JP3562908B2 - 流体振動検出センサ - Google Patents

流体振動検出センサ Download PDF

Info

Publication number
JP3562908B2
JP3562908B2 JP19237696A JP19237696A JP3562908B2 JP 3562908 B2 JP3562908 B2 JP 3562908B2 JP 19237696 A JP19237696 A JP 19237696A JP 19237696 A JP19237696 A JP 19237696A JP 3562908 B2 JP3562908 B2 JP 3562908B2
Authority
JP
Japan
Prior art keywords
diaphragm
gas pipe
fluid vibration
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19237696A
Other languages
English (en)
Other versions
JPH1038641A (ja
Inventor
一光 温井
秀男 加藤
嘉一 金子
茂夫 中澤
純一 吉池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Nagano Keiki Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Nagano Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Nagano Keiki Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP19237696A priority Critical patent/JP3562908B2/ja
Publication of JPH1038641A publication Critical patent/JPH1038641A/ja
Application granted granted Critical
Publication of JP3562908B2 publication Critical patent/JP3562908B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フルイディック素子を用いてガスの流量を測定するフルイディック式ガスメータに利用される流体振動検出センサに関する。
【0002】
【背景技術】
通常、住宅等で利用される都市ガスは、主管から分岐して地上から立ち上げられた入口側ガス配管からガスメータに入り、出口側ガス配管を介して各世帯のガス設備に供給されている。このガス配管の途中に設けられたガスメータによりガスの積算流量、つまり使用量を計量できるようになっている。
【0003】
このようなガスメータの一つとして、フルイディック式ガスメータが知られている。フルイディック式ガスメータは、一対の素子内流路を有するフルイディック素子を備え、このフルイディック素子へのガスの流通によりガスが一対の素子内流路を交互に流通して発生する流体振動を検出することによってガスの流量を測定するものである。流体振動の検出は、ガスの流れる方向が切り替わることによって生じる圧力変動を流体の振動回数で検出することにより行われる。
【0004】
流体の振動回数の検出は、一般に、各素子内流路に設けられた圧力センサにより行われている(特公平8−3431号公報および特公平8−3432号公報参照)。フルイディック発振により発生する圧力変動は数μmHO〜数mmHO程度の極微圧であり、とくに、圧力変動の周波数が低いと非常に小さな圧力しか発生しないので、圧力センサのダイヤフラムは極微圧でも変位するように高感度に形成しなければならない。
【0005】
【発明が解決しようとする課題】
しかし、フルイディック式ガスメータは、前述したように地上から立ち上げられたガス配管に取り付けられているので、このガス配管を介して地震やトラックの通過、或いは近くの工場等による外部振動の影響を受けやすい。フルイディック式ガスメータに用いられる圧力センサのダイヤフラムは、このような外部振動により変位して振動回数の計数に誤りを生じる虞れがあり、ガスの流量を正確に計量できなかった。
【0006】
これに対して、二個の圧電素子を用いて外部振動によるノイズを消去するようにした圧力センサが提案されている(特開平6−186105号公報参照)。しかし、この圧力センサは圧電素子を二個使用するため、センサの構造が複雑になるうえに、この二個の特性をそろえて同じ受圧環境下に設けなければならないので製造が困難であった。
さらに、フルイディック素子においては、通常、一秒に1〜数100回程度の振動数でかつ微圧の流体振動が発生するため、二枚のダイヤフラムを用いると、ガスのベース圧力の変動等の影響を受けて位相ずれを起こしやすく、振動回数の計数に誤る虞れがあった。とくに、圧力変化量を検出する形式であるため、圧力変化量が小さくてゆっくり変化するような流体振動の状態(低周波数状態)、つまりガスメータとしてはガスの使用量が極少ない状態での検出が困難であった。
【0007】
一方、ダイヤフラムを一枚とし、しかも極微圧で低周波数から高周波数までの広範囲の流体振動に対応できるフルイディック式ガスメータ用の流体振動検出センサを本発明者らが開発し、本日同時に特許出願している。
しかし、この新たな流体振動検出センサは、低周波数領域における極微圧の流体振動の検出にも対応できるように、ダイヤフラムの肉厚を極めて薄く形成している。このため、外部振動の影響に対しても敏感である。また、本発明者らが提案した形式に限らず、高感度な流体振動検出用の圧力センサでは同様な問題が起こる可能性がある。
【0008】
本発明の目的は、簡単な構造で容易に形成でき、かつ、外部振動の影響を受けることなく、極微圧、低周波数の流体振動でも高感度に検出できる流体振動検出センサを提供することにある。
【0009】
【課題を解決するための手段】
請求項1に記載した本発明は、並設された入口側ガス配管および出口側ガス配管に取り付けられるとともにフルイディック素子を備えたフルイディック式ガスメータに用いられる流体振動検出センサであって、フルイディック素子に生じる流体振動を検出するダイヤフラムを備え、このダイヤフラムは、入口側ガス配管および出口側ガス配管を含む面に略垂直に設けられていることを特徴とする。
【0010】
このように入口側ガス配管および出口側ガス配管に跨って取り付けられたフルイディック式ガスメータは、入口側ガス配管および出口側ガス配管を含む面と垂直な方向には振動しやすいが、これらを含む面に沿った方向には振動しにくい。
本発明では、ダイヤフラムを入口側ガス配管および出口側ガス配管を含む面に略垂直に設けたので、ダイヤフラムが変位する方向は、入口側ガス配管および出口側ガス配管を含む面に沿った振動しにくい方向となり、外部の振動でダイヤフラムが変位しにくくなるため、地震や車両の通過等による外部振動の影響を回避することができる。
【0011】
従って、ダイヤフラムを極微圧でも変位するように高感度に形成しても、外部振動による誤動作を低減することができ、極微圧、低周波数の流体振動でも高感度に検出することができる。
また、ダイヤフラムの向きを適正に設定するだけでよいため、簡単な構造で容易に製造することができる。
これらにより、前記目的が達成される。
【0012】
請求項1に記載の発明において、入口側ガス配管および出口側ガス配管は略平行に並設され、ダイヤフラムは、入口側ガス配管および出口側ガス配管を含む面に略垂直かつ入口側ガス配管および出口側ガス配管と略平行に設けられていることが望ましい(請求項2の発明)。
【0013】
このように入口側ガス配管および出口側ガス配管が略平行に配設されている場合、これらのガス配管に略平行にダイヤフラムを設置すれば、ダイヤフラムが変位する方向は入口側ガス配管および出口側ガス配管が並んだ方向となるため、ガス配管の長手方向に沿った揺れの影響をも回避できるようになり、略平行な配管の耐振性が大きいことも伴って、ダイヤフラムは外部振動の影響をより受けにくくなる。
【0014】
請求項1または請求項2に記載の発明において、フルイディック素子は流体振動を発生する一対の素子内流路を備え、流体振動検出センサは、ガス導入孔を有する静電容量型センサチップと、この静電容量型センサチップのガス導入孔の各々に一対の素子内流路の各一方を連通させる連通路とを有し、静電容量型センサチップは、一枚のダイヤフラム、このダイヤフラムの中央部分が変位可能となるように空隙を介してダイヤフラムの周縁部を両側から挟持する一対の絶縁部材、これらの一対の絶縁部材と一枚のダイヤフラムとの各々の対向面にそれぞれ形成されて静電容量を生じさせる電極、および一対の絶縁部材にそれぞれ形成されて空隙に連通するガス導入孔を有して構成されていることが望ましい(請求項3の発明)。
【0015】
このように、一枚のダイヤフラムを一対の絶縁部材により空隙を介して両側から挟持するとともに、これらの絶縁部材にそれぞれ空隙に連通するガス導入孔を形成して静電容量型センサチップを構成し、ガス導入孔の各々に一対の素子内流路の各一方を連通させる連通路を設ければ、ダイヤフラムの両側の空隙は、ガス導入孔および連通路によりそれぞれ各素子内流路に連通されて、各素子内流路の圧力が各々ダイヤフラムの両側の空隙に導入される。この際、一対の素子内流路には、フルイディック素子へのガスの流通によりガスが交互に流通するため、これらの素子内流路の差圧によってダイヤフラムが交互に反対方向に変形するようになり、流体振動の周波数を一枚のダイヤフラムで検出できるようになる。
【0016】
また、ダイヤフラムを一枚とすることにより、二個の圧電素子を用いた従来の圧力センサよりも構造を簡略化でき、二枚の特性や受圧環境を同じに形成する必要がないので容易に製造することができる。
さらに、一枚のダイヤフラムで両方の素子内流路の圧力を受圧するので、静電容量型センサチップにおける可動検出部が一箇所になり、ガスのベース圧力が変動しても位相ずれが生じることがなくなるため、極微圧、低周波数の流体振動でも流体の振動回数の計数を誤ることなく高感度に検出することができるうえに、位相ずれの補正が不要となる。
【0017】
また、一対の絶縁部材と一枚のダイヤフラムとの各々の対向面にそれぞれ静電容量を生じさせる電極を形成したため、流体振動によるダイヤフラムの変位が静電容量の変化として確実に検出できるようになり、流体の振動回数からガスの積算流量を計量することができるうえ、この振動回数の周波数から(瞬時)流量の測定も可能となる。
【0018】
請求項3に記載した発明において、静電容量型センサチップは、センサ収納用ケースにおける流体振動導入室内に収納されかつこの流体振動導入室を略同容積の第一室および第二室に区画する仕切板に設けられ、静電容量型センサチップの各ガス導入孔は第一室および第二室にそれぞれ導通され、連通路は、流体振動導入室と、一方の素子内流路を第一室に連通させる第一の導通路と、他方の素子内流路を第二室に連通させる第二の導通路とを含み、これらの第一の導通路および第二の導通路は略同形状かつ略同容積に形成されていることが望ましい(請求項4の発明)。
【0019】
このように静電容量型センサチップをセンサ収納用ケースに設けられた流体振動導入室内に収納すれば、流体を静電容量型センサチップに容易に導入できるうえ、導電性の材料でケースを製作すれば、外部の電気的なノイズの影響を回避することができる。
また、静電容量型センサチップは流体振動導入室を略同容積の第一室および第二室に区画する仕切板に設けられ、その各ガス導入孔は第一室および第二室にそれぞれ導通されているため、ダイヤフラムの両側の空間が略同容積となり、ダイヤフラムの両面の受圧環境が略同じにすることができるので、ガスのベース圧力の変動等が生じた場合でも、位相のずれを回避することが可能となり、流体の振動回数検出感度の低下を防止できる。
【0020】
さらに、第一の導通路と第二の導通路とを略同形状かつ略同容積に形成すれば、各素子内流路から第一室および第二室までの経路が略同じ長さかつ略同容積になるため、この経路の違いによってガスのベース圧力の変動等による位相ずれが発生することがなくなり、流体振動を一層感度よく検出することができる。
【0021】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
図1には、フルイディック式ガスメータ10が示されている。フルイディック式ガスメータ10は、地上から略平行に立ち上げられた入口側ガス配管61および出口側ガス配管62に取り付けられた本体10Aと、この本体10Aに取り付けられた流体振動検出センサ20と、この流体振動検出センサ20および本体10Aを収納する保護ケース10Bとを含んで構成されている。
入口側ガス配管61は都市ガスやプロパンガス等を供給する図示しない主管(母管)に接続され、本体10Aにガスを導入できるようになっている。また、出口側ガス配管62は図示しない建物のガス配管等に接続され、本体10Aから排出されたガスを建物の設備等に供給できるようになっている。
【0022】
本体10Aは、図2に示すように、箱状に形成され、入口側ガス配管61からガスを導入する入口部11と、この入口部11から導入されたガスの流れを整える整流部12と、整流されたガスを通過させて噴流を発生させるノズル13と、ノズル13により噴出させたガスを流体振動させるフルイディック素子14と、このフルイディック素子14から出口側ガス配管62へガスを排出する出口部15とを有して構成されている。
【0023】
フルイディック素子14は、従来一般のフルイディック式ガスメータ(例えば、特開平7−234140号公報参照)と同様に、一対の素子内流路14A,14Bを含んで構成されている。素子内流路14Aは、ノズル13噴出口から出口部15まで延びる主噴流路16Aおよび主噴流路16Aから分岐してノズル13噴出口側に帰還するフィードバック流路17Aを備え、素子内流路14Bも同様な主噴流路16Bおよびフィードバック流路17Bを備えている。
このようなフルイディック素子14にガスが流通すると、ガスが一対の素子内流路14A,14Bを交互に流通するようになり、この流通方向の切り替わりにより発生する流体振動を流体振動検出センサ20で検出することによってガス流量を計量するようになっている。
【0024】
本実施形態においては、一対の素子内流路14A,14Bが入口側ガス配管61および出口側ガス配管62を含む面63(図1,図6参照)に略沿ってこれらのガス配管61,62と略平行に並ぶように形成されている。
なお、フルイディック素子14は、本実施形態の構造に限定されず、既存の各種フルイディック素子を用いることができる。
【0025】
流体振動検出センサ20の本体10Aへの取付けは、本体10Aの外面におけるフルイディック素子14内の流れに対し対称の位置とされ、流体振動検出センサ20は、本体10の壁面を貫通して設けられた一対の第一の連通孔53Aおよび第二の連通孔53Bを介して素子内流路14A,14Bの各主噴流路16A,16Bに連通されている。これらの連通孔53A,53Bは、その各軸方向が各主噴流路16A,16Bの流れに対して直交するように設けられ、互いに略同形状かつ略同容積に形成されている。
【0026】
流体振動検出センサ20は、図3に示すように、各主噴流路16A,16Bの圧力変動を検知する静電容量型センサチップ30と、この静電容量型センサチップ30からの信号を電気的に処理する信号処理回路であるICチップ21と、これらの静電容量型センサチップ30およびICチップ21を収納するセンサ収納用ケース40とを備えている。
【0027】
静電容量型センサチップ30は、図4および図5にも示すように、一枚のダイヤフラム31、このダイヤフラム31の中央部分が変位可能となるように空隙32を介してダイヤフラム31の周縁部を両側から挟持する一対の絶縁部材33、これらの一対の絶縁部材33のダイヤフラム31との対向面にそれぞれ形成された電極34(図5では厚さを強調して図示)、および一対の絶縁部材33にそれぞれ形成されて空隙32に連通するガス導入孔35を有して構成されている。
【0028】
ダイヤフラム31はシリコンからなり、ダイヤフラム31の中央部分の両面には、空隙32を構成する平面形状円状の凹部32Aがエッチング等により形成され、これらの各凹部32Aの底面により第一の面31Aおよび第二の面31Bが形成されている。凹部32Aは、例えば、直径3〜8mm、深さ5〜15μmに形成され、凹部32Aが設けられたダイヤフラム31の中央部分の厚さは、例えば、3〜8μmである。
【0029】
ダイヤフラム31のシリコンには燐(P)やボロン(B)等の不純物が拡散法やイオン打ち込み法等により注入されて導電性を有するようにされ、ダイヤフラム31の第一の面31Aおよび第二の面31Bと絶縁部材33の電極34とによって静電容量が生じるようにされている。従って、ダイヤフラム31の第一の面31Aおよび第二の面31Bは電極として構成されている。
なお、このダイヤフラム31は、数μmHO程度の極微圧でも変位するように極めて薄く形成され、高感度にされている。
【0030】
ダイヤフラム31を挟持する絶縁部材33は、耐熱ガラス等のガラスにより形成されている。この絶縁部材33に設けられた電極34およびダイヤフラム31は、後に詳述するセンサ収納用ケース40内に配置された回路基板兼用の仕切り板43(図3参照)とボンディングワイヤ36により電気的に接続されている。
【0031】
図3に戻って、センサ収納用ケース40は、半割りの最中の皮状に形成されて互いに向かい合わせとされた一対の金属製(例えば、アルミニウム、鉄、銅、黄銅等)の半割りケース40A,40Bからなり、これらの半割りケース40A,40Bはパッキン19を介して本体10Aに取り付けられている。一対の半割りケース40A,40Bの中間には、プリント基板等から形成されて回路基板と兼用される仕切板43が介装されている。この仕切板43は、本体10Aに形成された一対の連通孔53A,53Bから立ち上がるように設けられ、入口側ガス配管61および出口側ガス配管62を含む面63(図1,図6参照)に略垂直かつ入口側ガス配管61および出口側ガス配管62と略平行に配置されている。
【0032】
センサ収納用ケース40の各半割りケース40A,40Bの中央部には隔壁40Cが設けられ、この隔壁40Cにより、処理回路室41と流体振動導入室42とが気密分離されて設けられている。すなわち、流体振動導入室42の周囲において、仕切板43と半割りケース40A,40Bとの間にはエラストマ等からなるシール材44が介装され、流体振動導入室42が、外部、具体的には、本体10A側の外気および処理回路室41側から気密分離されている。
【0033】
処理回路室41にはICチップ21が収納されている。このICチップ21は、仕切板43の処理回路室41内まで延設された部分に組み込まれ、仕切板43の所定の配線パターンと電気的に接続されている。これにより、静電容量型センサチップ30からの電気信号は、回路基板である仕切板43を介してICチップ21に伝達されるようになっている。
【0034】
流体振動導入室42は、前述の仕切板43によりその内部を略同容積の第一室42Aおよび第二室42Bに区画され、かつ、仕切板43に設けられた貫通孔43Aを介して第二室42B側と第一室42A側とが連通するようにされている。このような流体振動導入室42には静電容量型センサチップ30が収納されている。
静電容量型センサチップ30は、ダイヤフラム31が仕切板43と略平行になるように仕切板43の第一室42A側の面に台座45を介して台座45の全周が気密になるよう接着剤等で接合されている。これにより、ダイヤフラム31は、図6にも示すように、入口側ガス配管61および出口側ガス配管62を含む面63に略垂直かつ入口側ガス配管61および出口側ガス配管62と略平行に配置される。
【0035】
静電容量型センサチップ30の各絶縁部材33に設けられたガス導入孔35のうち一方、すなわち、仕切板43とは反対側のガス導入孔35は、第一室42Aに直接導通され、他方、すなわち、仕切板43側のガス導入孔35は、仕切板43の貫通孔43Aおよび台座45内を通じて第二室42Bに導通されている。
【0036】
流体振動導入室42の第一室42Aおよび第二室42Bと、本体10Aに形成された第一および第二の連通孔53A,53Bとは、半割りケース40A,40Bに設けられた第一の導通孔54Aおよび第二の導通孔54Bによりそれぞれ連通されている。これらの第一および第二の導通孔54A,54Bは、第一室42Aおよび第二室42Bからそれぞれ第一および第二の連通孔53A,53Bに向かって斜めに延びて形成され、互いに略同形状かつ同容積に形成されている。
【0037】
このように互いに連通された第一の導通孔54Aおよび第一の連通孔53Aを含んで第一室42Aと一方の主噴流路16Aとを連通させる第一の導通路51が構成されている。また、第二の導通孔54Bおよび第二の連通孔53Bを含んで第二室42Bと他方の主噴流路16Bとを連通させる第二の導通路52が構成されている。これらの第一および第二の導通路51,52は略同形状かつ略同容積になっている。
従って、静電容量型センサチップ30のガス導入孔35の各々と一対の主噴流路16A,16Bとの各一方とは、流体振動導入室42と、第一の導通路51および第二の導通路52とを含む連通路50を介して連通されることとなる。
【0038】
このような本実施形態のフルイディック式ガスメータ10の流体振動検出センサ20は、次のようにしてフルイディック素子14による流体振動を検出する。フルイディック素子14にガスが流通し、ガスの流れが一方の主噴流路16A側(第一の連通孔53A側)に切り替わったとき、第一の連通孔53A近傍の流体圧力は第二の連通孔53B近傍よりも低くなり、また、他方の主噴流路16B側(第二の連通孔53B側)に切り替わると、第二の連通孔53B近傍の流体圧力は第一の連通孔53A近傍よりも低くなる。
【0039】
この際、一方の主噴流路16A側を流れているガス流が他方の主噴流路16B側に切り替わる原理は、一方の主噴流路16Aを流れているガス流の一部が、フィードバック流路17Aに沿って帰還し、ノズル13からのガス流を他方の主噴流路16B側に押しやることによって行われるものである。同様に、他方の主噴流路16Bを流れるガス流も、一方の主噴流路16Aのガス流に切り替わることとなる。この交互の切り替わりの速度、すなわち、切り替わりの周波数は、ガス流の速度に比例している。
【0040】
第一の連通孔53A近傍の圧力は、第一の導通路51、第一室42Aおよびガス導入孔35を介してダイヤフラム31の第一の面31Aに導入され、第二の連通孔53B近傍の圧力は、第二の導通路52、第二室42B、貫通孔43Aおよびガス導入孔35を介してダイヤフラム31の第二の面31Bに導入される。従って、主噴流路16A,16Bのノズル13噴出口近傍に生じる差圧により、ダイヤフラム31は第一の面31A側と第二の面31B側とに交互に変位するようになり、このダイヤフラム31の変位により、ダイヤフラム31と各電極34との間に生じる静電容量の変化が仕切板43を介してICチップ21に送られて処理され、切り替わりの回数、すなわち振動回数に応じてガスの積算流量が計量される。このとき、一枚のダイヤフラム31の両面である第一の面31Aおよび第二の面31Bにそれぞれ主噴流路16A,16Bのノズル13噴出口近傍の圧力が同時に導入され、その差圧に応じてダイヤフラム31が変位するので、ガスのベース圧力の変動があっても、一枚のダイヤフラム31において相殺され、誤動作することがない。
【0041】
流体振動によりフルイディック素子14の一対の主噴流路16A,16Bのノズル13噴出口近傍に生じる差圧は、流体振動の周波数の二乗に比例して大きくなる。一方、静電容量型センサチップ30そのものの構造に基づく周波数特性は、低周波領域(例えば10Hz前後迄)では一定の出力特性を示すが、ある一定周波数(前述の10Hz前後)を超えると出力特性は周波数に反比例して低下するようになる。これは、流体振動の周波数が上がると、空隙32におけるダイヤフラム31と絶縁部材33との間の距離が短いことにより、ダイヤフラム31の変位に伴う各空隙32内のガスの排出が行われにくくなり、ダイヤフラム31は、その中央部のみが小さく変位、振動し、或いは、空隙32内のダンパ効果によりダイヤフラム31全体が小さく変位、振動し、あたかもダイヤフラム31の剛性が増したような挙動をすることとなって、静電容量型センサチップ30そのものの周波数特性が減衰するからである。しかし、高周波領域では、フルイディック素子14に生じる差圧は二乗に比例して大きくなるので、静電容量型センサチップ30そのものの出力特性が低下しても流体振動検出センサ20からの出力の増加が抑えられる。
【0042】
このことは、流体振動検出センサ20としては好都合な特性であり、広帯域の周波数の測定が可能となることを意味する。すなわち、仮に、静電容量型センサチップの特性が周波数の増加に拘わらず一定であるとすると、ダイヤフラムは周波数の増加にともなって大きく振動し、ダイヤフラムが絶縁部材に接触してノイズを生じたり、極端な場合、ダイヤフラムを破損する虞れも生ずることとなる。一方高周波数領域における高圧の振動に対応できるようにダイヤフラムの剛性を増加させると、当然のことながら低周波数領域における極微圧の振動に対するダイヤフラムの振動、換言すると極微圧の検出感度が低下して測定が困難となる。従って、センサチップそのものの出力特性が周波数に拘わらず一定であると、低周波数領域の小さな差圧に対応しようとすると高周波数領域における大きな差圧に対応できず、一方、高周波数領域における大きな差圧に対応しようとすると低周波数領域における小さな差圧に対応できない、測定帯域の狭いものとなってしまう。
これに対し、本実施形態の流体振動検出センサ20では、ある一定周波数以上の高周波数領域では、ダイヤフラム31の剛性があたかも大きくなったようになるため、1Hz或いはそれ以下の低周波数領域の極微圧の振動を検出可能なように剛性の小さいダイヤフラム31としても、より高い周波数、例えば、数100Hzまで検出が可能となる。
【0043】
また、地震や車両の通過等により外部振動が生じても、フルイディック式ガスメータ10は、入口側ガス配管61および出口側ガス配管62を含む面63に沿った方向にはほとんど振動しないので、入口側ガス配管61および出口側ガス配管62を含む面63に略垂直に配置されたダイヤフラム31は外部の振動により変位することがほとんどない。
【0044】
このような本実施形態によれば、以下のような効果がある。
すなわち、略平行に並設された入口側ガス配管61および出口側ガス配管62を含む面63にダイヤフラム31が略垂直となるように静電容量型センサチップ30を仕切板43に設けたので、ダイヤフラム31が変位する方向は、入口側ガス配管61および出口側ガス配管62を含む面63に沿った振動しにくい方向となり、外部の振動でダイヤフラム31が変位しにくくなるため、地震や車両の通過等による振動の影響を回避することができる。
【0045】
さらに、ダイヤフラム31を入口側ガス配管61および出口側ガス配管62に略平行としたため、ダイヤフラム31が変位する方向は入口側ガス配管61および出口側ガス配管62が並んだ方向となり、ガス配管61,62の長手方向に沿った揺れの影響をも回避できるようになり、略平行に並設されたガス配管61,62の耐振性が大きいことも伴って、ダイヤフラム31は外部振動の影響をより受けにくくなる。
【0046】
従って、ダイヤフラム31を極微圧でも変位するように高感度に形成しても、外部の振動による検出誤差を低減することができ、極微圧、低周波数の流体振動でも高感度に検出することができる。
また、一枚のダイヤフラム31の向きを適正に設定するだけでよいため、二個の圧電素子を用いてノイズを低減する従来の圧力センサよりも構造を簡略化できるうえに、二個の特性や受圧環境を同じに形成する必要がなくなるので容易に製造することができる。
【0047】
さらに、一枚のダイヤフラム31で両方の主噴流路16A,16Bのノズル13噴出口近傍の圧力を受圧するので、静電容量型センサチップ30における可動検出部が一箇所になり、ガスのベース圧力が変動しても位相ずれが生じることがなくなるため、極微圧、低周波数の流体振動でも検出誤差を生じることなく高感度に検出することができるうえに、位相ずれの補正が不要となる。
【0048】
また、一対の絶縁部材33のダイヤフラム31との対向面にそれぞれ静電容量を生じさせる電極34を形成したため、流体振動によるダイヤフラム31の変位が静電容量の変化として確実に検出できるようになり、流体の振動回数からガスの積算流量を計量することができる。
【0049】
さらに、ダイヤフラム31をシリコンにより形成したため、ダイヤフラム31の受圧部分を、例えば膜厚3〜8μmというように非常に薄く形成することができる。従って、極微圧でもダイヤフラム31を変位させることが可能となり、検出感度を向上できる。さらに、空隙32をダイヤフラム31の中央部分の両面に設けられた凹部32Aにより構成したため、エッチング等により簡単に凹部32Aを形成できる。
【0050】
また、凹部32Aを、例えば深さ5〜15μmとして空隙32におけるダイヤフラム31と絶縁部材33との間の距離を小さく形成したので、流体振動が一定の周波数を超えるとその中央部分、或いは全体が小さく変位するようになり、ダイヤフラム31が大きく変位することがなくなる。従って、流体振動が高周波数で比較的差圧が大きい場合でも検出できる。しかも、静電容量型センサチップ30を高い圧力に対応させて高剛性にする必要がなくなるので、低圧力において高感度に形成することができ、圧力変動が数μmHO程度の極微圧でも確実に検出することができ、ガス流量が少ない場合でも正確に流量を測定できる。
【0051】
そして、シリコンには不純物が注入されているため、ダイヤフラム31に導電性を付与することができ、ダイヤフラム31を電極に兼用できるようになるので、ダイヤフラム31の表面に別途電極を設ける手間を省略できる。
【0052】
さらに、静電容量型センサチップ30をセンサ収納用ケース40の流体振動導入室42内に収納したので、流体振動を静電容量型センサチップ30に容易に伝えることができる。
【0053】
また、流体振動導入室42を仕切板43により略同容積の第一室42Aおよび第二室42Bに区画し、この仕切板43の第一室42A側の面に静電容量型センサチップ30を設けたので、ダイヤフラム31の両側の空間が略同容積となり、第一の面31Aおよび第二の面31Bの受圧環境を同じにすることができるため、ガスのベース圧力の変動等が生じた場合でも、位相のずれを確実に回避することができ、検出感度の低下を防止できる。
【0054】
さらに、第一の導通路51と第二の導通路52とを略同形状かつ略同容積に形成したので、各主噴流路16A,16Bから第一室42Aおよび第二室42Bまでの経路が略同じ長さかつ略同容積になり、この経路の違いによってガスのベース圧力の変動等による位相ずれが発生することがなくなり、流体振動を一層感度よく検出することができる。
【0055】
ICチップ21をセンサ収納用ケース40内に設けられた処理回路室41に収納したので、静電容量型センサチップ30からの信号を近接した場所で処理できるようになり、静電容量型センサチップ30とICチップ21との間で受ける外部からのノイズの影響を低減することができる。また、センサ収納用ケース40を金属により形成したため、外部の電気的なノイズを確実に遮断することができる。従って、静電容量型センサチップ30からの出力信号に対するノイズを確実に除去できるようになるため、SN比を高めることができ、フルイディック発振流体振動の低周波における発生圧力変動が数μmHO程度の極微圧の場合でも感度よく検出することができる。
【0056】
さらに、処理回路室41と流体振動導入室42とを気密分離したため、ICチップ21への接ガスの影響を回避でき、ICチップ21を長期にわたって保護でき、安定作動させることができる。また、流体振動導入室42は処理回路室41の容量の影響を受けることがなく、ダイヤフラム31の両側の空間を略同容積の状態に維持できるようになるので、位相ずれによる誤動作の発生を防止することができ、高い感度で流体振動を検出することができる。
また、仕切板43を処理回路室41内まで延設し、ICチップ21を組み込む回路基板に兼用したので、仕切板43そのものを静電容量型センサチップ30とICチップ21とを接続するための配線とすることができ、電線等を別途配設する必要がなくなり、構造が簡略化できるとともに部品点数を削減できる。
【0057】
なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形なども本発明に含まれる。
前記実施形態では、静電容量型センサチップ30をそのダイヤフラム31が入口側ガス配管61および出口側ガス配管62を含む面63に略垂直かつ入口側ガス配管61および出口側ガス配管62と略平行になるように設けたが、例えば、ダイヤフラム31が入口側ガス配管61および出口側ガス配管62を含む面63に略垂直かつ入口側ガス配管61および出口側ガス配管62と略直交するように設けてもよい。つまり、ダイヤフラム31の向きは入口側ガス配管61および出口側ガス配管62を含む面63に略垂直とされていればよく、実施にあたって適宜設定すればよい。
【0058】
前記実施形態では、入口側ガス配管61および出口側ガス配管62は地上から略平行に立ち上がって並設されていたが、略平行でなくてもよく、例えば、互いに直交する方向に設けられていてもよい。要するに、入口側ガス配管61および出口側ガス配管62を含む面63が外部振動を抑制できるような配置であれば、これらのガス配管61,62の配置は任意である。
【0059】
前記実施形態では、本体10Aにおいて素子内流路14A,14Bは入口側ガス配管61および出口側ガス配管62と略平行な方向に並んで形成されていたが、例えば、図7に示すように、素子内流路14A,14Bの並ぶ方向は入口側ガス配管61および出口側ガス配管62と直交する方向であってもよく、つまり、素子内流路14A,14Bは図2に示した状態から入口側ガス配管61および出口側ガス配管62を含む面63に沿って90°回転した状態に形成されていてもよい。このようにすれば、図8にも示すように、一対の素子内流路14A,14Bの並ぶ方向が第一室42Aおよび第二室42Bの並ぶ方向と一致するため、センサ20の各導通孔54A,54Bを斜めに(図3参照)形成する必要がなくなり、第一の導通路51および第二の導通路52を直線的に形成できる。従って、第一の導通路51および第二の導通路52を一層短く形成できるため、各主噴流路16A,16Bの圧力を円滑に導入できるとともに導通孔54A,54Bを簡単に形成できる。
【0060】
前記実施形態では、流体振動導入室42の第一室42Aおよび第二室42Bは、第一および第二の導通路51,52によってそれぞれ各主噴流路16A,16Bのノズル13噴出口近傍に連通されていたが、例えば、主噴流路16A,16Bにおける他の位置に連通されていてもよく、或いは、各フィードバック流路17A,17Bに連通されていてもよい。要するに、素子内流路14A,14Bを交互に流通して発生する流体振動を検出できれば、フルイディック素子14において第一室42Aおよび第二室42Bに連通される位置は任意である。
【0061】
また、前記実施形態の第一および第二の導通孔54A,54Bは、第一および第二の連通孔53A,53Bから第一室42Aまたは第二室42Bまで斜めに直線的に形成されていたが、例えば、各連通孔53A,53Bから第一室42Aまたは第二室42Bに向かって湾曲して形成してもよく、一対の導通孔54A,54Bが略同形状かつ略同容積であれば、その具体的な形状は実施に当たって適宜設定すればよい。
【0062】
また、ダイヤフラム31の材質はシリコンに限定されず、例えば、金属等の導電性を有する材料により形成してもよく、或いは、セラミックス等の無機材料により形成してもよく、更には、これら以外の材質により形成してもよい。
【0063】
【発明の効果】
以上に述べたように、本発明によれば、ダイヤフラムを入口側ガス配管および出口側ガス配管を含む面に略垂直に設けたので、ダイヤフラムが変位する方向は、入口側ガス配管および出口側ガス配管を含む面に沿った振動しにくい方向となり、外部の振動でダイヤフラムが変位しにくくなるため、地震や車両の通過等による外部振動の影響を回避することができる。
【0064】
従って、ダイヤフラムを極微圧でも変位するように高感度に形成しても、外部の振動による誤動作を低減することができ、極微圧、低周波数の流体振動でも高感度に検出することができる。
また、ダイヤフラムの向きを適正に設定するだけでよいため、簡単な構造で容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す斜視図。
【図2】前記実施形態のフルイディック素子を含む本体の要部を示す断面図。
【図3】前記実施形態の流体振動検出センサを示す断面図。
【図4】前記実施形態の静電容量型センサチップの一部を断面して示す斜視図。
【図5】前記実施形態の静電容量型センサチップを示す断面図。
【図6】前記実施形態の入口側ガス配管および出口側ガス配管とダイヤフラムとの位置関係を示す模式図。
【図7】本発明の他のフルイディック素子を含む本体の要部を示す断面図。
【図8】本発明の他の流体振動検出センサを示す断面図。
【符号の説明】
10 フルイディック式ガスメータ
14 フルイディック素子
14A,14B 素子内流路
16A,16B 主噴流路
17A,17B フィードバック流路
20 流体振動検出センサ
31 ダイヤフラム
32 空隙
33 絶縁部材
34 電極
35 ガス導入孔
30 静電容量型センサチップ
40 センサ収納用ケース
42 流体振動導入室
42A 第一室
42B 第二室
43 仕切板
50 連通路
51 第一の導通路
52 第二の導通路
53A 第一の連通孔
53B 第二の連通孔
54A 第一の導通孔
54B 第二の導通孔
61 入口側ガス配管
62 出口側ガス配管

Claims (4)

  1. 並設された入口側ガス配管および出口側ガス配管に取り付けられるとともにフルイディック素子を備えたフルイディック式ガスメータに用いられる流体振動検出センサであって、
    前記フルイディック素子に生じる流体振動を検出するダイヤフラムを備え、このダイヤフラムは、前記入口側ガス配管および出口側ガス配管を含む面に略垂直に設けられていることを特徴とする流体振動検出センサ。
  2. 請求項1に記載した流体振動検出センサにおいて、前記入口側ガス配管および出口側ガス配管は略平行に並設され、前記ダイヤフラムは、前記入口側ガス配管および出口側ガス配管を含む面に略垂直かつ前記入口側ガス配管および出口側ガス配管と略平行に設けられていることを特徴とする流体振動検出センサ。
  3. 請求項1または請求項2に記載した流体振動検出センサにおいて、前記フルイディック素子は前記流体振動を発生する一対の素子内流路を備え、
    一枚の前記ダイヤフラム、このダイヤフラムの中央部分が変位可能となるように空隙を介してダイヤフラムの周縁部を両側から挟持する一対の絶縁部材、これらの一対の絶縁部材と一枚のダイヤフラムとの各々の対向面にそれぞれ形成されて静電容量を生じさせる電極、および前記一対の絶縁部材にそれぞれ形成されて前記空隙に連通するガス導入孔を有して構成された静電容量型センサチップと、この静電容量型センサチップのガス導入孔の各々に前記一対の素子内流路の各一方を連通させる連通路と、を備えていることを特徴とする流体振動検出センサ。
  4. 請求項3に記載した流体振動検出センサにおいて、
    前記静電容量型センサチップは、センサ収納用ケースにおける流体振動導入室内に収納されかつこの流体振動導入室を略同容積の第一室および第二室に区画する仕切板に設けられ、
    前記静電容量型センサチップの前記各ガス導入孔は第一室および第二室にそれぞれ導通され、
    前記連通路は、前記流体振動導入室と、前記一方の素子内流路を前記第一室に連通させる第一の導通路と、前記他方の素子内流路を前記第二室に連通させる第二の導通路とを含み、これらの第一の導通路および第二の導通路は略同形状かつ略同容積に形成されていることを特徴とする流体振動検出センサ。
JP19237696A 1996-07-22 1996-07-22 流体振動検出センサ Expired - Fee Related JP3562908B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19237696A JP3562908B2 (ja) 1996-07-22 1996-07-22 流体振動検出センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19237696A JP3562908B2 (ja) 1996-07-22 1996-07-22 流体振動検出センサ

Publications (2)

Publication Number Publication Date
JPH1038641A JPH1038641A (ja) 1998-02-13
JP3562908B2 true JP3562908B2 (ja) 2004-09-08

Family

ID=16290271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19237696A Expired - Fee Related JP3562908B2 (ja) 1996-07-22 1996-07-22 流体振動検出センサ

Country Status (1)

Country Link
JP (1) JP3562908B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178995A (ja) * 2017-04-14 2018-11-15 株式会社デンソー 流体制御装置

Also Published As

Publication number Publication date
JPH1038641A (ja) 1998-02-13

Similar Documents

Publication Publication Date Title
TWI518311B (zh) Electrostatic capacity type pressure sensor
US5705751A (en) Magnetic diaphragm pressure transducer with magnetic field shield
KR101529791B1 (ko) 정전 용량형 압력 센서
KR20150047046A (ko) 음향 변환기 및 패키지 모듈
WO2003012386A1 (fr) Capteur de pression
JPH083433B2 (ja) 流量計および流量測定法
KR20200146015A (ko) 광음향 가스 센서 및 압력 센서
WO2013156539A1 (en) Assembly of a semiconductor integrated device including a mems acoustic transducer
JP3562908B2 (ja) 流体振動検出センサ
JP6650831B2 (ja) ガス流路構造および流量センサ
JP3623859B2 (ja) 流体振動検出センサ
JP4540775B2 (ja) サーボ式静電容量型真空センサ
JP4035261B2 (ja) 静電容量型圧力検出素子
JP3024575B2 (ja) 圧力・振動検知装置
JP5833403B2 (ja) 流体機構及び該流体機構を構成する支持部材
JP6028557B2 (ja) センサユニット
JP6082082B2 (ja) 流体機構及び該流体機構を構成する支持部材
JP2010002421A (ja) サーボ式静電容量型真空センサ
JP2014126502A (ja) 静電容量型圧力センサ
JPH11160181A (ja) 静電容量型センサ
JP2024018687A (ja) 検出装置
JPH1038725A (ja) 感圧素子およびその製造方法ならびに圧力センサ
JP6055941B2 (ja) 流体制御用機器
JP3024558B2 (ja) 圧力・振動検知装置
JP2000039374A (ja) 圧力検出ユニット

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees