TWI771145B - 功率放大器 - Google Patents

功率放大器 Download PDF

Info

Publication number
TWI771145B
TWI771145B TW110129421A TW110129421A TWI771145B TW I771145 B TWI771145 B TW I771145B TW 110129421 A TW110129421 A TW 110129421A TW 110129421 A TW110129421 A TW 110129421A TW I771145 B TWI771145 B TW I771145B
Authority
TW
Taiwan
Prior art keywords
voltage
transistor
coupled
signal
filter
Prior art date
Application number
TW110129421A
Other languages
English (en)
Other versions
TW202249420A (zh
Inventor
彭天雲
陳智聖
Original Assignee
立積電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立積電子股份有限公司 filed Critical 立積電子股份有限公司
Application granted granted Critical
Publication of TWI771145B publication Critical patent/TWI771145B/zh
Publication of TW202249420A publication Critical patent/TW202249420A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • H03G1/0082Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements using bipolar transistor-type devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/468Indexing scheme relating to amplifiers the temperature being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/40Combined gain and bias control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/70Gain control characterized by the gain control parameter
    • H03G2201/708Gain control characterized by the gain control parameter being temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)
  • Networks Using Active Elements (AREA)

Abstract

一種功率放大器,包含電晶體、溫度感測器及濾波器。電晶體用以接收偏壓訊號並放大射頻訊號。溫度感測器設置在電晶體附近,用以偵測電晶體的溫度以相應地在控制節點提供電壓訊號。濾波器耦接於溫度感測器,用以對電壓訊號進行濾波以產生濾波電壓。偏壓訊號係依據濾波電壓調整。

Description

功率放大器
本發明係關於功率放大器,特別是具有溫度補償的功率放大器,其在溫度變化時可維持增益實質上不變。
幾乎所有的電子設備都會使用功率放大器,尤其是智慧型手機、無線網路(WiFi)熱點及其他無線設備等射頻(radio frequency,RF)裝置。功率放大器將低功率射頻訊號轉換為高功率射頻訊號。在運作時,功率放大器會因為流過的電流而持續升溫,功率放大器產生的熱會降低增益,因而降低功率放大器的線性度及訊號品質。由於熱可隨著時間增加而累積,因此在長幀資料的傳輸期間,線性度及訊號品質的下降特別明顯。
因此,需要一種功率放大器,其能夠在功率放大器內部及/或外部產生熱的情況下可保持實質上恆定的增益。
本發明實施例提供一種功率放大器,包含電晶體、溫度感測器及濾波器。電晶體用以接收偏壓訊號並放大射頻訊號。溫度感測器設置在電晶體附近,用以偵測電晶體的溫度以相應地在控制節點提供電壓訊號。濾波器耦接於 溫度感測器,用以對電壓訊號進行濾波以產生濾波電壓。偏壓訊號係依據濾波電壓調整。
1,7,8,9,100:功率放大器
10:放大階段
11,13:參考端
12:溫度感測器
14,80:濾波器
16:偏壓電路
18:電流源
20,30:包絡
22:載波
32:濾波載波
140:可變阻抗元件
160:電流源
60:增益
70:加法器
90:第二晶片
92:第一晶片
920:取樣保持電路
921:緩衝器
922:取樣電路
924:保持電路
925:差動放大器
926:電壓電流轉換器
C,Cgnd,923:電容
Cs:分流電容
D1:二極體
GaAs:砷化鎵
I:電流
N1:控制節點
Nref:參考節點
R,R1,R2:電阻
Sb:偏壓訊號
Sc:控制訊號
SOI:矽覆絕緣體
Srfi:RF輸入訊號
Srfo:RF輸出訊號
SW1,SW2:開關
t,t0,t1:時間
T1至T4:電晶體
V+:初始電壓
V-:更新電壓
Vb1:偏壓電壓
Vcc:供應電壓
Vf:濾波電壓
Vss:接地電壓或公共電壓
VTD:電壓訊號
第1圖係本發明實施例中一種功率放大器之方塊圖。
第2圖係第1圖中電壓訊號之波形圖。
第3圖係第1圖中濾波訊號之波形圖。
第4圖係第1圖中濾波器之電路圖。
第5圖係第1圖中偏壓電路之電路圖。
第6圖顯示第1圖中功率放大器的波形。
第7圖係本發明實施例中另一種功率放大器之方塊圖。
第8圖係本發明實施例中另一種功率放大器之方塊圖。
第9圖係本發明實施例中另一種功率放大器部分之方塊圖。
第10圖係本發明實施例中另一種功率放大器之方塊圖。
本文將參考圖式詳細描述例示性實施例,以利對本揭露內容的理解。本揭露內容僅用以例示性說明的目的,不用以限制的目的。
第1圖係本發明實施例中一種功率放大器1之方塊圖。藉由抵消起因於功率放大器1之自發熱所引發的溫度變化,功率放大器1可隨著時間增加保持實質上恆定的增益。此外,功率放大器1可對表示功率放大器1之溫度的溫度偵測訊號進行預處理,以提高溫度補償的精度及速度,從而提高功率放大器1的線 性度及訊號品質。
功率放大器1可包含放大階段10、溫度感測器12、濾波器14、偏壓電路16及電流源18。放大階段10可包含電晶體T1。溫度感測器12可設置於放大階段10附近,具體而言,可設置於電晶體T1附近。電晶體T1可以是雙極性接面電晶體(bipolar junction transistor,BJT),例如異質性接面雙極電晶體(heterojunction bipolar transistor,HBT)。在一些實施例中,溫度感測器12可緊鄰電晶體T1。溫度感測器12耦接於濾波器14,濾波器14耦接於偏壓電路16,且偏壓電路16耦接於電晶體T1。溫度感測器12可包含二極體D1。二極體D1包含第一端及耦接於參考端13的第二端。二極體D1的第一端可為陽極,第二端可為陰極。電流源18包含耦接於參考端11的第一端及耦接於二極體D1第一端的第二端。電晶體T1包含耦接於參考端11的第一端、耦接於參考端13的第二端、及耦接於偏壓電路16的控制端,電晶體T1用以接收偏壓訊號Sb及射頻(radio frequency,RF)輸入訊號Srfi。參考端11可提供電源電壓Vcc,例如3.3V,參考端13可提供接地電壓或公共電壓Vss,例如0V。
電晶體T1可接收RF輸入訊號Srfi及偏壓訊號Sb,並放大RF輸入訊號Srfi的功率以產生RF輸出訊號Srfo。偏壓訊號Sb可為電流訊號或電壓訊號。例如,在一些實施例中,偏壓訊號Sb可以是電流訊號。溫度感測器12可偵測電晶體T1的溫度以相應地在控制節點N1提供電壓訊號VTD。電流源18可對二極體D1提供恆定電流。操作於恆定電流的二極體D1可用作絕對溫度補償(complementary to absolute temperature,CTAT)元件,二極體D1的跨壓隨溫度的升高而降低,導致電壓訊號VTD降低。因此,電壓訊號VTD可用以表示功率放大器1的溫度。在一些實施例中,於預定溫度下,二極體D1可將電壓訊號VTD設定於預設準位。 例如,在攝氏25度的預定溫度下,電壓訊號VTD的預設準位可以是1.2V,在攝氏100度的溫度下,電壓訊號VTD的準位可以是1.1V,以及在攝氏-50度的溫度下,電壓訊號VTD的準位可以是1.3V。在一些實施例中,二極體D1可由雙極性接面電晶體(BJT)代替,例如由異質性接面雙極電晶體(HBT)代替。BJT可以二極體形式連接,或加以偏壓以設置至操作區,例如飽和區。濾波器14可以是低通濾波器,對電壓訊號VTD進行濾波,以產生濾波電壓Vf。偏壓電路16可依據濾波電壓Vf產生偏壓訊號Sb,以及將偏壓訊號Sb提供至電晶體T1。當功率放大器1進行資料傳輸時,可調整偏壓訊號Sb,以將增益保持在實質上恆定的準位。例如,偏壓訊號Sb可隨溫度的增加而增加,以維持實質上恆定的增益。此外,電流源18還可對偏壓電路16提供電流。
為獲取電晶體T1準確的溫度值,溫度感測器12可設置在電晶體T1附近。然而,電晶體T1及溫度感測器12之間的短距使得從電晶體T1到溫度感測器12的訊號耦合增加,將高頻率的雜訊引入電壓訊號VTD。高頻雜訊可對應RF輸出訊號Srfo的頻率。例如,當RF輸出射頻訊號Srfo為WiFi訊號時,高頻雜訊可為5GHz。此外,藉由來自電晶體T1的訊號耦合,二極體D1可導通,因而產生電壓訊號VTD的電壓截波(clipping)。經由偏壓訊號Sb,電壓截波可將低頻雜訊引入RF輸出訊號Srfo中。例如,低頻雜訊可以是80MHz及/或160MHz。高頻及低頻雜訊都會導致不準確甚至錯誤的溫度補償,並可導致RF輸出射頻訊號Srfo的誤差向量幅度(error vector magnitude,EVM)或動態誤差向量幅度(dynamic error vector magnitude,DEVM)惡化。
濾波器14可徹底而迅速地濾除電壓訊號VTD中的雜訊,以減少雜訊對偏壓訊號Sb的影響。第2圖及第3圖分別顯示功率放大器1的電壓訊號VTD及濾 波電壓Vf的波形。電壓訊號VTD被輸入濾波器14,濾波電壓Vf從濾波器14輸出。第2圖顯示電壓訊號VTD包含包絡20及載波22,且第3圖顯示濾波電壓Vf包含包絡30及濾波載波32。包絡20及包絡30實質上相同。濾波載波32的雜訊量及頻率分量均小於載波22。也就是說,載波22之較高的頻率分量被衰減或去除,以產生濾波電壓Vf中的濾波載波32。
濾波器14可包含第4圖中電路圖顯示的RC電路。過濾器14可包含互相耦接的可變阻抗元件140及電容C。可變阻抗元件140可包含耦接於電容C的電阻R。可變阻抗元件140可包含用以接收電壓訊號VTD的第一端,及用以輸出濾波電壓Vf的第二端。電容C包含耦接於可變阻抗元件140第二端的第一端,及耦接於參考端13的第二端。
可變阻抗元件140可依據控制訊號Sc而被調整,以至少在第一區間提供第一阻抗,及在第二區間提供第二阻抗。例如,第二阻抗可大於第一阻抗。參考第4圖,可變阻抗元件140可包含開關SW1及與開關SW1並聯耦接的電阻R。
當開關SW1導通時,可變阻抗元件140可提供第一阻抗,當開關SW1截止時,可變阻抗元件140可提供第二阻抗。第一阻抗可實質上等於0歐姆,並且第二阻抗可實質上等於電阻R的電阻值。電阻R的電阻值及電容C的電容值的乘積稱為時間常數。較大的時間常數可去除較多低頻分量及延緩電路反應。電阻R的電阻值及/或電容C的電容值可設置為相對大,以濾除電壓訊號VTD的低頻雜訊及高頻雜訊。開關SW1可在第一區間內導通,以加快濾波器14的電路反應,及迅速將濾波電壓Vf設定至操作準位。濾波電壓Vf的操作準位可是1.2V。在第二區間中,開關SW1可被截止,以抑制低頻雜訊。第一區間可以是資料傳輸開 始之後的短暫時間區間。例如,第一區間可以是資料傳輸的0到400ns。第二區間可以是第一區間之後立即開始的較長的時間區間。例如,第二區間可以從400ns到資料傳輸結束為止。以此方式,濾波器14可迅速地將濾波電壓Vf設置在操作準位,同時亦可傳送準確的溫度訊號。
在一些實施例中,可變阻抗元件140中的電阻R可用電感代替。與RC濾波器14相似,在LC濾波器中,電感的電感值及電容C的電容值的乘積被稱為時間常數。LC濾波器的運作方式與RC濾波器14類似,在此不再贅述。
第5圖係偏壓電路16之電路圖。偏壓電路16可包含電流源160、電晶體T2至T4、電阻R1及R2及電容Cgnd。電流源160可以是BJT或場效應電晶體(field effect transistor,FET)。電流源160包含用以接收供應電壓Vcc的第一端、第二端、及用以接收濾波電壓Vf的控制端。電晶體T2包含用以接收供應電壓Vcc的第一端、第二端、及控制端。電阻R2包含第一端及第二端,其中第一端耦接於電晶體T2的控制端及電流源160的第二端。電晶體T3包含耦接於電阻R2第二端的第一端、第二端、及耦接於電晶體T3第一端的控制端。電晶體T4包含耦接於電晶體T3第二端的第一端、耦接於參考端13的第二端、及耦接於電晶體T4第一端的控制端。電阻R1包含第一端及第二端,其中第一端耦接於電晶體T2的第二端。可為接地電容的電容Cgnd包含耦接於電阻R1第二端的第一端及耦接於參考端13的第二端。
電流源160可依據濾波電壓Vf產生可變電流。可變電流的大小可與濾波電壓Vf的大小成負相關。當功率放大器1的溫度升高時,濾波電壓Vf會降低,可變電流會相應增加,從而增加偏壓訊號Sb。當功率放大器1的溫度降低時,濾 波電壓Vf會增加,可變電流會相應減少,從而降低偏壓訊號Sb。
第6圖顯示功率放大器1的偏壓訊號Sb及增益60的波形,其中橫軸表示時間t,縱軸表示電流I。在時間t0,功率放大器1開始進行資料傳輸,偏壓訊號Sb從初始電流準位開始將增益驅動到預定準位。在時間t0及t1之間,功率放大器1繼續升溫,偏壓訊號Sb增加以將增益60維持在預定準位。在時間t1之後,資料傳輸完成,偏壓訊號Sb及增益60都下降到低準位。第6圖顯示溫度補償可在資料傳輸的整段時間內產生相對平穩的增益60,從而增加功率放大器1的線性度及訊號品質。
第7圖係本發明實施例中另一種功率放大器7之方塊圖。功率放大器7與功率放大器1的不同之處在於功率放大器7另包含分流(shunt)電容Cs。分流電容Cs設置於控制節點N1及參考端13之間。分流電容Cs包含耦接於二極體D1第一端的第一端及耦接於參考端13的第二端。分流電容Cs並聯耦接於溫度感測器12,並可設置於電晶體T1、溫度感測器12及矽通孔(through silicon via,TSV)附近。矽通孔用作接地連接。分流電容Cs可緊鄰電晶體T1、溫度感測器12及矽通孔放置,以將高頻雜訊引導至地,進一步降低電壓訊號VTD中的雜訊。
功率放大器7可利用設置於電晶體T1、溫度感測器12及矽通孔附近的分流電容Cs進一步去除電壓訊號VTD中的高頻雜訊,從而提高溫度補償的精度,提高功率放大器7的線性度及訊號品質。
第8圖係本發明實施例中另一種功率放大器8之方塊圖。功率放大器8與功率放大器7的不同之處在於利用電晶體T4進行溫度感測,省略了二極體D1, 且另包含加法器70。偏壓電路16包含溫度感測器12,並可依據電流源160產生的可變電流產生偏壓訊號Sb。電晶體T4的第一端及控制端另耦接於分流電容Cs的第一端及濾波器14。加法器70包含用以接收偏壓電壓Vb1的第一輸入端、耦接於濾波器14及用以接收濾波電壓Vf的第二輸入端、及耦接於電流源160控制端的輸出端。偏壓電壓Vb1可依據RF輸入訊號Srfi的功率及/或頻率來調整。濾波電壓Vf可對應於功率放大器8的溫度。加法器70可將偏壓電壓Vb1及濾波電壓Vf相加以產生控制電壓,控制電壓表示RF輸入訊號Srfi的功率及/或頻率的變化以及功率放大器8的溫度變化。因此,電流源160可接收控制電壓,以產生可變電流,藉以控制電晶體T2而產生偏壓訊號Sb。以此方式,偏壓訊號Sb可依據RF輸入訊號Srfi的功率及/或頻率,以及功率放大器8的溫度進行調整,藉以使功率放大器8的增益保持實質上恆定。在一些實施例中,加法器70可從功率放大器8中移除,且濾波器14可直接耦接於電流源160。電晶體T4可設置於電晶體T1附近,以偵測其溫度。功率放大器8中其他元件的配置及運作與功率放大器7中的類似,在此不再贅述。
與功率放大器7相比,功率放大器8利用偏壓電路16中以二極體方式連接的電晶體T4來感測溫度,節省電路面積,同時隨著時間增加而將增益保持在實質上恆定的準位。
第9圖係本發明實施例中一種功率放大器9的選定電路之方塊圖。功率放大器9與功率放大器1的不同之處在於功率放大器9另包含濾波器80及參考節點Nref。參考節點Nref耦接於電流源18。在一些實施例中,電流源18可用電壓源代替。濾波器80耦接於參考節點Nref與控制節點N1之間,可濾除電壓訊號VTD中的雜訊,以防止雜訊影響電流源18。功率放大器9中其他元件的配置及運作與 功率放大器1中的類似,在此不再贅述。
功率放大器9採用濾波器80將電流源18與不想要的雜訊隔離。
第10圖係本發明實施例中另一種功率放大器100之方塊圖。功率放大器100與功率放大器1的不同之處在於功率放大器100另包含取樣保持電路920。取樣保持電路920可包含緩衝器921、取樣電路922、開關SW2、電容923、保持電路924、差動放大器925及電壓電流(V2I)轉換器926。緩衝器921耦接於濾波器14。取樣電路922及開關SW2耦接於緩衝器921。電容923及保持電路924耦接於開關SW2。差動放大器925包含耦接於取樣電路922的第一輸入端、耦接於保持電路924的第二輸入端、及耦接於電壓電流(voltage-to-current,V2I)轉換器926的輸出端。第一輸入端可是反相端,並且第二輸入端可是正相端。電壓電流轉換器926可耦接於偏壓電路16。
緩衝器921可以是緩衝放大器,用以保持濾波電壓Vf。取樣電路922可每隔一定時間對濾波電壓Vf進行取樣,以產生更新電壓V-。開關SW2與濾波器14的開關SW1(如第4圖所示)可依據不同的時序運作。電容923可用以儲存初始電壓V+。保持電路924可在電容923處維持初始電壓V+。在一些實施例中,保持電路924可定期再充電(refresh)並維持電容923處的初始電壓V+。差動放大器925可依據初始電壓V+及更新電壓V-之間的差值產生差值電壓Vdf,並將差值電壓Vdf輸出至電壓電流轉換器926。電壓電流轉換器926可將差值電壓Vdf轉換為差值電流,偏壓電路16可依據差值電流產生偏壓訊號Sb。
開關SW2可在功率放大器100通電時導通預定時段,並且之後截止。 預定時段可以是10微秒或更短時間。在通電後的預定時段內,功率放大器100的溫度可幾乎不變或變化很小以致於溫度實質上維持穩定。例如,開關SW2可在通電時導通4ms,接著截止。當開關SW2導通時,電容923可在預定時段內充電至等於濾波電壓Vf的初始電壓V+。例如,初始電壓V+可以是1.12V。保持電路924可將初始電壓V+傳送至差動放大器925的第二輸入端。同時,取樣電路922可對濾波電壓Vf進行取樣,以產生更新電壓V-。由於初始電壓V+等於更新電壓V-,所以差動放大器925產生的差值電壓Vdf可實質上等於0V。即功率放大器100在此階段不執行溫度補償。
之後,隨著功率放大器100開始變熱,當預設時段結束時,開關SW2可截止,初始電壓V+保持不變(例如,1.12V),由於溫度升高,取樣電路922產生的更新電壓V-可下降(例如,1.1V)且差值電壓Vdf可不為零。由於初始電壓V+及更新電壓V-之間的差值可能很小,所以差動放大器925可放大初始電壓V+及更新電壓V-之間的差值,以產生具有顯著幅度的差值電壓Vdf。例如,初始電壓V+可對應於攝氏25度,更新電壓V-可對應於攝氏85度,初始電壓V+及更新電壓V-之間的差值可為10mV,差動放大器925可設置增益為20,差動放大器925輸出的差動電壓Vdf可為200mV。
偏壓訊號Sb可與差值電流成正相關。偏壓訊號Sb接著被傳送至放大階段10以對放大階段10進行偏壓。功率放大器100中其他元件的配置及工作與功率放大器1中的相似,在此不再贅述。
一開始,當放大階段10未工作時,對初始電壓V+及更新電壓V-進行取樣,因此初始電壓V+等於更新電壓V-。在資料傳輸過程中,電壓訊號VTD隨 著放大階段10開始升溫而降低,更新電壓V-小於初始電壓V+,因此差值電壓Vdf增加。增加的差值電壓Vdf被轉換成增加的偏壓訊號Sb,用以偏壓電晶體T1,從而保持實質上恆定的增益。
電流源18、濾波器14及80、取樣保持電路920及偏壓電路16可製造於第一晶片92之上,例如矽覆絕緣體(silicon-on-insulator,SOI)晶片之上,且放大階段10及溫度感測器12可製造於第二晶片90之上,例如砷化鎵(Gallium Arsenide,GaAs)晶片之上,從而降低製造成本、保持實質上恆定的增益、以及提高功率放大器100的訊號品質。在一些實施例中,電壓電流轉換器926可包含第一電路部分及第二電路部分。第一電路部分可設置在第一晶片92上,而第二電路部分可設置在第二晶片90上。第二電路部分可包含電阻。由於砷化鎵技術可提供高精度的電阻,因此第二電路部分中的電阻可以是高精度電阻。第一電路部分可通過第一晶片92及第二晶片90上的連接焊墊耦接於第二電路部分的電阻。
雖然第1、7、8、10圖中顯示單個放大階段10,在一些實施例中亦可使用多個放大階段來代替單個放大階段10,一或多個溫度感測器可設置於選擇性放大階段附近,且可調整相應的偏壓訊號來補償自加熱效應。例如,溫度感測器可設置於最終放大階段附近且可調整偏壓訊號來補償自加熱效應。
以上該僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
1:功率放大器
10:放大階段
11,13:參考端
12:溫度感測器
14:濾波器
16:偏壓電路
18:電流源
D1:二極體
N1:控制節點
Sb:偏壓訊號
Srfi:RF輸入訊號
Srfo:RF輸出訊號
T1:電晶體
Vcc:供應電壓
Vf:濾波電壓
Vss:接地電壓或公共電壓
VTD:電壓訊號

Claims (20)

  1. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF)訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;及一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓;其中該濾波電壓與該第一電晶體的該溫度有關,且該偏壓訊號係依據該濾波電壓調整。
  2. 如請求項1所述之功率放大器,另包含一偏壓電路,耦接該第一濾波器,用以依據該濾波電壓產生該偏壓訊號。
  3. 如請求項2所述之功率放大器,其中該偏壓電路包含:一第二電晶體,包含耦接於一第一參考端的一第一端,一第二端,及一控制端;一第三電晶體,包含一第一端,一第二端,及耦接於該第三電晶體的該第一端的一控制端;及一第四電晶體,包含耦接於該第三電晶體的該第二端的一第一端,耦接於一第二參考端的一第二端,及耦接於該第四電晶體的該第一端的一控制端。
  4. 如請求項3所述之功率放大器,其中,該偏壓電路另包含一第一 電阻,該第一電阻包含耦接於該第二電晶體的該第二端的一第一端,及一第二端。
  5. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF)訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;及一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓,其中該偏壓訊號係依據該濾波電壓調整;一偏壓電路,耦接該第一濾波器,用以依據該濾波電壓產生該偏壓訊號,該偏壓電路包含:一第二電晶體,包含耦接於一第一參考端的一第一端,一第二端,及一控制端;一第三電晶體,包含一第一端,一第二端,及耦接於該第三電晶體的該第一端的一控制端;一第四電晶體,包含耦接於該第三電晶體的該第二端的一第一端,耦接於一第二參考端的一第二端,及耦接於該第四電晶體的該第一端的一控制端;一第一電阻,該第一電阻包含耦接於該第二電晶體的該第二端的一第一端,及一第二端;及一接地電容,該接地電容包含耦接於該第一電阻的該第二端的一第一端,及耦接於該第二參考端的一第二端。
  6. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF)訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;及一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓,其中該偏壓訊號係依據該濾波電壓調整;及一偏壓電路,耦接該第一濾波器,用以依據該濾波電壓產生該偏壓訊號,該偏壓電路包含:一第二電晶體,包含耦接於一第一參考端的一第一端,一第二端,及一控制端;一第三電晶體,包含一第一端,一第二端,及耦接於該第三電晶體的該第一端的一控制端;及一第四電晶體,包含耦接於該第三電晶體的該第二端的一第一端,耦接於一第二參考端的一第二端,及耦接於該第四電晶體的該第一端的一控制端;及一第二電阻,該第二電阻包含耦接於該第二電晶體之該控制端的一第一端,及耦接於該第三電晶體之該第一端的一第二端。
  7. 如請求項1所述之功率放大器,另包含一分流(shunt)電容,設置於該控制節點及一第一參考端之間。
  8. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF) 訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;及一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓,其中該偏壓訊號係依據該濾波電壓調整;一分流(shunt)電容,設置於該控制節點及一第一參考端之間,其中該分流電容及該溫度感測器並聯耦接。
  9. 如請求項7所述之功率放大器,其中,該分流電容設置於該第一電晶體附近。
  10. 如請求項1所述之功率放大器,另包含一偏壓電路,該偏壓電路包含該溫度感測器,且用以依據一可變電流產生該偏壓訊號。
  11. 如請求項1所述之功率放大器,其中,該第一濾波器包含一可變阻抗元件,該可變阻抗元件用以依據一控制訊號調整一阻抗,以在一第一區間提供一第一阻抗,及在一第二區間提供一第二阻抗,其中該第一區間是資料傳輸開始之後的一時間區間,該第二區間在該第一區間之後,且該第二區間的持續時間比該第一區間長。
  12. 如請求項11所述之功率放大器,其中該第一濾波器另包含:一第一電容,包含耦接於該可變阻抗元件的一第一端,及耦接於一第二參考端的一第二端。
  13. 如請求項11所述之功率放大器,其中,該可變阻抗元件包含一第一開關,該第一開關與一電阻並聯耦接。
  14. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF)訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;及一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓,該第一濾波器包含一可變阻抗元件,該可變阻抗元件用以依據一控制訊號調整一阻抗,以在一第一區間提供一第一阻抗,及在一第二區間提供一第二阻抗;其中,該可變阻抗元件包含一第一開關,該第一開關與一電感並聯耦接,且該偏壓訊號係依據該濾波電壓調整。
  15. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF)訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓,其中該偏壓訊號係依據該濾波電壓調整;一緩衝器,耦接於該第一濾波器;一取樣電路,耦接該緩衝器,且用以取樣該濾波電壓,以產生一更新電壓; 一第二開關,包含耦接至該緩衝器的一第一端,及一第二端;一電容,耦接於該第二開關的該第二端,且用以儲存一初始電壓;一保持電路,耦接於該第二開關的該第二端;一差動放大器,耦接於該取樣電路及該保持電路,該差動放大器用以依據該初始電壓及該更新電壓的一差值產生一差值電壓;及一電壓電流轉換器,耦接於該差動放大器及一偏壓電路之間,及用以將該差值電壓轉換為一差值電流。
  16. 如請求項15所述之功率放大器,其中該取樣電路、該電容、該差動放大器及該偏壓電路製造於一第一晶片上,並且該第一電晶體製造於一第二晶片上。
  17. 一種功率放大器,包含:一第一電晶體,設置成接收一偏壓訊號並放大一射頻(radio frequency,RF)訊號;一溫度感測器,設置在該第一電晶體附近,且用以偵測該第一電晶體的一溫度,以相應地在一控制節點提供一第一電壓訊號;一第一濾波器,耦接於該溫度感測器,且用以對該第一電壓訊號進行濾波,以產生一濾波電壓,其中該偏壓訊號係依據該濾波電壓調整;一參考節點,耦接一電流源或一電壓源;及一第二濾波器,耦接於該參考節點及該控制節點之間,且用以對該第一電壓訊號進行濾波。
  18. 如請求項17所述之功率放大器,其中,該第二濾波器用以濾除該 第一電壓訊號的一雜訊,以防止該雜訊影響該電流源或該電壓源。
  19. 如請求項18所述之功率放大器,其中該雜訊來自耦合至該溫度感測器的一RF訊號。
  20. 如請求項1所述之功率放大器,其中,該第一電壓訊號包含來自該溫度感測器的一雜訊,該第一濾波器用以濾除該雜訊,以防止該雜訊影響該偏壓訊號。
TW110129421A 2021-05-31 2021-08-10 功率放大器 TWI771145B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163195062P 2021-05-31 2021-05-31
US63/195,062 2021-05-31
US17/356,467 2021-06-23
US17/356,467 US11569784B2 (en) 2021-05-31 2021-06-23 Power amplifier capable of maintaining constant gain regardless of temperature variations

Publications (2)

Publication Number Publication Date
TWI771145B true TWI771145B (zh) 2022-07-11
TW202249420A TW202249420A (zh) 2022-12-16

Family

ID=78820650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110129421A TWI771145B (zh) 2021-05-31 2021-08-10 功率放大器

Country Status (5)

Country Link
US (1) US11569784B2 (zh)
EP (1) EP4099563A1 (zh)
KR (1) KR102631629B1 (zh)
CN (1) CN115483894A (zh)
TW (1) TWI771145B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698307B2 (en) * 2019-12-31 2023-07-11 Texas Instruments Incorporated Methods and apparatus to trim temperature sensors
CN116436418B (zh) * 2023-06-09 2023-09-08 尚睿微电子(上海)有限公司 一种保护电路及放大电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107389A (en) * 1989-05-22 1992-04-21 Sgs-Thomson Microelectronics S.R.L. Circuit for limiting temperature without distortion in audio power amplifiers
US9020454B2 (en) * 2006-02-15 2015-04-28 Texas Instruments Incorporated Linearization and calibration predistortion of a digitally controlled power amplifier
US20200373888A1 (en) * 2019-05-20 2020-11-26 Qorvo Us, Inc. Power amplifier system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101101545B1 (ko) * 2010-06-11 2012-01-02 삼성전기주식회사 씨모스 전력 증폭장치 및 그 온도 보상 회로
US8441320B2 (en) * 2010-12-13 2013-05-14 Marvell World Trade Ltd. Cancelation of gain change due to amplifier self-heating
US9231528B2 (en) 2011-03-16 2016-01-05 Rf Micro Devices, Inc. Amplification device having compensation for a local thermal memory effect
TWI664806B (zh) 2016-12-30 2019-07-01 立積電子股份有限公司 放大器裝置
US10439562B2 (en) 2017-02-28 2019-10-08 Psemi Corporation Current mirror bias compensation circuit
US10782131B2 (en) * 2018-02-28 2020-09-22 Apple Inc. Quadrature ADC feedback compensation for capacitive-based MEMS gyroscope
KR102585869B1 (ko) * 2018-10-25 2023-10-05 삼성전기주식회사 선형성을 개선한 증폭 장치
US11418150B2 (en) * 2019-12-05 2022-08-16 Skyworks Solutions, Inc. Gain compensation circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107389A (en) * 1989-05-22 1992-04-21 Sgs-Thomson Microelectronics S.R.L. Circuit for limiting temperature without distortion in audio power amplifiers
US9020454B2 (en) * 2006-02-15 2015-04-28 Texas Instruments Incorporated Linearization and calibration predistortion of a digitally controlled power amplifier
US20200373888A1 (en) * 2019-05-20 2020-11-26 Qorvo Us, Inc. Power amplifier system

Also Published As

Publication number Publication date
CN115483894A (zh) 2022-12-16
KR102631629B1 (ko) 2024-01-30
EP4099563A1 (en) 2022-12-07
KR20220162026A (ko) 2022-12-07
TW202249420A (zh) 2022-12-16
US11569784B2 (en) 2023-01-31
US20220385241A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI771145B (zh) 功率放大器
JP5854372B2 (ja) 電力増幅モジュール
US10139436B2 (en) Method and system for a wideband CMOS RMS power detection scheme
JP2004343244A (ja) 高周波増幅回路
US10498291B2 (en) Bias circuit and power amplifier circuit
JPH09260957A (ja) 半導体増幅回路
KR20160113350A (ko) 전력 증폭기
KR20140089052A (ko) 귀환 증폭기
KR100733288B1 (ko) 마이크로폰 증폭기
US20100327978A1 (en) Temperature compensated self-bias darlington pair amplifier
US9681211B2 (en) System and method for a microphone amplifier
JP2020108051A (ja) 電力増幅回路
TWI605683B (zh) 訊號讀取電路及其控制方法
CN112332791A (zh) 一种可变增益放大器
JPH0122769B2 (zh)
CN110971201A (zh) 一种功率放大器偏置电路
JP2006067166A (ja) 増幅装置
JP6240010B2 (ja) 増幅器
CN109428555B (zh) 自举式应用布置及在单位增益跟随器中的应用
US9500501B2 (en) Startup circuit, capacitive sensor amplification device having startup circuit, and startup method for amplification device
CN113358919A (zh) 具有自我校准功能的电流感测电路
US20230030235A1 (en) Amplifier unit
WO2023032608A1 (ja) 電力増幅器
WO2020129884A1 (ja) 温度検出回路
TWI693788B (zh) 用於對放大器的線性度進行補償的前置補償器