射304及歸因於程式化缺陷自身之散射306。如在對應於傅立葉濾波前影像300之傅立葉濾波後影像308中展示,歸因於重複圖案化特徵之亮散射將由傅立葉濾波完全消除,僅留下背景雜訊310在其位置中。然而,傅立葉濾波後影像將仍包含來自程式化缺陷單元之頂部及底部邊緣附近之非重複圖案化特徵之亮散射312及來自程式化缺陷之亮散射314之至少一些。因而,由程式化缺陷單元產生之非缺陷信號無法完全經傅立葉濾波,此係因為邊緣附近之亮散射在傅立葉濾波後將保留。藉由分析來自缺陷單元之傅立葉濾波後輸出,顯而易見,一陣列模式缺陷檢測演算法由於本文中進一步描述之原因而無法用於檢測此等程式化缺陷。
SDI方法係基於CAG。以此方式,SDI訓練需要一訓練框/CAG。如本文中進一步描述,在一些實施例中,程式化缺陷位於晶圓上之一晶粒之一區中,且區包含引起在一或多個關照區域中產生之輸出含有無法由傅立葉濾波消除之非缺陷信號之圖案化特徵。在一項此實施例中,程式化缺陷檢測方法包含一SDI方法,且在區中不產生非缺陷信號之一區域之一大小小於訓練SDI方法所需之一區域之一最小預定大小。例如,若針對依據程式化缺陷之信號值具有最佳模式之程式化缺陷產生之輸出含有非缺陷信號(諸如圖3中展示之非缺陷信號),則使用該輸出訓練SDI方法可係有問題的。特定言之,輸出中之非缺陷信號可將輸出中適合於訓練SDI方法之區域減少至低於訓練SDI方法所需之區域。換言之,SDI訓練所需之訓練區域具有一最小大小。若具有等於或大於最小大小之一大小之一區域不可用,則SDI方法將不容許訓練繼續。由於如本文中進一步描述,SDI訓練框無法在缺陷單元附近之任何處繪製,故無法符合SDI訓練框之最小大小限制。
亦必須選擇SDI訓練區域以具有適合特性。例如,若訓練區域含有非缺陷信號(諸如來自程式化缺陷單元中之非重複邏輯圖案化特徵之相對亮散射),則SDI方法可判定在SDI訓練之後,訓練區域不落於任何可用SDI類別中。可用類別包含陣列、水平及垂直(其中「陣列」大體上係指在兩個維度上重複之圖案,而「水平」及「垂直」係指僅在一個維度上重複之圖案,諸如分頁(page break))。若訓練區域含有一塊狀圖案或非散射區,則SDI訓練將判定訓練區域落於陣列、垂直或水平類別之一者中。若訓練資料包含傅立葉濾波後之非重複非缺陷信號,則SDI訓練將判定區域落於隨機類別中(意謂SDI訓練無法判定單元大小)。例如,若訓練區域不包含具有來自邊緣之重散射之塊狀圖案,則SDI訓練將把訓練區域分類為隨機。SDI方法之一特徵為若一訓練區域落於隨機類別中,則SDI方法無法用於該區域。換言之,若訓練結果係陣列、水平及垂直之一者,則可使用SDI而無任何問題。然而,若訓練結果係隨機,則SDI軟體將不容許使用SDI,此係因為在訓練之後,其無法量測所需參數。
圖4繪示使用程式化缺陷單元內用於訓練SDI方法之區域之限制。例如,圖4繪示針對圖2中展示之程式化缺陷單元之不同子集之傅立葉濾波前影像400 (為了簡潔起見,在圖4中僅展示程式化缺陷單元之非全部之影像)。雖然在圖4中在傅立葉濾波前影像中展示程式化缺陷單元內之可用訓練區域之限制,但相同限制將適用於傅立葉濾波後影像。
對於程式化缺陷單元影像中之一訓練區域,存在多個選項。一個訓練區域402在程式化缺陷位置上(至少粗略地)居中且具有小於整個程式化缺陷單元之尺寸以避免在訓練區域中包含來自單元之頂部及底部邊緣附近之非重複圖案化特徵之相對亮散射。由於此一訓練區域將僅包含重複非缺陷信號,故訓練區域將被分類為一陣列區域,此係SDI方法之一有效訓練結果。另一選項係訓練區域404,該訓練區域404在程式化缺陷單元之間之空間上(至少粗略地)居中且具有防止來自單元之頂部及底部邊緣附近之非重複圖案化特徵(及來自程式化缺陷)之相對亮散射包含於訓練區域中之尺寸。由於此一訓練區域將亦僅包含重複非缺陷信號,故此訓練區域將亦被分類為一陣列區域,此係SDI方法之一有效訓練結果。
雖然可在程式化缺陷單元中找到將產生一有效訓練結果之訓練區域,但可用訓練區域不具有等於或大於SDI方法所需之訓練區域之最小大小(例如,約12微米)之一大小。以此方式,無法在程式化缺陷單元內繪製一適合訓練關照區域,此係因為可用於訓練之可用區域無法符合一最小訓練關照區域大小限制。
在另一實施例中,程式化缺陷分別位於不同缺陷單元中,且不同缺陷單元之一大小小於用於訓練程式化缺陷檢測方法所需之一區域之一最小預定大小,藉此防止不同缺陷單元之任何者被用作訓練關照區域。換言之,程式化缺陷單元之各者之大小小於訓練關照區域之所需大小,此意謂無程式化缺陷單元自身足夠大以用作訓練關照區域。若增大訓練關照區域之大小以涵蓋一或多個整個程式化缺陷單元(例如,3個程式化缺陷單元之一群組)以便符合最小訓練關照區域大小限制,則SDI訓練將產生一「隨機」結果,該「隨機」結果非一有效結果(意謂SDI訓練無法成功地完成,藉此防止SDI在區域中執行)。例如,圖5展示圖3之傅立葉濾波前影像,其中用於訓練SDI所需之訓練關照區域500之最小大小之一實例與程式化缺陷所處之單元之一子集覆疊。如圖5中展示,基於最小可能大小選擇程式化缺陷單元中之訓練關照區域導致包含來自非重複圖案化特徵之非缺陷信號之訓練關照區域。因而,SDI訓練將把此一訓練關照區域分類為一隨機區域,藉此防止SDI訓練成功地完成。
為了解決SDI方法之訓練中之上述限制(例如)以獲得一有效訓練結果(即,以避免獲得「隨機」作為一訓練結果),發明者已發現,找到並使用另一位置用於SDI訓練係最佳的。為了使用SDI,其他位置之背景應實質上類似於含有程式化缺陷之缺陷單元。因此,水平及垂直SDI將不起作用,此係因為程式化缺陷單元不包含在一個維度上重複之圖案化特徵。代替性地,發明者已發現「迫使」 SDI訓練將訓練關照區域分類為一陣列類型區域之一方式。另外,為了解決SDI訓練之上述限制,發明者已發現,可選擇用於訓練(及用於檢測程式化缺陷)之光學模式以將來自缺陷單元之邊緣之相對亮散射抑制至使使用SDI檢測對於程式化缺陷單元可行之一程度。
