TWI776431B - 物質檢測系統 - Google Patents

物質檢測系統 Download PDF

Info

Publication number
TWI776431B
TWI776431B TW110109974A TW110109974A TWI776431B TW I776431 B TWI776431 B TW I776431B TW 110109974 A TW110109974 A TW 110109974A TW 110109974 A TW110109974 A TW 110109974A TW I776431 B TWI776431 B TW I776431B
Authority
TW
Taiwan
Prior art keywords
gas
flow
detection system
substance detection
path
Prior art date
Application number
TW110109974A
Other languages
English (en)
Other versions
TW202138782A (zh
Inventor
緒方健治
黒木省吾
Original Assignee
日商愛伯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021031704A external-priority patent/JP6981560B2/ja
Application filed by 日商愛伯股份有限公司 filed Critical 日商愛伯股份有限公司
Publication of TW202138782A publication Critical patent/TW202138782A/zh
Application granted granted Critical
Publication of TWI776431B publication Critical patent/TWI776431B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本發明之物質檢測系統(1),具備:感測器部(10)、驅動部(11)及整流部(12)。感測器部(10)形成有供氣體(F)通過之複數個流路(20)。於感測器部(10),於各個流路(20)配置有與氣體(F)中所包含之物質進行反應之感應膜(21)。整流部(12)均勻地抑制流入之氣體(F)之流動而輸送至各個流路(20)。驅動部(11)使氣體(F)流入整流部(12)。

Description

物質檢測系統
本發明係關於物質檢測系統。
於專利文獻1中,揭示作為物質檢測系統之化學感測器裝置,其根據物質相對於感應膜吸附或脫離時產生之共振頻率之變化量來檢測物質。該化學感測器裝置具備設有分別針對不同物質呈現脫離吸附特性之感應膜之複數個振動子。各振動子具備壓電基板,且藉由施加交流電壓使壓電基板變形而激振。若物質吸附於感應膜或脫離感應膜,則各振動子之共振頻率產生變化。藉此,可進行物質之檢測。
只要使用此化學感測器裝置,則可檢測由複數種物質構成之氣味。根據各感應膜之反應值之模式、即構成氣味之複數種物質之構成比,確定氣體中所包含之氣味。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2009-204584號公報
[發明所欲解決之問題]
然而,上述化學感測器裝置有時由於氣體對各感應膜之碰撞方式,而於感應膜間檢測結果產生不均。例如,氣體之碰撞方式溫和之感應膜與物質良好地進行反應而反應值變大,而氣體之流動過強且氣體之碰撞方式強烈之感應膜之反應值變小。此種感應膜間之反應不均成為其反應值之檢測結果之不均而呈現,成為利用各感應膜之反應值之圖案確定氣味之阻礙。
本發明係根據上述實情而完成者,其目的在於提供可降低感應膜間之檢測結果之不均的物質檢測系統。 [解決問題之手段]
為了達成上述目的,本發明之第1觀點之物質檢測系統,具備: 感測器部,其形成有供氣體通過之複數個流路,於各個上述流路配置有與上述氣體中所包含之物質進行反應之感應膜; 整流部,其均勻地抑制流入之上述氣體之流動而輸送至各個上述流路;及 驅動部,其使上述氣體流入上述整流部。
於此情形時,可設定上述整流部以如下方式對上述氣體之流動進行整流,即, 使輸送至上述流路之上述氣體之流量及流速之至少一者於上述流路間均勻化。
又,可設定上述整流部具備: 第1整流路,其供上述氣體流入; 第2整流路,其具有將自上述第1整流路流出之氣體向彼此不同之方向輸送之複數個支路;及 複數個第3整流路,設於每一上述流路,將自上述第2整流路流出之氣體輸送至上述流路。
可設定上述第3整流路之形狀及大小彼此相同, 上述第2整流路之形狀規定為使供給於上述第3整流路之上述氣體之流量及流速之至少一者於上述第3整流路間相同。
可設定上述整流部具備: 第1基板;及第2基板,其貼合於上述第1基板; 上述第1整流路形成於上述第1基板, 上述第2整流路形成於上述第1基板及上述第2基板之至少一者, 上述第3整流路形成於上述第2基板。
可設定上述流路之形狀及大小彼此相同。
可設定上述驅動部係泵, 其於上述氣體之流動中,配置於較上述整流部靠上游,將流入之上述氣體吹出至上述整流部。
可設定上述驅動部係泵, 其於上述氣體之流動中,配置於較上述整流部靠下游,自上述感測器部吸入上述氣體並排出。
可設定上述驅動部具備: 第1泵,其於上述氣體之流動中,配置於較上述整流部靠上游,將流入之上述氣體吹出至上述整流部;及 第2泵,其於上述氣體之流動中,配置於較上述整流部靠下游,自上述感測器部吸入上述氣體並排出。
可設定於上述感測器部、與於上述氣體之流動中配置於較上述感測器部靠下游之上述驅動部之間,設有將自上述流路分別排出之上述氣體彙集為1股之排出路。
可設定檢測時之上述驅動部之驅動時間固定。
可設定於上述流路,設有將其一部分擋住之振動梁, 上述感應膜設於上述振動梁, 上述感測器部輸出表示上述振動梁之振動頻率之變化的訊號。
可設定具備:外殼,其具有供來自外部之上述氣體流入之流入口,且將自上述流入口流入之上述氣體輸送至內部所收容之上述感測器部、上述整流部及上述驅動部; 於上述流入口安裝有可更換之過濾器。 [發明之效果]
根據本發明,由於具備均勻地抑制物質所包含之氣體之流動而輸送至複數個流路的整流部,因此可使氣體對設於每一流路之感應膜之碰撞方式均勻化。其結果,可降低感應膜間之檢測結果之不均。
以下,參照圖式對本發明之實施形態詳細地進行說明。於各圖式中,對相同或同等之部分標註相同之符號。
實施形態1 對本發明之實施形態1進行說明。如圖1所示,本實施形態之物質檢測系統1對氣體F中所包含之物質進行檢測。該物質檢測系統1例如用於檢測氣體F中所包含之構成氣味之物質。物質檢測系統1具備感測器部10、驅動部11及整流部12。
於本實施形態中,感測器部10位於氣體F之流動之最下游。感測器部10具有彼此間隔形成之複數個流路20。流路20分別為可供氣體F通過之貫通孔,由該貫通孔形成之空間成為供氣體F通過之流路20。流路20彼此之形狀及大小相同。於圖1中,僅示出2個流路20,但流路20亦可設置3個以上。
於感測器部10中,於流路20之各個配置有與氣體F中所包含之物質進行反應之感應膜21。感應膜21若與對象物質進行反應,則其質量增加。與感應膜21進行反應之物質於每一流路20不同。再者,於本實施形態中,假定感應膜21與物質進行反應後質量增加,但本發明並不限定於此。可將附著有對象物質之感應膜21之水分被乾燥氣體去除而質量減少者用作感應膜21。又,作為感應膜21,可使用與對象物質進行反應而消耗,從而質量減少之膜。
