TWI770691B - 診斷裝置及診斷方法 - Google Patents

診斷裝置及診斷方法 Download PDF

Info

Publication number
TWI770691B
TWI770691B TW109141480A TW109141480A TWI770691B TW I770691 B TWI770691 B TW I770691B TW 109141480 A TW109141480 A TW 109141480A TW 109141480 A TW109141480 A TW 109141480A TW I770691 B TWI770691 B TW I770691B
Authority
TW
Taiwan
Prior art keywords
model
degradation
frequency
state
mode
Prior art date
Application number
TW109141480A
Other languages
English (en)
Other versions
TW202120949A (zh
Inventor
久保陽
尾島正禎
小島明
Original Assignee
日商日立製作所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立製作所股份有限公司 filed Critical 日商日立製作所股份有限公司
Publication of TW202120949A publication Critical patent/TW202120949A/zh
Application granted granted Critical
Publication of TWI770691B publication Critical patent/TWI770691B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Air Bags (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

[課題] 在帶有電刷的直流電動機(50)等之中,電刷劣化引起的劣化特徵頻率與機械劣化之特徵頻率有可能出現在同一頻率上,故障無法被分離。 [解決手段] 本發明的診斷裝置(10)具有:輸出入部(11),其接受表示由感測器(40)測量的電動機(50)的電流之值的電流值的輸入;頻率解析部(121),其將由感測器(40)測量的電流值轉換為頻率強度;劣化模式分解部(122),使用表示構成電動機(50)的部位的頻率強度的變化狀況的狀態模式模型(132),從頻率強度算出表示每個狀態模式模型(132)的劣化強度的時序列變化的活動度;及異常判斷部(123),使用活動度判斷各部位的劣化、異常。

Description

診斷裝置及診斷方法
本發明關於診斷裝置及診斷方法。其中尤其是關於針對旋轉機器系統之劣化進行診斷的技術,該旋轉機器系統包含由多個部位(零件)構成的旋轉機器。此外,本發明中的劣化包含故障、異常。
當前,針對生產設備等的機器之劣化進行診斷。其中尤其是提出了許多所謂預測性診斷之提案。以下說明其之一例。 若組裝在生產設備的馬達(電動機)或發電機等之旋轉機器突發故障時,需要進行旋轉機器之計畫外之維修作業或替換作業,且需要降低生產設備之運轉率或修定生產計畫。 因此,若能夠對機器之每個部位調查故障之徵兆並針對故障之可能性高的零件事先準備更換零件,或者擬定維修之預定計畫的話,可以將生產設備之運轉率降低或生產計畫之修定抑制在最低限。作為事先防止旋轉機器系統(旋轉機器及其附屬機器(變頻器、齒輪、聯軸器、負載裝置等))之突發故障的方法,已知有對馬達之電流波形進行傅立葉轉換並取出劣化之特徵頻率分量,利用其之振幅進行診斷的方法。其之一例稱為Motor Current Signature Analysis(MCSA(馬達電流特徵分析))。 如專利文獻1所示,機械劣化之情況下劣化之特徵頻率分量由以下之數1表示,軸承之劣化或齒輪或聯軸器之損傷、負載裝置之異常等可以藉由不同的特徵頻率進行診斷。fc 為電流之劣化特徵頻率,f0 為電流之基本波頻率,fm 為機械性振動之頻率。例如已知在軸承內圈損壞之情況下,與軸承之尺寸或軸承滾珠之數量等對應而產生週期性振動,其引起的振動出現作為電流之基本波頻率之邊帶波(Side wave)。
Figure 02_image001
[先前技術文獻] [專利文獻] [專利文獻1]特開2010-288352號公報
[發明所欲解決的課題] 但是,專利文獻1存在以下的課題。在帶有電刷的直流電動機等之中,電刷劣化引起的劣化特徵頻率與機械劣化之特徵頻率有可能出現為相同的頻率,這些故障無法被分離。 此外,在交流電動機中,特徵頻率亦有可能因其構造而出現在相同的頻率。例如,追加齒輪等而成為複雜的機構的情況下,即使是不同的部位之劣化亦有可能出現特徵頻率相同的情況。 如上所述,即使由不同要素引起的劣化,如果特徵頻率以相同的頻率出現,則會產生錯誤診斷的問題。 此外,所謂相同的頻率較好是具有一定寬度的頻帶,但一部分重疊亦包含在相同的頻率之範疇。還有,相同亦可以是在某一差值之範圍內。 [解決課題的手段] 為了解決上述課題,本發明中,藉由使用電流之頻率模式分析針對劣化特徵頻率重疊的故障進行分離,從而判斷劣化狀況。此外,劣化狀況之判斷亦包含劣化要素之確定。 更詳細言之,本發明係對旋轉機器系統進行診斷的診斷裝置,其特徵為具有:接受部,接受電流測量部所測量的用於表示前述旋轉機器系統的電流之值的電流值的輸入;頻率解析部,將前述電流測量部所測量的電流值轉換為頻率強度;劣化模式分解部,使用表示構成前述旋轉機器系統的部位中的頻率強度之變化狀況的狀態模式模型,並從前述頻率強度算出表示每個前述狀態模式模型的劣化強度之時序列變化的活動度;及劣化判斷部,使用前述活動度,對前述各部位之劣化進行判斷。 此外,本發明亦包含在上述診斷裝置中執行的診斷方法或使診斷裝置發揮功能的程式產品。 此外,本發明還包含使用劣化狀況作成維護計畫及運用計畫。 [發明效果] 依據本發明,即使構成旋轉機器系統的各零件之劣化特徵頻率重疊的情況下,亦可以使用測量到的電流數據個別地診斷各零件之劣化程度。 此外,藉由同時診斷每個零件之劣化程度,可以優化零件之維護,因此可以實現減少維護費用或停機時間。
以下,參照圖面說明本發明之實施例。又,本實施例記載之構成僅為一例,並非用來限定本發明之範圍者。 [實施例1] 圖1係包含本實施例之診斷裝置的系統構成圖。本系統中,診斷裝置10、終端裝置30、診斷對象即直流電動機50(以下簡單稱為電動機50)透過網路20與感測器40相互連接。 診斷裝置10係由所謂電腦(伺服器)來實現,具有以下之構成。具有:經由網路20執行資訊之輸出入的輸出入部11;記憶有執行該診斷裝置10之功能的程式的主記憶部12;及記憶有各種資訊、表格的補助記憶部13。此外,圖1雖未圖示,診斷裝置10具有執行主記憶部12所記憶的程式的運算部(CPU)。 主記憶部12記憶有作為程式的頻率解析部121、劣化模式分解部122、異常判斷部123、運轉模式判斷部124、模式判斷部125、及維護計畫作成部126。這些各個程式之功能如後述說明。補助記憶部13記憶有狀態模式表格131、狀態模式模型132、誤差模型133、維護計畫134、零件對應表格135、重疊判斷表格136。這些之詳細如後述說明。此外,這些各個程式及資訊、表格之單位僅為一例,可以追加其他程式、資訊、表格。此外,將這些之一部分省略亦可,將2個以上之程式、資訊、表格作為1個單位處理亦可。 終端裝置30,係由電腦來實現,接受來自利用者之輸入,並且具有將診斷裝置10中的運算結果輸出的功能。 感測器40測量診斷對象之電動機50中的物理量,並將該結果經由網路20輸出至診斷裝置10。此外,將測量結果輸出至終端裝置30亦可。 此外,旋轉機器系統之一種亦即診斷對象之電動機50係單獨的旋轉機器或包含附屬於旋轉機器的齒輪、輥、軸承等。此外,可以對作為電動機50的交流電動機或發電機進行診斷。此外,將這些的多個經由網路20連接亦可以對多個電動機50及感測器40進行診斷。此外,電動機50亦有可能設置作為鋼鐵設備例如製鋼廠之輥、馬達。 接著,使用圖2及圖3說明圖1之實施例1之處理之內容。圖2係表示本實施例之處理流程的流程圖。圖3係表示本實施例中的各構成要件或資訊之處理的處理概要圖。 在圖2之步驟S101中,藉由感測器40檢測電動機50的電流。 接著,在步驟S102中,由診斷裝置10之輸出入部11接受從感測器40輸出的電流。於此,圖4示出輸出入部11接受的電流之一例。圖4所示感測器40所輸出的電流係作為時序列數據作為表示電流的數據被輸出。 接著,在步驟S102中,頻率解析部121將該電流轉換為頻譜(頻率強度)。參照圖9說明該轉換方法。首先,在感測器40中週期性對電流進行檢測,由輸出入部11接受檢測結果。接著,將各電流之資訊記憶於補助記憶部13。當補助記憶部13儲存了數個~十數個的電流之資訊時,頻率解析部121對這些資訊實施FFT(高速傅立葉轉換),接著,從這些資訊之平均算出頻率強度。 該頻率強度之一例係如圖5所示。頻率強度係表示每個頻率之振幅者,因此,當電動機50之零件劣化了的情況下,某一確定之頻率之強度增加。圖5之例中,f1~fn之各頻率增加(峰值),因此可以判斷與這些頻率對應的零件劣化。於此,本實施例中,將與電動機50之軸承及整流器對應的頻率分別設為f1、f2進行說明。 接著,在步驟S104中,由劣化模式分解部122算出用於表示頻率強度在每個時間之相對正常時振幅的變化的頻率強度變化量。此可由事先記憶的正常時振幅和在頻率解析部121中獲得的頻率強度算出。參照圖10說明該頻率強度變化量之算出。劣化模式分解部122從補助記憶部13之狀態模式模型132讀出電動機50之正常模式模型。接著,劣化模式分解部122將其與頻率解析部121中算出的頻率強度進行比較,由該差值算出頻率強度變化量。 此外,差值或是頻率強度為一定以上之情況下,可以判斷與該頻率相對應的零件可能劣化。因為存在多個零件之劣化出現在同樣的頻率,因此這些零件之其中任一個有可能劣化。因此1個零件與該頻率對應的情況下,判斷為該零件出現劣化亦可。此外,針對差值或是頻率強度為一定以上之情況下之頻率執行步驟S105以後之處理亦可。此外,如果該差值不是頻率強度變化量而是頻率強度之值為一定以上之情況下,判斷為可能劣化亦可,執行步驟S105以後之處理亦可。 此外,在步驟S105中,劣化模式分解部122判斷劣化模式。因此,劣化模式分解部122從補助記憶部13獲得軸承與整流器之狀態模式模型132。此處,狀態模式模型132之內容為表示頻率強度之變化量或變化率的資訊,其之一例如圖6所示。本實施例中使用每個零件之劣化模式模型作為狀態模式模型132而對劣化進行診斷。亦即,圖6中,作為狀態模式模型132係示出電動機50之軸承與整流器劣化了的情況下之劣化模式模型亦即軸承劣化模型及整流器劣化模型。 在軸承劣化模型及整流器劣化模型中,在相同的頻率f1與f2中頻率強度增大。但是,在軸承劣化模型中變化之比例呈現頻率f1之變化大於頻率f2之變化,相對地,在整流器劣化模型中在各別之頻率中示出相同程度之變化。此外,這些軸承劣化模型及整流器劣化模型可以藉由物理模型等採用解析方式算出,亦可以實際上每個零件劣化時的電流之頻譜算出。 此處,劣化模式分解部122中針對所獲得的軸承劣化模型及整流器劣化模型進行模式分解。亦即,如圖7所示,算出f1、f2各自之相對正常時振幅的變化(W)和每個時間之活動度(H)。由此,而結束劣化模式之判斷。 使用圖11及圖12說明以上之活動度之詳細的算出方法。 圖11係表示當軸承與整流器之劣化以相同的頻率出現時,將該強度變化分解為軸承和整流器各自的要素的想法的圖。 首先(1)示出在時刻t的頻率強度變化之實際測量值。這表示在步驟S103中計算出的(實際測量值)。該資訊表示藉由對頻率f1的頻率強度變化量ΔEf1和頻率f2的頻率強度變化量ΔEf2進行向量合成而獲得ΔE(t)。 (2)(3)分別示出軸承劣化模型與整流器劣化模型中在時刻t的頻率強度變化量。軸承劣化模型的頻率強度的變化量係藉由向量合成頻率f1處的頻率強度變化量ΔEf1和頻率f2處的頻率強度變化量ΔEf2並乘以係數A(t)而獲得的。同樣地,可以藉由向量合成頻率f1處的頻率強度變化量ΔEf1和頻率f2處的頻率強度變化量ΔEf2並乘以係數B(t)來獲得整流器劣化模型的頻率強度變化量。 接著,使用(2)(3)之結果,分解(1)的頻率強度的變化量的結果在(4)中示出。這樣,可以將頻率強度的變化量表現為軸承劣化模型和整流器劣化模型的向量合成。將此時使用的係數A(t)和B(t)定義為活動度。另外,這意味著藉由確定作為活動度的係數A(t)和B(t),可以將實際測量的時刻t的頻率強度的變化量分解並表現為軸承劣化模型和整流器劣化模型。 劣化模式分解部122將,如上述算出的軸承劣化模型與整流器劣化模型記憶於狀態模式表格131。 接著,使用圖12說明劣化模式分解部122中的活動度之算出方法。 此處,以下的數2之關係算出圖7所示W:相對正常時振幅的變化,H:每個時間之活動度。 X=W×H+誤差 ・・・ (數2) X:各劣化特徵頻率之相對正常時振幅的變化,W:相對正常時振幅的變化,H:每個時間之活動度 首先,X:各劣化特徵頻率之相對正常時振幅的變化(2×L之時序列矩陣)係對應於上述圖11之(4)。 接著,算出滿足此條件的W及H。亦即,算出係數A(t)、B(t)之最佳解作為各劣化模式之活動度。該最佳解可以使用非負矩陣因子分解等算出。這樣地,對於輸入有每個頻譜的軸承劣化模型和整流器劣化模型中的每一個,分離出表示劣化強度的時序列變化的活動度。在此,可以任意給出作為本運算之對象的劣化特徵頻率(f1, f2, …,fn)和劣化模式模型(M1, M2, …MK)的維度。在此示例中,N=2,K=2。此外,(tL-t1)為幾天到幾週之等級的時間。 此外,圖12中考慮到誤差項。但是亦可以省略。亦即,以無誤差項的形式算出最佳解亦可。 接著,在步驟S106中,異常判斷部123針對這樣算出的活動度進行異常判斷。 如圖8所示,異常判斷部123中可以藉由在每個零件示出的軸承劣化模型及整流器劣化模型設定規定之臨界值來分離各個劣化並判斷異常。在這種情況下如下述進行判斷,如果異常程度為高或更高,則停止運轉,如果異常程度為高至中,則在下次停止時確認,如果異常程度為中至低,則在下次維護時需要維護,如果異常程度小於低則不需要任何對應。 接著,由圖1所示終端裝置30輸出該結果。此外,由終端裝置30輸出圖3的電流、圖5之頻率強度、和圖7之內容等亦可。 此外,在步驟S107中,維護計畫作成部126作成或修正維護計畫。這可以藉由將步驟S106之判斷結果記憶在對應的電動機50之維護計畫表格135中來實現。此外,維護計畫表格13記憶有每個電動機50的零件之維護排程。 此外,當判斷異常程度為高或更高的情況下,進行停止電動機50之動作的控制亦可。此外,較好是對作業員使用的移動終端提示有關電動機50顏色部分的資訊及必須維護。此外,使用本維護計畫表格13製定設置有電動機50的設備之運用計畫亦可。例如,緊急需要維護時可以替代地使用另一電動機50,或者可以配合進行相應電動機50所屬的生產線上的其他電動機50的維護。 此外,本實施例中係以劣化模式模型使用作為狀態模式模型132,但是在進行劣化以外之診斷或包含劣化的統合診斷時,較好是使用其他的狀態模式模型132。作為劣化以外之診斷除了故障、異常以外亦包含零件之摩擦損耗(磨損)等。 [實施例2] 實施例2係作為狀態模式模型132之一種的劣化模式模型為未知之情況下之例。實施例1中,當在零件中產生故障等之劣化的情況下,使用該結果可以作成劣化模式模型。但是,在未產生劣化的零件中,異常判斷成為困難。此外,亦存在難以作成劣化模式模型之零件。於此,實施例2中執行劣化模式模型為未知之情況下之處理。 本實施例中,首先,在更換或修復未知其劣化模式模型的零件後立即測量電流,算出此時之頻率強度變化量(頻譜)。這可以藉由和實施例1之步驟S101~S103同樣之處理來實現。 接著,頻率解析部121藉由使用已知其劣化模式模型的另一零件的劣化模式模型來執行與步驟S104同樣之處理。 為此,有(1)直接使用另一零件的劣化模式模型的方法,和(2)使用正常時的頻率強度的方法。另一零件包括與電動機50不同的電動機中的相同零件或該電動機50中的相同種類的零件。為了確定這樣的零件,使用零件對應表格135。這是表示每個零件之間的頻率強度的相容性的表格。 首先,對(1)進行說明。頻率解析部121從零件對應表格135檢索與未知之零件相對應的另一零件。接受該結果,頻率解析部121從狀態模式模型132中確定另一零件中的零件之劣化模式模型。接著,使用已確定的劣化模式模型執行與步驟S104同樣之處理。 接著,對(2)進行說明。這是測量另一零件的電流並算出劣化模式模型的處理。該情況下,頻率解析部121從藉由感測器40測量並經由輸出入部11輸入的電流算出正常之頻率強度。這可以與實施例1之S103同樣計算。接著,將診斷對象之頻率強度與正常之頻率強度相除。相除後的頻率強度變化量可以考慮為未知的零件之劣化模式模型。將其使用作為實施例1之劣化模式模型而執行S104以後之處理。 如此則,即使對於尚未發生故障而其劣化模式未知的零件,也可以確定劣化模式模型。 依據以上所示的實施例2,即使存在劣化模式未知的零件,藉由計算出在替換已知其劣化模式的零件之後的頻率強度變化量的差值,可以容易地確定未知的零件的劣化模式模型。 [實施例3] 在實施例3中,作為狀態模式模型132,除了實施例1及2的劣化模式模型(軸承劣化模型與整流器劣化模型)之外,還使用正常運轉狀態下的正常模式模型,因此是能夠進一步確定劣化的實施例。亦即,本實施例3中,在步驟S105中,作為狀態模式模型132,除了劣化模式模型以外,還使用正常模式模型。 這可以藉由劣化模式分解部122使用正常模式模型除去了正常時之運轉之影響之後,針對步驟S104中算出的頻率變化量執行S105之處理來實現。藉此,能夠更容易確定劣化。 [實施例4] 實施例4係考慮到製造誤差等的實施例。如果零件因為製造誤差或摩擦損耗等等原因而存在差異,則也會影響狀態模式模型,且每個產品和零件的內容都會發生變化。因此,在本實施例中,使用誤差模型133。誤差模型133表示由於製造誤差等而假定狀態模式模型的頻率變化量的變化量。 圖13表示本實施例之處理概要。劣化模式分解部122確定與診斷對象之電動機50相對應的誤差模型133。這可以使用在輸出入部11中來自感測器40的電流以及接受到的電動機50之識別資訊。接著,劣化模式分解部122使用誤差模型133修正與其對應的狀態模式模型132。藉此,可以將狀態模式模型132調整成為與製造誤差等之變化對應。修正的狀態模式模型132包含劣化模式模型和正常模式模型之任一。 較好是在零件製造時測量零件的尺寸並在診斷裝置10等中根據該尺寸作成誤差模型133。 [實施例5] 實施例5係考慮電動機50具有多個運轉模式(狀態)的情況下的實施例。當存在多個運轉模式的情況下,每個運轉模式都會影響頻率強度。本實施例中進行與其之對應處理。本實施例之構成為,在多個運轉模式中分別測量了電流(進行診斷)的情況下,可以將運轉模式分離並且可以明確化容易發生劣化的運轉模式。 圖14係表示本實施例之處理概要。此處,劣化模式分解部122使用與多個運轉模式分別對應的正常模型作為狀態模式模型132。接著,運轉模式判斷部124確定在模式分解部5中分解的頻率強度變化量之中活動度最高的頻率強度變化量。藉此,可以判斷與已確定的頻率強度變化量對應的運轉模式為更容易劣化者。此外,除了活動度最高的頻率強度變化量以外,運轉模式判斷部124亦可以使用各個頻率強度變化量或基於其之值作為劣化指標。 又,作為本實施例之變形例而進行以下之處理。準備每個運轉狀態之狀態模式模型132。此外,在運轉模式判斷部124中對運轉模式進行判斷。接著,劣化模式分解部122使用已判斷的狀態模式模型132。藉由這樣,可以進行使用與運轉模式對應的狀態模式模型132的劣化診斷。 此外,本實施例中,如圖14所示,進一步使用實施例4之誤差模型133亦可。 [實施例6] 最後,說明判斷未知之劣化模式模型,並追加到狀態模式模型132的實施例6。 圖15係表示其處理概要。從成為診斷對象的電動機50的電流至頻率解析部121中的算出頻率為止係和各實施例相同。 劣化模式分解部122使用狀態模型3與誤差模型133將算出的電流之頻率分量分解為各狀態模式。 此時,若電動機50存在未設定有狀態模式模型132的劣化等之情況下,算出該劣化引起的電流之頻率分量之變化作為模式分解部之誤差模型133。於此,若該誤差項佔有某一恆定之臨界值以上之比例之情況下模式判斷部125將其追加為新的劣化狀態模型。藉此,可以將未知之劣化模式模型自動追加到狀態模型,並在異常判斷部123中確定劣化。 此外,本實施例中,如圖15所示,進一步使用實施例4之誤差模型133亦可。 此外,在以上之各實施例中使用圖16所示重疊判斷表格136亦可。此處,在步驟S104中使用劣化模式分解部122。此處,劣化模式分解部122可以根據模式分解中是否存在重疊並限定在記錄有「重疊」的頻率強度中峰值出現在頻率上者,算出頻率強度變化量。此處,峰值有無係頻率解析部121中的算出結果,因此可以省略重疊判斷表格136中的記錄。 以上之各實施例中,係以電動機作為診斷對象,但只要是多個零件或產品之劣化出現在同一頻率者即可,都可以適用各實施例。
10:診斷裝置 11:輸出入部 12:主記憶部 121:頻率解析部 122:劣化模式分解部 123:異常判斷部 124:運轉模式判斷部 125:模式判斷部 126:維護計畫作成部 13:補助記憶部 131:狀態模式表格 132:狀態模式模型 133:誤差模型 134:維護計畫 135:零件對應表格 136:重疊判斷表格 20:網路 30:終端裝置 40:感測器 50:電動機
[圖1]本發明之實施例中的系統構成圖。 [圖2]表示本發明之實施例中的處理流程的流程圖。 [圖3]實施例1中的處理概要圖。 [圖4]表示本發明之實施例中的電流之一例的圖。 [圖5]表示本發明之實施例中的頻率強度之一例的圖。 [圖6]表示本發明之實施例中的狀態模式模型132之一例的圖。 [圖7]說明本發明之實施例中的劣化模式分解部122中的模式分解的圖。 [圖8]說明對本發明之實施例中的軸承劣化模型及整流器劣化模型設定臨界值之例的圖。 [圖9]說明將本發明之實施例中的電流轉換為頻譜(頻率強度)之例的圖。 [圖10]說明本發明之實施例中的頻率頻率強度變化量之算出的圖。 [圖11]表示在本發明之實施例中分解成各要素的想法的圖。 [圖12]說明在本發明之實施例中劣化模式分解部122中的活動度之算出手法的圖。 [圖13]實施例4中的處理概要圖。 [圖14]實施例5中的處理概要圖。 [圖15]實施例6中的處理概要圖。 [圖16]表示本發明之實施例中的重疊判斷表格136的圖。
10:診斷裝置
11:輸出入部
12:主記憶部
13:補助記憶部
121:頻率解析部
122:劣化模式分解部
123:異常判斷部
124:運轉模式判斷部
125:模式判斷部
126:維護計畫作成部
131:狀態模式表格
132:狀態模式模型
133:誤差模型
134:維護計畫
135:零件對應表格
136:重疊判斷表格
20:網路
30:終端裝置
40:感測器
50:電動機

Claims (6)

  1. 一種診斷裝置,係對旋轉機器系統進行診斷的診斷裝置,其特徵為:該診斷裝置具有:接受部,接受電流測量部所測量的用於表示前述旋轉機器系統的電流之值的電流值的輸入;頻率解析部,將前述電流測量部所測量的電流值轉換為頻率強度;劣化模式分解部,使用狀態模式模型而從頻率強度算出表示每個前述狀態模式模型的劣化強度之時序列變化的活動度,前述狀態模式模型係表示構成前述旋轉機器系統的部位中的前述頻率強度之變化狀況者;及劣化判斷部,使用前述活動度對前述各部位之劣化進行判斷;前述劣化模式分解部還使用對前述狀態模式模型進行調整的誤差模型。
  2. 如請求項1之診斷裝置,其中前述劣化模式分解部,係使用表示構成前述旋轉機器系統的部位中的劣化時之頻率強度之變化狀況的劣化模式模型來作為前述狀態模式模型。
  3. 如請求項2之診斷裝置,其中前述劣化模式分解部還使用表示構成前述旋轉機器系統的部位中的正常運轉時之頻率強度之變化狀況的正常模式模型來作為前述狀態模式模型。
  4. 如請求項1之診斷裝置,其中前述劣化模式分解部,係使用前述誤差模型來生成新的狀態模式模型。
  5. 如請求項1之診斷裝置,其中前述劣化模式分解部,係使用前述頻率強度及表示前述旋轉機器系統中的正常時之頻率強度的正常模型來算出頻率強度變化量,使用算出的前述頻率強度變化量,算出前述活動度。
  6. 一種診斷方法,係使用對旋轉機器系統進行診斷的診斷裝置之診斷方法,其特徵為該診斷方法進行以下步驟:接受用於表示電流測量部所測量的前述旋轉機器系統的電流之值的電流值,將接受的前述電流值轉換為頻率強度,使用軸承劣化模型及整流器劣化模型作為狀態模式模型從頻率強度算出表示每個前述狀態模式模型的劣化強度的時序列變化的活動度,該狀態模式模型係表示構成前述旋轉機器系統的部位中的前述頻率強度之變化狀況者,使用前述活動度對前述各部位之劣化進行判斷,在算出前述活動度時還使用對前述狀態模式模型進行調整的誤差模型。
TW109141480A 2019-11-29 2020-11-26 診斷裝置及診斷方法 TWI770691B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216537A JP7191807B2 (ja) 2019-11-29 2019-11-29 診断装置および診断方法
JP2019-216537 2019-11-29

Publications (2)

Publication Number Publication Date
TW202120949A TW202120949A (zh) 2021-06-01
TWI770691B true TWI770691B (zh) 2022-07-11

Family

ID=73497522

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141480A TWI770691B (zh) 2019-11-29 2020-11-26 診斷裝置及診斷方法

Country Status (5)

Country Link
US (1) US11372048B2 (zh)
EP (1) EP3828656A1 (zh)
JP (1) JP7191807B2 (zh)
CN (1) CN112986676A (zh)
TW (1) TWI770691B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4331111A1 (de) * 2021-04-27 2024-03-06 Kaeser Kompressoren SE Verfahren zur kontaktlosen ermittlung eines betriebszustandes
WO2023182944A1 (en) * 2022-03-25 2023-09-28 Nanyang Technological University Alternator monitoring systems and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743670A1 (en) * 2012-12-17 2014-06-18 General Electric Company Fault detection system and associated method
US20160065113A1 (en) * 2014-08-29 2016-03-03 Atieva, Inc. Method of Diagnosing a Malfunctioning DC Fan Motor
US20160245851A1 (en) * 2015-02-23 2016-08-25 Hitachi, Ltd. Anomaly Diagnosis System, Method, and Apparatus
US20160266208A1 (en) * 2015-03-09 2016-09-15 Rolls-Royce Plc Fault detection and diagnosis in an induction motor
TW201644184A (zh) * 2015-02-27 2016-12-16 三菱電機股份有限公司 電動機控制裝置
TW201721166A (zh) * 2015-12-04 2017-06-16 山洋電氣股份有限公司 馬達控制裝置
TW201724589A (zh) * 2015-12-18 2017-07-01 Youtec Co Ltd 膜構造體、致動器、馬達及膜構造體之製造方法
TW201740673A (zh) * 2016-03-31 2017-11-16 高田工業所股份有限公司 決定三相感應馬達之固有特徵量的方法
TW201742368A (zh) * 2016-05-17 2017-12-01 Microspace Corp 馬達驅動控制裝置及電動裝置
TW201807425A (zh) * 2016-08-29 2018-03-01 山洋電氣股份有限公司 馬達控制裝置
US20180375459A1 (en) * 2015-12-21 2018-12-27 Nissan Motor Co., Ltd. Motor diagnosis method and power conversion device using same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731076B2 (ja) * 1989-09-13 1995-04-10 宇部興産株式会社 回転機械の異常診断方法
JPH07113594B2 (ja) * 1989-09-13 1995-12-06 宇部興産株式会社 変動する回転機械の診断方法
JP3214233B2 (ja) * 1994-06-02 2001-10-02 三菱電機株式会社 回転機振動診断装置
US5742522A (en) * 1996-04-01 1998-04-21 General Electric Company Adaptive, on line, statistical method and apparatus for detection of broken bars in motors by passive motor current monitoring and digital torque estimation
JPH1183686A (ja) * 1997-09-01 1999-03-26 Nippon Steel Corp 機械設備の異常診断方法およびその装置
JP3805221B2 (ja) * 2001-09-18 2006-08-02 株式会社日立国際電気 歪み補償装置
JP4511886B2 (ja) * 2004-07-14 2010-07-28 株式会社日立産機システム スクリュー圧縮機の異常診断装置および異常診断システム
JP2006189333A (ja) * 2005-01-06 2006-07-20 Hitachi Industrial Equipment Systems Co Ltd 軸受の異常診断装置
JP2008033532A (ja) 2006-07-27 2008-02-14 Denso Corp 可動部を備えた設備の異常を検出する方法及び異常検出装置
JP4782218B2 (ja) 2009-06-10 2011-09-28 新日本製鐵株式会社 設備の異常診断方法
WO2011006528A1 (en) 2009-07-13 2011-01-20 Abb Research Ltd Fault detection in a rotating electrical machine
CN102033200B (zh) * 2009-09-29 2013-11-20 上海宝钢工业检测公司 基于统计模型的交流电机在线监测和诊断方法
CN101694508B (zh) * 2009-10-14 2011-08-24 华北电力大学(保定) 一种基于低次谐波轴电压信号的电机转子典型故障诊断方法
WO2011104760A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立製作所 故障原因診断システムおよびその方法
JP5481286B2 (ja) * 2010-06-30 2014-04-23 日立オートモティブシステムズ株式会社 電力変換システムおよび電力変換装置
JP5743996B2 (ja) 2012-11-06 2015-07-01 ジヤトコ株式会社 自動変速機の異常判定装置および異常判定方法
US9482710B2 (en) * 2013-09-11 2016-11-01 GM Global Technology Operations LLC Inspection system for evaluating electrical parts for unwanted partial discharge
JP6353694B2 (ja) * 2014-05-13 2018-07-04 株式会社日立製作所 劣化診断システム
WO2016170589A1 (ja) * 2015-04-21 2016-10-27 株式会社日立製作所 表面電流ベクトル測定システムおよびこれを用いた故障診断システム
JP6585979B2 (ja) * 2015-09-25 2019-10-02 株式会社日立製作所 回転機診断システム
KR101763487B1 (ko) * 2015-11-27 2017-08-01 경남대학교 산학협력단 3상 영구자석 동기전동기의 운전 성능 개선을 위한 전류측정오차 저감방법
KR101925394B1 (ko) * 2016-02-17 2018-12-05 한국수자원공사 고압유도전동기의 회전자 결함 판정 시스템 및 방법
KR102104117B1 (ko) * 2016-07-25 2020-04-23 미쓰비시덴키 가부시키가이샤 전동기의 진단 장치
CN108169559B (zh) * 2016-12-07 2021-06-25 海南金海浆纸业有限公司 一种电机定子电流谱分析设备异常的判断方法
WO2018158910A1 (ja) * 2017-03-02 2018-09-07 株式会社日立製作所 診断装置および診断方法
CN107202956A (zh) * 2017-05-27 2017-09-26 武汉科技大学 一种基于间谐波特征的变频调速系统故障诊断方法
JP6945371B2 (ja) * 2017-07-19 2021-10-06 株式会社日立製作所 回転機システムの診断装置、電力変換装置、回転機システム、および回転機システムの診断方法
KR102475739B1 (ko) * 2017-11-22 2022-12-08 미쓰비시덴키 가부시키가이샤 설비의 열화 진단 장치
JP7060432B2 (ja) * 2018-04-09 2022-04-26 株式会社日立製作所 診断支援装置、回転機システム及び診断支援方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743670A1 (en) * 2012-12-17 2014-06-18 General Electric Company Fault detection system and associated method
US20160065113A1 (en) * 2014-08-29 2016-03-03 Atieva, Inc. Method of Diagnosing a Malfunctioning DC Fan Motor
US20160245851A1 (en) * 2015-02-23 2016-08-25 Hitachi, Ltd. Anomaly Diagnosis System, Method, and Apparatus
TW201644184A (zh) * 2015-02-27 2016-12-16 三菱電機股份有限公司 電動機控制裝置
US20160266208A1 (en) * 2015-03-09 2016-09-15 Rolls-Royce Plc Fault detection and diagnosis in an induction motor
TW201721166A (zh) * 2015-12-04 2017-06-16 山洋電氣股份有限公司 馬達控制裝置
TW201724589A (zh) * 2015-12-18 2017-07-01 Youtec Co Ltd 膜構造體、致動器、馬達及膜構造體之製造方法
US20180375459A1 (en) * 2015-12-21 2018-12-27 Nissan Motor Co., Ltd. Motor diagnosis method and power conversion device using same
TW201740673A (zh) * 2016-03-31 2017-11-16 高田工業所股份有限公司 決定三相感應馬達之固有特徵量的方法
TW201742368A (zh) * 2016-05-17 2017-12-01 Microspace Corp 馬達驅動控制裝置及電動裝置
TW201921836A (zh) * 2016-05-17 2019-06-01 日商微空間股份有限公司 馬達驅動控制裝置
TW201807425A (zh) * 2016-08-29 2018-03-01 山洋電氣股份有限公司 馬達控制裝置

Also Published As

Publication number Publication date
EP3828656A1 (en) 2021-06-02
US11372048B2 (en) 2022-06-28
TW202120949A (zh) 2021-06-01
US20210165045A1 (en) 2021-06-03
JP2021085820A (ja) 2021-06-03
CN112986676A (zh) 2021-06-18
JP7191807B2 (ja) 2022-12-19

Similar Documents

Publication Publication Date Title
TWI770691B (zh) 診斷裝置及診斷方法
EP3638900B1 (en) Independent monitoring system for a wind turbine
US20090217101A1 (en) Process and device for monitoring a machine
RU2628146C2 (ru) Способ предупредительного обнаружения отказа в устройстве, компьютерная программа, система и модуль для предупредительного обнаружения отказа в устройстве
US11392114B2 (en) Abnormality determination support apparatus
WO2016086360A1 (en) Wind farm condition monitoring method and system
EP1913506A2 (en) Intelligent condition monitoring and fault diagnostic system for predictive maintenance
JP2012075308A (ja) 発電機運転の監視及び診断方法
WO2014054051A1 (en) Health monitoring system for a process plant and a method thereof
CN116167749B (zh) 一种基于深度学习的永磁同步电机故障诊断方法
KR102545672B1 (ko) 기계고장 진단 방법 및 장치
WO2019198563A1 (ja) 診断支援装置、回転機システム及び診断支援方法
KR101490471B1 (ko) 신호 계측 및 진단 시스템과 그 방법
CN111553808B (zh) 风电场的指标信息展示方法、装置及存储介质
Ferracuti et al. MSPCA with KDE thresholding to support QC in electrical motors production line
CN115575579A (zh) 一种基于监测源分析的碳监测方法及系统
US11339763B2 (en) Method for windmill farm monitoring
JP2014026327A (ja) 実稼働データによる機器の状態診断装置
Blancke et al. A hydrogenerator model-based failure detection framework to support asset management
Sathish et al. Event based robot prognostics using principal component analysis
CN109521299B (zh) 一种逆变器智能故障推理的方法
CN110927488B (zh) 一种基于隶属度函数的变压器运行状态监测方法
RU2546993C1 (ru) Способ диагностики технического состояния электропривода по оценке динамики его параметров
JP2020035187A (ja) 診断装置および診断方法
WO2022071189A1 (ja) 状態監視装置および状態監視方法