首先光學地處理解決相對亮散射問題。為了消除來自非重複圖案化特徵之相對亮散射,不同照明角測試(例如,傾斜入射及法向入射)之有效傅立葉濾波結果已可用。然而,經傅立葉濾波之經訓練影像實質上具有雜訊。因此,探索使用一不同模式用於程式化缺陷檢測作為用於抑制相對亮散射之可能性之一者。
(若干)電腦子系統經組態用於藉由判定用於檢測晶圓上之程式化缺陷之檢驗子系統之多個模式之何者產生具有程式化缺陷之最低非缺陷信號及至少一最小信號之晶圓之輸出而選擇該多個模式之一者。例如,可針對上文描述之不同入射角針對具有手動光位準調整之每一光學器件組合藉由檢查針對此等光學器件組合產生之影像而產生測試。由於目標係移除相對亮散射,故視覺分析及判斷可實質上係重要的。
在一項實施例中,選擇多個模式之一者包含僅在程式化缺陷所處之一或多個單元中產生晶圓之輸出,且判定多個模式之何者產生具有程式化缺陷之最低非缺陷信號及至少最小信號之晶圓之輸出僅係基於僅在程式化缺陷所處之一或多個單元中產生之輸出執行。例如,不同於選擇其中可掃描晶圓上之一相對大區域之非程式化缺陷檢測(或「正常」檢驗)之(若干)光學模式,模式選擇步驟可包含僅選擇性掃描程式化缺陷單元。特定言之,程式化缺陷檢測可僅係晶圓之檢驗之一個部分(或測試),且可在檢驗中執行其他測試(例如)以檢測非程式化缺陷及/或用於任何其他原因。因此,對晶圓執行之用於產生模式選擇步驟之輸出之掃描不需要在除了程式化缺陷單元之外之晶圓之任何部分中執行。因而,相較於針對典型晶圓檢驗執行之模式選擇,模式選擇步驟可在此方面不同。
針對一個晶圓層,在驗證全部光學器件模式之後,發現使用傅立葉濾波之NISPPP (其代表三個檢測通道中之法向入射、s-偏光照明及p偏光檢測)為最佳模式,該模式具有對具有雜訊之散射之最大抑制(即,最佳背景散射)且缺陷信號亦高於其背景,如圖6中展示。例如,如針對程式化缺陷單元之一子集之影像600中展示,選定模式在重複圖案化特徵光散射信號先前所處之缺陷單元之中心背景602中基本上不產生信號。雖然歸因於非重複圖案化特徵,選定模式仍在影像之邊緣處產生一些非缺陷光散射信號604,但相較於在先前使用之模式中產生之非缺陷信號,該等非缺陷信號明顯減少。
雖然選定模式導致低於在先前使用之模式中產生之缺陷信號之一缺陷信號606,但選定模式僅需要產生某一缺陷信號(即,一非零缺陷信號或不等於或低於雜訊底限之一缺陷信號)以便使程式化缺陷可由SDI方法檢測。使用傅立葉濾波之NISPPP具有最小缺陷信號值但SDI在檢測顯著弱信號缺陷方面非常強大且因此,使用此光學器件調諧之現有SDI方法將檢測此等程式化缺陷。
由於影像中之先前亮、非重複圖案化特徵散射區在NISPPP模式中顯著安靜,故缺陷單元影像實質上安靜,藉此容許陣列類型SDI搭配一適合臨限值(例如,約40)使用。例如,影像之不同部分具有信號值之不同範圍。特定言之,如圖3中展示,缺陷部分316將具有信號值之一第一範圍,背景部分318將具有信號值之一第二範圍,且非重複圖案部分320將具有信號值之一第三範圍。若背景部分具有約25之一信號,非重複圖案部分具有約35之一信號,且缺陷部分具有約60之一信號,則可將SDI臨限值設定為約40以避免在容許將缺陷部分檢測為一缺陷之同時將背景及非重複圖案檢測為缺陷。即使已發現可用於程式化缺陷檢測之一模式,仍有必要想出如何針對程式化缺陷單元訓練SDI。
以此方式,由本文中描述之實施例執行之模式選擇係一種類型之「光學器件調諧」及尤其若程式化缺陷在具有隨機非重複圖案之一區中,則可在SDI訓練期間使用之多個旋鈕之一者。本質上,SDI中之光學器件調諧可以類似於當前使用之光學模式判定方法及系統之一方式執行。例如,可使用檢驗子系統上可用之各模式(或全部可用模式之某一選定部分)針對程式化缺陷單元產生輸出,且可比較輸出之特性以判定模式之何者產生程式化缺陷單元之最佳輸出(其中「最佳」輸出可定義為具有非重複及重複圖案化特徵之最小散射信號與至少某一程式化缺陷信號)。針對模式選擇執行之步驟(例如,掃描及輸出比較)可完全手動地及/或使用一些使用者輸入執行。
以此方式,當一初始SDI訓練結果係「隨機」時,即使程式化缺陷信號顯著下降(只要其至少稍微高於背景),仍可執行模式選擇以使背景儘可能安靜。由於可如本文中描述般使背景實質上安靜,故在訓練中僅選擇一個類型之SDI且將其用於程式化缺陷檢測,即,其係陣列類型SDI。可如本文中進一步描述般修改CAG,使得SDI訓練結果係陣列。
在一項實施例中,晶圓之檢驗包含檢測晶圓上之非程式化缺陷,且由用於檢測晶圓上之非程式化缺陷之檢驗子系統產生之輸出包含由檢驗子系統使用不同於多個模式之選定者之多個模式之另一者針對晶圓產生之輸出。例如,程式化缺陷檢測可僅係針對晶圓執行之一整個檢驗程序之一個部分。整個檢驗程序可針對不同部分使用不同模式,一個模式用於程式化缺陷檢測且另一模式用於另一缺陷檢測。用於程式化及另一缺陷檢測之模式可在檢驗子系統之任何參數(包含本文中進一步描述之參數)方面不同。在一些例項中,可使用不同模式以同時掃描晶圓(例如,其中一個模式使用一個檢測通道且另一模式使用另一檢測通道,但兩個模式使用檢驗子系統之全部相同其他參數)。然而,可在晶圓之不同掃描中使用不同模式,其中在不同掃描之間具有對檢驗子系統之一或多個參數之改變。由於可針對不同測試使用不同模式,故不同模式亦可掃描晶圓上之不同區域。以此方式,不同模式可搭配不同掃描參數使用。
(若干)電腦子系統亦經組態用於選擇一訓練關照區域。訓練關照區域與用於在晶圓之檢驗期間檢測程式化缺陷之一或多個關照區域互斥。訓練關照區域比用於檢測程式化缺陷之一或多個關照區域產生更少非缺陷信號。在一項實施例中,基於由檢驗子系統使用多個模式之選定者產生之輸出執行選擇訓練關照區域。例如,在如上文描述般選擇一模式之後,下一步驟係找到訓練SDI以獲得一有效SDI訓練結果之一方式。如上文提及,SDI係一基於CAG之方法且現在,吾人對於繼續SDI之要求已變得受模式選擇步驟之結果限制,即,吾人可僅具有經判定為「陣列」類型之一SDI訓練結果。發明者已發現,可找到程式化缺陷單元附近之具有一實質上安靜背景之一區域,且可修改CAG以將該區包含於程式化缺陷單元之CAG中且此新包含區域可僅用於SDI訓練。即使找到具有一實質上安靜背景之任何區不可行,仍可包含僅用於SDI訓練之目的之一經非常適當傅立葉濾波之SRAM區。在於此新包含CA中訓練SDI之後,可代替性地將分類為隨機之SDI訓練結果分類為陣列。接著,系統可繼續SDI訓練用於檢測程式化缺陷。
圖7展示圖2之晶粒之區中之程式化缺陷單元,其中一訓練關照區域及一或多個關照區域之一項實施例如本文中描述般選擇。例如,如圖7中展示,用於程式化缺陷檢測之關照區域700可包含3個單獨關照區域,各關照區域包含3個程式化缺陷單元。可在邏輯區塊202中選擇訓練關照區域702。如圖7中展示,訓練關照區域及用於程式化缺陷檢測之一或多個關照區域係晶圓上之晶粒之區中之互斥區域。換言之,訓練關照區域及一或多個關照區域在晶圓上完全不重疊且在晶圓上隔開。此訓練關照區域可如本文中進一步描述般選擇(例如,使得其比用於程式化缺陷檢測之關照區域產生更少非缺陷信號)。例如,發現邏輯區塊在使用傅立葉濾波之選定模式中亦實質上安靜。晶粒中非散射或類似於缺陷單元散射之任何區域(僅為了方便起見,較佳在程式化缺陷單元附近)可用作訓練關照區域。
在一額外實施例中,選擇訓練關照區域包含判定晶圓上之哪一區域產生最接近使用多個模式之選定者針對一或多個關照區域產生之輸出之最低非缺陷信號之非缺陷信號。例如,理想地,訓練關照區域將具有類似於缺陷單元之一背景。一般言之,找到類似於缺陷單元之一背景可非常困難。換言之,在晶粒中之某一其他處找到類似於缺陷單元之一背景可實質上困難。使程式化缺陷單元背景實質上安靜在雷射掃描平台上(使用傅立葉濾波等)較容易。因此,使缺陷單元安靜且找到另一安靜位置係方便的。因此,最佳選項係使用硬體或軟體選項使缺陷單元中之背景實質上安靜。此係為何為了使程式化缺陷檢測對使用SDI之雷射掃描檢驗工具起作用所採取之第一步驟係修改用於程式化缺陷檢測之模式。現在,由於缺陷單元係安靜的,故吾人可找到用於SDI訓練之具有安靜背景之一位置。因而,若可使背景安靜,則其可落於陣列類型SDI中,同時使找到具有一安靜背景(其現在與缺陷單元相同)而非完全相同「非安靜」背景之一區域更容易。在訓練關照區域702內,可將SDI訓練框704指定為實際上用於SDI訓練之訓練關照區域之部分。以此方式,可修改用於SDI之CAG以包含僅用於SDI訓練目的之訓練關照區域。
以此方式,如本文中描述般選擇訓練關照區域係僅用於訓練目的之SDI CAG中之一種類型之修改。例如,在研究多個晶圓層之後,發明者想出,缺陷位於相對複雜邏輯及/或I/O位置中時之大多數時間,主要挑戰僅係「通過」 SDI訓練(以獲得容許SDI訓練成功地完成之一有效結果)。SDI訓練涉及量測用於其處理之一些參數(例如,單元大小)。當背景安靜,在兩個維度上重複或在一個維度上重複,藉此被分類為陣列、水平或垂直時將能夠完成此。因此,當SDI訓練成功地量測所需參數且檢驗區域落於3個類別之一者中時,SDI訓練將通過。當其無法量測所需參數時,則吾人說SDI訓練已失效且若SDI類型經判定為隨機,則其亦將失效。當訓練失效時,無法使用SDI演算法。若可在一影像中清楚地看見一缺陷,但吾人無法想出如何通過SDI訓練,則可修改CAG以包含一實質上安靜位點且在新位置上訓練SDI。藉由如此做,可產生具有「陣列」類型之SDI之一有效訓練結果,且可判定適當SDI臨限值。
在一項實施例中,訓練關照區域比用於在多個模式之選定者中檢測程式化缺陷之一或多個關照區域產生更少非缺陷信號。例如,缺陷單元附近之在新模式(例如,NISPPP)中完全安靜之一邏輯區塊可包含於缺陷單元之CAG中。由於邏輯區塊在此模式中完全安靜,故此意謂自邏輯區塊散射之光將不包含來自在程式化缺陷單元之影像中看見之非重複圖案化結構之非缺陷信號。因此,使用此一區域作為訓練關照區域意謂訓練關照區域將比用於程式化缺陷檢測之(若干)關照區域產生更少非缺陷信號。僅為了SDI訓練之目的使用此新區。換言之,在晶圓之檢驗期間,將以使得不在訓練關照區域中執行程式化缺陷檢測之一方式設定檢驗配方。
在另一實施例中,訓練關照區域不包含引起在訓練關照區域中產生之輸出含有無法由傅立葉濾波消除之非缺陷信號之圖案化特徵。例如,如上文描述,可找到晶粒中在傅立葉濾波之後完全安靜之一區域(例如,在一附近邏輯區塊中)。不包含非重複及/或隨機圖案化特徵之區域將係此情況。以此方式,全部非缺陷信號可由傅立葉濾波移除。由於執行模式選擇以使針對程式化缺陷單元產生之輸出完全安靜(或儘可能接近完全安靜),故找到不包含其散射無法由傅立葉濾波消除之圖案化特徵之一區域將基本上確保該區域適合於用作用於程式化缺陷單元之一訓練關照區域,此係因為其將提供具有與程式化缺陷單元實質上類似之雜訊特性之一訓練關照區域。因此,選擇一訓練關照區域可包含搜尋相對接近程式化缺陷單元之僅包含可經傅立葉濾波之重複特徵之一區域之設計或晶圓,且接著在選定模式中掃描訓練關照區域以確保其事實上確實產生實質上安靜背景雜訊特性。
在另一實施例中,選擇訓練關照區域包含找到晶圓上比一或多個關照區域產生更少非缺陷信號且位於最接近一或多個關照區域之一區域。訓練關照區域不一定需要在程式化缺陷單元附近。必須在不同於(若干)關照區域之一位置處繪製訓練關照區域。若訓練關照區域(在y方向上)非常遠離程式化缺陷單元,則其將增加掃描完整晶圓所需之時間。若訓練關照區域較接近(若干)關照區域,則將不需要一額外掃描帶以掃描新訓練關照區域。因此,若在晶圓上存在適合於用作訓練關照區域之多個區域之一選擇,則可選擇位於最接近程式化缺陷單元之區域以用作訓練關照區域。
在一進一步實施例中,程式化缺陷位於晶圓上之一晶粒中之一第一區中,訓練關照區域位於晶粒中之一第二區中,且第一區及第二區具有彼此不同之類型。例如,如上文描述,訓練關照區域不需要在晶粒中相對於程式化缺陷之任何特定區中(雖然使訓練關照區域相對接近程式化缺陷單元可對於易於掃描之目的稍微有利)。只要訓練關照區域具有實質上類似雜訊特性,則對其所處之區之類型不存在限制。相比之下,在當前使用之檢驗程序中,訓練區域通常必須在與其中將檢測缺陷之區相同類型之區中以確保檢驗可檢測該等缺陷。代替性地,在本文中描述之實施例中,訓練關照區域與(若干)關照區域互斥,且在SDI方法之訓練階段中僅用作程式化缺陷單元之一代替。
(若干)電腦子系統進一步經組態用於使用由檢驗子系統使用多個模式之選定者產生之輸出在訓練關照區域中訓練一程式化缺陷檢測方法。例如,一旦已選擇多個模式之一者及訓練關照區域,程式化缺陷檢測方法(例如,SDI)便可正常地繼續訓練。訓練可包含設定程式化缺陷檢測方法之可更改及/或需要在訓練中設定之任何參數。該等參數可包含(例如)在缺陷檢測中使用之單元大小、臨限值及類似者。
(若干)電腦子系統亦經組態用於藉由將經訓練程式化缺陷檢測方法應用至由檢驗子系統使用多個模式之選定者在一或多個關照區域中產生之輸出而在晶圓之檢驗期間檢測程式化缺陷。經訓練程式化缺陷檢測方法可以任何適合方式應用至在一或多個關照區域中產生之輸出。換言之,一旦已訓練程式化缺陷檢測方法,便可如在任何其他缺陷檢測方法中般將其應用至在程式化缺陷單元中產生之輸出。
在一項實施例中,電腦子系統經組態用於藉由將經訓練程式化缺陷檢測方法應用至由檢驗子系統使用多個模式之選定者在一或多個關照區域中產生之輸出而在具有與晶圓相同之類型之另一晶圓之檢驗期間檢測程式化缺陷。例如,在使用SDI之「光學器件調諧」(模式選擇)中,可僅為了程式化缺陷檢測測試針對每一層執行最佳模式選擇。每一缺陷可在程式化缺陷單元中產生不同光散射。類似於用於DOI模式之光學器件選擇,選擇檢驗子系統之一模式將包含找到具有最小非缺陷散射及至少某一缺陷信號(即,一非零缺陷信號)之一模式,此係因為吾人正在處理陣列類型SDI。因此,可針對同一層之其他晶圓使用相同模式(其中「層」意謂半導體處理中之一步驟)。例如,若吾人對一個層設置此方法,則同一層之全部晶圓可搭配選定光學模式使用。若吾人想要對某一其他層執行程式化缺陷檢測,則針對第一層選擇之模式可對或可不對新層起作用(可對一新層測試一先前選定模式以判定其是否將起作用)。然而,本文中描述之實施例可(可能在選擇一新光學器件模式及可能一不同訓練關照區域之情況下)用於一晶圓上之任何層。
在一些實施例中,系統包含一缺陷檢視系統,該缺陷檢視系統經組態用於重新檢測程式化缺陷且基於由缺陷檢視系統判定之經重新檢測程式化缺陷之位置、由電腦子系統在晶圓之檢驗期間檢測之程式化缺陷之位置及由電腦子系統在晶圓之檢驗期間檢測之非程式化缺陷之位置而判定在晶圓之檢驗中在晶圓上檢測之非程式化缺陷之位置。例如,如圖1中展示,系統可包含缺陷檢視系統124,該缺陷檢視系統124可包含一SEM或任何其他適合缺陷檢視系統。缺陷檢視系統可藉由耦合至系統之一或多個元件而成為系統之一部分。例如,雖然圖1中未展示,但缺陷檢視系統之一電腦子系統或一儲存媒體可耦合至系統之一電腦子系統或一儲存媒體。缺陷檢視系統亦可與或可不與系統之其他組件共用一或多個元件。共用之一或多個元件(未展示)可包含(例如)一共用電源、一共用外殼、一共用載物台及/或一共用裝載模組。缺陷檢視系統可包含任何適合市售缺陷檢視系統,諸如可購自KLA-Tencor之eDR系列之工具。
一旦程式化缺陷已由缺陷檢視系統重新檢測(其可如同任何其他缺陷重新檢測般執行),便可判定經重新檢測程式化缺陷之位置。由缺陷檢視系統判定之程式化缺陷之座標及由檢驗判定之程式化缺陷之座標可用於判定不同程式化缺陷座標之間之一關係(例如,一轉換)。可接著使用該關係以判定任何其他缺陷在缺陷檢視系統座標中之位置。例如,若關係係一轉換,則該轉換可應用至由檢驗判定之缺陷座標以藉此識別缺陷相對於缺陷檢視系統位於何處,藉此有效地對缺陷檢視系統中之缺陷去偏斜。程式化缺陷及由缺陷檢視系統判定之其等座標可用於執行其中缺陷經檢視之各晶粒之缺陷去偏斜。程式化缺陷及由缺陷檢視系統判定之其等座標亦可用於提供實質上準確經去偏斜缺陷座標,藉此實現實質上準確缺陷重新檢測(即使使用缺陷檢視系統上之一實質上小視野(FOV)(例如,約1微米))。
因此,本文中描述之實施例提供優於先前可用程式化缺陷檢測方法之數個優點。例如,使用SDI之光學器件調諧及用於SDI訓練之CAG之修改係本文中描述之實施例之兩個新的、最重要特徵。雖然此等選項在光學檢驗工具上已可用,但其等之前不意欲搭配SDI方法使用。使用本文中描述之新方法,打開SDI應用之一全新領域。特定言之,先前,SDI限於具有重複結構之陣列區或圖案。然而,使用本文中描述之「光學器件調諧」(模式選擇)及「用於SDI訓練之CAG之修改」(訓練關照區域選擇),可在具有非重複隨機邏輯圖案之區中使用SDI。使用上文提及之方法,發明者已發現將SDI方法應用至任何使用情況之一方式。
可將上文描述之各系統之各實施例一起組合為一個單一實施例。
另一實施例係關於一種用於在一晶圓之檢驗期間檢測晶圓上之程式化缺陷之電腦實施方法。方法包含上文描述之步驟。可如本文中進一步描述般執行方法之各步驟。方法亦可包含可由本文中描述之檢驗子系統、(若干)電腦子系統或(若干)系統執行之(若干)任何其他步驟。步驟由一或多個電腦系統執行,該一或多個電腦系統可根據本文中描述之任何實施例組態。另外,上文描述之方法可由本文中描述之任何系統實施例執行。
本文中描述之全部方法可包含將方法實施例之一或多個步驟之結果儲存於一電腦可讀儲存媒體中。結果可包含本文中描述之任何結果且可以此項技術中已知之任何方式儲存。儲存媒體可包含本文中描述之任何儲存媒體或此項技術中已知之任何其他適合儲存媒體。在結果已儲存之後,結果可在儲存媒體中存取且由本文中描述之任何方法或系統實施例使用,經格式化以顯示給一使用者,由另一軟體模組、方法或系統使用等。例如,如本文中進一步描述,在晶圓之檢驗期間檢測晶圓上之程式化缺陷之結果可用於校正在缺陷檢視期間重新檢測之缺陷之位置。
一額外實施例係關於一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一電腦系統上執行以執行用於在一晶圓之檢驗期間檢測晶圓上之程式化缺陷之一電腦實施方法。在圖8中展示一項此實施例。特定言之,如圖8中展示,非暫時性電腦可讀媒體800包含可在電腦系統804上執行之程式指令802。電腦實施方法可包含本文中描述之(若干)任何方法之(若干)任何步驟。
實施諸如本文中描述之方法之程式指令802可儲存於電腦可讀媒體800上。電腦可讀媒體可係一儲存媒體,諸如一磁碟或光碟、一磁帶或此項技術中已知之任何其他適合非暫時性電腦可讀媒體。
可以各種方式(包含基於程序之技術、基於組件之技術及/或物件導向技術等等)之任何者實施程式指令。例如,可視需要使用ActiveX控制項、C++物件、JavaBeans、微軟基礎類別(「MFC」)、SSE (串流SIMD延伸)或其他技術或方法論實施程式指令。
可根據本文中描述之任何實施例組態電腦系統804。
鑑於此描述,熟習此項技術者將明白本發明之各種態樣之進一步修改及替代實施例。例如,提供用於在一晶圓之檢驗期間檢測晶圓上之程式化缺陷之系統及方法。因此,此描述應僅解釋為闡釋性且係出於教示熟習此項技術者實行本發明之一般方式之目的。應理解,本文中展示及描述之本發明之形式將被視為當前較佳實施例。皆如熟習此項技術者在獲益於本發明之此描述之後將明白,元件及材料可取代本文中繪示及描述之元件及材料,部分及程序可顛倒,且可獨立利用本發明之特定特徵。在不脫離如在以下發明申請專利範圍中描述之本發明之精神及範疇之情況下可對本文中描述之元件做出改變。
100‧‧‧系統 102‧‧‧檢驗子系統 104‧‧‧光源 106‧‧‧晶圓 108‧‧‧透鏡 110‧‧‧檢測器 112‧‧‧透鏡 114‧‧‧檢測器 122‧‧‧電腦子系統 124‧‧‧缺陷檢視系統 200‧‧‧區 202‧‧‧邏輯區塊 204‧‧‧區塊 206‧‧‧區塊 208‧‧‧匯流排 210‧‧‧匯流排 212‧‧‧匯流排 214‧‧‧程式化缺陷 216‧‧‧缺陷單元 218‧‧‧影像 300‧‧‧傅立葉濾波前影像 302‧‧‧亮散射 304‧‧‧亮散射 306‧‧‧散射 308‧‧‧傅立葉濾波後影像 310‧‧‧背景雜訊 312‧‧‧亮散射 314‧‧‧亮散射 316‧‧‧缺陷部分 318‧‧‧背景部分 320‧‧‧非重複圖案部分 400‧‧‧傅立葉濾波前影像 402‧‧‧訓練區域 404‧‧‧訓練區域 500‧‧‧訓練關照區域 600‧‧‧影像 602‧‧‧中心背景 604‧‧‧非缺陷光散射信號 606‧‧‧缺陷信號 700‧‧‧關照區域 702‧‧‧訓練關照區域 704‧‧‧單晶粒檢驗(SDI)訓練框 800‧‧‧非暫時性電腦可讀媒體 802‧‧‧程式指令 804‧‧‧電腦系統
在受益於較佳實施例之以下詳細描述的情況下且在參考隨附圖式之後,熟習此項技術者將明白本發明之進一步優點,其中:
圖1係繪示如本文中描述般組態之一系統之一實施例之一側視圖之一示意圖;
圖2係繪示在一晶圓上之一晶粒之一區中之程式化缺陷之一項實施例之一平面圖及針對程式化缺陷之一者產生之一例示性掃描電子顯微鏡(SEM)影像之一示意圖;
圖3係繪示針對其中圖2中展示之程式化缺陷所處之單元之一子集產生之影像之一個實例及傅立葉濾波對影像之效應之一示意圖;
圖4係繪示圖3之傅立葉濾波前影像之一示意圖,其中一訓練關照區域之最大大小之實例可在程式化缺陷所處之單元內之不同區域處獲得;
圖5係繪示圖3之傅立葉濾波前影像之一示意圖,其中用於訓練一缺陷檢測方法所需之一訓練關照區域之最小大小之一實例覆疊於其上;
圖6係繪示使用如本文中描述般選擇之檢驗子系統之一模式針對圖2中展示之程式化缺陷所處之單元之一子集產生之影像之一個實例之一示意圖;
圖7係繪示圖2中展示之程式化缺陷之實施例之一平面圖之一示意圖,其中一訓練關照區域及一或多個關照區域之一項實施例如本文中描述般選擇;及
圖8係繪示儲存用於引起一電腦系統執行本文中描述之一電腦實施方法之程式指令之一非暫時性電腦可讀媒體之一項實施例之一方塊圖。
雖然本發明易於具有各種修改及替代形式,但本發明之特定實施例藉由圖式中之實例展示且可在本文中詳細描述。圖式可能未按比例繪製。然而,應理解,圖式及其詳細描述不旨在將本發明限於所揭示之特定形式,而相反,意圖係涵蓋落於如由隨附發明申請專利範圍界定之本發明之精神及範疇內之全部修改、等效物及替代物。
200‧‧‧區
202‧‧‧邏輯區塊
204‧‧‧區塊
206‧‧‧區塊
208‧‧‧匯流排
210‧‧‧匯流排
212‧‧‧匯流排
214‧‧‧程式化缺陷
216‧‧‧缺陷單元
218‧‧‧影像

Claims (21)

  1. 一種經組態以在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之系統,其包括: 一檢驗子系統,其經組態用於藉由使用光掃描一晶圓且檢測在該掃描期間自該晶圓散射之光而產生該晶圓之輸出,其中該檢驗子系統進一步經組態用於使用由用於產生該輸出之該檢驗子系統之至少一個參數之不同值定義之多個模式產生該輸出;及 一電腦子系統,其經組態用於: 藉由判定用於檢測該晶圓上之程式化缺陷之該檢驗子系統之該多個模式之何者產生具有該等程式化缺陷之最低非缺陷信號及至少一最小信號之該晶圓之該輸出而選擇該多個模式之一者; 選擇一訓練關照區域,其中該訓練關照區域與用於在該晶圓之檢驗期間檢測該等程式化缺陷之一或多個關照區域互斥,且其中該訓練關照區域比用於檢測該等程式化缺陷之該一或多個關照區域產生更少之該非缺陷信號; 使用由該檢驗子系統使用該多個模式之該選定者產生之該輸出在該訓練關照區域中訓練一程式化缺陷檢測方法;及 藉由將該經訓練程式化缺陷檢測方法應用至由該檢驗子系統使用該多個模式之該選定者在該一或多個關照區域中產生之該輸出而在該晶圓之該檢驗期間檢測該等程式化缺陷。
  2. 如請求項1之系統,其中選擇該多個模式之該一者包括僅在該等程式化缺陷所處之一或多個單元中產生該晶圓之該輸出,且其中判定該多個模式之何者產生具有該等程式化缺陷之該最低非缺陷信號及至少該最小信號之該晶圓之該輸出僅係基於僅在該等程式化缺陷所處之該一或多個單元中產生之該輸出執行。
  3. 如請求項1之系統,其中該程式化缺陷檢測方法包括一單晶粒檢驗方法。
  4. 如請求項1之系統,其中該等程式化缺陷包括在該晶圓上之一晶粒之一區中之晶粒重複缺陷,且其中該區包括非重複邏輯圖案化特徵。
  5. 如請求項1之系統,其中該訓練關照區域比用於在該多個模式之該選定者中檢測該等程式化缺陷之該一或多個關照區域產生更少之該非缺陷信號。
  6. 如請求項1之系統,其中該訓練關照區域不包括引起在該訓練關照區域中產生之該輸出含有無法由傅立葉濾波消除之非缺陷信號之圖案化特徵。
  7. 如請求項1之系統,其中該等程式化缺陷位於該晶圓上之一晶粒之一區中,且其中該區包括引起在該一或多個關照區域中產生之該輸出含有無法由傅立葉濾波消除之非缺陷信號之圖案化特徵。
  8. 如請求項7之系統,其中該程式化缺陷檢測方法包括一單晶粒檢驗方法,且其中在該區中不產生該等非缺陷信號之一區域之一大小小於用於訓練該單晶粒檢驗方法所需之一區域之一最小預定大小。
  9. 如請求項1之系統,其中該等程式化缺陷分別位於不同缺陷單元中,且其中該等不同缺陷單元之一大小小於用於訓練該程式化缺陷檢測方法所需之一區域之一最小預定大小,藉此防止該等不同缺陷單元之任何者被用作該訓練關照區域。
  10. 如請求項1之系統,其中基於由該檢驗子系統使用該多個模式之該選定者產生之該輸出執行選擇該訓練關照區域。
  11. 如請求項1之系統,其中選擇該訓練關照區域包括找到該晶圓上比該一或多個關照區域產生更少之該非缺陷信號且位於最接近該一或多個關照區域之一區域。
  12. 如請求項1之系統,其中選擇該訓練關照區域包括判定該晶圓上之哪一區域產生最接近使用該多個模式之該選定者針對該一或多個關照區域產生之該輸出之該最低非缺陷信號之該非缺陷信號。
  13. 如請求項1之系統,其中該等程式化缺陷位於形成於該晶圓上之一晶粒中之一輸入/輸出區中。
  14. 如請求項1之系統,其中該等程式化缺陷位於該晶圓上之一晶粒中之一第一區中,其中該訓練關照區域位於該晶粒中之一第二區中,且其中該第一區及該第二區具有彼此不同之類型。
  15. 如請求項1之系統,其中該一或多個關照區域之各者包括多個缺陷單元,且其中該多個缺陷單元之各者包括該等程式化缺陷之至少一者。
  16. 如請求項1之系統,其中該晶圓之該檢驗包括檢測該晶圓上之非程式化缺陷,且其中由用於檢測該晶圓上之該等非程式化缺陷之該檢驗子系統產生之該輸出包括由該檢驗子系統使用不同於該多個模式之該選定者之該多個模式之另一者針對該晶圓產生之輸出。
  17. 如請求項1之系統,其中該電腦子系統進一步經組態用於藉由將該經訓練程式化缺陷檢測方法應用至由該檢驗子系統使用該多個模式之該選定者在該一或多個關照區域中產生之該輸出而在具有與該晶圓相同之類型之另一晶圓之檢驗期間檢測該等程式化缺陷。
  18. 如請求項1之系統,其中該檢驗子系統包括經組態以產生用於掃描該晶圓之該光之一雷射。
  19. 如請求項1之系統,其進一步包括一缺陷檢視系統,該缺陷檢視系統經組態用於重新檢測該等程式化缺陷且基於由該缺陷檢視系統判定之該等經重新檢測程式化缺陷之位置、由該電腦子系統在該晶圓之該檢驗期間檢測之該等程式化缺陷之位置及由該電腦子系統在該晶圓之該檢驗期間檢測之該等非程式化缺陷之位置而判定在該晶圓之該檢驗中在該晶圓上檢測之非程式化缺陷之位置。
  20. 一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一電腦系統上執行以執行用於在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之一電腦實施方法,其中該電腦實施方法包括: 選擇用於檢測一晶圓上之程式化缺陷之一檢驗子系統之多個模式之一者,其中該檢驗子系統經組態用於藉由使用光掃描該晶圓且檢測在該掃描期間自該晶圓散射之光而產生該晶圓之輸出,其中該檢驗子系統進一步經組態用於使用由用於產生該輸出之該檢驗子系統之至少一個參數之不同值定義之該多個模式產生該輸出,且其中選擇該多個模式之該一者包括判定該多個模式之何者產生具有該等程式化缺陷之最低非缺陷信號及至少一最小信號之該晶圓之該輸出; 選擇一訓練關照區域,其中該訓練關照區域與用於在該晶圓之檢驗期間檢測該等程式化缺陷之一或多個關照區域互斥,且其中該訓練關照區域比用於檢測該等程式化缺陷之該一或多個關照區域產生更少之該非缺陷信號; 使用由該檢驗子系統使用該多個模式之該選定者產生之該輸出在該訓練關照區域中訓練一程式化缺陷檢測方法;及 藉由將該經訓練程式化缺陷檢測方法應用至由該檢驗子系統使用該多個模式之該選定者在該一或多個關照區域中產生之該輸出而在該晶圓之該檢驗期間檢測該等程式化缺陷,其中選擇該多個模式之該一者、選擇該訓練關照區域、訓練該程式化缺陷檢測方法及檢測該等程式化缺陷由該電腦系統執行。
  21. 一種用於在一晶圓之檢驗期間檢測該晶圓上之程式化缺陷之方法,其包括: 選擇用於檢測一晶圓上之程式化缺陷之一檢驗子系統之多個模式之一者,其中該檢驗子系統經組態用於藉由使用光掃描該晶圓且檢測在該掃描期間自該晶圓散射之光而產生該晶圓之輸出,其中該檢驗子系統進一步經組態用於使用由用於產生該輸出之該檢驗子系統之至少一個參數之不同值定義之該多個模式產生該輸出,且其中選擇該多個模式之該一者包括判定該多個模式之何者產生具有該等程式化缺陷之最低非缺陷信號及至少一最小信號之該晶圓之該輸出; 選擇一訓練關照區域,其中該訓練關照區域與用於在該晶圓之檢驗期間檢測該等程式化缺陷之一或多個關照區域互斥,且其中該訓練關照區域比用於檢測該等程式化缺陷之該一或多個關照區域產生更少之該非缺陷信號; 使用由該檢驗子系統使用該多個模式之該選定者產生之該輸出在該訓練關照區域中訓練一程式化缺陷檢測方法;及 藉由將該經訓練程式化缺陷檢測方法應用至由該檢驗子系統使用該多個模式之該選定者在該一或多個關照區域中產生之該輸出而在該晶圓之該檢驗期間檢測該等程式化缺陷,其中選擇該多個模式之該一者、選擇該訓練關照區域、訓練該程式化缺陷檢測方法及檢測該等程式化缺陷由一或多個電腦系統執行。
TW108107910A 2018-03-09 2019-03-08 檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷 TWI780309B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
IN201841008780 2018-03-09
IN201841008780 2018-03-09
US201862662159P 2018-04-24 2018-04-24
US62/662,159 2018-04-24
US16/295,999 US10677742B2 (en) 2018-03-09 2019-03-07 Detecting die repeating programmed defects located in backgrounds with non-repeating features
US16/295,999 2019-03-07

Publications (2)

Publication Number Publication Date
TW201945720A TW201945720A (zh) 2019-12-01
TWI780309B true TWI780309B (zh) 2022-10-11

Family

ID=67843803

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107910A TWI780309B (zh) 2018-03-09 2019-03-08 檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷

Country Status (3)

Country Link
US (1) US10677742B2 (zh)
TW (1) TWI780309B (zh)
WO (1) WO2019173746A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200050497A (ko) 2018-11-01 2020-05-12 에스케이하이닉스 주식회사 포토레지스트 패턴에서 프린팅 결함을 검출하는 방법
JP7119949B2 (ja) * 2018-11-28 2022-08-17 セイコーエプソン株式会社 判定装置及び判定方法
US11282189B2 (en) * 2019-09-16 2022-03-22 Intel Corporation Unsupervised clustering to identify anomalies
US11416982B2 (en) * 2019-10-01 2022-08-16 KLA Corp. Controlling a process for inspection of a specimen
US11415531B2 (en) * 2019-10-11 2022-08-16 KLA Corp. Statistical learning-based mode selection for multi-mode inspection
TWI720891B (zh) * 2020-05-18 2021-03-01 聯詠科技股份有限公司 晶片封裝的檢測系統以及晶片封裝的檢測方法
CN113013048A (zh) * 2021-02-24 2021-06-22 上海华力集成电路制造有限公司 晶圆缺陷检测方法
TWI770906B (zh) * 2021-03-26 2022-07-11 環球晶圓股份有限公司 晶圓表面缺陷檢測方法及其裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511156A (zh) * 2013-08-06 2015-03-16 Kla Tencor Corp 使用經程式化缺陷設定一晶圓檢查流程
US9702827B1 (en) * 2014-11-20 2017-07-11 Kla-Tencor Corp. Optical mode analysis with design-based care areas
TW201728897A (zh) * 2015-11-17 2017-08-16 克萊譚克公司 單一影像偵測
TW201734439A (zh) * 2015-12-31 2017-10-01 克萊譚克公司 混合檢查器
TW201734825A (zh) * 2015-12-31 2017-10-01 克萊譚克公司 用於半導體應用之以機器學習之模型為基礎之加速訓練

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035725A1 (en) 2005-08-11 2007-02-15 Fujitsu Limited Defect inspection apparatus, sensitivity calibration method for the same, substrate for defect detection sensitivity calibration, and manufacturing method thereof
US8289508B2 (en) 2009-11-19 2012-10-16 Globalfoundries Singapore Pte. Ltd. Defect detection recipe definition
US9008410B2 (en) 2013-03-13 2015-04-14 Kla-Tencor Corporation Single die inspection on a dark field inspection tool
EP3398123A4 (en) 2015-12-31 2019-08-28 KLA - Tencor Corporation ACCELERATED TRAINING OF A MODEL BASED ON AUTOMATIC LEARNING FOR SEMICONDUCTOR APPLICATIONS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201511156A (zh) * 2013-08-06 2015-03-16 Kla Tencor Corp 使用經程式化缺陷設定一晶圓檢查流程
US9702827B1 (en) * 2014-11-20 2017-07-11 Kla-Tencor Corp. Optical mode analysis with design-based care areas
TW201728897A (zh) * 2015-11-17 2017-08-16 克萊譚克公司 單一影像偵測
TW201734439A (zh) * 2015-12-31 2017-10-01 克萊譚克公司 混合檢查器
TW201734825A (zh) * 2015-12-31 2017-10-01 克萊譚克公司 用於半導體應用之以機器學習之模型為基礎之加速訓練

Also Published As

Publication number Publication date
WO2019173746A1 (en) 2019-09-12
US10677742B2 (en) 2020-06-09
TW201945720A (zh) 2019-12-01
US20190277776A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
TWI780309B (zh) 檢測位於具有非重複特徵的背景中之晶粒重複程式化缺陷
JP6957579B2 (ja) ウエハ上の欠陥を検出するためのシステムおよび方法
KR102536011B1 (ko) 심층적으로 적층된 층들을 갖는 웨이퍼들에서 결함 분류기를 트레이닝하고 적용하기 위한 시스템, 방법
TWI648706B (zh) 用於偵測晶圓上之缺陷之方法、系統及非暫時性電腦可讀媒體
TWI701427B (zh) 經組態以偵測一樣品上之缺陷之系統、用於偵測一樣品上之缺陷之方法及其非暫時性電腦可讀媒體
TWI648533B (zh) 用於相對於一所儲存高解析度晶粒圖像判定檢查資料之一位置之電腦實施方法及經組態以相對於一所儲存高解析度晶粒圖像判定檢查資料之一位置之系統
TWI667717B (zh) 對於關注之圖像群體之圖案之異常偵測
US7848563B2 (en) Method and apparatus for inspecting a defect of a pattern
US9053390B2 (en) Automated inspection scenario generation
US9619876B2 (en) Detecting defects on wafers based on 2D scatter plots of values determined for output generated using different optics modes
KR102094577B1 (ko) 프로그램된 결함을 사용한 웨이퍼 검사 프로세스의 설정
JP2017216466A (ja) ビット不良および仮想検査を用いたウェハ検査プロセスの生成
JP6099635B2 (ja) 検査装置を用いたコンターベースの欠陥検出
JP6472447B2 (ja) フォトマスク欠陥性における変化の監視
CN102396058A (zh) 检测晶片上的缺陷
TWI627690B (zh) 藉由利用交替失效模式之標稱特性之圖案失效發現
JP2005214980A (ja) ウエハのマクロ検査方法および自動ウエハマクロ検査装置
TW202129261A (zh) 控制樣本檢測之程序
TW202117312A (zh) 用於選擇用於樣本檢查之缺陷偵測方法之系統和方法
TWI638994B (zh) 於晶圓檢查之邏輯中之圖案抑制
TWI829958B (zh) 用於檢驗半導體裝置之系統及方法
CN109314067B (zh) 在逻辑及热点检验中使用z层上下文来改善灵敏度及抑制干扰的系统及方法
JP2009150718A (ja) 検査装置および検査プログラム
JP3271622B2 (ja) 半導体デバイスの製造方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent