TW202117312A - 用於選擇用於樣本檢查之缺陷偵測方法之系統和方法 - Google Patents
用於選擇用於樣本檢查之缺陷偵測方法之系統和方法 Download PDFInfo
- Publication number
- TW202117312A TW202117312A TW109122962A TW109122962A TW202117312A TW 202117312 A TW202117312 A TW 202117312A TW 109122962 A TW109122962 A TW 109122962A TW 109122962 A TW109122962 A TW 109122962A TW 202117312 A TW202117312 A TW 202117312A
- Authority
- TW
- Taiwan
- Prior art keywords
- sample
- polygons
- inspection
- noise
- subgroups
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
- G01N2021/8835—Adjustable illumination, e.g. software adjustable screen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N2021/9511—Optical elements other than lenses, e.g. mirrors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20068—Projection on vertical or horizontal image axis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本發明提供用於選擇用於一樣本檢查之缺陷偵測方法之方法及系統。一個系統包含經組態用於基於一樣本上之多邊形之一特性將一關注區域中之該等多邊形區分成初始子群組且判定在由一檢查子系統之一偵測器針對該等不同初始子群組中之該等多邊形產生之輸出中之雜訊之一特性之一或多個電腦子系統。該(等)電腦子系統亦經組態用於藉由組合具有該雜訊之該特性之實質上相同值之該等不同初始子群組之任何兩者或更多者而判定該等多邊形之最終子群組。另外,該(等)電腦子系統經組態用於選擇用於應用至在該樣本或另一樣本之檢查期間由該檢查子系統之該偵測器產生之該輸出之第一及第二缺陷偵測方法。
Description
本發明大體上係關於用於選擇用於樣本檢查之缺陷偵測方法之方法及系統。
以下描述及實例不因其等包含於此段落中而被承認係先前技術。
在一半導體製造程序期間之各個步驟使用檢查程序以偵測倍縮光罩及晶圓上之缺陷以促進製造程序中之更高良率及因此更高利潤。檢查始終係製造半導體裝置之一重要部分。然而,隨著半導體裝置之尺寸減小,檢查對於可接受半導體裝置之成功製造變得更為重要,此係因為較小缺陷可引起裝置故障。
如在此項技術中通常提及之「關注區域」係一樣本上針對檢查目的所關注之區域。有時,關注區域用於區分樣本上經檢查之區域與樣本上在一檢查程序中未檢查之區域。另外,關注區域有時用於區分樣本上使用一或多個不同參數檢查之區域。例如,若一樣本之一第一區域比樣本上之一第二區域更關鍵,則可使用高於第二區域之一靈敏度檢查第一區域使得在第一區域中使用一更高靈敏度偵測缺陷。可以一類似方式隨關注區域更改一檢查程序之其他參數。
當前使用檢查關注區域之不同類別。一個類別係傳統上手動繪製之舊型關注區域。在幾乎全部使用者採用設計導引之檢查之情況下,當前使用非常少舊型關注區域。另一類別係基於設計之關注區域。此等係基於對列印於樣本上之晶片設計圖案之直觀推斷導出之關注區域。使用者嘗試查看晶片設計且導出將有助於導出關注區域之方法/指令檔。存在可用於定義此等基於設計之關注區域之多個技術及工具。由於其等係自地面實況(晶片設計)導出,故其等可提供高精確度、實質上微型關注區域且亦容許檢查系統儲存大量關注區域。此等關注區域不僅自一缺陷偵測觀點係重要的,而且其等對於雜訊抑制通常亦係關鍵的。
一些當前使用之檢查方法亦使用關注區域之規則群組,其中具有不同雜訊行為之關注區域被分組在一起且甚至一個單一關注區域可包含具有不同雜訊行為之許多不同結構。為了識別其中雜訊更高之區域,必須反復執行一所謂的基於設計之搜尋之若干反覆。此程序耗費許多時間。
因此,涉及關注區域之用於檢查之當前使用的方法及系統具有數個缺點。例如,得出結果之時間實質上緩慢,此係因為必須執行搜尋具有雜訊之結構之若干反覆。有時,歸因於複雜性,不可手動地識別全部具有雜訊之結構。在此情況中,用於檢查具有較少雜訊之區域之靈敏度被損及,此係因為具有較多雜訊之區域落在相同關注區域群組中。此降低之檢查靈敏度可防止發現關鍵所關注缺陷(DOI)。
因此,開發用於選擇用於一樣本檢查之缺陷偵測方法而無上文描述之一或多個缺點之系統及方法將係有利的。
各項實施例之以下描述絕不應理解為限制隨附發明申請專利範圍之標的。
一項實施例係關於一種經組態用於選擇用於一樣本檢查之缺陷偵測方法之系統。該系統包含一或多個電腦子系統,其等經組態用於基於一樣本上之多邊形之一特性將該樣本上之一關注區域中之該等多邊形區分成初始子群組使得具有該特性之不同值之該等多邊形被區分成不同初始子群組。該(等)電腦子系統亦經組態用於判定在由一檢查子系統之一偵測器針對該等不同初始子群組中之該樣本上之該等多邊形產生之輸出中之雜訊之一特性。另外,該(等)電腦子系統經組態用於藉由將具有該雜訊之該特性之實質上相同值之該等不同初始子群組之任何兩者或更多者組合成該等最終子群組之一者而判定該等多邊形之最終子群組。該(等)電腦子系統進一步經組態用於分別針對該等最終子群組之一第一者及一第二者基於分別針對該等最終子群組之該第一者及該第二者判定之該雜訊之該特性選擇用於應用至由該檢查子系統之該偵測器在該樣本或相同類型之另一樣本之檢查期間產生之輸出之第一及第二缺陷偵測方法。可如本文中描述般進一步組態該系統。
另一實施例係關於一種用於選擇用於一樣本檢查之缺陷偵測方法之電腦實施方法。該方法包含上文描述之區分、判定一特性、判定最終子群組及選擇步驟。該方法之步驟由一或多個電腦子系統執行。
可如本文中進一步描述般進一步執行上文描述之方法之各步驟。另外,上文描述之方法之實施例可包含本文中描述之(若干)任何其他方法之(若干)任何其他步驟。此外,上文描述之方法可由本文中描述之系統之任何者執行。
另一實施例係關於一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一電腦系統上執行以執行用於選擇用於一樣本檢查之缺陷偵測方法之一電腦實施方法。該電腦實施方法包含上文描述之方法之步驟。可如本文中描述般進一步組態該電腦可讀媒體。可如本文中進一步描述般執行該電腦實施方法之步驟。另外,可針對其執行該等程式指令之電腦實施方法可包含本文中描述之(若干)任何其他方法之(若干)任何其他步驟。
如本文中使用之術語「擾亂點」(其有時可與「擾亂點缺陷」互換地使用)通常被定義為一使用者不關心之缺陷及/或在一樣本上偵測但實際上並非樣本上之實際缺陷之事件。並非實際缺陷之擾亂點可歸因於一樣本上之非缺陷雜訊源(例如,樣本上之金屬線中之增益、來自樣本上之底層或材料之信號、線邊緣粗糙度(LER)、圖案化屬性之相對小臨界尺寸(CD)變動、厚度變動等)及/或歸因於檢查系統自身或用於檢查之其組態中之邊緣性而被偵測為事件。
如本文中使用之術語「所關注缺陷(DOI)」被定義為在一樣本上偵測且實際上係樣本上之實際缺陷之缺陷。因此,DOI為一使用者所關注,此係因為使用者通常關心在經檢查之樣本上之實際缺陷之數量及種類。在一些背景內容中,術語「DOI」用於指代樣本上之全部實際缺陷之一子集,其僅包含一使用者關注之實際缺陷。例如,在任何給定樣本上可存在多個類型之DOI,且一使用者對其等之一或多者可比對一或多個其他類型更關注。然而,在本文中描述之實施例之背景內容中,術語「DOI」用於指代一樣本上之任何及全部真實缺陷。
如本文中使用之術語「設計」及「設計資料」通常係指一IC之實體設計(佈局)及透過複雜模擬或簡單幾何及布林(Boolean)運算自實體設計導出之資料。實體設計可儲存於一資料結構(諸如一圖形資料串流(GDS)檔案、任何其他標準機器可讀檔案、此項技術中已知之任何其他適合檔案及一設計資料庫)中。一GDSII檔案係用於表示設計佈局資料之一種類別之檔案之一者。此等檔案之其他實例包含GL1及OASIS檔案及專屬於加利福尼亞,米爾皮塔斯市(Milpitas)之KLA之專屬檔案格式,諸如RDF資料。另外,由一倍縮光罩檢查系統獲取之一倍縮光罩之一影像及/或其導出物可用作設計之一「代理」或「若干代理」。此一倍縮光罩影像或其之一導出物可在使用一設計之本文中描述之任何實施例中用作對於設計佈局之一取代物。設計可包含2009年8月4日頒予Zafar等人之共同擁有之美國專利第7,570,796號及2010年3月9日頒予Kulkarni等人之共同擁有之美國專利第7,676,077號中描述之任何其他設計資料或設計資料代理,該兩個專利以宛如全文陳述引用之方式併入本文中。另外,設計資料可係標準單元庫資料、整合佈局資料、一或多個層之設計資料、設計資料之導出物及完全或部分晶片設計資料。
在一些例項中,自一晶圓或倍縮光罩模擬或獲取之影像可用作設計之一代理。影像分析亦可用作設計資料之一代理。例如,設計中之多邊形可自列印於一晶圓及/或倍縮光罩上之一設計之一影像提取,假定晶圓及/或倍縮光罩之影像係以足以使設計之多邊形適當地成像之解析度獲取。另外,本文中描述之「設計」及「設計資料」係指由半導體裝置設計者在一設計程序中產生且因此可在將設計列印於任何實體晶圓上之前良好地用於本文中描述之實施例中之資訊及資料。
「設計」或「實體設計」亦可係如將在晶圓上理想地形成之設計。以此方式,一設計可不包含將不列印於晶圓上之設計之特徵,諸如光學近接性校正(OPC)特徵,該等特徵被添加至設計以增強晶圓上之特徵之列印而實際上自身不被列印。
現參考圖式,應注意,圖未按比例繪製。特定言之,在很大程度上放大圖之一些元件之尺度以強調元件之特性。亦應注意,該等圖未按相同比例繪製。已使用相同元件符號指示可經類似組態之展示於不只一個的圖中之元件。除非本文中另有說明,否則所描述且展示之任何元件可包含任何適合市售元件。
一項實施例係關於一種經組態用於選擇用於一樣本檢查之缺陷偵測方法之系統。一些實施例係關於用於增強缺陷檢查靈敏度之統計關注區域分組。例如,本文中描述之缺陷檢查中之關注區域細分及統計重新分組可用於增強對DOI之靈敏度,降低擾亂點率,改良晶圓內及晶圓間配方效能穩定性或其等之某一組合。
在一項實施例中,樣本係一晶圓。晶圓可包含半導體技術中已知之任何晶圓。在另一實施例中,樣本係一倍縮光罩。倍縮光罩可包含半導體技術中已知之任何倍縮光罩。雖然本文中關於一晶圓或若干晶圓描述一些實施例,但實施例不限於可使用其等之樣本。例如,本文中描述之實施例可用於諸如倍縮光罩、平板、個人電腦(PC)板及其他半導體樣本之樣本。
在圖1中展示此一系統之一項實施例。在一些實施例中,該系統包含一檢查子系統,該檢查子系統包含至少一能量源及一偵測器。該能量源經組態以產生經引導至一樣本之能量。該偵測器經組態以偵測來自該樣本之能量且回應於該經偵測能量而產生輸出。
在一項實施例中,檢查子系統係一基於光之檢查子系統。例如,在圖1中展示之系統之實施例中,檢查子系統10包含經組態以將光引導至樣本14之一照明子系統。照明子系統包含至少一個光源。例如,如圖1中展示,照明子系統包含光源16。在一項實施例中,照明子系統經組態以按可包含一或多個傾斜角及/或一或多個法向角之一或多個入射角將光引導至樣本。例如,如圖1中展示,來自光源16之光經引導穿過光學元件18且接著穿過透鏡20至光束分離器21,該光束分離器按一法向入射角引導光至樣本14。入射角可包含任何適合入射角,其可取決於(例如)樣本及欲在樣本上偵測之缺陷之特性而變動。
照明子系統可經組態以在不同時間按不同入射角將光引導至樣本。例如,檢查子系統可經組態以更改照明子系統之一或多個元件之一或多個特性使得可按不同於圖1中展示之入射角之一入射角將光引導至樣本。在一個此實例中,檢查子系統可經組態以移動光源16、光學元件18及透鏡20使得按一不同入射角將光引導至樣本。
在一些例項中,檢查子系統可經組態以在相同時間按不只一個的入射角將光引導至樣本。例如,檢查子系統可包含不只一個的照明通道,照明通道之一者可包含如圖1中展示之光源16、光學元件18及透鏡20,且照明通道之另一者(未展示)可包含可不同或相同組態之類似元件或可包含至少一光源及可能一或多個其他組件(諸如本文中進一步描述之組件)。若在與其他光相同之時間將此光引導至樣本,則按不同入射角引導至樣本之光之一或多個特性(例如,波長、偏光等)可不同,使得可在(若干)偵測器處將源自按不同入射角照明樣本之光彼此區分。
在另一例項中,照明子系統可僅包含一個光源(例如,圖1中展示之源16)且可由照明子系統之一或多個光學元件(未展示)將來自該光源之光區分成不同光學路徑(例如,基於波長、偏光等)。接著,可將不同光學路徑之各者中之光引導至樣本。多個照明通道可經組態以在相同時間或不同時間(例如,當使用不同照明通道以依序照明樣本時)將光引導至樣本。在另一例項中,相同照明通道可經組態以在不同時間將具有不同特性之光引導至樣本。例如,在一些例項中,光學元件18可經組態為一光譜濾波器且可以各種不同方式(例如,藉由調換出光譜濾波器)改變光譜濾波器之性質使得可在不同時間將不同波長之光引導至樣本。照明子系統可具有此項技術中已知之用於依序或同時按不同或相同入射角將具有不同或相同特性之光引導至樣本之任何其他適合組態。
在一項實施例中,光源16可包含一寬頻電漿(BBP)光源。以此方式,由光源產生且引導至樣本之光可包含寬頻光。然而,光源可包含任何其他適合光源(諸如一雷射,其可係此項技術中已知之任何適合雷射),且可經組態以產生此項技術中已知之(若干)任何適合波長之光。另外,雷射可經組態以產生單色或近單色光。以此方式,雷射可係一窄頻雷射。光源亦可包含產生多個離散波長或波帶之光之一多色光源。
來自光學元件18之光可藉由透鏡20聚焦至光束分離器21上。雖然透鏡20在圖1中展示為一單折射光學元件,但實務上,透鏡20可包含將來自光學元件之光組合地聚焦至樣本之數個折射及/或反射光學元件。圖1中展示且本文中描述之照明子系統可包含任何其他適合光學元件(未展示)。此等光學元件之實例包含(但不限於)(若干)偏光組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)光束分離器、(若干)孔徑及類似者,其可包含此項技術中已知之任何此等適合光學元件。另外,系統可經組態以基於用於檢查之照明之類型更改照明子系統之一或多個元件。
檢查子系統亦可包含經組態以引起光掃描遍及樣本之一掃描子系統。例如,檢查子系統可包含樣本14在檢查期間安置於其上之載物台22。掃描子系統可包含可經組態以移動樣本使得光可掃描遍及樣本之任何適合機械及/或機器人總成(包含載物台22)。另外或替代地,檢查子系統可經組態使得檢查子系統之一或多個光學元件執行光遍及樣本之某一掃描。可以任何適合方式使光掃描遍及樣本。
檢查子系統進一步包含一或多個偵測通道。一或多個偵測通道之至少一者包含一偵測器,該偵測器經組態以歸因於藉由檢查子系統照明樣本而自樣本偵測光且回應於所偵測光產生輸出。例如,圖1中展示之檢查子系統包含兩個偵測通道,一個偵測通道由集光器24、元件26及偵測器28形成且另一偵測通道由集光器30、元件32及偵測器34形成。如圖1中展示,兩個偵測通道經組態以按不同收集角收集且偵測光。在一些例項中,一個偵測通道經組態以偵測鏡面反射光,且另一偵測通道經組態以偵測未自樣本鏡面反射(例如,散射、繞射等)之光。然而,兩個或更多個偵測通道可經組態以自樣本偵測相同類型之光(例如,鏡面反射光)。雖然圖1展示包含兩個偵測通道之檢查子系統之一實施例,但檢查子系統可包含不同數目個偵測通道(例如,僅一個偵測通道或兩個或更多個偵測通道)。雖然在圖1中將各集光器展示為單折射光學元件,但各集光器可包含一或多個折射光學元件及/或一或多個反射光學元件。
一或多個偵測通道可包含此項技術中已知之任何適合偵測器,諸如光電倍增管(PMT)、電荷耦合裝置(CCD)及延時積分(TDI)攝影機。該等偵測器亦可包含非成像偵測器或成像偵測器。若偵測器係非成像偵測器,則各偵測器可經組態以偵測散射光之某些特性(諸如強度)但不可經組態以偵測依據成像平面內之位置而變化之此等特性。因而,由包含於各偵測通道中之各偵測器產生之輸出可係信號或資料,而非影像信號或影像資料。在此等例項中,一電腦子系統(諸如系統之電腦子系統36)可經組態以自偵測器之非成像輸出產生樣本之影像。然而,在其他例項中,偵測器可經組態為經組態以產生成像信號或影像資料之成像偵測器。因此,系統可經組態以依數個方式產生影像。
應注意,在本文中提供圖1以大體上繪示可包含於本文中描述之系統實施例中之一檢查子系統之一組態。顯然,可更改本文中描述之檢查子系統組態以如在設計一商業檢查系統時通常執行般最佳化系統之效能。另外,可使用諸如商業上可購自KLA之29xx及39xx系列之工具之一現有檢查系統(例如,藉由將本文中描述之功能性添加至一現有檢查系統)實施本文中描述之系統。對於一些此等系統,可將本文中描述之實施例提供為檢查系統之選用功能性(例如,除了檢查系統之其他功能性之外)。替代地,可「從頭開始」設計本文中描述之檢查子系統以提供一全新檢查系統。
系統之電腦子系統36可以任何適合方式(例如,經由一或多個傳輸媒體,該一或多個傳輸媒體可包含「有線」及/或「無線」傳輸媒體)耦合至檢查子系統之偵測器使得電腦子系統可接收由偵測器在樣本之掃描期間產生之輸出。電腦子系統36可經組態以使用偵測器之輸出執行如本文中描述之數個功能及本文中進一步描述之任何其他功能。可如本文中描述般進一步組態此電腦子系統。
此電腦子系統(以及本文中描述之其他電腦子系統)在本文中亦可稱為(若干)電腦系統。本文中描述之(若干)電腦子系統或(若干)系統之各者可採取各種形式,包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路設備、網際網路設備或其他裝置。一般言之,術語「電腦系統」可經廣泛定義以涵蓋具有執行來自一記憶體媒體之指令之一或多個處理器之任何裝置。(若干)電腦子系統或(若干)系統亦可包含此項技術中已知之任何適合處理器(諸如一平行處理器)。另外,該(等)電腦子系統或該(等)系統可包含具有高速處理及軟體之一電腦平台(作為一獨立工具或一網路工具)。
若系統包含不只一個的電腦子系統,則不同電腦子系統可彼此耦合使得可在如本文中進一步描述之電腦子系統之間發送影像、資料、資訊、指令等。例如,電腦子系統36可藉由可包含此項技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體耦合至(若干)電腦子系統102 (如由圖1中之虛線展示)。兩個或更多個此等電腦子系統亦可藉由一共用電腦可讀儲存媒體(未展示)有效地耦合。
雖然上文將檢查子系統描述為一光學子系統或基於光之檢查子系統,但檢查子系統可係一基於電子之子系統。例如,在一項實施例中,經引導至樣本之能量包含電子,且自樣本偵測之能量包含電子。以此方式,能量源可係一電子束源。在圖2中展示之一個此實施例中,檢查子系統包含電子柱122,該電子柱122耦合至電腦子系統124。
亦如圖2中展示,電子柱包含經組態以產生由一或多個元件130聚焦至樣本128之電子之電子束源126。電子束源可包含(例如)一陰極源或射極尖端,且一或多個元件130可包含(例如)一槍透鏡、一陽極、一限束孔徑、一閘閥、一束電流選擇孔徑、一物鏡及一掃描子系統,其全部可包含此項技術中已知之任何此等適合元件。
自樣本返回之電子(例如,二次電子)可由一或多個元件132聚焦至偵測器134。一或多個元件132可包含(例如)一掃描子系統,該掃描子系統可係包含於(若干)元件130中之相同掃描子系統。
電子柱可包含此項技術中已知之任何其他適合元件。另外,可如2014年4月4日頒予Jiang等人之美國專利第8,664,594號、2014年4月8日頒予Kojima等人之美國專利第8,692,204號、2014年4月15日頒予Gubbens等人之美國專利第8,698,093號及2014年5月6日頒予MacDonald等人之美國專利第8,716,662號中所描述般進一步組態電子柱,該等專利以宛如全文陳述引用之方式併入本文中。
雖然在圖2中將電子柱展示為經組態使得電子按一傾斜入射角引導至樣本且按另一傾斜角自樣本散射,但應理解,電子束可按任何適合角度引導至樣本且自樣本散射。另外,電子束子系統可經組態以使用多個模式來產生樣本之影像(例如,具有不同照明角、收集角等)。電子束子系統之多個模式在子系統之(若干)任何影像產生參數方面可係不同的。
電腦子系統124可耦合至偵測器134,如上文描述。偵測器可偵測自樣本之表面返回之電子,藉此形成樣本之電子束影像。該等電子束影像可包含任何適合電子束影像。電腦子系統124可經組態以使用偵測器之輸出及/或電子束影像執行本文中描述之功能之任何者。電腦子系統124可經組態以執行本文中描述之(若干)任何額外步驟。可如本文中描述般進一步組態包含圖2中展示之檢查子系統之一系統。
應注意,在本文中提供圖2以大體上繪示可包含於本文中描述之實施例中之一基於電子之檢查子系統之一組態。如同上文描述之光學子系統,可更改本文中描述之電子束子系統組態以如在設計一商業檢查系統時通常執行般最佳化子系統之效能。另外,可使用一現有檢查系統(例如,藉由將本文中描述之功能性添加至一現有檢查系統)實施本文中描述之系統。對於一些此等系統,可將本文中描述之實施例提供為系統之選用功能性(例如,除了系統之其他功能性之外)。替代地,可「從頭開始」設計本文中描述之系統以提供一全新系統。
雖然上文將檢查子系統描述為一基於光或基於電子束之子系統,但檢查子系統可係一基於離子束之子系統。可如圖2中展示般組態此一檢查子系統,惟可使用此項技術中已知之任何適合離子束源替換電子束源除外。因此,在一項實施例中,經引導至樣本之能量包含離子。另外,檢查子系統可係任何其他適合基於離子束之檢查子系統,諸如包含於市售聚焦離子束(FIB)系統、氦離子顯微鏡(HIM)系統及二次離子質譜儀(SIMS)系統中之離子束工具。
本文中描述之檢查子系統可經組態以使用多個模式產生樣本之輸出(例如,影像)。一般言之,一「模式」由用於產生一樣本之輸出及/或影像之檢查子系統之參數之值(或用於產生樣本之影像之輸出)定義。因此,(除樣本上產生輸出之位置之外)模式可在檢查子系統之參數之至少一者之值方面不同。例如,在一光學子系統中,不同模式可使用(若干)不同波長之光進行照明。模式可在(若干)照明波長方面不同,如本文中進一步描述(例如,藉由使用用於不同模式之不同光源、不同光譜濾波器等)。在另一實例中,不同模式可使用光學子系統之不同照明通道。例如,如上文提及,光學子系統可包含不只一個的照明通道。因而,不同照明通道可用於不同模式。模式亦可或替代地在光學子系統之一或多個收集/偵測參數方面不同。模式可在檢查子系統之任何一或多個可更改參數(例如,(若干)照明偏振、(若干)角度、(若干)波長等、(若干)偵測偏振、(若干)角度、(若干)波長等)方面不同。例如,取決於使用多個模式同時掃描樣本之能力,檢查子系統可經組態以在相同掃描或不同掃描中使用不同模式掃描樣本。
以一類似方式,由電子束子系統產生之輸出可包含由電子束子系統使用電子束子系統之一參數之兩個或更多個不同值產生之輸出(例如,影像)。電子束子系統之多個模式可由用於產生一樣本之輸出及/或影像之電子束子系統之參數之值定義。因此,模式可在電子束子系統之至少一個電子束參數之值方面不同。例如,不同模式可使用不同入射角進行照明。
可在一或多個參數方面修改本文中描述且在圖1及圖2中展示之子系統以取決於將使用其等之應用而提供不同輸出產生能力。在一個此實例中,圖1中展示之檢查子系統可經組態以在其用於缺陷檢視或度量衡而非用於檢查之情況下具有一較高解析度。換言之,圖1及圖2中展示之檢查子系統之實施例描述一檢查子系統之某些一般及各種組態,其等可以將對熟習此項技術者顯而易見之數個方式定製以產生具有或多或少適合於不同應用之不同輸出產生能力之檢查子系統。
如上文提及,光學、電子及離子束子系統經組態以將能量(例如,光、電子等)掃描遍及樣本之一實體版本,藉此針對樣本之實體版本產生輸出。以此方式,光學、電子及離子束子系統可經組態為「實際」子系統而非「虛擬」子系統。然而,圖1中展示之一儲存媒體(未展示)及(若干)電腦子系統102可經組態為一「虛擬」系統。特定言之,儲存媒體及(若干)電腦子系統可經組態為一「虛擬」檢查系統,如在共同受讓之以下專利中描述:在2012年2月28日頒予Bhaskar等人之美國專利第8,126,255號及2015年12月29日頒予Duffy等人之美國專利第9,222,895號,該兩個專利以宛如全文陳述引用之方式併入本文中。可如此等專利中描述般進一步組態本文中描述之實施例。
一或多個電腦子系統經組態用於基於一樣本上之多邊形之一特性將樣本上之一關注區域中之多邊形區分成初始子群組,使得具有特性之不同值之多邊形被區分成不同初始子群組。例如,如圖3之步驟300中展示,(若干)電腦子系統可經組態用於基於樣本上之多邊形之一特性將一關注區域中之多邊形區分成初始子群組。在本文中進一步描述可用於此步驟之多邊形特性之若干實例。如何定義此等特性之不同值可以數個方式變動。例如,一些特性係定性而非定量的,例如,一正方形形狀不同於一線形狀,該兩個形狀不同於一不規則多邊形形狀。然而,許多特性可係定量地不同,例如,以度為單位描述之定向差異、以nm為單位描述之尺寸、以nm2
為單位描述之面積等。因此,在區分步驟中是否將一特性之兩個值判定為不同可係基於定義不同值對非不同值之值之一預定範圍。值之間之差之預定範圍可以任何適合方式判定,例如,可由一使用者設定一預定範圍,可基於兩個值必須相差多少才能使其等在統計上被視為不同而在統計上判定一預定範圍,一預定範圍基於兩個多邊形必須不同之程度以產生雜訊之統計上不同值或兩個多邊形必須類似之程度以產生雜訊之統計上類似值之一先驗知識等。
雖然本文中關於多邊形之一特性描述實施例,但區分步驟可基於多邊形之一或多個特性(諸如形狀、定向、尺寸等)執行。一些多邊形可基於一個特性(例如,形狀)之值區分,而其他多邊形可基於一不同特性(例如,定向)區分。在一項實施例中,多邊形之特性包含多邊形之一實體特性。在另一實施例中,藉由沿著一個軸線投影多邊形而執行區分。例如,可基於設計多邊形尺寸(諸如多邊形面積、x尺寸及y尺寸、多邊形定向、多邊形形狀、在x方向或y方向上之投影值及關注區域尺寸)將關注區域中之多邊形劃分為初始子群組。以此方式,一關注區域中之多邊形之初始子分組可根據設計多邊形之尺寸/形狀/定向及/或基於投影之群組執行。
在圖4中展示一關注區域中之多邊形之基於投影之分析之一個實例。圖4展示關注區域400之一設計影像。設計影像展示關注區域之設計中之多邊形。判定此關注區域中之多邊形之一特性可包含沿著y方向之投影,其可產生投影402,從而展示依據沿著x軸之位置而變化之多邊形之數目。可接著將具有相同或類似計數之多邊形指派至相同關注區域初始子群組。換言之,定位於具有基於高投影之計數之一區域中之全部設計多邊形隸屬於關注區域初始子群組1 (CAG1)且其他設計多邊形隸屬於關注區域初始子群組2 (CAG2)。因此,基於圖4中展示之投影,關注區域400中之多邊形404將被區分成CAG1且關注區域400中之多邊形404將被區分成CAG2。當一關注區域主要包含線及其間具有其他多邊形之空間圖案時,多邊形之基於投影之區分可尤其適合。
圖5展示一樣本(諸如一晶圓)之關注區域500之另一實例。如圖5中展示,關注區域包含具有不同特性之多個多邊形。特定言之,一些多邊形係在x方向上延伸之線狀結構,其他多邊形係在y方向上延伸之線狀結構,且一些額外多邊形係正方形狀結構。雖然圖5 (及本文中描述之其他圖)展示包含特定數目個且具有特定特性之多邊形之一關注區域之一實例,但應理解,本文中描述之實施例不限於可針對其執行本文中描述之步驟之具有任何特定特性(大小、形狀、位置等)之任何特定關注區域及/或多邊形。另外,雖然本文中關於一關注區域(可存在其之形成於一樣本上之多個例項)描述實施例,但本文中描述之實施例亦可針對一樣本上之多個關注區域單獨及獨立地執行。
圖5中展示之關注區域中之多邊形可區分成不同初始子群組,如本文中進一步描述。例如,圖7展示圖5之關注區域之具有具備不同特性(經展示具有不同填充圖案)之多邊形之版本700。特定言之,在y方向上延伸之線狀結構經展示具有水平線填充圖案,在x方向上延伸之線狀結構經展示具有垂直線填充圖案,且正方形狀結構經展示具有對角線填充圖案。因此,具有相同填充圖案之圖7中展示之多邊形之各者屬於相同初始子群組。換言之,在y方向上延伸之線狀結構可全部區分成一第一初始子群組,在x方向上延伸之線狀結構可全部區分成一第二初始子群組,且正方形狀結構可全部區分成一第三初始子群組。以此方式,圖5之關注區域中展示之多邊形可基於其等形狀、大小、定向等被區分成初始子群組。
在一些實施例中,關注區域中之多邊形包含樣本之不只一個的層上之多邊形。例如,多邊形不限於多邊形之一個單一層而可延伸至含有多邊形之多個層。不只一個的層可包含將被檢查之層及在將在樣本上被檢查之層下方之一層。因此,經檢查層下方之層可不一定在檢查中係所關注的,但該下伏層及/或形成於其上之多邊形可影響在檢查期間針對樣本產生之輸出。例如,下伏多邊形可影響由一檢查子系統針對一樣本產生之輸出中之雜訊。因此,本文中描述之實施例可考量此等多邊形,此係因為相同經檢查層上之兩個相同多邊形可歸因於不同下伏多邊形而在檢查中具有實質上不同雜訊特性。以此方式,初始子群組可經定義使得將經檢查層上具有特性之不同值之多邊形區分成不同初始子群組且使得將經檢查層上具有特性之相同值但定位於具有(若干)多邊形之一特性之不同值之一或多個多邊形上方之多邊形區分成不同初始子群組。在一個此實例中,圖5中展示之在x方向上延伸之線狀結構可區分成如圖7中展示之一初始子群組,接著可基於線狀結構形成於其上之多邊形(未展示)將該初始子群組中之多邊形進一步區分成子群組。可如本文中描述般自樣本之一設計獲取關於樣本之不只一個的層上之多邊形之資訊。定義關注區域初始子群組可接著針對各層獨立地執行或尤其當不同層之設計多邊形重疊時可係一組合。
關注區域初始及最終子群組之產生亦不限於分割原始關注區域但可分別基於如本文中描述之設計多邊形及雜訊之特性產生全新關注區域。例如,雖然為了簡潔起見,關注區域中之設計多邊形及各種子群組中之設計多邊形在本文中展示之實例中相同,但情況不必如此,此係因為關注區域可取決於本文中描述之步驟之結果而生長或收縮。換言之,一關注區域可自其原始定義擴展以涵蓋具有與原始定義關注區域中之多邊形相同之多邊形之特性之值及與原始定義關注區域中之多邊形實質上相同之雜訊之特性之值之其他附近多邊形。以一類似方式,一關注區域可自其原始定義收縮以自原始定義消除一或多個多邊形,可基於本文中描述之初始子分組及最終子分組步驟將該一或多個多邊形移動至另一關注區域或完全自全部關注區域移除。對界定一關注區域之周邊之此擴展、收縮或其他修改可僅基於經檢查層上之多邊形或基於樣本之不只一個的層上之多邊形執行。
在另一實施例中,一或多個電腦子系統進一步經組態用於自樣本之一設計判定樣本上之多邊形之特性。例如,區分步驟可包含藉由使用一基於設計之圖案搜尋而將關注區域群組劃分為初始子群組。在一個此實例中,基於IC設計(例如,圖案密度、線距離等)之邏輯規則可用於判定多邊形之特性且將具有不同特性之多邊形彼此區分。可藉由本文中描述之實施例或藉由使用另一系統或方法(諸如一電子設計自動化(EDA)工具,其可包含此項技術中已知之任何市售EDA工具)以任何適合方式執行。
在一額外實施例中,一或多個電腦子系統進一步經組態用於藉由呈現樣本之一設計而判定樣本上之多邊形之特性。例如,區分步驟可包含其中使用樣本之設計以模擬如將形成於樣本上之多邊形之特性之一基於設計呈現之方法。特定言之,如經設計之多邊形之特性可不同於如形成於樣本上之多邊形之特性。另外,由於係如形成於樣本上而不一定係如經設計之多邊形之特性將影響檢查系統輸出中之雜訊之特性,故如將形成於樣本上之多邊形之特性可比其等如經設計特性更適合用於將多邊形區分成初始子群組。
呈現設計可包含模擬在將設計列印或製造於一樣本上時設計之外觀。例如,呈現設計可包含產生在其上列印或形成多邊形之一樣本之一經模擬表示。可用於產生一經模擬樣本之一經經驗訓練之程序模型之一個實例包含SEMulator 3D,其商業上可購自Coventor, Inc., Cary, NC。一嚴格微影模擬模型之一實例係Prolith,其商業上可購自KLA且可與SEMulator 3D產品配合使用。然而,可執行呈現樣本之設計以使用在自設計產生實際樣本中涉及之(若干)程序之任何者之(若干)任何適合模型產生一經模擬樣本。以此方式,可使用設計以模擬已在其上形成設計之一樣本在樣本空間中之外觀(未必此一樣本對於一成像系統之外觀)。因此,設計呈現可產生可表示樣本在樣本之二維(2D)或三維(3D)空間中之外觀之樣本之一經模擬表示。
(若干)電腦子系統亦經組態用於判定在由一檢查子系統之一偵測器針對不同初始子群組中之樣本上之多邊形產生之輸出中之雜訊之一特性。例如,如圖3之步驟302中展示,(若干)電腦子系統可經組態用於判定在由一檢查子系統之一偵測器針對多邊形產生之輸出中之雜訊之一特性。由偵測器產生之輸出可包含本文中描述之任何輸出,例如,影像信號、影像資料、非影像信號、非影像資料等。雜訊之特性可以本文中描述之數個不同方式判定。
在一些例項中,整個關注區域之雜訊之特性可實質上不同於關注區域內之多邊形之不同初始子群組(其等亦可實質上彼此不同)之雜訊之特性。圖6及圖8繪示此等差異及自分別自圖5及圖7中展示之設計多邊形導出之關注區域內之結構之一基於晶圓之差異影像導出之2D直方圖。在此等圖中展示之2D直方圖上之軸線係參考灰階及差異灰階。在圖6中,已將圖5之關注區域中之全部多邊形之參考灰階及差異灰階組合在一起。因此,圖6中展示之2D直方圖600為初始關注區域群組(參考灰階超過差異灰階)。多邊形之初始子群組之至少一者係實質上具有雜訊的,此在2D直方圖600中藉由實質上大動態範圍及實質上高雜訊位準展示(其中在此背景內容中使用之「動態範圍」被定義為一參考影像圖框中之最大-最小灰階)。動態範圍可對於本文中描述之實施例中之雜訊之特性尤其有用,此係因為其通常與針對其產生2D直方圖之區域(例如,相較於僅包含一個類型之多邊形(其等全部在樣本上具有實質上類似特性)之一關注區域,包含不同類型之多邊形(其等之至少一些在樣本上具有一不同特性)之一關注區域在此一2D直方圖中將通常具有一更高動態範圍)中之多邊形之類型相關。例如,若在一參考影像圖框中存在諸多不同圖案(即,具有不同灰階之圖案之一混合),則2D直方圖可展示一相對高動態範圍。
如上文描述,在識別圖5中展示之關注區域中之全部個別多邊形之後,將多邊形形狀之各者分組成如圖7中展示之三個初始子群組之一者。可接著針對初始子群組之各者產生個別直方圖。可(例如)藉由基於關注區域中產生資料之位置及關注區域中多邊形所處之位置區分資料而自用於產生直方圖600之相同資料產生個別直方圖,可針對多邊形之不同初始子群組區分資料。例如,如圖8中展示,可針對在x方向上延伸之線狀結構產生2D直方圖800,可針對正方形狀結構產生2D直方圖802,且可針對在y方向上延伸之線狀結構產生2D直方圖804。如自圖8可見,藉由針對初始子群組評估個別2D直方圖,2D直方圖802及804展示針對正方形狀多邊形及在y方向上延伸之線狀多邊形之初始子群組相對安靜(例如,具有在相對小動態範圍中之實質上低雜訊值)、具有類似雜訊特性(例如,跨雜訊之實質上類似值之實質上類似雜訊分佈),而針對在x方向上延伸之線狀多邊形之2D直方圖800實質上具有雜訊(例如,具有一相對大動態範圍)、具有與其他2D直方圖實質上不同之雜訊特性(例如,2D直方圖800中之雜訊分佈實質上不同於2D直方圖802及804中之雜訊分佈)。此等直方圖可接著用於判定多邊形之最終子群組,如本文中進一步描述。
在一項實施例中,由檢查子系統之偵測器產生之用於判定雜訊之特性之輸出係藉由使用檢查子系統掃描樣本而產生。例如,使用關注區域初始子群組之全部,可執行一晶圓檢查運行。因此,一或多個電腦子系統可經組態用於藉由使用本文中描述之檢查子系統之一者(例如,藉由將光或一電子束引導至樣本且自樣本偵測光或一電子束)而獲取用於判定雜訊特性之輸出。以此方式,可使用實體樣本自身及某一種類之檢查(例如,成像)硬體執行獲取輸出。然而,獲取輸出不一定包含使用成像硬體成像或掃描樣本。例如,另一系統及/或方法可產生輸出且可將經產生輸出儲存於一或多個儲存媒體(諸如,如本文中描述之一虛擬檢查系統或本文中描述之另一儲存媒體)中。因此,獲取輸出可包含自已儲存輸出之儲存媒體獲取輸出。
在一些實施例中,用於判定雜訊之特性之輸出係針對樣本使用檢查子系統之不只一個的模式產生之輸出。例如,多模式雜訊資訊可用於本文中進一步描述之(若干)步驟。當選擇用於多模式檢查之缺陷偵測方法時,使用多模式雜訊可係有益的。檢查子系統之多個模式可包含本文中進一步描述之任何模式。在一些例項中,不同雜訊特性可自在不同模式中產生之輸出判定。例如,不同模式可用於一樣本之相同檢查,且本文中描述之實施例可經組態以針對不只一個的模式單獨執行步驟,例如使得針對不同模式判定不同最終子群組,可接著如本文中描述般針對該等不同模式選擇不同缺陷偵測方法。以此方式,當模式已知時,本文中描述之步驟可針對各模式單獨且獨立地執行,且例如,當模式無法同時用於產生樣本之輸出時,用於該等步驟之(若干)偵測器之輸出可在樣本之相同掃描中或樣本之多個掃描中產生。
本文中描述之步驟亦可針對不只一個的模式執行以用於模式選擇。例如,本文中描述之步驟可用於藉由針對不同模式執行本文中描述之步驟且接著判定哪一或哪些模式將最適合用於一樣本之檢查(例如,藉由比較針對不同模式判定之最終子群組及在不同模式中針對最終子群組選擇之缺陷偵測方法)而評估不同模式,可識別並選擇可偵測大多數DOI、抑制大多數擾亂點等之模式或模式組合以用於樣本或相同類型之其他樣本之檢查。以此方式,本文中描述之實施例可用於(若干)模式及(若干)演算法兩者之同時選擇。另外,如本文中進一步描述,可獨立地調諧經選擇之缺陷偵測方法之(若干)參數,藉此實現針對各最終子群組之檢查及模式組合之最佳化。亦可藉由本文中描述之實施例針對各模式/最終子群組/缺陷偵測方法組合(例如,擾亂點過濾參數、缺陷分類參數等)獨立地選擇檢查子系統及/或檢查配方之(若干)任何其他參數。可以此項技術中已知之任何適合方式選擇此等其他參數。
在另一實施例中,判定雜訊之特性包含執行輸出之統計分析。例如,可量測雜訊,且可執行計算特性(諸如不同灰階或動態範圍之標準偏差)之一統計分析。另外,判定雜訊之特性可包含執行每一個別關注區域初始子群組之雜訊分佈之一統計分析,例如,在μ +/- 3σ處針對差異灰階設定0之偏移,其中μ係平均值且σ係標準偏差。雜訊之特性可亦或替代地係雜訊相對於非雜訊信號或影像資料之一特性。例如,藉由本文中描述之實施例判定之雜訊之特性可係相對於非雜訊之一特性描述雜訊之一特性之一種類型之共同信雜比。例如,雜訊之特性可包含雜訊及/或離群點(潛在缺陷信號或影像)分佈特性或基於該等雜訊及/或離群點分佈特性判定。
在一些實施例中,判定雜訊之特性包含判定在由檢查子系統之偵測器針對樣本上之多邊形產生之輸出組合由檢查子系統之偵測器針對另一樣本上之不同初始子群組中之多邊形產生之輸出中之雜訊之特性。例如,可藉由在若干(兩個或更多個)晶圓上收集資料而執行針對最終子群組之分組。以此方式,可相對於晶圓間程序變動識別具有雜訊及不具有雜訊之關注區域及多邊形。另外,可相應地對具有相對高晶圓間變動之關注區域群組/子群組進行識別並分組。亦可動態地判定經掃描以產生用於判定雜訊之特性且判定最終子群組之輸出之樣本之數量。例如,若掃描兩個樣本且不同樣本上之相同多邊形展示樣本間雜訊特性之實質上高變動,則可掃描一或多個額外樣本以進一步特性化樣本間由該等多邊形展現之雜訊。另外,經掃描之樣本之數目可以此項技術中已知之任何適合方式判定。
在一額外實施例中,判定雜訊之特性包含判定在由檢查子系統之偵測器針對樣本上之關注區域之不只一個的例項中之不同初始子群組中之樣本上之多邊形產生之輸出中之雜訊之特性。例如,雖然在本文中關於一關注區域描述實施例且該等實施例可使用針對一單一關注區域例項產生之輸出執行,但一般言之,用於判定雜訊之特性之輸出可自至少一個樣本上之關注區域之不只一個的例項產生。可在樣本上之相同倍縮光罩例項(例如,晶粒、場等)及/或在樣本上之不只一個的倍縮光罩例項中形成關注區域之多個例項。另外,用於判定雜訊之特性之關注區域例項跨樣本之分佈可基於(例如)跨樣本之預期程序變動(其可影響檢查子系統輸出)、在一檢查運行期間將被掃描之樣本上之區域等判定。此外,雖然自許多(許多兩個以上)關注區域例項產生用於判定雜訊特性之輸出可係有利的,但自樣本上之全部關注區域例項產生輸出可不一定合理地特性化來自樣本中之多邊形之雜訊。無關於如何執行掃描或輸出產生,可以任何適合方式(例如,基於關注區域中之多邊形之已知位置、樣本上之關注區域例項之已知或經估計位置及在樣本上產生各種輸出之已知位置)識別針對初始子群組中之多邊形產生之輸出。因此,針對不同多邊形產生之輸出可經區分且用於判定如本文中描述之雜訊之特性。
(若干)電腦子系統經組態用於藉由將具有雜訊之特性之實質上相同值之不同初始子群組之任何兩者或更多者組合成最終子群組之一者而判定多邊形之最終子群組。例如,如圖3之步驟304中展示,(若干)電腦子系統可判定多邊形之最終子群組。取決於雜訊之特性,可組合關注區域初始子群組。如本文中使用之術語「實質上相同」值可與術語「非顯著不同」及「統計上類似」值互換地使用。如本文中使用之術語「統計上類似」值旨在具有在數學及尤其統計學之領域中使用之術語之普遍接受之定義,即,統計上類似被普遍接受為μ「在誤差裕度內」且「不由非偶然因素引起」。此等定義之兩者與本文中之術語之使用一致。例如,可藉由比較值之差異與誤差裕度且判定在誤差裕度內之差「統計上類似」而判定雜訊特性之值是否係「統計上類似」。
在一個此實例中,可將具有類似動態範圍值、晶粒間(差異)灰階變動等之關注區域初始子群組組合成一個關注區域最終子群組。在圖8中,例如,由於針對在x方向上延伸之線狀多邊形之子群組產生之2D直方圖800實質上不同於分別針對正方形狀多邊形及在y方向上延伸之線狀多邊形產生之2D直方圖802及804,將在x方向上延伸之線狀多邊形與關注區域中之其他多邊形區分看似非常有前景,此係因為吾人可降低其他多邊形之臨限值(圖表中之垂直線)以偵測定位於雜訊分佈之中心部分處之DOI。另外,由於分別針對正方形狀多邊形及在y方向上延伸之線狀多邊形產生之2D直方圖802及804展示此等多邊形具有實質上相同雜訊特性,但可將此等多邊形組合成一個最終子群組。以此方式,判定最終子群組可包含將經判定具有實質上相同雜訊行為之初始子群組組合成一最終子群組。因此,包含在x方向上延伸之線狀結構之具有遠更多雜訊之初始子群組將不與其他多邊形初始子群組組合且將代替性地包含於其自身之單獨最終子群組中。
以此方式,如圖8中展示,由於針對包含在x方向上延伸之線狀結構之初始子群組A產生之2D直方圖800實質上不同於針對其他初始子群組產生之2D直方圖,故在x方向上延伸之線狀結構可包含於一個最終子群組中(在圖8中由元件符號806指示之關注區域群組1)。另外,由於針對包含正方形狀結構之初始子群組B產生之2D直方圖802展示與針對包含在y方向上延伸之線狀結構之初始子群組C產生之2D直方圖804實質上相同之雜訊特性,故可將此等初始子群組組合成一個最終子群組(在圖8中由元件符號808指示之關注區域群組2)。
此等最終子群組亦在圖9中展示,其中在相同最終子群組中之多邊形之圖案填充相同。特定言之,如圖9中展示,由於正方形狀多邊形及在y方向上延伸之線狀多邊形被組合成一最終子群組,但此等多邊形之兩者可使用相同圖案填充(圖9中展示之水平線)指示。另外,由於在x方向上延伸之線狀結構包含於其等自身之最終子群組中,故此等多邊形在圖9中被展示為具有不同於關注區域版本900中之全部其他多邊形類型之一圖案(垂直線)。
在一項實施例中,判定雜訊之特性及判定最終子群組在一或多個電腦子系統及檢查子系統上實施為一雜訊掃描功能性。在一項此實施例中,一或多個電腦子系統及檢查子系統經組態用於藉由在由檢查子系統之偵測器產生之輸出中收集影像圖框資料且根據一預定演算法計算差異影像圖框而實施雜訊掃描。在另一此實施例中,預定演算法與由自其選擇第一及第二缺陷偵測方法之適用於樣本或另一樣本之檢查之多個缺陷偵測方法之至少一者使用之一預定演算法相同。
以此方式,上述判定雜訊之一特性及判定最終子群組步驟可在其中彼此配合執行兩個步驟之(若干)電腦子系統及/或一檢查子系統上實施為一「雜訊掃描」功能性。換言之,若一使用者在本文中描述之實施例上選擇一「雜訊掃描」選項,則判定雜訊之一特性及判定最終子群組步驟兩者可由本文中描述之實施例執行。接著,共同地,此等步驟可包含收集影像圖框資料及根據一特定演算法計算差異影像圖框(無論此係藉由晶粒間減法、單元間減法、測試影像至標準參考影像減法等)。因而,雜訊掃描可使用所選取之一缺陷偵測演算法執行。理想地,針對雜訊掃描選擇之相同缺陷檢查演算法亦將用於實際缺陷偵測(雖然不一定需要)。選擇正確缺陷偵測演算法之方式可係基於檢查之要求,例如,一些晶圓設定使得必須使用SRD (本文中進一步描述)而其他晶圓設定歸因於嚴重程序變動而可需要MCAT+ (本文中亦進一步描述)等。另外,使用者可決定在雜訊掃描或缺陷偵測中使用哪一類型之演算法且在一些例項中,可選擇演算法之一者(例如,MCAT (本文中進一步描述))作為一預設。可接著將此差異影像圖框與經細分之關注區域初始子群組重疊以鑑於其等個別雜訊行為識別正確最終子分組。
雜訊掃描亦可使用最小化系統雜訊之一演算法執行關注區域分組。例如,藉由基於多邊形之初始子群組之雜訊行為之間之類似性及差異將多邊形之初始子群組組織成最終子群組,本文中描述之實施例可最小化用於缺陷偵測之多邊形之最終子群組內之系統雜訊。因此,使用最終子群組作為用於檢查之關注區域提供顯著優點,此係因為如本文中進一步描述,針對不同最終子群組執行之缺陷偵測可不同且可針對最終子群組之各者及其雜訊行為定製。
雖然組合初始子群組以判定最終子群組可係更常見的,但本文中描述之實施例不僅僅限於此。在一些例項中,判定最終子群組可包含將一初始子群組中之多邊形區分成不同最終子群組。例如,取決於一多邊形例項附近之多邊形、在一多邊形例項下方之多邊形,一多邊形例項在一樣本上(例如,相對於樣本之一邊緣或一中心)所處之位置等,例如,相同多邊形之不同例項可展現不同雜訊行為。因此,在一選用案例中,本文中描述之(若干)電腦子系統可經組態以分析初始子群組之雜訊特性以隨多邊形例項識別具有實質上不同雜訊特性之(若干)初始子群組。
在一個此實例中,(若干)電腦子系統可比較針對初始子群組判定之雜訊特性(諸如動態範圍)與一預定臨限值且判定應評估具有超過預定臨限值之一動態範圍之任何初始子群組以用於區分。(若干)電腦子系統可接著以各種方式(例如,取決於關注區域內位置、取決於樣本內位置、取決於鄰近多邊形、取決於下伏多邊形等)區分多邊形例項。可接著針對此等初始「子子群組」或「中間子群組」判定雜訊特性。取決於該等雜訊特性如何類似或不同,可將初始子群組中之多邊形例項區分成兩個或更多個不同最終子群組。
在一假設實例中,若如本文中描述般針對以上文描述之一或多個方式識別之各種中間子群組產生2D直方圖,且全部2D直方圖看似類似於圖6中展示之2D直方圖600 (即,其等全部具有實質上類似且相對大動態範圍),則可將中間子群組重組成其等原始初始子群組且指定為一單一最終子群組(除非其等與另一初始子群組組合以形成一最終子群組)。相比之下,若如本文中描述般針對以上文描述之一或多個方式識別之兩個中間子群組產生2D直方圖且2D直方圖之一者看似類似於圖8中展示之2D直方圖800且2D直方圖之另一者看似類似於圖8中展示之2D直方圖802,則可將中間子群組指派至不同最終子群組。另外,針對三個或三個以上中間子群組判定最終子群組可包含將一個中間子群組指派至一最終子群組且將兩個或更多個中間子群組指派至一不同最終子群組之某一組合。此外,可比較中間子群組雜訊特性與針對其他初始子群組(不僅中間子群組)判定之雜訊特性,且基於雜訊特性之間之類似性及差異,可將一中間子群組與一子群組組合成一最終子群組。以此方式,在樣本上具有相同特性之多邊形之不同子集可與在多邊形特性方面不類似之其他多邊形一起包含於最終子群組中。可以其他方式如本文中進一步描述般處理以此一方式產生之最終子群組,從而容許使用不同缺陷偵測方法及/或參數檢查相同多邊形之不同例項。
(若干)電腦子系統進一步經組態用於分別針對最終子群組之一第一者及一第二者基於分別針對最終子群組之第一者及第二者判定之雜訊之特性選擇用於應用至由檢查子系統之偵測器在樣本或相同類型之另一樣本之檢查期間產生之輸出之第一及第二缺陷偵測方法。例如,如圖3之步驟306中展示,(若干)電腦子系統可針對最終子群組選擇缺陷偵測方法。針對其執行檢查之樣本可具有相同類型,因為其等可在對其等執行檢查之前經受相同製造程序。
由於如本文中描述般判定最終子群組使得不同最終子群組展現不同雜訊特性,故一般言之,針對不同最終子群組選擇之缺陷偵測方法將最有可能係不同的(雖然不一定針對全部最終子群組)。例如,第一及第二缺陷偵測方法通常將彼此不同,此係因為不同最終子群組通常將具有不同雜訊特性。然而,在一些例項中,針對兩個或更多個最終子群組,可選擇相同缺陷偵測方法。若針對兩個或更多個最終子群組選擇相同缺陷偵測方法,則可針對兩個或更多個最終子群組之各者獨立且單獨地調諧缺陷偵測方法之參數使得針對不同最終子群組定製缺陷偵測方法。
因此,可針對具有不同雜訊特性之多邊形之最終子群組單獨且獨立地選擇第一及第二缺陷偵測方法,此實現針對各最終子群組使用最靈敏缺陷偵測方法。例如,可針對各最終子群組基於針對各最終子群組判定之雜訊特性獨立地選擇可偵測大多數DOI而無禁止位準之擾亂點偵測之缺陷偵測方法。樣本或相同類型之另一樣本之檢查可接著包含使用關注區域最終子群組之一組合執行之缺陷偵測及針對該等關注區域最終子群組選擇之缺陷偵測方法或演算法。以此方式,本文中描述之實施例藉由關注區域劃分及重新分組而提供靈敏度增強。
經選擇之第一及第二缺陷偵測方法可係完全不同類型之缺陷偵測方法(不僅具有一或多個不同參數(諸如臨限值)之相同缺陷偵測方法)。第一及第二缺陷偵測方法兩者亦可包含此項技術中已知之任何適合缺陷偵測方法,在本文中描述該等方法之一些實例。例如,第一及第二缺陷偵測方法之一者可包含在商業上可購自KLA之一些檢查系統上可用之一多晶粒適應性臨限值(MDAT)演算法。MDAT演算法藉由影像圖框減法執行候選與參考影像比較且在相較於兩個以上圖框之一中值參考圖框時透過雙偵測(比較一候選影像與兩個參考影像)或單一偵測基於信雜比識別離群點。第一及第二缺陷偵測方法之一者亦可或替代地包含在商業上可購自KLA之一些檢查系統上可用之一多運算晶粒適應性臨限值(MCAT)演算法。一般言之,此缺陷偵測演算法類似於MDAT演算法但在執行影像減法之前最佳化參考以類似於測試影像圖框。另外,第一及第二缺陷偵測方法之一者可包含一MCAT+演算法,其亦在來自KLA之一些當前可用檢查系統上可用且係類似於MCAT之一演算法但使用來自跨晶圓之參考。第一及第二缺陷偵測方法之一者可進一步包含在來自KLA之一些市售檢查系統上可用之一單參考晶粒(SRD)缺陷偵測方法或演算法。此缺陷偵測演算法使用來自相同或不同晶圓之一參考晶粒作為一參考(用於自測試影像之減法)。
在一項實施例中,第一及第二缺陷偵測方法之至少一者包含針對在檢查期間由檢查子系統之偵測器產生之輸出產生一維(1D)直方圖。針對偵測器輸出產生一1D直方圖之一缺陷偵測方法可稱為一1D缺陷偵測方法。在一項實施例中,一維直方圖係自從在檢查期間由檢查子系統之偵測器產生之輸出產生之差異影像中之灰階產生。例如,一1D缺陷偵測方法或演算法可使用以差異灰階為x軸之一1D直方圖進行離群點偵測。因此,1D直方圖可展示差異灰階上之缺陷計數。以此方式,本文中描述之實施例可將關注區域修改與1D缺陷偵測(即,基於一1D影像直方圖之臨限值設定)組合。相比之下,如本文中使用之術語「2D缺陷偵測演算法」係使用一2D直方圖(其中一個軸係(例如) n>1個參考圖框之中值灰階(y軸)且x軸係參考灰階(諸如本文中描述之圖中展示之直方圖))之一演算法。另外,經執行用於判定如本文中描述之雜訊之特性之雜訊掃描可匹配選定缺陷偵測方法(即,其可以與一缺陷偵測方法相同之方式產生差異影像、直方圖等且自該等結果判定雜訊特性)。
如本文中描述般選擇之缺陷偵測方法亦可包含此項技術中已知之任何2D缺陷偵測方法之一1D類比。例如,每一當前使用之2D缺陷偵測演算法具有一1D對應物。在一些此等實例中,本文中提及之缺陷偵測演算法可具有1D及2D版本兩者(例如,1D MDAT及2D MDAT;1D MCAT及2D MCAT;1D MCAT+及2D MCAT+;1D SRD及2D SRD),且可如本文中描述般選擇哪一版本用於最終子群組之任一者中之缺陷偵測。因此,本文中描述之關注區域修改係1D缺陷偵測之一致能器。
在另一實施例中,第一及第二缺陷偵測方法之一者包含針對在檢查期間由檢查子系統之偵測器產生之輸出產生一1D直方圖,且第一及第二缺陷偵測方法之另一者包含針對在檢查期間由檢查子系統之偵測器產生之輸出產生一2D直方圖。例如,可選擇第一及第二缺陷偵測方法以將用於具有相對高動態範圍之最終關注區域子群組(例如,圖9中展示之群組1)之一2D直方圖缺陷偵測方法與用於具有相對低動態範圍之區域(例如,圖9中展示之群組2)之1D缺陷偵測。換言之,若多邊形可劃分為全部具有一相對低中值灰階範圍之最終子群組且使得每一最終子群組實質上雜訊純,則一缺陷偵測方法之一1D版本可適合與最終子群組一起使用。若情況並非如此或僅一些關注區域最終子群組實質上雜訊純,則(若干)電腦子系統可選擇一缺陷偵測方法之一2D版本用於雜訊「不純」關注區域最終子群組且選擇一缺陷偵測方法之一1D版本用於雜訊「純」關注區域最終子群組。另外,可選擇相同缺陷偵測方法之不同版本用於不同最終子群組。例如,若在一晶圓上之一倍縮光罩之每一經列印例項中存在一重複項缺陷(其係列印檢測晶圓之情況),則經選擇用於最終子群組之兩者或更多者之缺陷偵測方法可係一SRD方法或演算法,此係因為此缺陷偵測方法具有一「黃金」非缺陷參考。針對為其選擇SRD之兩個或更多個最終子群組之各者,可取決於各最終子群組之雜訊純度而針對各最終子群組獨立地選擇演算法之一1D或2D版本。
在一進一步實施例中,一或多個電腦子系統經組態用於單獨調諧第一及第二缺陷偵測方法之一或多個參數。例如,針對各關注區域最終子群組,例如,可基於μ +/- 3*σ定義0之一臨限偏移。在一個此實例中,(若干)電腦子系統可(例如)藉由按差異灰階繪製像素之數目而產生差異影像之一直方圖。(若干)電腦子系統可接著計算此直方圖之統計矩,諸如μ及σ。在大多數情況中,μ應實質上接近零之一差異灰階。若σ值在(例如) 20差異灰階處且臨限值欲設定於σ之3倍處,則此意謂臨限值將在60差異影像灰階處。當然,此僅係一實例且可使用其他統計值以設定臨限值。
使用者可接著指定在執行缺陷偵測時應應用哪一臨限值。例如,若預設設定不足,則使用者可視需要選擇臨限值。使用者可基於使用一特定臨限值偵測之離群點之數目及(例如)是否存在一限制(例如,一擷取率臨限值)而設定臨限值。
作為一替代例,可基於每一個別關注區域最終子群組執行偏移0計算且可將一臨限值應用至全部該等關注區域最終子群組。經設定等於零之偏移係指差異灰階,其中低於該差異灰階之所有事物被視為雜訊且高於該差異灰階之所有事物被視為離群點。取決於所使用之缺陷偵測方法,可代替μ使用此零值。
以此方式,可在檢查期間定義並應用最終關注區域子群組之使用者或自動定義臨限值。另外,可針對不同最終子群組單獨且獨立地執行靈敏度調諧。亦可以此項技術中已知之任何其他適合方式執行靈敏度調諧。
(若干)電腦子系統亦可經組態用於儲存用於樣本或相同類型之另一樣本之檢查中之選定第一及第二缺陷偵測方法之資訊。(若干)電腦子系統可經組態以將資訊儲存於一配方中或藉由產生其中將應用第一及第二缺陷偵測方法之一檢查配方。如本文中使用之一「配方」被定義為可由一工具使用以對一樣本執行一程序之一組指令。以此方式,產生一配方可包含產生關於待如何執行一程序之資訊,該資訊可接著用於產生用於執行該程序之指令。由(若干)電腦子系統儲存之第一及第二缺陷偵測方法之資訊可包含可用於識別、存取及/或使用選定缺陷偵測方法之任何資訊(例如,諸如一檔案名稱及其儲存之處)。經儲存之選定缺陷偵測方法之資訊亦可包含用於執行缺陷偵測方法之實際缺陷偵測方法程式碼、指令、演算法等。
(若干)電腦子系統可經組態用於將選定缺陷偵測方法之資訊儲存於任何適合電腦可讀儲存媒體中。資訊可與本文中描述之任何結果一起儲存且可以此項技術中已知之任何方式儲存。儲存媒體可包含本文中描述之任何儲存媒體或此項技術中已知之任何其他適合儲存媒體。在已儲存資訊之後,資訊可在儲存媒體中存取且由本文中描述之任何方法或系統實施例使用,經格式化以顯示給一使用者,由另一軟體模組、方法或系統使用等。例如,本文中描述之實施例可產生如上文描述之一檢查配方。該檢查配方可接著由系統或方法(或另一系統或方法)儲存並使用以檢查樣本或其他樣本以藉此產生樣本或其他樣本之資訊(例如,缺陷資訊)。
藉由對樣本或相同類型之其他樣本執行檢查而產生之結果及資訊可藉由本文中描述之實施例及/或其他系統及方法以各種方式使用。此等功能包含(但不限於):更改諸如以一回饋或前饋方式對或將對經檢查樣本或另一樣本執行之一製造程序或步驟之一程序。例如,虛擬系統及(若干)其他電腦子系統可經組態以判定對如本文中描述般檢查之一樣本執行之一程序及/或將基於(若干)經偵測缺陷對樣本執行之一程序之一或多個改變。程序之改變可包含程序之一或多個參數之任何適合改變。本文中描述之虛擬系統及/或(若干)其他電腦子系統較佳判定該等改變使得可減少或防止對其執行經修訂程序之其他樣本上之缺陷,可在對樣本執行之另一程序中校正或消除樣本上之缺陷,可在對樣本執行之另一程序中補償缺陷等。本文中描述之虛擬系統及(若干)其他電腦子系統可以此項技術中已知之任何適合方式判定此等改變。
可接著將該等改變發送至一半導體製造系統(未展示)或可供本文中描述之虛擬系統或(若干)其他電腦子系統及半導體製造系統存取之一儲存媒體(未展示)。半導體製造系統可或可不係本文中描述之系統實施例之部分。例如,本文中描述之虛擬系統、(若干)其他電腦子系統及/或檢查子系統可(例如)經由一或多個共同元件(諸如一外殼、一電源供應器、一樣本處置裝置或機構等)耦合至半導體製造系統。半導體製造系統可包含此項技術中已知之任何半導體製造系統,諸如一微影工具、一蝕刻工具、一化學-機械拋光(CMP)工具、一沈積工具及類似者。
因此,如本文中描述,實施例可用於設定一新檢查程序或配方。實施例亦可用於修改一現有檢查程序或配方,無論其係用於樣本或針對一個樣本產生且經調適用於另一樣本之一檢查程序或配方。然而,本文中描述之實施例不僅僅限於檢查配方或程序產生或修改。例如,本文中描述之實施例亦可用於以一類似方式設定或修改用於度量衡、缺陷檢視等之一配方或程序。特定言之,可執行本文中描述之區分多邊形、判定雜訊之一特性及判定最終子群組步驟而無關於經設定或修訂之程序。因此,取決於經設定或更改之程序或配方,可執行選擇步驟以選擇用於不同最終子群組之一或多個輸出處理方法。此等輸出處理方法可包含(例如)用於自由一度量衡系統產生之輸出判定多邊形之一或多個特性之演算法、用於重新偵測由一缺陷檢視系統產生之輸出中之缺陷之缺陷重新偵測方法等。以一類似方式,本文中描述之實施例可用於不僅選擇輸出處理參數及方法而且亦選擇輸出獲取參數或模式(例如,一度量衡系統或一缺陷檢視系統使用其等自一樣本偵測光、電子、粒子等)。因此,本文中描述之實施例可不僅僅用於設定或修改一檢查程序而且亦可用於設定或修改對本文中描述之樣本執行之任何品質控制類型程序。
相較於用於設定使用關注區域之檢查程序之先前使用之方法及系統,本文中描述之實施例提供數個優點。例如,本文中描述之實施例提供更快得出結果時間,此係因為可在初始模式/演算法選擇程序期間作出模式-演算法組合決策。另外,本文中描述之實施例可遠更可靠地識別相對具有雜訊之區域且甚至可將相對小、手動難以識別之多邊形正確地區分成子群組。將關注區域組合成展現不同雜訊特性之群組亦改良整體檢查靈敏度,此係因為可針對具有較少雜訊之群組達成增強之靈敏度。此外,本文中描述之實施例提供晶圓內及晶圓間程序變動之遠更佳遷移,此係因為受晶圓雜訊變動影響較少之群組更穩定。本文中描述之實施例亦容許增加對某些DOI之靈敏度。此選擇性DOI靈敏度將容許使用者改良其等基於檢查結果作出正確處理決策之能力。
作為本文中描述之實施例之一替代例,檢查設定可包含手動地識別具有雜訊之結構且針對具有雜訊之結構執行基於設計之搜尋以產生新關注區域。此檢查設定亦可包含測試新關注區域設定且尋找額外雜訊源。此等方法可接著包含返回且針對新識別之具有雜訊的結構執行一基於設計之搜尋。然而,不同於本文中描述之實施例,此程序可耗費許多天且太緩慢且在關注區域雜訊純度方面通常不足。
可將上文描述之各系統之各實施例一起組合為一項單一實施例。
另一實施例係關於一種用於選擇用於一樣本檢查之缺陷偵測方法之電腦實施方法。方法包含上文描述之區分多邊形、判定一特性、判定最終子群組及選擇第一及第二缺陷偵測方法步驟。
可如本文中進一步描述般執行方法之各步驟。方法亦可包含可由本文中描述之檢查子系統及/或(若干)電腦子系統或(若干)系統執行之(若干)任何其他步驟。區分多邊形、判定一特性、判定最終子群組及選擇第一及第二缺陷偵測方法步驟由可根據本文中描述之任何實施例組態之一或多個電腦子系統執行。另外,上文描述之方法可由本文中描述之任何系統實施例執行。
一額外實施例係關於一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一電腦系統上執行以執行用於選擇用於一樣本檢查之缺陷偵測方法之一電腦實施方法。在圖10中展示一項此實施例。特定言之,如圖10中展示,非暫時性電腦可讀媒體1000包含可在電腦系統1004上執行之程式指令1002。電腦實施方法可包含本文中描述之(若干)任何方法之(若干)任何步驟。
實施諸如本文中描述之方法之方法之程式指令1002可儲存於電腦可讀媒體1000上。電腦可讀媒體可係一儲存媒體,諸如一磁碟或光碟、一磁帶或此項技術中已知之任何其他適合非暫時性電腦可讀媒體。
可以各種方式(包含基於程序之技術、基於組件之技術及/或物件導向技術等等)之任何者實施程式指令。例如,可視需要使用ActiveX控制項、C++物件、JavaBeans、微軟基礎類別(「MFC」)、SSE (串流SIMD延伸)或其他技術或方法論實施程式指令。
可根據本文中描述之任何實施例組態電腦系統1004。
鑑於此描述,熟習此項技術者將明白本發明之各種態樣之進一步修改及替代實施例。例如,提供用於選擇用於一樣本檢查之缺陷偵測方法之方法及系統。因此,此描述應僅解釋為闡釋性且係出於教示熟習此項技術者實行本發明之一般方式之目的。應理解,本文中展示及描述之本發明之形式將視為當前較佳實施例。如熟習此項技術者在獲益於本發明之此描述之後將明白,元件及材料可取代本文中繪示及描述之元件及材料,部分及程序可顛倒,且可獨立利用本發明之特定特徵。在不脫離如在以下發明申請專利範圍中描述之本發明之精神及範疇之情況下可對本文中描述之元件做出改變。
10:檢查子系統
14:樣本
16:光源
18:光學元件
20:透鏡
21:光束分離器
22:載物台
24:集光器
26:元件
28:偵測器
30:集光器
32:元件
34:偵測器
36:電腦子系統
102:電腦子系統
122:電子柱
124:電腦子系統
126:電子束源
128:樣本
130:元件
132:元件
134:偵測器
300:步驟
302:步驟
304:步驟
306:步驟
400:關注區域
402:投影
404:多邊形
500:關注區域
600:直方圖
700:版本
800:二維(2D)直方圖
802:二維(2D)直方圖
804:二維(2D)直方圖
806:關注區域群組
808:關注區域群組
900:關注區域版本
1000:非暫時性電腦可讀媒體
1002:程式指令
1004:電腦系統
在受益於較佳實施例之以下詳細描述的情況下且在參考隨附圖式之後,熟習此項技術者將明白本發明之進一步優點,其中:
圖1及圖2係繪示如本文中描述般組態之一系統之實施例之側視圖之示意圖;
圖3係繪示由本文中描述之一或多個電腦子系統執行之步驟之一實施例之一流程圖;
圖4係繪示一樣本上之一關注區域之一個實例之一平面視圖及展示針對關注區域中之多邊形執行之一投影之結果之一圖表之一示意圖;
圖5係繪示一樣本上之一關注區域之一個實例之一平面視圖之一示意圖;
圖6係自從由一檢查子系統之一偵測器針對圖5中展示之關注區域中之多邊形產生之輸出判定之不同值產生之一二維直方圖之一實例;
圖7係繪示具有基於多邊形之一特性被區分成初始子群組之關注區域中之多邊形之圖5中展示之關注區域之一平面視圖之一示意圖;
圖8包含自從由一檢查子系統之一偵測器針對圖7中展示之多邊形之初始子群組產生之輸出判定之不同值產生之二維直方圖之實例及二維直方圖之差異;
圖9係繪示具有基於圖8中展示之二維直方圖之類似性及差異被區分成最終子群組之關注區域中之多邊形之圖5中展示之關注區域之一平面視圖之一示意圖;
圖10係繪示儲存用於引起一電腦系統執行本文中描述之一電腦實施方法之程式指令之一非暫時性電腦可讀媒體之一項實施例之一方塊圖。
雖然本發明易於以各種修改及替代形式呈現,但本發明之特定實施例藉由圖式中之實例展示且在本文中經詳細描述。圖式可不按比例繪製。然而,應理解,圖式及其詳細描述不旨在將本發明限於所揭示之特定形式,相反,本發明欲涵蓋落於如由隨附發明申請專利範圍界定之本發明之精神及範疇內之全部修改、等效物及替代物。
300:步驟
302:步驟
304:步驟
306:步驟
Claims (24)
- 一種經組態用於選擇用於一樣本檢查之缺陷偵測方法之系統,其包括: 一或多個電腦子系統,其等經組態用於: 基於一樣本上之多邊形之一特性將該樣本上之一關注區域中之該等多邊形區分成初始子群組使得具有該特性之不同值之該等多邊形被區分成不同初始子群組; 判定在由一檢查子系統之一偵測器針對該等不同初始子群組中之該樣本上之該等多邊形產生之輸出中之雜訊之一特性; 藉由將具有該雜訊之該特性之實質上相同值之該等不同初始子群組之任何兩者或更多者組合成最終子群組之一者而判定該等多邊形之該等最終子群組;及 分別針對該等最終子群組之一第一者及一第二者基於分別針對該等最終子群組之該第一者及該第二者判定之該雜訊之該特性選擇用於應用至由該檢查子系統之該偵測器在該樣本或相同類型之另一樣本之檢查期間產生之該輸出之第一及第二缺陷偵測方法。
- 如請求項1之系統,其中該等多邊形之該特性包括該等多邊形之一實體特性。
- 如請求項1之系統,其中藉由沿著一個軸線投影該等多邊形而執行該區分。
- 如請求項1之系統,其中該關注區域中之該等多邊形包括該樣本之不只一個的層上之多邊形。
- 如請求項1之系統,其中該一或多個電腦子系統進一步經組態用於自該樣本之一設計判定該樣本上之該等多邊形之該特性。
- 如請求項1之系統,其中該一或多個電腦子系統進一步經組態用於藉由呈現該樣本之一設計而判定該樣本上之該等多邊形之該特性。
- 如請求項1之系統,其中由該檢查子系統之該偵測器產生之用於判定該雜訊之該特性之該輸出係藉由使用該檢查子系統掃描該樣本而產生。
- 如請求項1之系統,其中判定該雜訊之該特性包括執行該輸出之統計分析。
- 如請求項1之系統,其中判定該雜訊之該特性包括判定由該檢查子系統之該偵測器針對該樣本上之該等多邊形產生之該輸出組合由該檢查子系統之該偵測器針對另一樣本上之該等不同初始子群組中之該等多邊形產生之輸出中之該雜訊之該特性。
- 如請求項1之系統,其中判定該雜訊之該特性包括判定由該檢查子系統之該偵測器針對該樣本上之在該樣本上之該關注區域之不只一個的例項中之該等不同初始子群組中之該等多邊形產生之該輸出中之該雜訊之該特性。
- 如請求項1之系統,其中判定該雜訊之該特性及判定該等最終子群組在該一或多個電腦子系統及該檢查子系統上實施為一雜訊掃描功能性。
- 如請求項11之系統,其中該一或多個電腦子系統及該檢查子系統經組態用於藉由在由該檢查子系統之該偵測器產生之該輸出中收集影像圖框資料且根據一預定演算法計算差異影像圖框而實施該雜訊掃描。
- 如請求項12之系統,其中該預定演算法與由自其選擇該等第一及第二缺陷偵測方法之適用於該樣本或該另一樣本之該檢查之多個缺陷偵測方法之至少一者使用之一預定演算法相同。
- 如請求項1之系統,其中該等第一及第二缺陷偵測方法之至少一者包括針對在該檢查期間由該檢查子系統之該偵測器產生之該輸出產生一一維直方圖。
- 如請求項14之系統,其中該一維直方圖係自從在該檢查期間由該檢查子系統之該偵測器產生之該輸出產生之差異影像中之灰階產生。
- 如請求項1之系統,其中該等第一及第二缺陷偵測方法之一者包括針對在該檢查期間由該檢查子系統之該偵測器產生之該輸出產生一一維直方圖,且其中該等第一及第二缺陷偵測方法之另一者包括針對在該檢查期間由該檢查子系統之該偵測器產生之該輸出產生一二維直方圖。
- 如請求項1之系統,其中該一或多個電腦子系統進一步經組態用於單獨調諧該等第一及第二缺陷偵測方法之一或多個參數。
- 如請求項1之系統,其中該樣本係一晶圓。
- 如請求項1之系統,其中該樣本係一倍縮光罩。
- 如請求項1之系統,其進一步包括包括至少一能量源及該偵測器之該檢查子系統,其中該能量源經組態以產生經引導至該樣本之能量,且其中該偵測器經組態以偵測來自該樣本之能量且回應於該經偵測能量而產生該輸出。
- 如請求項1之系統,其中該檢查子系統係一基於光之檢查子系統。
- 如請求項1之系統,其中該檢查子系統係一基於電子之檢查子系統。
- 一種儲存程式指令之非暫時性電腦可讀媒體,該等程式指令可在一電腦系統上執行以執行用於選擇用於一樣本檢查之缺陷偵測方法之一電腦實施方法,其中該電腦實施方法包括: 基於一樣本上之多邊形之一特性將該樣本上之一關注區域中之該等多邊形區分成初始子群組使得具有該特性之不同值之該等多邊形被區分成不同初始子群組; 判定在由一檢查子系統之一偵測器針對該等不同初始子群組中之該樣本上之該等多邊形產生之輸出中之雜訊之一特性; 藉由將具有該雜訊之該特性之實質上相同值之該等不同初始子群組之任何兩者或更多者組合成最終子群組之一者而判定該等多邊形之該等最終子群組;及 分別針對該等最終子群組之一第一者及一第二者基於分別針對該等最終子群組之該第一者及該第二者判定之該雜訊之該特性選擇用於應用至由該檢查子系統之該偵測器在該樣本或相同類型之另一樣本之檢查期間產生之該輸出之第一及第二缺陷偵測方法。
- 一種用於選擇用於一樣本檢查之缺陷偵測方法之電腦實施方法,其包括: 基於一樣本上之多邊形之一特性將該樣本上之一關注區域中之該等多邊形區分成初始子群組使得具有該特性之不同值之該等多邊形被區分成不同初始子群組; 判定在由一檢查子系統之一偵測器針對該等不同初始子群組中之該樣本上之該等多邊形產生之輸出中之雜訊之一特性; 藉由將具有該雜訊之該特性之實質上相同值之該等不同初始子群組之任何兩者或更多者組合成最終子群組之一者而判定該等多邊形之該等最終子群組;及 分別針對該等最終子群組之一第一者及一第二者基於分別針對該等最終子群組之該第一者及該第二者判定之該雜訊之該特性選擇用於應用至由該檢查子系統之該偵測器在該樣本或相同類型之另一樣本之檢查期間產生之該輸出之第一及第二缺陷偵測方法,其中該區分、判定該特性、判定該等最終子群組及該選擇係藉由一或多個電腦子系統執行。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962871865P | 2019-07-09 | 2019-07-09 | |
US62/871,865 | 2019-07-09 | ||
US16/910,011 | 2020-06-23 | ||
US16/910,011 US11619592B2 (en) | 2019-07-09 | 2020-06-23 | Selecting defect detection methods for inspection of a specimen |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202117312A true TW202117312A (zh) | 2021-05-01 |
TWI826703B TWI826703B (zh) | 2023-12-21 |
Family
ID=74103039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109122962A TWI826703B (zh) | 2019-07-09 | 2020-07-08 | 用於選擇用於樣本檢查之缺陷偵測方法之系統和方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11619592B2 (zh) |
CN (1) | CN114096832B (zh) |
TW (1) | TWI826703B (zh) |
WO (1) | WO2021007044A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11615993B2 (en) * | 2019-11-21 | 2023-03-28 | Kla Corporation | Clustering sub-care areas based on noise characteristics |
US20220301133A1 (en) * | 2021-03-16 | 2022-09-22 | Kla Corporation | Segmentation of design care areas with a rendered design image |
US20230314336A1 (en) | 2022-03-31 | 2023-10-05 | Kla Corporation | Multi-mode optical inspection |
US11922619B2 (en) | 2022-03-31 | 2024-03-05 | Kla Corporation | Context-based defect inspection |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005001456A1 (ja) * | 2003-06-30 | 2006-08-10 | 株式会社東京精密 | パターン比較検査方法およびパターン比較検査装置 |
US7570796B2 (en) | 2005-11-18 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
US8041103B2 (en) * | 2005-11-18 | 2011-10-18 | Kla-Tencor Technologies Corp. | Methods and systems for determining a position of inspection data in design data space |
US7676077B2 (en) | 2005-11-18 | 2010-03-09 | Kla-Tencor Technologies Corp. | Methods and systems for utilizing design data in combination with inspection data |
US8698093B1 (en) | 2007-01-19 | 2014-04-15 | Kla-Tencor Corporation | Objective lens with deflector plates immersed in electrostatic lens field |
US8126255B2 (en) | 2007-09-20 | 2012-02-28 | Kla-Tencor Corp. | Systems and methods for creating persistent data for a wafer and for using persistent data for inspection-related functions |
US8112241B2 (en) * | 2009-03-13 | 2012-02-07 | Kla-Tencor Corp. | Methods and systems for generating an inspection process for a wafer |
US8656323B2 (en) | 2011-02-22 | 2014-02-18 | Kla-Tencor Corporation | Based device risk assessment |
US8664594B1 (en) | 2011-04-18 | 2014-03-04 | Kla-Tencor Corporation | Electron-optical system for high-speed and high-sensitivity inspections |
US8692204B2 (en) | 2011-04-26 | 2014-04-08 | Kla-Tencor Corporation | Apparatus and methods for electron beam detection |
JP5460662B2 (ja) * | 2011-09-07 | 2014-04-02 | 株式会社日立ハイテクノロジーズ | 領域決定装置、観察装置または検査装置、領域決定方法および領域決定方法を用いた観察方法または検査方法 |
US8716662B1 (en) | 2012-07-16 | 2014-05-06 | Kla-Tencor Corporation | Methods and apparatus to review defects using scanning electron microscope with multiple electron beam configurations |
US9222895B2 (en) | 2013-02-25 | 2015-12-29 | Kla-Tencor Corp. | Generalized virtual inspector |
US9865512B2 (en) | 2013-04-08 | 2018-01-09 | Kla-Tencor Corp. | Dynamic design attributes for wafer inspection |
US9183624B2 (en) * | 2013-06-19 | 2015-11-10 | Kla-Tencor Corp. | Detecting defects on a wafer with run time use of design data |
US9536299B2 (en) * | 2014-01-16 | 2017-01-03 | Kla-Tencor Corp. | Pattern failure discovery by leveraging nominal characteristics of alternating failure modes |
US9727047B2 (en) * | 2014-10-14 | 2017-08-08 | Kla-Tencor Corp. | Defect detection using structural information |
US10483081B2 (en) * | 2014-10-22 | 2019-11-19 | Kla-Tencor Corp. | Self directed metrology and pattern classification |
US9702827B1 (en) * | 2014-11-20 | 2017-07-11 | Kla-Tencor Corp. | Optical mode analysis with design-based care areas |
US10747830B2 (en) * | 2014-11-21 | 2020-08-18 | Mesh Labs Inc. | Method and system for displaying electronic information |
US10018571B2 (en) * | 2015-05-28 | 2018-07-10 | Kla-Tencor Corporation | System and method for dynamic care area generation on an inspection tool |
US10140698B2 (en) | 2015-08-10 | 2018-11-27 | Kla-Tencor Corporation | Polygon-based geometry classification for semiconductor mask inspection |
US10359371B2 (en) * | 2015-08-24 | 2019-07-23 | Kla-Tencor Corp. | Determining one or more characteristics of a pattern of interest on a specimen |
US10181185B2 (en) | 2016-01-11 | 2019-01-15 | Kla-Tencor Corp. | Image based specimen process control |
US10127651B2 (en) * | 2016-01-15 | 2018-11-13 | Kla-Tencor Corporation | Defect sensitivity of semiconductor wafer inspectors using design data with wafer image data |
US10395362B2 (en) | 2017-04-07 | 2019-08-27 | Kla-Tencor Corp. | Contour based defect detection |
US11119060B2 (en) * | 2017-09-01 | 2021-09-14 | Kla-Tencor Corporation | Defect location accuracy using shape based grouping guided defect centering |
US10290087B2 (en) * | 2017-09-11 | 2019-05-14 | Applied Materials Israel Ltd. | Method of generating an examination recipe and system thereof |
US10832396B2 (en) | 2018-10-19 | 2020-11-10 | Kla-Tencor Corp. | And noise based care areas |
CN109711478A (zh) * | 2018-12-29 | 2019-05-03 | 中山大学 | 一种基于时序密度聚类的大规模数据群组搜索方法 |
-
2020
- 2020-06-23 US US16/910,011 patent/US11619592B2/en active Active
- 2020-06-26 CN CN202080049170.2A patent/CN114096832B/zh active Active
- 2020-06-26 WO PCT/US2020/039718 patent/WO2021007044A1/en active Application Filing
- 2020-07-08 TW TW109122962A patent/TWI826703B/zh active
Also Published As
Publication number | Publication date |
---|---|
US20210010945A1 (en) | 2021-01-14 |
TWI826703B (zh) | 2023-12-21 |
CN114096832A (zh) | 2022-02-25 |
US11619592B2 (en) | 2023-04-04 |
KR20220031068A (ko) | 2022-03-11 |
WO2021007044A1 (en) | 2021-01-14 |
CN114096832B (zh) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102330735B1 (ko) | 패터닝된 웨이퍼들 상의 결함들의 서브-픽셀 및 서브-해상도 로컬리제이션 | |
KR102369848B1 (ko) | 관심 패턴 이미지 집단에 대한 이상치 검출 | |
TWI826703B (zh) | 用於選擇用於樣本檢查之缺陷偵測方法之系統和方法 | |
US10832396B2 (en) | And noise based care areas | |
JP2017523390A (ja) | 検査のための高解像度フルダイイメージデータの使用 | |
US11416982B2 (en) | Controlling a process for inspection of a specimen | |
TW201725381A (zh) | 於樣品上判定所關注圖案之一或多個特性 | |
KR102652164B1 (ko) | 멀티 이미징 모드 이미지 정렬 | |
US10151706B1 (en) | Inspection for specimens with extensive die to die process variation | |
KR20240026446A (ko) | 표본 검사를 위한 케어 영역 설정 | |
US11748872B2 (en) | Setting up inspection of a specimen | |
US11494895B2 (en) | Detecting defects in array regions on specimens | |
US10062012B1 (en) | Finding patterns in a design based on the patterns and their surroundings | |
KR102718646B1 (ko) | 시편 검사를 위한 결함 검출 방법을 선택하기 위한 시스템 및 방법 | |
TWI853180B (zh) | 設置樣本之檢查 | |
KR102721346B1 (ko) | 표본 상의 어레이 영역에서의 결함 검출 | |
TW202300900A (zh) | 以經呈現設計影像之設計照護區域之分段 |