於流路20設有將其一部分擋住之振動梁22。感應膜21設於向流路20突出之振動梁22上。振動梁22之至少一端固定於形成流路20之側壁。為了易於與物質進行反應,感應膜21朝向氣體F之流動之上游側。
於振動梁22例如固定有壓電元件。於振動梁22設有對壓電元件施加電壓之驅動電極、及藉由振動梁22之振動可檢測壓電元件之振動位準之檢測電極。若經由驅動電極對壓電元件施加以正弦波狀變動之電壓使其伸縮,則振動梁22藉由其伸縮而振動。於檢測電極中,檢測對應其振動位準之電壓。
若感應膜21與氣體F中所包含之物質進行反應,則感應膜21之質量增加或減少。藉此,振動梁22之振動頻率例如共振頻率產生變化。感測器部10對每一感應膜21輸出表示該振動頻率變化之訊號。根據該變化,可檢測與感應膜21反應之物質、即氣體F中所包含之物質。
再者,本實施形態之物質檢測系統1可為可攜帶之小型機器。此種機器與智慧型手機等其他電子機器電氣連接。物質檢測系統1由所連接之電子機器供給電力,並且藉由來自電子機器之指令,檢測氣體F中所包含之物質。
驅動部11於氣體F之流動中配置於最上游。驅動部11係吸入氣體F並吹出之泵。於本實施形態中,驅動部11於氣體F之流動中,配置於較整流部12靠上游。驅動部11使氣體F流入整流部12。於本實施形態中,驅動部11將流入之氣體F吹出至整流部12。
驅動部11可控制驅動之開始及結束。驅動部11之驅動時間T(參照圖2)於檢測時可設為固定。
整流部12於氣體F之流動中,設於驅動部11與感測器部10之間。整流部12供自驅動部11吹出之氣體F流入。整流部12均勻地抑制流入之氣體之流動而輸送至流路20之各個。此處,所謂均勻地抑制,指以氣體F之流動於流路20間可視為彼此均勻或均等之方式限制氣體F之流動。整流部12以使輸送至流路20之各個之氣體F之流量及流速均勻化之方式對氣體F之流動進行整流。
整流部12中之整流路分為3個部分。即,整流部12具備作為第1整流路之流入孔31、作為第2整流路之分支路32、及作為第3整流路之複數個流出孔33。
最上游之流入孔31為貫通孔。流入孔31之一端即上游端對準配置於驅動部11之吹出口。流入孔31供自驅動部11吹出之氣體F流入。
分支路32與流入孔31之另一端即下游端連通。自流入孔31觀察,分支路32向2個方向分支。即,於分支路32設有2個支路32a。2個支路32a將自流入孔31之下游端流出之氣體F向彼此不同之方向輸送。再者,分支路32分支之方向並不限定於2個。
流出孔33為設於每一流路20之貫通孔。流出孔33將各支路32a與流路20連通。流出孔33將自支路32a流出之氣體F輸送至流路20。流出孔33彼此之形狀及大小相同。又,分支路32之形狀規定為使供給於流出孔33之各個之氣體F之流量及流速相同。如圖1所示,流入孔31、支路32a及流出孔33相對於虛擬中心線CL對稱,因此供給於流出孔33之各個之氣體F之流量及流速相同。
又,就構件之觀點而言,整流部12具備第1基板40及貼合於第1基板40之第2基板41。流入孔31形成於第1基板40。又,分支路32形成於第2基板41中與第1基板40相接之部分。分支路32之形成於第2基板41之溝槽由第1基板40堵住而形成。流出孔33形成於第2基板41。
再者,分支路32可形成於第1基板40與第2基板41相接之部分。又,分支路32可為形成於第1基板40之溝槽部分、及形成於第2基板41之溝槽部分貼合形成。又,關於分支路32,可形成於夾持貼附於第1基板40與第2基板41之間之第3基板而非形成於第1基板40、第2基板41。
又,形成於感測器部10之流路20之各個之形狀及大小相同。流出孔33與流路20為無接縫之一體化貫通孔。藉此,可容易通過氣體F。
其次,對本發明之實施形態1之物質檢測系統1之動作進行說明。
如圖2所示,首先,於時刻t1,驅動部11開始氣體F之吹入。自時刻t1起,驅動部11使流入之氣體F流入整流部12之流入孔31。供給於流入孔31之氣體F流入分支路32。藉此,氣體F之流動方向發生改變,以分散狀態流入至流出孔33。即,藉由分支路32,流入至流入孔31之氣體F之流動得到均勻抑制。氣體F以流動得到抑制之狀態均等分為2路,以其流量及流速於流出孔33間相同之方式流入至各流出孔33。
流入至一流出孔33之氣體F、及流入至另一流出孔33之氣體F以相同流速、相同流量供給於感測器部10之流路20。若氣體F中包含與感應膜21進行反應之物質,則感應膜21與物質產生反應,感應膜21之質量產生變化。供給於流路20之氣體F碰撞感應膜21後,自流路20排出。
於自時刻t1經過驅動時間T後之時刻t2,驅動部11結束氣體F之吹入。藉此,物質檢測系統1內部之氣體F之流動停止。由於氣體F流過之驅動時間T固定,因此關於1次測定,流經物質檢測系統1內之氣體F之流量相同。
吹入結束後,於時刻t3,自感測器部10輸出之表示設有各感應膜21之振動梁22之振動頻率之變化的訊號被輸出,根據該訊號,檢測氣體F中所包含之物質。於各流路20之感應膜21進行反應之物質之量之比例與氣體F中所包含之構成氣味之物質之比例相等,因此可正確地確定由所檢測之物質構成之氣味。
實施形態2 其次,對本發明之實施形態2進行說明。如圖3及圖4所示,本實施形態之物質檢測系統1之設於感測器部10之流路20之數量與上述實施形態1之物質檢測系統1不同。於本實施形態中,流路20之數量為10。即,感應膜21之數量為10。
本實施形態之物質檢測系統1除具備感測器部10、驅動部11及整流部12以外,還具備外殼13A、13B。該物質檢測系統1相對於氣體F之流動,按照驅動部11、整流部12及感測器部10之順序排列,此與上述實施形態1之物質檢測系統1相同。
外殼13A、13B為物質檢測系統1之殼體,收容感測器部10、驅動部11及整流部12。於外殼13A設有氣體F之流入口13a。自流入口13a流入之氣體F輸送至整流部12、感測器部10及驅動部11。於流入口13a安裝有可更換之過濾器。該過濾器防止異物隨著氣體F之流入而混入。又,於外殼13B設有氣體F之排出口13b。再者,本實施形態之物質檢測系統1具備內部框架15。內部框架15及外殼13B於內部夾持整流部12及感測器部10。
如圖5所示,整流部12具備第1基板40及貼合於第1基板40之第2基板41。流入孔31形成於第1基板40。又,分支路32形成於第2基板41中與第1基板40相接之部分。流出孔33形成於第2基板41。如圖5所示,形成於第2基板41之相當於分支路32之溝槽之深度除與流出孔33連通之部分以外皆均勻。
如圖6及圖7所示,於分支路32設有2根支路32a、兩端部32b及支路32c。2根支路32a彼此平行延伸。該支路32a各者之中央部與流入孔31連通。自驅動部11吹出之氣體F自流入孔31流入至支路32a。氣體F朝向支路32a之兩端部32b流動後,流入至自兩端部32b分支之支路32c,到達該支路32c之端部即下游端。支路32c之下游端與流出孔33連通,氣體F經由流出孔33輸送至感測器部10之流路20。
分支路32之形狀規定為使供給於流出孔33之各個之氣體F之流量及流速相同。再者,如圖6所示,流出孔33之中,存在設於2個支路32c之合流地點者。朝向合流地點設置之2個支路32c之寬度為其他支路32c之寬度之一半。藉此,使所有流出孔33中流動之氣體F之流量均勻。
流出孔33設於每一流路20。流出孔33將分支路32與流路20連通。流出孔33之各個之形狀及大小相同。
如上所述之物質檢測系統1之動作與上述實施形態1之物質檢測系統1相同。首先,打開驅動部11之電源,開始氣體F之吹入。自外殼13A之流入口13a流入之氣體F被吸入至驅動部11,驅動部11使流入之氣體F流入至整流部12之流入孔31。供給於流入孔31之氣體F流入分支路32。
於分支路32之支路32a中,氣體F之流動方向變更,氣體F向兩端部32b行進。進入兩端部32b之氣體F進而向支路32c行進,到達流出孔33。即,藉由支路32a,氣體F以流速得到抑制之狀態分支,以其流量及流速於流出孔33間相同之方式流入至各流出孔33。
流入至各流出孔33之氣體F以相同流速、相同流量供給於感測器部10之流路20。供給於流路20之氣體F碰撞感應膜21之後,自流路20排出。
如此,若為本實施形態之物質檢測系統1,則可使氣體F以均勻之流量及流速碰撞各感應膜21,因此可正確地測定各感應膜21之反應值之比例。
又,於本實施形態中,可檢測氣體F中所包含之10個物質。如此一來,可檢測氣體F中所包含之複數種氣味。各感應膜21中流動之氣體F之流量及流速均勻,因此根據所檢測之物質,亦可正確地求出氣體F中所包含之氣味之比例。
又,如本實施形態所示,於整流部12,不僅使氣體F之流動分散,亦可設置合流之部分。無論如何,只要流入感測器部10之各流路20之氣體F之流動均勻化即可。整流部12之整流路可根據氣體F之流體模擬之結果決定。
實施形態3 其次,對本發明之實施形態3進行說明。如圖8及圖9所示,本實施形態之物質檢測系統1之構成要素相對於氣體F之流動之排列順序與上述實施形態2之物質檢測系統1不同。
於本實施形態中,按照整流部12、感測器部10及驅動部11之順序排列。即,驅動部11於氣體F之流動中,配置於較整流部12及感測器部10靠下游,自感測器部10吸入氣體F而排出。
又,於本實施形態中,於感測器部10與驅動部11之間,設有將自流路20之各個排出之氣體F彙集為1股之排出路14。排出路14之排出路為相對於氣體F之流動,與整流部12之整流路完全相反之構成。如此一來,即使驅動部11之抽吸力因場所而存在不均,亦可使複數個流路20中之氣體F之流量及流速均勻化。
然而,若驅動部11之抽吸力無不均,則可不設置排出路14。又,排出路14之構成亦可不為與整流部12相反之構成。只要為將自複數個流路20各者流出之氣體F彙集為1股之構造即可。
再者,本實施形態之物質檢測系統1具備內部框架15、16。內部框架15、16於內部夾持整流部12、感測器部10及排出路14。
對如上所述之物質檢測系統1之動作進行說明。首先,打開驅動部11之電源,開始氣體F之吸入。自外殼13A之流入口13a流入之氣體F流入至整流部12之流入孔31。流入至流入孔31之氣體F進而流入至分支路32。
於分支路32之支路32a中,氣體F之流動方向變更,氣體F向兩端部32b行進。進入兩端部32b之氣體F進而向支路32c行進,到達流出孔33。即,藉由支路32a,氣體F以流速得到抑制之狀態分支,以其流量及流速於流出孔33間相同之方式流入至各流出孔33。
流入至各流出孔33之氣體F以相同流速、相同流量供給於感測器部10之流路20。供給於流路20之氣體F碰撞感應膜21之後,自流路20排出。自流路20排出之氣體F由排出路14彙集之後,經由驅動部11、外殼13B之排出口13b而排出。
如此,若為本實施形態之物質檢測系統1,則可使氣體F以均勻之流量及流速碰撞各感應膜21,因此可正確地測定各感應膜21之反應值之比例。
實施形態4 其次,對本發明之實施形態4進行說明。如圖10及圖11所示,本實施形態之物質檢測系統1於驅動部11設於整流部12之上游及下游兩者之點,與上述實施形態不同。
於該物質檢測系統1中,按照驅動部11、整流部12、感測器部10及驅動部11之順序排列。驅動部11具備第1泵11A及第2泵11B。第1泵11A於氣體F之流動中,配置於較整流部12靠上游,將流入之氣體F吹出至整流部12。第2泵11B於氣體F之流動中,配置於較整流部12靠下游,自感測器部10吸入氣體F而排出。
再者,於本實施形態中,內部框架15、16亦於內部夾持整流部12、感測器部10及排出路14。於內部框架15之上游配置有第1泵11A,於內部框架16之下游配置有第2泵11B。
第1泵11A與第2泵11B協調動作。第1泵11A自外殼13A之流入口13a吸入氣體F,並吹出至整流部12。於整流部12中流動得到均勻抑制之氣體F進入感測器部10之複數個流路20,若氣體F中包含作為檢測對象之物質,則於感應膜21(參照圖1)檢測。
另一方面,第2泵11B經由排出路14吸入流路20內之氣體F,並自外殼13B之排出口13b排出至外部。
藉由具備上游之第1泵11A及下游之第2泵11B兩者,可提高抽吸力。又,亦可降低1個泵之抽吸力,降低製品成本。
再者,可控制第1泵11A之抽吸力及第2泵11B之抽吸力以使流路20內之氣體F之壓力維持為外部氣壓。例如,於整流部12、感測器部10或排出路14等具備氣壓感測器,若由氣壓感測器檢測到氣體F之壓力高於外部氣壓,則減弱第1泵11A之抽吸力,或者增強第2泵11B之抽吸力。又,若由氣壓感測器檢測到氣體F之壓力低於外部氣壓,則可增強第1泵11A之抽吸力,或者減弱第2泵11B之抽吸力。
如此,藉由利用設於整流部12之上游及下游兩者之第1泵11A及第2泵11B,對流入之氣體F之流動進行調整,而使氣體F對感測器部10之流路20內之各感應膜21(參照圖1)之碰撞方式均勻化,可以此狀態控制流路20內之氣體F之狀態。例如,使第1泵11A之氣體F之流入量大於第2泵11B之氣體F之排出量,可將氣體F蓄積於感應膜21之周圍,或者使第1泵11A之氣體F之流入量小於第2泵11B之氣體F之排出量,可減少感應膜21周圍之氣體F之量。
如以上詳細說明,根據上述實施形態,具備均勻地抑制物質所包含之氣體F之流動而輸送至流路20之各個的整流部12。因此,可使氣體F對設於每一流路20之感應膜21之碰撞方式相同。其結果,可降低感應膜21間之檢測結果之不均。
於上述實施形態中,整流部12以使輸送至流路20之各個之氣體F之流量及流速均勻化之方式,對氣體F之流動進行整流。如此一來,可於感應膜21間使氣體F之碰撞方式極力均勻化。其結果,可降低感應膜21間之檢測結果之不均。
然而,整流部12只要使氣體F之流量或流速之任一者均勻化即可。即使如此,亦可於某種程度上降低感應膜21間之檢測結果之不均。
又,整流部12具備供氣體F流入之流入孔31、與流入孔31連通且具有複數個分支之分支路32、及設於每一流路20以將分支路32與流路20之各個連通的複數個流出孔33。如此一來,可於抑制流出之氣體F之流動後使其分支而輸送至複數個流路20。
又,流出孔33之各個之形狀及大小相同,分支路32之形狀規定為使供給於流出孔33之各個之氣體F之流量及流速相同。如此一來,可使氣體F之流量及流速均勻化。
再者,整流部12之分支路32並不限定於上述實施形態者。例如,如圖12所示,亦可採用形成為放射狀者。於圖12所示之流路中,亦期望使形成為放射狀之分支路32之剖面形狀及大小相同,使流經其中之氣體F之流量及流速均勻化。
又,整流部12具備第1基板40及貼合於第1基板40之第2基板41。又,流入孔31形成於第1基板40,分支路32形成於第1基板40及第2基板41之至少一者。又,流出孔33形成於第2基板41。如此一來,可利用2個基板簡單製造具有複雜流路之整流部12。
再者,於上述實施形態中,例如可使整流部12為陶瓷製。於整流部12為陶瓷製之情形時,可一體製造所有流路即流出孔31、分支路32及流出孔33。
又,根據上述實施形態,流路20之各個之形狀及大小相同。如此一來,藉由使流入至各流路20之氣體F之流量及流速相同,可使流路20內之氣體F之狀態相同。
驅動部11於氣體F之流動中,可配置於較整流部12靠上游,亦可配置於下游。又,驅動部11亦可配置於上游及下游兩者。
再者,於上述實施形態中,於驅動部11於氣體F之流動中配置於感測器部10之上游之情形時,亦可發揮作為保護感測器部10免受氣體F影響之保護部之功能。又,驅動部11較為牢固,因此無論於檢測時或未檢測時,均可發揮保護感測器部10及整流部12免受外力影響之作用。
又,根據上述實施形態3,於感測器部10與驅動部11之間,設有將自流路20之各個排出之氣體F彙集為1股之排出路14。如此一來,可使自各流路20排出之氣體F之流量及流速均勻化。
又,根據上述實施形態,檢測時之驅動部11之驅動時間T固定。如此一來,於多次進行之測定期間,可儘可能地使氣體F之流量及流速均勻化。
又,根據上述實施形態2之物質檢測系統1,具備具有供來自外部之氣體F流入之流入口13a的外殼13A。於該流入口13a,安裝有可更換之過濾器。如此一來,可防止異物進入內部而防止泵之故障等。又,依過濾器之種類,可防止細菌等進入內部,可保持清潔。又,藉由更換過濾器,可防止物質檢測系統1之污染。
再者,於上述實施形態中,將感應膜21之種類設為2種或10種,但本發明並不限定於此。感應膜21之種類只要為2種以上即可。
又,於上述實施形態中,將流路20設為貫通孔。然而,本發明並不限定於此。例如,流路20之氣體F之流入口13a與排出口13b可不對向。
再者,於上述實施形態中,將驅動部11設為泵,但泵之種類並無限定。於使裝置整體小型化之情形時,較佳為利用使用MEMS(Micro Electro Mechanical Systems,微機電系統)技術之小型泵。又,可使用葉片旋轉而輸送氣體F之風扇作為驅動部11。
又,於上述實施形態中,使氣體F對感應膜21之碰撞方式於感應膜21間相同,但本發明並不限定於此。關於設有感度低之感應膜21之流路20,可設為如氣體F長時間停留之形狀,例如與其他流路20相較氣體F之流速變慢之形狀。
整流部12之整流路並不限定於上述實施形態者。可為使分支與合流重複之形狀,亦可為網狀。又,可僅於流入孔31與流出孔33之間設置薄且寬之空間。
又,上述實施形態之物質檢測系統1根據設有感應膜21之振動梁22之振動頻率之變化,檢測氣體F中所包含之物質。然而,本發明並不限定於此。可使用根據物質對感應膜21之吸附脫離所引起之其他特性之變化而檢測物質者。例如,可根據作為安裝有感應膜21之構造體之物理特性的折射率、螢光強度、溫度之變化,對物質進行檢測。進而,亦可根據作為包含感應膜21之電路之物理特性的導電率、電阻值、阻抗、電位差、電容之變化,對物質進行檢測。
假定上述實施形態之物質檢測系統1為連接於智慧型手機等電子機器而使用者。然而,本發明並不限定於此。物質檢測系統1可為具有電池,且可單獨使用之機器。
又,假定上述實施形態之物質檢測系統1為可攜帶之類型。然而,本發明並不限定於此。物質檢測系統1可為設置於特定場所者。
感測器部10及整流部12可使用MEMS技術一體化製造。驅動部11亦相同。
又,關於上述實施形態之物質檢測系統1之構成要素之材質並無特別限制。然而,除感應膜21以外,期望由不與氣體F進行反應之材質例如樹脂等構成。關於驅動電極及檢測電極等由金屬構成之部分,為了設成無氧化等情況,可用皮膜覆蓋。
本發明可不脫離本發明之廣義精神及範圍,而形成各種實施形態及變形。又,上述實施形態係用於說明本發明者,而非限定本發明之範圍。即,本發明之範圍並非由實施形態,而由申請專利範圍表示。而且,於申請專利範圍內及與其同等之發明之意義之範圍內實施之各種變形視為本發明之範圍內。 [產業上之可利用性]
本發明可應用於氣體中所包含之複數種物質之檢測。
1:物質檢測系統 10:感測器部 11:驅動部 11A:第1泵 11B:第2泵 12:整流部 13A、13B:外殼 13a:流入口 13b:排出口 14:排出路 15、16:內部框架 20:流路 21:感應膜 22:振動梁 31:流入孔 32:分支路 32a:支路 32b:兩端部 32c:支路 33:流出孔 40:第1基板 41:第2基板 F:氣體 CL:虛擬中心線 T:驅動時間 t1~t3:時刻
[圖1]係表示本發明之實施形態1之物質檢測系統之構成的剖面圖。 [圖2]係表示圖1之物質檢測系統之動作之時序圖。 [圖3]係表示本發明之實施形態2之物質檢測系統之構成的分解立體圖。 [圖4]係圖3之物質檢測系統之立體剖面圖。 [圖5]係構成圖4之物質檢測系統之整流部之分解立體剖面圖。 [圖6]係圖5之整流部中流路之俯視圖。 [圖7]係圖6之VII-VII線剖面圖。 [圖8]係表示本發明之實施形態3之物質檢測系統之構成的分解立體圖。 [圖9]係圖8之物質檢測系統之立體剖面圖。 [圖10]係表示本發明之實施形態4之物質檢測系統之構成的分解立體圖。 [圖11]係圖10之物質檢測系統之立體剖面圖。 [圖12]係表示整流部之流路之其他例之圖。
1:物質檢測系統
10:感測器部
11:驅動部
12:整流部
20:流路
21:感應膜
22:振動梁
31:流入孔
32:分支路
32a:支路
33:流出孔
40:第1基板
41:第2基板
F:氣體
CL:虛擬中心線

Claims (19)

  1. 一種物質檢測系統,具備:感測器部,其形成有供氣體通過之複數個流路,於各個上述流路配置有與上述氣體中所包含之物質進行反應之感應膜;上述感測器部之感應膜,設於將上述流路的一部分擋住之振動梁,且以與上述氣體之流動對向之方式設置;上述流路係構成為,上述氣體流動之方向於上述振動梁之前後相同,且與上述氣體之流動正交之剖面變得均勻。
  2. 如請求項1之物質檢測系統,其中,具備:驅動部,其使上述氣體流入上述流路。
  3. 如請求項2之物質檢測系統,其中,作為上述驅動部,具備配置於較上述感測器部靠上游之第1驅動部、及配置於較上述感測器部靠下游之第2驅動部;控制上述第1驅動部與上述第2驅動部,將上述氣體蓄積於上述感應膜之周圍。
  4. 如請求項2之物質檢測系統,其中,上述驅動部,於上述氣體之流動中,配置於較上述感測器部靠上游。
  5. 如請求項2之物質檢測系統,其中,上述驅動部,於上述氣體之流動中,配置於較上述感測器部靠下游。
  6. 如請求項5之物質檢測系統,其中,於上述感測器部與上述驅動部之間,設有將自複數個上述流路分別排出之上述氣體彙集為1股之排出路。
  7. 如請求項2之物質檢測系統,其中,上述驅動部係泵。
  8. 如請求項7之物質檢測系統,其中,檢測時之上述驅動部之驅動時間固定。
  9. 如請求項2之物質檢測系統,其中,上述驅動部係風扇。
  10. 如請求項1之物質檢測系統,其中,具備:整流部,其均勻地抑制流入之上述氣體之流動而輸送至各個上述流路。
  11. 如請求項10之物質檢測系統,其中,上述整流部係形成將吹入之上述氣體輸送至上述感測器部之一個內部空間之筒狀體。
  12. 如請求項10之物質檢測系統,其中,上述整流部以如下方式對上述氣體之流動進行整流,即,使輸送至上述流路之上述氣體之流量及流速之至少一者於上述流路間均勻化。
  13. 如請求項12之物質檢測系統,其中,上述整流部具備:第1整流路,其供上述氣體流入;第2整流路,其具有將自上述第1整流路流出之氣體向彼此不同之方向輸送之複數個支路;及複數個第3整流路,設於每一上述流路,將自上述第2整流路流出之氣體輸送至上述流路。
  14. 如請求項13之物質檢測系統,其中,上述第3整流路之形狀及大小彼此相同,上述第2整流路之形狀規定為使供給於上述第3整流路之上述氣體之流量及流速之至少一者於上述第3整流路間相同。
  15. 如請求項13之物質檢測系統,其中,上述整流部具備:第1基板;及第2基板,其貼合於上述第1基板;上述第1整流路形成於上述第1基板,上述第2整流路形成於上述第1基板及上述第2基板之至少一者,上述第3整流路形成於上述第2基板。
  16. 如請求項1至15中任一項之物質檢測系統,其中,上述流路之形狀及大小彼此相同。
  17. 如請求項1至15中任一項之物質檢測系統,其中,上述振動梁,其兩端固定於上述流路之內壁。
  18. 如請求項1至15中任一項之物質檢測系統,其中,上述感測器部輸出表示上述振動梁之振動頻率之變化的訊號。
  19. 如請求項1至15中任一項之物質檢測系統,其中,具備:外殼,其具有供來自外部之上述氣體流入之流入口,且將自上述流入口流入之上述氣體輸送至內部所收容之上述感測器部;於上述流入口安裝有可更換之過濾器。
TW110109974A 2020-04-02 2021-03-19 物質檢測系統 TWI776431B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP2020-066890 2020-04-02
JP2020066890 2020-04-02
JP2021031704A JP6981560B2 (ja) 2020-04-02 2021-03-01 物質検出システム
JPJP2021-031704 2021-03-01

Publications (2)

Publication Number Publication Date
TW202138782A TW202138782A (zh) 2021-10-16
TWI776431B true TWI776431B (zh) 2022-09-01

Family

ID=77929476

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109974A TWI776431B (zh) 2020-04-02 2021-03-19 物質檢測系統

Country Status (4)

Country Link
JP (1) JP2022010352A (zh)
CN (1) CN115335679A (zh)
TW (1) TWI776431B (zh)
WO (1) WO2021200066A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119851A1 (ja) * 2021-12-24 2023-06-29 太陽誘電株式会社 におい測定装置、においセンサの制御方法、およびにおい測定装置のクリーニング方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271204A (ja) * 1998-03-25 1999-10-05 Nireco Corp 匂い測定方法と装置
US20110138904A1 (en) * 2008-08-19 2011-06-16 Toppan Printing Co., Ltd Fluid measurement device, method of measuring fluid, and fluid special distribution visualization device
US20130179089A1 (en) * 2010-07-06 2013-07-11 Shimadzu Corporation Odor Discriminating Apparatus
CN106062558A (zh) * 2014-03-26 2016-10-26 松下健康医疗控股株式会社 呼出气体测量装置及呼出气体测量装置的控制方法
JP2016200548A (ja) * 2015-04-14 2016-12-01 パナソニックIpマネジメント株式会社 振動ガスセンサに用いる検出素子、およびそれを用いた振動ガスセンサ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740415B2 (ja) * 1992-06-19 1998-04-15 三洋電機株式会社 匂い検知装置
JPH09304244A (ja) * 1996-05-10 1997-11-28 Nourinsuisan Sentan Gijutsu Sangyo Shinko Center 気体検出装置
JP4192374B2 (ja) * 1999-12-17 2008-12-10 株式会社島津製作所 におい識別装置
JP2002318185A (ja) * 2001-04-24 2002-10-31 Shimadzu Corp 質量変化量測定装置
JP4820659B2 (ja) * 2006-02-15 2011-11-24 佐 藤 由 紀 匂い弁別方法と匂い測定方法と匂い弁別プログラムと匂い測定プログラムと匂い弁別装置と匂い測定装置
EP2141490B1 (en) * 2008-07-02 2015-04-01 Stichting IMEC Nederland Chemical sensing microbeam device
JP2011203007A (ja) * 2010-03-24 2011-10-13 Olympus Corp 検出センサ、物質検出システム
JP2012013620A (ja) * 2010-07-02 2012-01-19 Seiko Epson Corp Qcmデバイス及びqcmデバイスを用いた気体分子の検出方法
EP2773941A1 (en) * 2011-11-04 2014-09-10 Danmarks Tekniske Universitet Resonant fiber based aerosol particle sensor and method
FR3048776B1 (fr) * 2016-03-09 2020-02-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de detection d'au moins un compose chimique dans un fluide
JP6863009B2 (ja) * 2017-03-31 2021-04-21 I−Pex株式会社 物質検出素子
CN107085079A (zh) * 2017-05-12 2017-08-22 盐城工学院 一种人工嗅觉装置以及有机污染物控制设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271204A (ja) * 1998-03-25 1999-10-05 Nireco Corp 匂い測定方法と装置
US20110138904A1 (en) * 2008-08-19 2011-06-16 Toppan Printing Co., Ltd Fluid measurement device, method of measuring fluid, and fluid special distribution visualization device
US20130179089A1 (en) * 2010-07-06 2013-07-11 Shimadzu Corporation Odor Discriminating Apparatus
CN106062558A (zh) * 2014-03-26 2016-10-26 松下健康医疗控股株式会社 呼出气体测量装置及呼出气体测量装置的控制方法
JP2016200548A (ja) * 2015-04-14 2016-12-01 パナソニックIpマネジメント株式会社 振動ガスセンサに用いる検出素子、およびそれを用いた振動ガスセンサ

Also Published As

Publication number Publication date
CN115335679A (zh) 2022-11-11
TW202138782A (zh) 2021-10-16
JP2022010352A (ja) 2022-01-14
WO2021200066A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7152221B2 (ja) アクチュエータセンサモジュール
US11609173B2 (en) Particle detection device and a method for detecting airborne particles
KR100581137B1 (ko) 유속 측정 장치
TWI776431B (zh) 物質檢測系統
JP6981560B2 (ja) 物質検出システム
JP5168346B2 (ja) 除塵用フィルタの目詰まり検知装置
Dinh et al. A MEMS-based silicon micropump with intersecting channels and integrated hotwires
US20140250985A1 (en) Sensing sensor and sensing device using piezoelectric resonator
CN101713675B (zh) 仪表
JP2996137B2 (ja) 振動ジャイロ
WO2023090140A1 (ja) 物質検出システム
WO2023175956A1 (ja) 物質検出システム
JP3637050B2 (ja) 熱式流量計
WO2023119851A1 (ja) におい測定装置、においセンサの制御方法、およびにおい測定装置のクリーニング方法
US20210172852A1 (en) Integrated thermophoretic particulate matter sensors
TW202338318A (zh) 物質檢測系統
JP2003214918A (ja) 電子式高集積化モジュール及び電子式流体制御装置
IT202100014063A1 (it) Dispositivo per il rilevamento di particolato e di uno o piu' gas nell'aria
WO2023162492A1 (ja) におい測定装置
JP3562908B2 (ja) 流体振動検出センサ
CN118730840A (zh) 环境测定终端
JP3623859B2 (ja) 流体振動検出センサ
JP3645900B2 (ja) 熱式流量計
JP2005345346A (ja) 熱式流量センサ
JP2005291923A (ja) 熱式流量計

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent