TWI769750B - 半導體元件及其形成方法 - Google Patents

半導體元件及其形成方法 Download PDF

Info

Publication number
TWI769750B
TWI769750B TW110110364A TW110110364A TWI769750B TW I769750 B TWI769750 B TW I769750B TW 110110364 A TW110110364 A TW 110110364A TW 110110364 A TW110110364 A TW 110110364A TW I769750 B TWI769750 B TW I769750B
Authority
TW
Taiwan
Prior art keywords
metal
ferroelectric
layer
dielectric
columnar semiconductor
Prior art date
Application number
TW110110364A
Other languages
English (en)
Other versions
TW202201741A (zh
Inventor
楊柏峰
世海 楊
漢中 賈
王聖禎
林佑明
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202201741A publication Critical patent/TW202201741A/zh
Application granted granted Critical
Publication of TWI769750B publication Critical patent/TWI769750B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/221Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/516Insulating materials associated therewith with at least one ferroelectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the three-dimensional arrangements, e.g. with cells on different height levels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明實施例提供一種閘控鐵電記憶胞,包含:介電材料 層,安置於基底上方;金屬底部電極;鐵電介電層,接觸底部電極的頂部表面;柱狀半導體通道,上覆於鐵電介電層且經由鐵電介電層電容耦合至金屬底部電極;閘極介電層,包含上覆於鐵電介電層的水平閘極介電部分以及橫向包圍柱狀半導體通道的管狀閘極介電部分;閘極電極帶,上覆於水平閘極介電部分且橫向包圍管狀閘極介電部分;以及金屬頂部電極,接觸柱狀半導體通道的頂部表面。

Description

半導體元件及其形成方法
本發明實施例是有關於一種半導體元件及形成其的方法。
鐵電材料是指可在不存在外部電場的情況下維持電極化的材料。鐵電材料中的電極化具有滯後效應,使得能夠將資料位元編碼為鐵電材料內的極化方向。在鐵電穿隧接面元件中,極化方向的改變引起穿隧電阻的改變,此可用於測量電極化的方向及提取儲存於鐵電穿隧接面中的資料位元的值。
根據本發明的一些實施例,一種半導體元件包括:至少一個閘控鐵電記憶胞、柱狀半導體通道、閘極介電層、閘極電極帶以及金屬頂部電極。閘控鐵電記憶胞包括:介電材料層,安置於基底上方;金屬底部電極;以及鐵電介電層,接觸所述金屬底部電極的頂部表面。柱狀半導體通道上覆於所述鐵電介電層且經由所述鐵電介電層電容耦合至所述金屬底部電極。閘極介電層包括上覆於所述鐵電介電層的水平閘極介電部分以及橫向包圍所述柱狀半導 體通道的管狀閘極介電部分。閘極電極帶包括上覆於所述水平閘極介電部分的水平閘極電極部分以及橫向包圍所述管狀閘極介電部分的管狀閘極電極部分。金屬頂部電極接觸所述柱狀半導體通道的頂部表面。
根據本發明的一些實施例,一種半導體元件包括:至少一個二維陣列的閘控鐵電記憶胞、二維陣列的柱狀半導體通道、閘極介電層、閘極電極帶以及第二金屬線。二維陣列的所述閘控鐵電記憶胞中的每一者包括:第一金屬線,嵌入於第一介電材料層中且沿第一水平方向橫向地延伸;以及鐵電介電層,在所述第一金屬線上方連續延伸。二維陣列的柱狀半導體通道上覆於所述鐵電介電層,其中每一列所述柱狀半導體通道沿所述第一水平方向佈置且電容耦合至所述第一金屬線中的相應者。閘極介電層包括上覆於所述鐵電介電層的水平閘極介電部分以及橫向包圍所述柱狀半導體通道的管狀閘極介電部分。閘極電極帶橫向包圍相應行的所述柱狀半導體通道,所述柱狀半導體通道沿所述第二水平方向佈置且沿所述第一水平方向彼此橫向間隔開。第二金屬線嵌入於第二介電材料層中,沿所述第一水平方向橫向地延伸且接觸相應列的所述柱狀半導體通道的頂部表面。
根據本發明的一些實施例,一種形成半導體元件的方法包括以下步驟。在介電材料層的上部部分內形成沿第一水平方向延伸的第一金屬線。在所述第一金屬線的頂部表面上方沉積鐵電介電層。在所述鐵電介電層上方形成二維陣列的柱狀半導體通道,其中每一列所述柱狀半導體通道形成於所述第一金屬線中的相應者上方且電容耦合至所述第一金屬線中的相應者。在二維陣列的 所述柱狀半導體通道上方沉積閘極介電層。在所述閘極介電層上方形成閘極電極帶,其中所述閘極電極帶中的每一者橫向包圍相應行的所述柱狀半導體通道。在二維陣列的所述柱狀半導體通道上方形成第二金屬線,其中所述第二金屬線中的每一者直接形成於相應列的所述柱狀半導體通道的頂部表面上。
8,110:基底
10:半導體材料層
12:淺溝渠隔離結構
14:主動源極/汲極區
15:半導體通道
18:主動源極/汲極金屬半導體合金區
20:閘極結構
22:閘極介電質
24:閘極電極帶
26:介電閘極間隔件
28:閘極蓋介電質
30:內連線層級介電層
31A,31B,32,33,34,35,36,37:介電材料層
40:金屬內連線結構
41L:第一金屬線結構
41V:元件接觸件通孔結構
42L:第二金屬線結構
42V:第一金屬通孔結構
43L:第三金屬線結構
43V:第二金屬通孔結構
44L:第四金屬線
44V:第三金屬通孔結構
45L:第五金屬線
45V:第四金屬通孔結構
46V:第五金屬通孔結構
46L:第六金屬線
47B:金屬接合墊
47V:第六金屬通孔結構
50:記憶陣列區
52:周邊區
75:互補金屬氧化物半導體電路
95:非揮發性閘控鐵電記憶胞陣列
100,101:記憶體部件
120:第一介電材料層
121:溝渠
122:第一金屬線
128:第一金屬線通孔
130:鐵電介電層
140:柱狀半導體通道
140D:近端
140L:半導體通道材料層
140S:遠端
142:頂部電極
142L:中間金屬電極
150:閘極介電層
150A:周圍閘極絕緣體
150H:水平閘極介電部分
150T:管狀閘極介電部分
160:閘極電極帶
160H:水平閘極電極帶部分
160L:閘極電極材料層
160T:管狀閘極電極帶部分
161:環形頂部表面
168:閘極電極通孔
170:介電基質層
171:環形凹穴
172:管狀介電材料部分
177:光阻材料
180:第二介電材料層
182:第二金屬線
188:金屬頂部電極通孔
200,201,601:閘控鐵電記憶胞
300,301:半導體元件
300A:第一二維陣列
300B:第二二維陣列
400:記憶體元件
501,502,503,504,505,506:操作
600:場控制垂直電流開關
A-A',B-B':平面
hd1:第一水平方向
hd2:第二水平方向
L0,L1,L2,L3,L4,L5,L6,L7:內連線層級結構
P:部分
tc,thk:厚度
結合附圖閱讀以下詳細描述會最佳地理解本揭露的各態樣。應注意,根據業界中的標準慣例,各種特徵未按比例繪製。事實上,出於論述的清楚起見,可任意增大或減小各種特徵的尺寸。
圖1A為根據本揭露的實施例的在形成互補金屬氧化物半導體(complementary metal-oxide-semiconductor;CMOS)電晶體、嵌入於介電材料層中的金屬內連線結構以及連接通孔層級介電材料層之後的示例性結構的垂直截面視圖。
圖1B為根據本揭露的實施例的在形成鰭背閘極場效電晶體的陣列期間的第一示例性結構的垂直截面視圖。
圖1C為根據本揭露的實施例的在形成上部層級金屬內連線結構之後的第一示例性結構的垂直截面視圖。
圖2A為根據本揭露的實施例的在第一介電材料層中蝕刻及圖案化第一金屬線溝渠之後的示例性結構的水平截面視圖。
圖2B為沿圖2A的平面B-B'的示例性結構的垂直截面視圖。
圖2C為沿圖2A的平面A-A'的示例性結構的垂直截面視圖。
圖3A為根據本揭露的實施例的在第一金屬線溝渠中沉積及平坦化導電金屬材料以形成第一金屬線之後的示例性結構的水平 截面視圖。
圖3B為沿圖3A的平面B-B'的示例性結構的垂直截面視圖。
圖3C為沿圖3A的平面A-A'的示例性結構的垂直截面視圖。
圖4A為根據本揭露的實施例的在第一金屬線及基底上方沉積包含鐵電介電層及半導體通道材料層的數個層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖4B為根據本揭露的實施例的在第一金屬線及基底上方沉積包含鐵電介電層及半導體通道材料層的數個層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖5A為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖5B為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖6A為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道上方沉積閘極介電層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖6B為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道上方沉積閘極介電層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖7A為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道及閘極介電層上方沉積導電金屬材料層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面 視圖。
圖7B為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道及閘極介電層上方沉積導電金屬材料層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖8A為根據本揭露的實施例的在圖案化導電金屬材料層以形成閘控鐵電記憶胞的字元線及閘極電極之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖8B為根據本揭露的實施例的在圖案化導電金屬材料層以形成閘控鐵電記憶胞的字元線及閘極電極之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖9A為根據本揭露的實施例的在場控制垂直電流開關上方沉積第一介電材料層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖9B為根據本揭露的實施例的在場控制垂直電流開關上方沉積第一介電材料層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖10A為根據本揭露的實施例的在平坦化閘控鐵電記憶胞的導電金屬材料層、閘極介電層以及柱狀半導體通道之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖10B為根據本揭露的實施例的在平坦化閘控鐵電記憶胞的導電金屬材料層、閘極介電層以及柱狀半導體通道之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖11A為根據本揭露的實施例的在進行選擇性蝕刻製程以使 場控制垂直電流開關的閘極電極帶的頂部環形部分垂直地凹陷之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖11B為根據本揭露的實施例的在進行選擇性蝕刻製程以使場控制垂直電流開關的閘極電極帶的頂部環形部分垂直地凹陷之後的沿第二水平方向hd1(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖12A為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。
圖12B為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第二水平方向hd1(亦即,平面A-A')的示例性結構的垂直截面視圖。
圖13A為根據本揭露的實施例的在第一金屬線及基底上方沉積包含鐵電介電層、金屬頂部電極層以及半導體通道材料層的數個層之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。
圖13B為根據本揭露的實施例的在第一金屬線及基底上方沉積包含鐵電介電層、金屬頂部電極層以及半導體通道材料層的數個層之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。
圖14A為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。
圖14B為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第二水平方向hd2(亦即,平面A-A')的第二替代實施例結構的垂直截面視圖。
圖15A為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。
圖15B為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第二水平方向hd1(亦即,平面A-A')的第二替代實施例結構的垂直截面視圖。
圖16A為根據本揭露的各種實施例的示例性半導體記憶體元件的部分透視圖。
圖16B為圖16A的示例性半導體記憶體元件的的俯視示意圖。
圖16C為經由半導體記憶體元件的記憶體結構截取的圖16A的示例性半導體記憶體元件的截面部分透視圖。
圖16D為圖16C的部分P的放大截面視圖。
圖17A為根據本揭露的第二實施例的半導體記憶體元件的垂直部分截面透視圖。
圖17B為圖17A的部分P的放大截面視圖。
圖18為根據本揭露的另一實施例的半導體記憶體元件的部分截面透視圖。
圖19為包含根據本揭露的各種實施例的用於形成半導體記憶體元件的步驟的流程圖。
以下揭露內容提供用於實施所提供主題的不同特徵的許多不同實施例或實例。下文描述組件及佈置的特定實例以簡化本揭露。當然,這些組件及佈置僅為實例且並不意欲為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵上方或第二特徵上的形成可包含第一特徵及第二特徵直接接觸地形成的實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成使得第一特徵與第二特徵可不直接接觸的實施例。另外,本揭露可在各種實例中重複附圖標號及/或字母。此重複是出於簡單及清晰目的,且本身並不指示所論述的各種實施例及/或配置之間的關係。
此外,為易於描述,本文中可使用諸如「在...之下」、「在...下方」、「下部」、「在...上方」、「上部」以及類似者的空間相對術語,以描述如諸圖中所說明的一個部件或特徵相對於另一(些)部件或特徵的關係。除諸圖中所描繪的定向之外,空間相對術語亦意欲涵蓋元件在使用或操作中的不同定向。裝置可以其他方式定向(旋轉90度或處於其他定向),且本文中所使用的空間相對描述詞可同樣相應地進行解釋。除非另外明確陳述,否則假定具有相同附圖標號的每一部件具有相同材料組成物且具有介於相同厚度範圍內的厚度。
本揭露實施例涉及半導體元件,且具體而言涉及可與作為記憶胞選擇器元件的記憶胞元件協同操作的垂直場控制電流選擇器開關。本揭露的各種實施例可涉及一種閘控鐵電記憶體元件及其形成方法。
記憶體元件包含形成於基底上的獨立運行記憶胞的柵 格。記憶體元件可包含揮發性記憶胞或非揮發性(nonvolatile;NV)記憶胞。新興的記憶體技術尋求以相比於風行消費電子產品所使用的昂貴構建的矽晶片更低的成本來儲存更多的資料。在不遠的未來,此類新興的記憶體元件可用於取代現有的記憶體技術,諸如快閃記憶體。雖然現有電阻式隨機存取記憶體通常已滿足其預期目的,但是隨著元件的持續縮小,所述記憶體尚未在所有方面完全令人滿意。新興的非揮發性記憶體技術可包含例如電阻式隨機存取記憶體(resistive random-access memory;RRAM或ReRAM)、磁電阻式隨機存取記憶體(magneto-resistive random-access memory;MRAM)、鐵電隨機存取記憶體(ferroelectric random-access memory;FeRAM)以及相變記憶體(phase-change memory;PCM)。
RRAM為藉由改變介電固態材料上的電阻進行工作的NV RAM類型,通常稱作憶阻器。MRAM為在磁疇中儲存資料的NV RAM類型。不同於習知的RAM晶片技術,MRAM中的資料並不以電荷或電流形式儲存,而是由磁性儲存部件儲存。部件由兩個鐵磁板形成,其中每一者可保持磁化,藉由較薄的絕緣層分隔開。兩個板中的一者為設定成特定極性的永久磁體;可改變另一板的磁化以匹配外部場的磁化從而儲存記憶體。若絕緣層足夠薄(通常為幾奈米),則電子可自一個鐵磁體穿隧至另一鐵磁體。此配置稱為磁穿隧接面(magnetic tunnel junction;MTJ)且為用於MRAM位元的最簡單結構。
鐵電RAM(FeRAM、F-RAM或FRAM)為在建構上與動態RAM(DRAM)類似的隨機存取記憶體,但使用鐵電介電層而 非介電材料層以達成非揮發性。相變記憶體(亦稱為PCM、PCME、PRAM、PCRAM、雙向通用記憶體(ovonic unified memory;OUM)以及硫族化物RAM(chalcogenide RAM;C-RAM或CRAM))為NV RAM類型。PRAM採用硫族化物玻璃的獨特行為。在老一代的PCM中,將經由通常由氮化鈦(titanium nitride;TiN)製成的加熱部件傳遞的電流所產生的熱量用於快速地加熱及淬火玻璃,使得所述玻璃為非晶形的,抑或將所述玻璃保持在其結晶溫度範圍內一段時間,藉此將所述玻璃切換至結晶狀態。PCM亦能夠達成數個不同中間狀態,藉此能夠在單個胞元中保持多個位元。在這些記憶體技術中的每一種中,可能需要選擇電晶體以激勵及選擇特定記憶胞從而執行讀取操作或寫入操作。
在一些記憶體元件中,CMOS電晶體可用作選擇電晶體。然而,CMOS電晶體技術的尺寸限制可能是改良記憶體元件的尺寸及記憶胞密度的限制因素。本文中所描述的各種實施例藉由在BEOL中形成閘控鐵電記憶體元件來改良尺寸及記憶胞密度。
圖1A為根據本揭露的各種實施例的在形成互補金屬氧化物半導體(CMOS)電晶體、嵌入於介電材料層中的金屬內連線結構以及在形成記憶體結構陣列之前的連接通孔層級介電材料層之後的示例性結構的垂直截面視圖。參考圖1,示出根據本揭露的實施例的示例性結構。示例性結構包含互補金屬氧化物半導體(CMOS)電晶體及形成於介電材料層中的金屬內連線結構。具體而言,第一示例性結構包含含有半導體材料層10的基底8。基底8可包含塊狀半導體基底(諸如矽基底),其中半導體材料層自基底8的頂部表面連續延伸至基底8的底部表面;或包含半導體材 料層10的絕緣層上半導體層,所述半導體材料層10作為上覆於內埋絕緣層(諸如氧化矽層)的頂部半導體層。包含諸如氧化矽的介電材料的淺溝渠隔離結構12可形成於基底8的上部部分中。合適的摻雜半導體井(諸如p型井及n型井)可形成於可由淺溝渠隔離結構12的部分橫向封閉的每一區域內。場效電晶體可形成於基底8的頂部表面上方。舉例而言,每一場效電晶體可包含主動源極/汲極區14、半導體通道15以及閘極結構20,所述半導體通道15包含在主動源極/汲極區14之間延伸的基底8的表面部分。每一閘極結構20可包含閘極介電質22、閘極電極帶24、閘極蓋介電質28以及介電閘極間隔件26。主動源極/汲極金屬半導體合金區18可形成於每一主動源極/汲極區14上。雖然在圖式中示出平面場效電晶體,但在本文中明確地涵蓋其中場效電晶體可另外或替代地包含鰭式場效電晶體(fin field effect transistor;FinFET)、環繞式閘極場效(gate-all-around field effect;GAA FET)電晶體或任何其他類型的場效電晶體(field effect transistors;FET)的實施例。
示例性結構可包含其中可隨後形成記憶體部件陣列的記憶陣列區50,及其中可形成支持記憶體部件陣列的操作的邏輯元件的周邊區52。在一個實施例中,記憶陣列區50中的元件(諸如場效電晶體)可包含提供對待隨後形成的記憶胞的底部電極的存取的底部電極存取電晶體。在此處理步驟處,提供對待隨後形成的記憶胞的頂部電極的存取的頂部電極存取電晶體可形成於周邊區52中。周邊區52中的元件(諸如場效電晶體)可提供操作待隨後形成的記憶胞陣列所需的功能。具體而言,周邊區中的元件可配置 成控制記憶胞陣列的編程操作、抹除操作以及感測(讀取)操作。舉例而言,周邊區中的元件可包含感測電路及/或頂部電極偏壓電路。形成於基底8的頂部表面上的元件可包含互補金屬氧化物半導體(CMOS)電晶體及視情況存在的額外半導體元件(諸如電阻器、二極體、電容器等),且共同地稱作CMOS電路75。
可隨後形成各種內連線層級結構,所述內連線層級結構在形成鰭背閘極場效電晶體陣列之前形成且在本文中稱作下部內連線層級結構(諸如內連線層級結構L0、L1、L2)。在隨後待在內連線層級金屬線的兩個層級上方形成TFT的二維陣列情況下,下部內連線層級結構(諸如內連線層級結構L0、L1、L2)可包含內連線層級結構L0、第一內連線層級結構L1以及第二內連線層級結構L2。介電材料層可包含例如接觸件層級介電材料層31A、第一金屬線層級介電材料層31B以及第二線及通孔層級介電材料層32。嵌入於介電材料層中的各種金屬內連線結構可隨後形成於基底8及元件(諸如場效電晶體)上方。金屬內連線結構可包含:元件接觸件通孔結構41V,形成於接觸件層級介電材料層31A(內連線層級結構L0)中且接觸CMOS電路75的相應組件;第一金屬線結構41L,形成於第一金屬線層級介電材料層31B(內連線層級結構L1)中;第一金屬通孔結構42V,形成於第二線及通孔層級介電材料層32的下部部分中;第二金屬線結構42L,形成於第二線及通孔層級介電材料層32(內連線層級結構L2)的上部部分中。
介電材料層(諸如介電材料層31A、31B以及32)中的每一者可包含介電材料,諸如未經摻雜的矽酸鹽玻璃、摻雜矽酸鹽玻璃、有機矽酸鹽玻璃、非晶形氟化碳、其多孔變體或其組合。金 屬內連線結構(諸如元件接觸件通孔結構41V、第一金屬線結構41L、第一金屬通孔結構42V以及第二金屬線結構42L)中的每一者可包含至少一種導電材料,所述導電材料可以是金屬內襯層(諸如金屬氮化物或金屬碳化物)及金屬填充材料的組合。每一金屬內襯層可包含TiN、TaN、WN、TiC、TaC以及WC,且每一金屬填充材料部分可包含W、Cu、Al、Co、Ru、Mo、Ta、Ti、其合金及/或其組合。亦可使用本揭露的涵蓋範疇內的其他合適的材料。在一個實施例中,第一金屬通孔結構42V及第二金屬線結構42L可藉由雙金屬鑲嵌製程形成為積體線及通孔結構,且第二金屬通孔結構43V及第三金屬線結構43L可形成為積體線及通孔結構。
介電材料層(諸如介電材料層31A、31B以及32)可位於相對於待隨後形成的記憶胞陣列的更低層級處。因而,介電材料層(諸如介電材料層31A、31B以及32)在本文中稱作下部層級介電材料層,亦即位於相對於待隨後形成的記憶胞陣列更低層級處的介電材料層。金屬內連線結構(諸如元件接觸件通孔結構41V、第一金屬線結構41L、:第一金屬通孔結構42V以及第二金屬線結構42L)在本文中指代下部層級金屬內連線結構。金屬內連線結構(諸如元件接觸件通孔結構41V、第一金屬線結構41L、第一金屬通孔結構42V以及第二金屬線結構42L)的子集包含下部層級金屬線(諸如第二金屬線結構42L),所述下部層級金屬線嵌入於下部層級介電材料層中且在包含下部層級介電材料層的最頂部表面的水平面內具有頂部表面。大體而言,下部層級介電材料層(諸如介電材料層31A、31B以及32)內的金屬線層級的總數目可介於1至3的範圍內。
示例性結構可包含各種元件區,所述元件區可包含記憶陣列區50,其中可隨後形成非揮發性記憶胞的至少一個陣列。舉例而言,非揮發性記憶胞的至少一個陣列可包含電阻式隨機存取記憶體(RRAM或ReRAM)、磁性(magnetic/magneto)電阻式隨機存取記憶體(MRAM)、鐵電隨機存取記憶體(FeRAM)以及相變記憶體(PCM)元件。示例性結構亦可包含周邊區(又稱為周邊邏輯區)52,其中可隨後形成非揮發性記憶胞的每一陣列與包含場效電晶體的周邊電路之間的電連接。記憶陣列區50及周邊區(又稱為邏輯區)52的區域可用以形成周邊電路的各種部件。
參考圖1B,非揮發性記憶胞陣列95及TFT選擇器元件可形成於第二內連線層級結構L2上方的記憶陣列區50中。非揮發性記憶胞陣列(又稱為非揮發性閘控鐵電記憶胞的陣列)95的結構及處理步驟的細節隨後在下文進行詳細描述。第三內連線層級介電材料層33可在非揮發性記憶胞陣列95的形成期間形成。在非揮發性記憶胞陣列95及閘控鐵電記憶胞元件的層級處形成的全部結構的集合在本文中稱作第三內連線層級結構L3。
參考圖1C,第三內連線層級金屬內連線結構(諸如第二金屬通孔結構43V、第三金屬線結構43L)可形成於第三內連線層級介電材料層33中。第三內連線層級金屬內連線結構(諸如第二金屬通孔結構43V、第三金屬線結構43L)可包含第二金屬通孔結構43V及第三金屬線43L。可隨後形成額外內連線層級結構,在本文中稱作上部內連線層級結構(諸如內連線層級結構L4、L5、L6、L7)。舉例而言,上部內連線層級結構(諸如內連線層級結構L4、L5、L6、L7)可包含第四內連線層級結構L4、第五內連線層 級結構L5、第六內連線層級結構L6以及第七內連線層級結構L7。第四內連線層級結構L4可包含其中形成有第四內連線層級金屬內連線結構(諸如第三金屬通孔結構44V、第四金屬線44L)的第四內連線層級介電材料層34,所述第四內連線層級金屬內連線結構可包含第三金屬通孔結構44V及第四金屬線44L。第五內連線層級結構L5可包含其中形成有第五內連線層級金屬內連線結構(諸如第四金屬通孔結構45V、第五金屬線45L)的第五內連線層級介電材料層35,所述第五內連線層級金屬內連線結構可包含第四金屬通孔結構45V及第五金屬線45L。第六內連線層級結構L6可包含其中形成有第六內連線層級金屬內連線結構(諸如第五金屬通孔結構46V、第六金屬線46L)的第六內連線層級介電材料層36,所述第六內連線層級金屬內連線結構可包含第五金屬通孔結構46V及第六金屬線46L。第七內連線層級結構L7可包含其中形成有第六金屬通孔結構47V(其為第七內連線層級金屬內連線結構)及金屬接合墊47B的第七內連線層級介電材料層37。金屬接合墊47B可配置成用於焊料接合(其可採用C4球接合或線接合),或可配置成用於金屬對金屬接合(諸如銅對銅接合)。
每一內連線層級介電材料層可稱作內連線層級介電(interconnect level dielectric;ILD)層30(亦即,介電材料層31A、31B、32、33、34、35、36以及37)。每一內連線層級金屬內連線結構可稱作金屬內連線結構40。位於相同內連線層級結構(諸如內連線層級結構L2至L7)內的金屬通孔結構及上覆金屬線的每一連續組合可藉由採用兩個單金屬鑲嵌製程順序地形成為兩個不同結構或可同步形成為採用雙金屬鑲嵌製程的單式結構。金屬內 連線結構40(亦即,元件接觸件通孔結構41V、第一金屬線結構41L、第一金屬通孔結構42V、第二金屬線結構42L、第二金屬通孔結構43V、第三金屬線結構43L、第三金屬通孔結構44V、第四金屬線44L、第四金屬通孔結構45V、第五金屬線45L、第五金屬通孔結構46V、第六金屬線46L、第六金屬通孔結構47V、金屬接合墊47B)中的每一者可包含相應金屬內襯(諸如具有厚度介於2奈米至20奈米範圍內的TiN層、TaN層或WN層)及相應金屬填充材料(諸如W、Cu、Co、Mo、Ru、其他元素金屬或合金或其組合)。用作金屬內襯及金屬填充材料的其他合適材料亦在本揭露的涵蓋範疇內。各種蝕刻終止介電材料層及介電罩蓋層可插入於ILD層30的垂直鄰近對之間或可併入至ILD層30中的一或多者中。
雖然採用其中非揮發性記憶胞陣列95及TFT選擇器元件可形成為第三內連線層級結構L3的組件的實施例來描述本揭露,但在本文中明確地涵蓋其中非揮發性記憶胞陣列95及TFT選擇器元件可形成為任何其他內連線層級結構(例如內連線層級結構L1至L7)的組件的實施例。此外,雖然使用其中形成八個內連線層級結構的集合的實施例來描述本揭露,但在本文中明確地涵蓋其中使用不同數目個內連線層級結構的實施例。另外,在本文中明確地涵蓋其中可在記憶陣列區50中的多個內連線層級結構內提供兩個或大於兩個非揮發性記憶胞陣列95及TFT選擇器元件的實施例。雖然採用其中非揮發性記憶胞陣列95及TFT選擇器元件可形成於單個內連線層級結構中的實施例來描述本揭露,但在本文中明確地涵蓋其中非揮發性記憶胞陣列95及TFT選擇器元件可形成於兩個垂直鄰接的內連線層級結構上方的實施例。
圖2A為根據本揭露的實施例的在第一介電材料層中蝕刻及圖案化第一金屬線溝渠之後的示例性結構的水平截面視圖。圖2B為沿圖2A的平面B-B'的示例性結構的垂直截面視圖。圖2C為沿圖2A的平面A-A'的示例性結構的垂直截面視圖。參考圖2A至圖2C,第一介電材料層120可沉積於基底110上。基底110可為任何合適的基底,諸如半導體元件基底。在其他實施例中,基底110可為如圖1C中所示的第三內連線層級介電材料層33。第一介電材料層120可包含介電材料,諸如氧化矽(SiO2)、未經摻雜的矽酸鹽玻璃、摻雜矽酸鹽玻璃、有機矽酸鹽玻璃、非晶形氟化碳、其多孔變體或其組合。第一介電材料層120可經由數個合適的沉積製程中的任一者進行沉積或在ILD層30上方生長。光阻層(未示出)可經塗覆於第一介電材料層120上方且可經圖案化,以在其中可隨後形成第一金屬線的第一介電材料層120的區域內形成溝渠121。舉例而言,可藉由沉積光阻材料且接著使用微影圖案化所沉積的光阻材料來形成光阻圖案。經圖案化光阻可遮罩第一介電材料層120的部分以在後續蝕刻製程中保護這些部分。可執行蝕刻製程以在第一介電材料層120中形成第一金屬線溝渠121。舉例而言,可使用任何合適的蝕刻製程(諸如濕式蝕刻製程或乾式蝕刻製程)來蝕刻第一介電材料層120。在一個實施例中,每一第一金屬線溝渠121可位於第一介電材料層120的上部部分內。第一金屬線溝渠121可沿第一水平方向hd1橫向地延伸,且可沿垂直於第一水平方向hd1的第二水平方向hd2橫向地間隔開。可隨後例如藉由灰化製程或化學製程移除光阻。
圖3A為根據本揭露的實施例的在第一金屬線溝渠中沉 積及平坦化導電金屬材料以形成第一金屬線之後的示例性結構的水平截面視圖。圖3B為沿圖3A的平面B-B'的示例性結構的垂直截面視圖。圖3C為沿圖3A的平面A-A'的示例性結構的垂直截面視圖。參考圖3A至圖3C,第一金屬線122可形成於第一金屬線溝渠121中。導電材料可沉積於第一介電材料層120上方以填充第一金屬線溝渠121。第一金屬線122可由導電金屬材料形成,諸如銅、鋁、鋯、鈦、氮化鈦、鎢、鉭、氮化鉭、釕、鈀、鉑、鈷、鎳、銥、其合金或類似者。用於第一金屬線122的其他合適的導電材料亦在本揭露的涵蓋範疇內。第一金屬線(亦稱作板線或源極線)122可藉由使用任何合適的沉積製程沉積導電材料層來形成。在本文中,「合適的沉積製程」可包含化學氣相沉積(chemical vapor deposition;CVD)製程、物理氣相沉積(physical vapor deposition;PVD)製程、原子層沉積(atomic layer deposition;ALD)製程、高密度電漿CVD(high density plasma CVD;HDPCVD)製程、有機金屬CVD(metalorganic CVD;MOCVD)製程、電漿增強CVD(plasma enhanced CVD;PECVD)製程、濺鍍製程、雷射切除或類似者。
可接著執行平坦化製程(諸如化學機械研磨(chemical mechanical polishing;CMP)製程或類似者),以自第一介電材料層120的表面移除多餘導電金屬材料及使得第一金屬線122的頂部表面與第一介電材料層120的頂部表面共面。在一個實施例中,每一第一金屬線122可位於第一介電材料層120的上部部分內。第一金屬線222可沿第一水平方向hd1橫向地延伸,且可沿垂直於第一水平方向hd1的第二水平方向hd2橫向地間隔開。
圖4A為根據本揭露的實施例的在第一金屬線122及基底110上方沉積包含鐵電介電層130及半導體通道材料層140L的數個層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖4B為根據本揭露的實施例的在第一金屬線122及基底110上方沉積包含鐵電介電層130及半導體通道材料層140L的數個層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖4A及圖4B,鐵電(FE)介電層130的毯覆式層可沉積於第一介電材料層120及第一金屬線122上方。鐵電(FE)介電層130可由任何合適的鐵電材料形成,諸如HfO2、ZrO2、HfZrO2、AlScN、PbZrO3、Pb[ZrxTi1-x]O3、(0
Figure 110110364-A0305-02-0022-2
x
Figure 110110364-A0305-02-0022-3
1)(PZT)、BaTiO3、PbTiO3、PbNb2O6、LiNbO3、LiTaO3、聚偏二氟乙烯(polyvinylidene fluoride;PVDF)、磷酸二氫鉀(potassium dihydrogen phosphate;KDP)、PbMg1/3Nb2/3O3(PMN)、PbSc1/2Ta1/2O3PbSc1/2Ta1/2O3(PST)、SrBi2Ta2O9(SBT)、Bi1/2Na1/2TiO3Bi1/2Na1/2TiO3、其組合或類似者。特定而言,鐵電介電層130可沉積於第一介電材料層120上,從而覆蓋第一金屬線122。
半導體通道材料層140L可沉積於鐵電介電層130上。半導體通道材料層140L可包含多晶矽、非晶矽或半導電氧化物,諸如InGaZnO(IGZO)、氧化銦錫(indium tin oxide;ITO)、InWO、InZnO、InSnO、GaOx、InOx或類似者。其他合適的半導體材料亦在本揭露的範疇內。在一些實施例中,柱狀半導體通道140可較佳地由IGZO形成。IGZO可為「固有的」或可視需要包含摻雜劑。半導體通道材料層140L的傳導性範圍可至少為1x10-5S/m至1 S/m,且可為1 x10-10S/m至1 x 120S/m,然而更大或更小的傳導性可在本揭露的涵蓋範疇內。半導體通道材料層140L可允許待隨後形成的閘控鐵電記憶胞控制及選擇由底層鐵電介電層130形成的記憶胞。可使用任何合適的沉積製程來沉積半導體通道材料層140L。在本文中,「合適的沉積製程」可包含化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程、原子層沉積(ALD)製程、高密度電漿CVD(HDPCVD)製程、有機金屬CVD(MOCVD)製程、電漿增強CVD(PECVD)製程、濺鍍製程、雷射切除或類似者。
圖5A為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖5B為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖5A及圖5B,可圖案化半導體通道材料層140L以形成柱狀半導體通道140。舉例而言,可將諸如光阻材料(未示出)的蝕刻罩幕材料的二維陣列塗覆於半導體通道材料層140L上。光微影製程可在光阻材料上方轉印圖案。藉由採用蝕刻罩幕材料部分的二維陣列作為蝕刻罩幕來非等向性蝕刻對鐵電介電層130具有選擇性的半導體通道材料層140L的未遮罩部分,可將半導體通道材料層140L的剩餘部分圖案化為包括柱狀半導體通道的二維陣列。一般而言,柱狀半導體通道140的二維陣列可形成於鐵電介電層130上方。每一列柱狀半導體通道140形成於第一金屬線122中的相應者上方且電容耦合至第一金屬線122中的相應者。
所得柱狀半導體通道140可呈柱(column;pillar)或奈米線的形式。然而,柱狀半導體通道140不限於任何特定形狀。柱狀半導體通道140可相對於第一介電材料層120垂直對準。換言之,每一柱狀半導體通道140的長軸可垂直於第一介電材料層120的平面及/或底層半導體基底延伸。在形成柱狀半導體通道140之後,可例如藉由灰化製程或化學製程移除光阻材料(未示出)。
在可形成柱狀半導體通道140之後,可提供記憶體部件(又稱為記憶胞)100的二維陣列。每一記憶體部件(又稱為記憶胞)100可包含柱狀半導體通道140的底部部分、與柱狀半導體通道140具有區域交疊的鐵電介電層130的部分以及與柱狀半導體通道140具有區域交疊的第一金屬線122的部分。因此,記憶體部件(又稱為記憶胞)100可為金屬鐵電半導體(metal-ferroelectric-semiconductor;MFS)電容器。如下文所論述,記憶體部件(又稱為記憶胞)100亦可包含金屬鐵電金屬電容器。再此外,其他記憶胞結構100可在本揭露的涵蓋範疇內。舉例而言,記憶體部件(又稱為記憶胞)100可形成為PCM、ReRAM、MRAM或其他合適的記憶胞結構。
圖6A為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道上方沉積閘極介電層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖6B為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道上方沉積閘極介電層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖6A及圖6B,閘極介電層可共形地沉積於鐵電介電層130及柱狀半導體通道140 的二維陣列上方。閘極介電層150可沉積於鐵電介電層130上,從而覆蓋柱狀半導體通道140。閘極介電層150可由任何合適的介電材料形成,諸如氧化矽或高k介電材料。在本文中,「高k介電材料」具有大於3.9的介電常數且可包含(但不限於)氮化矽、氧化鉿(HfO2)、氧化鉿矽(HfSiO)、氧化鉿金(HfTaO)、氧化鉿鈦(HfTiO)、氧化鉿鋯(Hf0.5Zr0.5O2)(HZO)、氧化鉭(Ta2O5)、氧化鋁(Al2O3)、二氧化鉿-氧化鋁(HfO2-Al2O3)、氧化鋯(ZrO2)。其他合適的介電材料亦在本揭露的範疇內。
閘極介電層150可由任何合適的沉積方法形成。在本文中,「合適的沉積製程」可包含化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程、原子層沉積(ALD)製程、高密度電漿CVD(HDPCVD)製程、有機金屬CVD(MOCVD)製程、電漿增強CVD(PECVD)製程、濺鍍製程、雷射切除或類似者。
在各種實施例中,閘極介電層150可具有介於0.5奈米至5.0奈米範圍內(諸如1奈米至4奈米)的厚度thk,然而可使用更大或更小的厚度。在各種實施例中,柱狀半導體通道140可具有介於1奈米至20奈米(諸如3奈米至15奈米)範圍內的厚度tc,然而可使用更大或更小的厚度。
閘極介電層150的部分可自第一介電材料層120垂直地(例如垂直於第一介電材料層120的平面)延伸,且形成分別包圍柱狀半導體通道140的周圍閘極絕緣體(surrounding gate insulator;SGI)150A(參看圖16D及圖17B)。
圖7A為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道及閘極介電層上方將導電金屬材料層沉積 作為閘極電極及字元線之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖7B為根據本揭露的實施例的在所形成的閘控鐵電記憶胞的柱狀半導體通道及閘極介電層上方將導電金屬材料層沉積作為閘極電極及字元線之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖7A及圖7B,閘極電極材料層160L可藉由共形或非共形沉積製程沉積於閘極介電層150上。閘極電極材料層160L可由導電金屬材料形成,諸如銅、鋁、鋯、鈦、氮化鈦、鎢、鉭、氮化鉭、釕、鈀、鉑、鈷、鎳、銥、其合金或類似者。用於閘極電極材料層160L的其他合適的導電材料亦在本揭露的涵蓋範疇內。閘極電極材料160L可使用任何合適的沉積製程使用任何合適的導電材料(諸如閘極金屬)進行沉積。在本文中,「合適的沉積製程」可包含化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程、原子層沉積(ALD)製程、高密度電漿CVD(HDPCVD)製程、有機金屬CVD(MOCVD)製程、電漿增強CVD(PECVD)製程、濺鍍製程、雷射切除或類似者。
圖8A為根據本揭露的實施例的在圖案化導電金屬材料層以形成閘控鐵電記憶胞的字元線及閘極電極之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖8B為根據本揭露的實施例的在圖案化導電金屬材料層以形成閘控鐵電記憶胞的字元線及閘極電極之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。
參考圖8A及圖8B,可圖案化閘極電極材料層160L以形成閘極電極160以及閘極電極帶。舉例而言,可將蝕刻罩幕材料 (諸如光阻材料177)的二維陣列塗覆於半導體材料層160L上,所述半導體材料層160L上覆於相應行的柱狀半導體通道140。光微影製程可在光阻材料177上方轉印圖案。藉由採用光阻材料177的二維陣列作為蝕刻罩幕對閘極電極材料層160L的未遮罩部分進行非等向性蝕刻,可閘極電極材料層160L的剩餘部分圖案化為包括閘極電極160,所述閘極電極160可包圍相應柱狀半導體通道140及閘極介電層150以及可充當字元線的閘極電極帶160。閘極電極帶160可形成為環繞式閘極(GAA)閘極以橫向地包圍柱狀半導體通道140,藉此提供更佳閘極控制。可隨後例如藉由灰化來移除光阻材料177。
圖9A為根據本揭露的實施例的在場控制垂直電流開關上方沉積第一介電材料層之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖9B為根據本揭露的實施例的在場控制垂直電流開關上方沉積第一介電材料層之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖9A及圖9B,可沉積介電基質層170從而嵌入柱狀半導體通道140、閘極介電層150、閘極電極帶160。
介電基質層170可由氧化矽或任何合適的高k介電材料形成。介電基質層170可由與第一介電材料層120相同的材料形成或可不同。可使用任何合適的沉積製程來形成介電基質層170。
圖10A為根據本揭露的實施例的在平坦化閘控鐵電記憶胞的導電金屬材料層、閘極介電層以及柱狀半導體通道之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖10B為根據本揭露的實施例的在平坦化閘控鐵電記憶胞的 導電金屬材料層、閘極介電層以及柱狀半導體通道之後的沿第二水平方向hd2(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖10A及圖10B,可執行平坦化製程(諸如CMP)以平坦化柱狀半導體通道140、閘極介電層150以及閘極電極帶160的上部表面,使得柱狀半導體通道140、閘極介電層150以及閘極電極帶160的頂部表面共平面。特定而言,可自包含柱狀半導體通道140的頂部表面的水平面上方移除介電基質層170、閘極電極帶160以及閘極介電層150的部分。在平坦化操作之後,柱狀半導體通道140的二維陣列內的每一柱狀半導體通道140可具有位於包含介電基質層170的平坦化頂部表面的水平面內的相應頂部表面。另外,每一閘極電極帶160可具有位於包含介電基質層170的平坦化頂部表面的水平面內的環形頂部表面161。
圖11A為根據本揭露的實施例的在進行選擇性蝕刻製程以使場控制垂直電流開關的閘極電極帶的頂部環形部分垂直地凹陷之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖11B為根據本揭露的實施例的在進行選擇性蝕刻製程以使場控制垂直電流開關的閘極電極帶的頂部環形部分垂直地凹陷之後的沿第二水平方向hd1(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖11A及圖11B,可執行選擇性蝕刻製程以相對於介電基質層170的平坦化頂部表面及柱狀半導體通道140的二維陣列的頂部表面使閘極電極帶160的每一環形頂部表面垂直地凹陷。蝕刻製程蝕刻對閘極電極帶160的材料及介電基質層170具有選擇性的閘極電極材料。蝕刻製程可包含等向性蝕刻製程(諸如濕式蝕刻製程)或非等向性蝕刻製程(諸如反應性 離子蝕刻製程)。閘極電極帶160的凹陷深度可使得包圍柱狀半導體通道140的閘極電極160至每一柱狀半導體通道140的高度的60%至90%的高度。換言之,蝕刻製程的凹陷深度可介於每一柱狀半導體通道140的高度的10%至40%的範圍內。由於使閘極電極160垂直地凹陷的蝕刻製程,可形成環形凹穴171。
圖12A為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第一水平方向hd1(亦即,平面B-B')的示例性結構的垂直截面視圖。圖12B為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第二水平方向hd1(亦即,平面A-A')的示例性結構的垂直截面視圖。參考圖12及圖12B,在沉積第二介電材料層180之後,可用第二介電材料層180的介電材料填充環形凹穴171。舉例而言,共形沉積製程(諸如化學氣相沉積製程)可用以沉積第二介電材料層180。在此實施例的情況下,第二介電材料層180可包含管狀介電材料部分172的二維陣列,所述管狀介電材料部分172填充環形凹穴(又稱為圓柱形凹穴)171且接觸閘極電極帶160T的相應管狀部分的環形頂部表面。
可將光阻材料(未示出)塗覆於第二介電材料層180上方。可經由微影技術圖案化光阻材料以遮蔽第二介電材料層180,從而在蝕刻製程之後形成在第二介電材料層180中沿第一水平方向hd1橫向地延伸的線溝渠(未示出)。可用至少一種金屬填充材料來填充線溝渠。每一金屬填充材料部分可為任何合適的導電電極材料,諸如銅、鋁、鋯、鈦、氮化鈦、鎢、鉭、氮化鉭、釕、鈀、鉑、鈷、鎳、銥、其合金或類似者。其他合適的第二金屬線材料亦 在本揭露的涵蓋範疇內。第二金屬線182可藉由使用任何合適的沉積製程沉積導電材料層來形成。在本文中,「合適的沉積製程」可包含化學氣相沉積(CVD)製程、物理氣相沉積(PVD)製程、原子層沉積(ALD)製程、高密度電漿CVD(HDPCVD)製程、有機金屬CVD(MOCVD)製程、電漿增強CVD(PECVD)製程、濺鍍製程、雷射切除或類似者。在一些實施例中,可在金屬填充部分之前沉積視情況選用的金屬內襯材料。每一金屬內襯層可包含TiN、TaN、WN、TiC、TaC以及WC。亦可使用本揭露的涵蓋範疇內的其他合適的材料。可採用平坦化製程(諸如化學機械研磨製程)自包含第二介電材料層180的頂部表面的水平面上方移除至少一種金屬材料的多餘部分。填充第二介電材料層180中的相應線溝渠的至少一種金屬材料的每一剩餘部分包括可操作為有效位元線的第二金屬線182。第二金屬線182中的每一者可直接形成於相應列的柱狀半導體通道140的頂部表面上。因此,第二金屬線182可形成於柱狀半導體通道140的二維陣列上方,其中第二金屬線182中的每一者直接形成於相應列的柱狀半導體通道140的頂部表面上。如上文所指出,在其他實施例中,金屬內襯(未示出)可用於改良第二金屬線182與柱狀半導體通道140之間的電耦合。
以此方式,可在每一記憶體部件(又稱為記憶胞)100上方提供閘控鐵電記憶胞200。閘控鐵電記憶胞200可包含柱狀半導體通道140及橫向地包圍柱狀半導體通道140的閘極電極帶160的部分。提供閘控鐵電記憶胞200的二維陣列。每一閘控鐵電記憶胞200包含記憶體部件100、場控制垂直電流開關600以及為第二金屬線182的部分的金屬頂部電極的串聯連接。因此,每一閘 控鐵電記憶胞200包含可為第一金屬線122的部分的金屬底部電極、鐵電介電層130的部分、柱狀半導體通道140、閘極介電層150的部分、閘極電極帶160的部分以及為第二金屬線182的部分的金屬頂部電極。
圖13A為根據本揭露的實施例的在第一金屬線及基底上方沉積包含鐵電介電層、金屬頂部電極層以及半導體通道材料層的數個層之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。圖13B為根據本揭露的實施例的在第一金屬線及基底上方沉積包含鐵電介電層、金屬頂部電極層以及半導體通道材料層的數個層之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。參考圖13A及圖13B,可提供如圖3A至圖3C中所示的中間結構。如上所述,鐵電介電層130的毯覆式層可沉積於第一介電材料層120及第一金屬線122上方。鐵電(FE)介電層130可由任何合適的鐵電材料形成,諸如HfO2、ZrO2、HfZrO2、AlScN、PbZrO3、Pb[ZrxTi1-x]O3、(0
Figure 110110364-A0305-02-0031-4
x
Figure 110110364-A0305-02-0031-5
1)(PZT)、BaTiO3、PbTiO3、PbNb2O6、LiNbO3、LiTaO3、聚偏二氟乙烯(PVDF)、磷酸二氫鉀(KDP)、PbMg1/3Nb2/3O3(PMN)、PbSc1/2Ta1/2O3PbSc1/2Ta1/2O3(PST)、SrBi2Ta2O9(SBT)、Bi1/2Na1/2TiO3Bi1/2Na1/2TiO3、其組合或類似者。特定而言,鐵電介電層130可沉積於第一介電材料層120上,從而覆蓋第一金屬線122。
半導體通道材料層140L可沉積於鐵電介電層130上。半導體通道材料層140L可包含多晶矽、非晶矽或半導電氧化物,諸如InGaZnO(IGZO)、氧化銦錫(ITO)、InWO、InZnO、InSnO、 GaOx、InOx或類似者。其他合適的半導體材料亦在本揭露的範疇內。在一些實施例中,柱狀半導體通道140可較佳地由IGZO形成。IGZO可為「固有的」或可視需要包含摻雜劑。半導體通道材料層140L的傳導性範圍可至少為1x10-5S/m至1S/m,且可為1X10-10S/m至1 x 120S/m,然而更大或更小的傳導性可在本揭露的涵蓋範疇內。半導體通道材料層140L可允許待隨後形成的閘控鐵電記憶胞控制及選擇由底層鐵電介電層130形成的記憶胞。可使用任何合適的沉積製程來沉積半導體通道材料層140L。另外,中間金屬電極142L可沉積於半導體通道材料層140L與鐵電介電層130之間。中間金屬電極142L可由諸如銅、鋁、鋯、鈦、氮化鈦、鎢、鉭、氮化鉭、釕、鈀、鉑、鈷、鎳、銥、其合金或類似者的材料形成。用於中間金屬電極142L的其他合適的導電材料在本揭露的涵蓋範疇內。在此類替代性實施例中,可隨後採用蝕刻罩幕材料部分作為蝕刻罩幕將中間金屬電極142L圖案化成中間金屬電極的二維陣列。可圖案化中間金屬電極142L以在金屬鐵電金屬電容器記憶胞中的鐵電介電層130上方形成頂部電極(又稱為頂部金屬板)142。
圖14A為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。圖14B為根據本揭露的實施例的在蝕刻及圖案化閘控鐵電記憶胞的柱狀半導體通道之後的沿第二水平方向hd2(亦即,平面A-A')的第二替代實施例結構的垂直截面視圖。參考圖14A及圖14B,且類似於上文相對於圖5A及圖5B所描述的步驟,可圖案化半導體通道材料層 140L以形成柱狀半導體通道140。藉由採用蝕刻罩幕材料部分的二維陣列作為蝕刻罩幕來非等向性蝕刻對鐵電介電層130具有選擇性的半導體通道材料層140L的未遮罩部分,半導體通道材料層140L的剩餘部分可圖案化為包括柱狀半導體通道的二維陣列。一般而言,柱狀半導體通道140的二維陣列可形成於鐵電介電層130上方。每一列柱狀半導體通道140形成於第一金屬線122中的相應者上方且電容耦合至第一金屬線122中的相應者。另外,如圖14A及圖14B中所示,圖案化柱狀半導體通道140的蝕刻製程亦可蝕刻及圖案化中間金屬電極142L以在柱狀半導體通道140與鐵電介電層130之間形成頂部電極(又稱為頂部金屬板)142,如圖4B中所示。因而,頂部電極(又稱為頂部金屬板)142、鐵電介電層130以及第一金屬線122可用於形成金屬鐵金屬接面記憶胞元件。此類記憶胞元件可具有改良的記憶體耐久性及滯留時間。在形成柱狀半導體通道140之後,可例如藉由灰化製程或化學製程移除光阻材料(未示出)。
圖15A為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第一水平方向hd1(亦即,平面B-B')的第二替代實施例結構的垂直截面視圖。圖15B為根據本揭露的實施例的在沉積導電金屬材料以形成場控制垂直電流開關的位元線之後的沿第二水平方向hd1(亦即,平面A-A')的第二替代實施例結構的垂直截面視圖。參考圖15A及圖15B,可執行如上文相對於圖6A至圖12B所描述的製程步驟。因此,可在每一記憶體部件(又稱為記憶胞)101上方提供替代性閘控鐵電記憶胞601。可提供記憶體部件(又稱為記憶胞)101的二維陣列。 每一記憶體部件(又稱為記憶胞)101可包含柱狀半導體通道140的底部部分、與柱狀半導體通道140具有區域交疊的鐵電介電層130的部分以及形成頂部電極142的中間金屬層。
閘控鐵電記憶胞601可包含柱狀半導體通道140及橫向地包圍柱狀半導體通道140的閘極電極帶160的部分。提供閘控鐵電記憶胞201的二維陣列。每一閘控鐵電記憶胞201包含記憶體部件101、閘控鐵電記憶胞601以及為第二金屬線182的部分的金屬頂部電極的串聯連接。因此,每一閘控鐵電記憶胞201包含可為第一金屬線122的部分的金屬底部電極、鐵電介電層130的部分、頂部電極142、柱狀半導體通道140、閘極介電層150的部分、閘極電極帶160的部分以及為第二金屬線182的部分的金屬頂部電極。
圖16A為根據本揭露的各種實施例的半導體記憶體元件的部分透視圖。圖16B為圖16A的半導體記憶體元件的俯視示意圖。圖16C為經由半導體記憶體元件的記憶體結構截取的圖16A的半導體記憶體元件的截面部分透視圖。圖16D為圖16C的部分P的放大截面視圖。圖17A為根據本揭露的另一實施例的半導體記憶體元件的垂直部分截面透視圖。圖17B為圖17A的部分P的放大截面視圖。
舉例而言,圖16A可示出如圖12A及圖12B中所示的閘控鐵電記憶胞200的完整半導體元件(又稱為二維陣列)300的透視圖。閘控鐵電記憶胞200的半導體元件(又稱為二維陣列)300包含場控制垂直電流開關600的二維陣列。每一閘控鐵電記憶胞200可包含形成於記憶體部件100、101上方且耦合至記憶體部件 的場控制垂直電流開關600(參看圖12A、圖12B、圖15A、圖15B、圖16D以及圖17B)。場控制垂直電流開關600包含閘極電極帶160及包圍柱狀半導體通道140的閘極介電層150。柱狀半導體通道140的遠端140S可電耦合至第二金屬線182。柱狀半導體通道140的近端140D可串聯地耦合至記憶體部件100、101。
記憶體部件100、101可包含金屬鐵電金屬(metal-ferroelectric-metal;MFM)電容器或金屬鐵電半導體(MFS)電容器記憶體部件。舉例而言,參考圖12A、圖12B以及圖16D,在實施例中,記憶體部件100、101可包含操作為電容器或鐵電穿隧接面記憶胞的金屬鐵電半導體(MFS)電容器鐵電穿隧接面。如圖12A、圖12B以及圖16D中所示,鐵電介電層130可安置於導電金屬第一金屬線122與柱狀半導體通道140之間。在此實施例中,柱狀半導體通道140的底部部分可操作為電容器或FTJ記憶體元件的頂部電極。第一金屬線122的頂部部分可操作為電容器或FTJ記憶體元件的底部電極。第一金屬線122可耦合至可經由內連線介電層垂直地延伸的第一金屬線通孔128。
在另一實施例中,如圖15A、圖15B、圖17A以及圖17B中所示出,可提供閘控鐵電記憶胞201的完整半導體元件(又稱為二維陣列)301。閘控鐵電記憶胞201的半導體元件(又稱為二維陣列)301類似於圖16A中所示的閘控鐵電記憶胞200的半導體元件(又稱為二維陣列)300。然而,在閘控鐵電記憶胞201的半導體元件(又稱為二維陣列)301中,中間金屬電極142可形成於鐵電介電層130與柱狀半導體通道140之間。在此實施例中,金屬鐵電金屬(MFM)電容器可使用第一金屬線122的頂部部分 作為底部金屬板、鐵電介電層130作為節點間介電質以及中間金屬電極142作為頂部金屬板來形成。中間金屬電極142可與柱狀半導體通道140串聯地耦合。
共同地參考圖1A至圖12B以及圖16A至圖16D且根據本揭露的各種實施例,可提供包含至少一個閘控鐵電記憶胞200、201的半導體元件300,其中閘控鐵電記憶胞200、201中的每一者包含安置於基底110上方的第一介電材料層120。閘控鐵電記憶胞200、201更包含第一金屬線(又稱為金屬底部電極)122及接觸第一金屬線(又稱為金屬底部電極)122的頂部表面的鐵電介電層130。閘控鐵電記憶胞200、201更包含上覆於鐵電介電層130且經由鐵電介電層130電容耦合至第一金屬線(又稱為金屬底部電極)122的柱狀半導體通道140。如圖12A、圖12B、圖15A以及圖15B中所示,閘控鐵電記憶胞200、201更包含閘極介電層150,所述閘極介電層150包括上覆於鐵電介電層130的水平閘極介電部分150H及橫向地包圍柱狀半導體通道140的管狀閘極介電部分150T。閘控鐵電記憶胞200、201更包含上覆於水平閘極介電部分150H且橫向地包圍管狀閘極介電部分150T的閘極電極帶160。如圖12A、圖12B、圖15A以及圖15B中所示,閘控鐵電記憶胞200、201更包含閘極電極帶160,所述閘極電極帶160包括上覆於水平閘極介電部分150H的水平閘極電極帶部分160H及橫向地包圍管狀閘極介電部分150T的管狀閘極電極帶部分160T。閘極電極帶160H的水平部分可耦合至可垂直地延伸穿過內連線介電層的閘極電極通孔168。閘控鐵電記憶胞200、201更包含接觸柱狀半導體通道140的頂部表面的第二金屬線(又稱為金屬頂 部電極)182。第二金屬線(又稱為金屬頂部電極)182可耦合至可垂直地延伸穿過內連線介電層的金屬頂部電極通孔188。
在各種實施例中,閘控鐵電記憶胞200的柱狀半導體通道140可包含與鐵電介電層130的頂部表面接觸的底部表面;且閘控鐵電記憶胞200包括記憶體部件100(諸如金屬鐵電半導體(MFS)電容器)。
在半導體元件301的一個實施例中,中間金屬電極142接觸柱狀半導體通道140的底部表面及鐵電介電層130的頂部表面;且閘控鐵電記憶胞201包括記憶體部件101(諸如金屬鐵電金屬(MFM)電容器)。
在半導體元件301的一個實施例中,中間金屬電極142的頂部表面的周邊與柱狀半導體通道140的底部表面的周邊重合。
在半導體元件300的一個實施例中,水平閘極介電部分150H及管狀閘極介電部分150T可為連續延伸閘極介電層150的連接部分且具有相同厚度及相同材料組成物。
在半導體元件300的一個實施例中,閘極電極帶160包括可為連續延伸閘極電極帶材料的連接部分且具有相同材料組成物的水平閘極電極帶部分160H及管狀閘極電極帶部分160T。
在半導體元件300的一個實施例中,管狀閘極介電部分150T的環形頂部表面位於與柱狀半導體通道140的頂部表面相同的水平面內。
在半導體元件300的一個實施例中,管狀閘極電極帶部分160T包括藉由均一垂直間距與第二金屬線(又稱為金屬頂部電極)182垂直地間隔開的環形頂部表面161。
在半導體元件300的一個實施例中,半導體元件300可包含至少一列閘控鐵電記憶胞200,其中每一列閘控鐵電記憶胞內的閘控鐵電記憶胞200中的每一者可沿第一水平方向佈置。另外,每一列閘控鐵電記憶胞200的第一金屬線(諸如金屬底部電極)122包括沿第一水平方向橫向地延伸的相應第一金屬線122的部分;且每一列閘控鐵電記憶胞的金屬頂部電極包括沿第二水平方向橫向地延伸的相應第二金屬線182的部分。
在一個實施例中,半導體元件300可包含閘控鐵電記憶胞的二維陣列,其中閘控鐵電記憶胞200的二維陣列包括閘控鐵電記憶胞200的多個行及閘控鐵電記憶胞200的多個列。每一列閘控鐵電記憶胞200可包括沿第一水平方向以第一週期性佈置的相應組的閘控鐵電記憶胞。每一行閘控鐵電記憶胞200可包括沿第二水平方向以第二週期性佈置的相應組的閘控鐵電記憶胞。此外,每一行閘控鐵電記憶胞200可包括閘極電極帶160,其中閘極電極帶160可包括連續延伸閘極電極帶材料帶的相應部分,所述閘極電極帶材料帶橫向地包圍閘控鐵電記憶胞200的行內的每一柱狀半導體通道140。
以此方式,各種實施例可提供可在具有可選擇記憶體部件100的場控制垂直電流開關600的BEOL中製造的FeRAM元件(諸如閘控鐵電記憶胞200、半導體元件300)。記憶體部件100可包含MFM電容器或MFS電容器。藉由在BEOL中形成記憶體部件100及可選擇記憶體部件100的場控制垂直電流開關600兩者,可藉由利用形成可選擇記憶體部件100的場控制垂直電流開關600所需的較小區域來增加記憶體密度。另外,場控制垂直電 流開關600可直接耦合至記憶體部件100。因而,相較於其他配置,包含與記憶體部件100直接接觸的場控制垂直電流開關600的閘控鐵電記憶胞200具有更緊密的配置。舉例而言,其他配置可包含安置於字元線下方或安置至記憶胞的側面的電晶體。因而,相比於習知的記憶體結構,閘控鐵電記憶胞200可允許更高的記憶胞密度。
再者,橫向地包圍柱狀半導體通道140的GAA閘極電極帶160提供更佳的閘極控制。向GAA閘極電極帶160施加電壓可選擇性地控制電流流動至記憶體部件100。閘極電極帶160可將閘極電壓提供至場控制垂直電流開關600以用於控制電流流動通過柱狀半導體通道140且流動至記憶體部件100。
每一記憶體部件100可包含提供穿隧障壁的鐵電介電層130。因此,記憶體部件100可稱作FE記憶胞。在各種實施例中,柱狀半導體通道140的部分(例如通道的汲極側面)直接接觸鐵電介電層130且可操作為頂部電極,第一金屬線122的部分可操作為底部電極,且鐵電介電層130的部分可操作為FE穿隧障壁。
在各種實施例中,記憶體部件100可操作為鐵電穿隧接面(ferroelectric tunneling junction;FTJ)。特定而言,FE穿隧障壁可為足夠薄以足以允許電子穿隧通過的鐵電膜。舉例而言,鐵電介電層(又稱為FE穿隧障壁)130可為約1奈米(nm)至約50奈米厚,諸如約5奈米至約25奈米厚,或約10奈米厚。
根據本揭露的另一實施例,提供一種半導體元件300,包括閘控鐵電記憶胞200的至少一個二維陣列,其中閘控鐵電記憶胞200的至少一個二維陣列中的每一者包括:第一金屬線122,嵌 入於第一介電材料層120中且沿第一水平方向橫向地延伸;鐵電介電層130,在第一金屬線122上方連續延伸;柱狀半導體通道140的二維陣列,上覆於鐵電介電層130,其中每一列柱狀半導體通道140沿第一水平方向佈置且電容耦合至第一金屬線122中的相應者;閘極介電層150,包括上覆於鐵電介電層130的水平閘極介電部分及橫向地包圍柱狀半導體通道140的管狀閘極介電部分;閘極電極帶160,橫向地包圍沿第二水平方向佈置且沿第一水平方向彼此橫向地隔開的相應行的柱狀半導體通道140;以及第二金屬線182,嵌入於第二介電材料層180中、沿第一水平方向橫向地延伸以及接觸相應列的柱狀半導體通道140的頂部表面。
在一個實施例中,半導體元件300的柱狀半導體通道140接觸鐵電介電層130的頂部表面。在另一實施例中,閘控鐵電記憶胞201的至少一個二維陣列中的每一者包括與鐵電介電層130接觸且與柱狀半導體通道140的二維陣列內的相應柱狀半導體通道140接觸的中間金屬電極142的二維陣列。
圖18為根據本揭露的各種實施例的半導體記憶體元件400的部分截面透視圖。參考圖18,記憶體元件400包含垂直堆疊的閘控鐵電記憶胞的第一二維陣列300A及閘控鐵電記憶胞的第二二維陣列300B。閘控鐵電記憶胞的第一二維陣列300A及第二二維陣列300B中的每一者可與上文所描述的閘控鐵電記憶胞的二維陣列300中的任一者相同。因此,在半導體元件300的實施例中,閘控鐵電記憶胞的至少一個二維陣列包括閘控鐵電記憶胞的多個二維陣列300A、300B,所述閘控鐵電記憶胞位於共同基底上方且沿垂直於共同基底110的頂部表面的垂直方向垂直地堆 疊。
半導體記憶體元件400可包含閘控鐵電記憶胞的多個二維陣列,諸如圖1A至圖17B中所示的二維陣列。因而,相較於僅包含單個記憶體元件層的記憶體元件,半導體記憶體元件400可提供增加的記憶體密度。雖然圖18中繪示了閘控鐵電記憶胞200或201的兩個二維陣列300,但記憶體元件400可包含閘控鐵電記憶胞200或201的額外二維陣列300,諸如3至20個內連線記憶體層。每一單個記憶體層的緊密配置提供記憶體密度的進一步增加。
圖19為包含根據本揭露的各種實施例的用於形成半導體記憶體元件300、301、400的步驟的流程圖。參考圖2A至圖2C以及圖19,在操作501中,可在第一介電材料層120的上部部分內形成沿第一水平方向延伸的第一金屬線122。參考圖3A至圖3C以及圖19,在操作502中,可在第一金屬線122的頂部表面上方沉積鐵電介電層130。參考圖4A至圖5B以及圖19,在操作503中,可在鐵電介電層130上方形成柱狀半導體通道140的二維陣列,其中每一列柱狀半導體通道140形成於第一金屬線122中的相應者上方且電容耦合至第一金屬線122中的相應者。參考圖6A、圖6B以及圖19,在操作504中,可在柱狀半導體通道140的二維陣列上方沉積閘極介電層150。參考圖7A至圖11A以及圖19,在操作505中,可在閘極介電層150上方形成閘極電極帶160,其中閘極電極帶160中的每一者橫向地包圍相應行的柱狀半導體通道140。參考圖12A、圖12B以及圖19,在操作506中,可在柱狀半導體通道140的二維陣列上方形成第二金屬線182,其中第二 金屬線182中的每一者可直接形成於相應列的柱狀半導體通道140的頂部表面上。
根據各種實施例,提供相比於先前記憶體配置提供更高記憶胞密度的記憶體結構及元件。
在一實施例中,所述柱狀半導體通道包括與所述鐵電介電層的頂部表面接觸的底部表面;以及所述閘控鐵電記憶胞包括金屬鐵電半導體(MFS)電容器。
在一實施例中,中間金屬電極接觸所述柱狀半導體通道的底部表面及所述鐵電介電層的頂部表面;以及所述閘控鐵電記憶胞包括金屬鐵電金屬(MFM)電容器。
在一實施例中,所述中間金屬電極的頂部表面的周邊與所述柱狀半導體通道的所述底部表面的周邊重合。
在一實施例中,所述水平閘極介電部分及所述管狀閘極介電部分為連續延伸介電材料層的連接部分且具有相同厚度及相同材料組成物。
在一實施例中,所述水平閘極電極帶部分及所述管狀閘極電極帶部分為連續延伸閘極電極帶材料的連接部分且具有相同材料組成物。
在一實施例中,所述管狀閘極電極帶部分包括藉由均一垂直間距與所述頂部電極垂直地間隔開的環形頂部表面。
在一實施例中,所述管狀閘極介電部分的環形頂部表面位於與所述柱狀半導體通道的所述頂部表面相同的水平面內。
在一實施例中,所述半導體元件更包括:至少一列所述閘控鐵電記憶胞,包括所述閘控鐵電記憶胞,其中:每一列所述閘控 鐵電記憶胞內的所述閘控鐵電記憶胞沿第一水平方向佈置;每一列所述閘控鐵電記憶胞的所述金屬底部電極包括沿所述第一水平方向橫向地延伸的相應第一金屬線的部分;以及每一列所述閘控鐵電記憶胞的所述金屬頂部電極包括沿第二水平方向橫向地延伸的相應第二金屬線的部分。
在一實施例中,所述半導體元件更包括:二維陣列的所述閘控鐵電記憶胞,包括:至少一列所述閘控鐵電記憶胞,沿第一水平方向以第一週期性佈置;以及至少一行所述閘控鐵電記憶胞,沿第二水平方向以第二週期性佈置,其中至少一行所述閘控鐵電記憶胞包括相應組的所述閘控鐵電記憶胞,其中至少一行所述閘控鐵電記憶胞包括所述閘極電極帶,其中所述閘極電極帶包括連續延伸閘極電極帶材料帶的相應部分,所述閘極電極帶材料帶橫向包圍至少一行所述閘控鐵電記憶胞內的每一所述柱狀半導體通道。
在一實施例中,二維陣列的所述柱狀半導體通道中的每一所述柱狀半導體通道接觸所述鐵電介電層的頂部表面。
在一實施例中,至少一個二維陣列的所述閘控鐵電記憶胞中的每一者包括二維陣列的中間金屬電極,二維陣列的所述中間金屬電極與所述鐵電介電層接觸且與二維陣列的所述柱狀半導體通道內的相應所述柱狀半導體通道接觸。
在一實施例中,至少一個二維陣列的所述閘控鐵電記憶胞包括多個二維陣列的所述閘控鐵電記憶胞,多個二維陣列的所述閘控鐵電記憶胞位於共同基底上方且沿垂直於所述共同基底的頂部表面的垂直方向垂直地堆疊。
在一實施例中,所述形成半導體元件的方法更包括:在所述閘極電極帶上方沉積介電基質層;以及平坦化所述介電基質層、所述閘極電極帶以及所述閘極介電層,其中:二維陣列的所述柱狀半導體通道內的每一所述柱狀半導體通道具有相應頂部表面,所述相應頂部表面位於包含所述介電基質層的平坦化頂部表面的水平面內;以及每一所述閘極電極帶具有位於包含所述介電基質層的所述平坦化頂部表面的所述水平面內的一行環形頂部表面。
在一實施例中,所述形成半導體元件的方法更包括:相對於所述介電基質層的所述平坦化頂部表面及二維陣列的所述柱狀半導體通道的頂部表面使所述閘極電極帶的每一所述環形頂部表面垂直地凹陷;以及在藉由使所述閘極電極帶的所述環形頂部表面垂直地凹陷而形成的每一凹穴內沉積介電填充材料環。
在一實施例中,形成二維陣列的所述柱狀半導體通道包括:在所述鐵電介電層上方沉積半導體通道材料層;在所述半導體通道材料層上方形成二維陣列的蝕刻罩幕材料部分;以及採用二維陣列的所述蝕刻罩幕材料部分作為蝕刻罩幕來非等向性蝕刻與所述鐵電介電層之間具有選擇性的所述半導體通道材料層的未遮罩部分,其中所述半導體通道材料層的剩餘部分包括二維陣列的所述柱狀半導體通道。
在一實施例中,所述形成半導體元件的方法更包括:在所述鐵電介電層上方沉積中間金屬電極材料層,其中所述半導體通道材料層沉積於所述中間金屬電極材料層上;以及採用二維陣列的所述蝕刻罩幕材料部分作為蝕刻罩幕,將所述中間金屬電極材料層圖案化成二維陣列的中間金屬電極。
在一實施例中,所述形成半導體元件的方法更包括:在所述閘極介電層上方沉積閘極電極材料層;在所述閘極電極材料層上方塗覆及圖案化光阻層,以提供上覆於相應行的所述柱狀半導體通道的多個圖案化光阻帶;以及蝕刻所述閘極電極材料層的未遮罩部分,其中所述閘極電極材料層的剩餘部分包括所述閘極電極帶。
前文概述若干實施例的特徵,使得所屬領域中具通常知識者可較佳地理解本揭露的態樣。所屬領域中具通常知識者應瞭解,其可容易地使用本揭露作為設計或修改用於進行本文中所引入的實施例的相同目的及/或實現相同優點的其他製程及結構的基礎。所屬領域中具通常知識者亦應認識到,此類等效構造並不脫離本發明的精神及範疇,且所屬領域中具通常知識者可在不脫離本發明的精神及範疇的情況下在本文中作出各種改變、替代以及更改。
100:記憶體部件
110:基底
120:第一介電材料層
122:第一金屬線
130:鐵電介電層
140:柱狀半導體通道
150:閘極介電層
150H:水平閘極介電部分
150T:管狀閘極介電部分
160:閘極電極帶
160H:水平閘極電極帶部分
160T:管狀閘極電極帶部分
170:介電基質層
180:第二介電材料層
200:閘控鐵電記憶胞
600:場控制垂直電流開關
hd1:第一水平方向

Claims (10)

  1. 一種半導體元件,包括:至少一個閘控鐵電記憶胞,包括:介電材料層,安置於基底上方;金屬底部電極;以及鐵電介電層,接觸所述金屬底部電極的頂部表面;柱狀半導體通道,上覆於所述鐵電介電層且經由所述鐵電介電層電容耦合至所述金屬底部電極;閘極介電層,包括上覆於所述鐵電介電層的水平閘極介電部分以及橫向包圍所述柱狀半導體通道的管狀閘極介電部分;閘極電極帶,包括上覆於所述水平閘極介電部分的水平閘極電極部分以及橫向包圍所述管狀閘極介電部分的管狀閘極電極部分;以及金屬頂部電極,接觸所述柱狀半導體通道的頂部表面。
  2. 如請求項1所述的半導體元件,其中:所述柱狀半導體通道包括與所述鐵電介電層的頂部表面接觸的底部表面;以及所述閘控鐵電記憶胞包括金屬鐵電半導體(MFS)電容器。
  3. 如請求項1所述的半導體元件,其中:中間金屬電極接觸所述柱狀半導體通道的底部表面及所述鐵電介電層的頂部表面;以及所述閘控鐵電記憶胞包括金屬鐵電金屬(MFM)電容器。
  4. 如請求項1所述的半導體元件,其中所述水平閘極介電部分及所述管狀閘極介電部分為連續延伸介電材料層的連接 部分且具有相同厚度及相同材料組成物。
  5. 如請求項1所述的半導體元件,其中所述水平閘極電極帶部分及所述管狀閘極電極帶部分為連續延伸閘極電極帶材料的連接部分且具有相同材料組成物。
  6. 如請求項1所述的半導體元件,其中所述管狀閘極介電部分的環形頂部表面位於與所述柱狀半導體通道的所述頂部表面相同的水平面內。
  7. 一種半導體元件,包括:至少一個二維陣列的閘控鐵電記憶胞,其中至少一個二維陣列的所述閘控鐵電記憶胞中的每一者包括:第一金屬線,嵌入於第一介電材料層中且沿第一水平方向橫向地延伸;以及鐵電介電層,在所述第一金屬線上方連續延伸;二維陣列的柱狀半導體通道,上覆於所述鐵電介電層,其中每一列所述柱狀半導體通道沿所述第一水平方向佈置且電容耦合至所述第一金屬線中的相應者;閘極介電層,包括上覆於所述鐵電介電層的水平閘極介電部分以及橫向包圍所述柱狀半導體通道的管狀閘極介電部分;閘極電極帶,橫向包圍相應行的所述柱狀半導體通道,所述柱狀半導體通道沿第二水平方向佈置且沿所述第一水平方向彼此橫向間隔開;以及第二金屬線,嵌入於第二介電材料層中,沿所述第一水平方向橫向地延伸且接觸相應列的所述柱狀半導體通道的頂部表面。
  8. 如請求項7所述的半導體元件,其中二維陣列的所 述柱狀半導體通道中的每一所述柱狀半導體通道接觸所述鐵電介電層的頂部表面。
  9. 一種形成半導體元件的方法,包括:在介電材料層的上部部分內形成沿第一水平方向延伸的第一金屬線;在所述第一金屬線的頂部表面上方沉積鐵電介電層;在所述鐵電介電層上方形成二維陣列的柱狀半導體通道,其中每一列所述柱狀半導體通道形成於所述第一金屬線中的相應者上方且電容耦合至所述第一金屬線中的相應者;在二維陣列的所述柱狀半導體通道上方沉積閘極介電層;在所述閘極介電層上方形成閘極電極帶,其中所述閘極電極帶中的每一者橫向包圍相應行的所述柱狀半導體通道;以及在二維陣列的所述柱狀半導體通道上方形成第二金屬線,其中所述第二金屬線中的每一者直接形成於相應列的所述柱狀半導體通道的頂部表面上。
  10. 如請求項9所述的形成半導體元件的方法,更包括:在所述閘極電極帶上方沉積介電基質層;以及平坦化所述介電基質層、所述閘極電極帶以及所述閘極介電層,其中:二維陣列的所述柱狀半導體通道內的每一所述柱狀半導體通道具有相應頂部表面,所述相應頂部表面位於包含所述介電基質層的平坦化頂部表面的水平面內;以及每一所述閘極電極帶具有位於包含所述介電基質層的所述平坦化頂部表面的所述水平面內的一行環形頂部表面。
TW110110364A 2020-06-22 2021-03-23 半導體元件及其形成方法 TWI769750B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063042025P 2020-06-22 2020-06-22
US63/042,025 2020-06-22
US17/096,993 2020-11-13
US17/096,993 US11515313B2 (en) 2020-06-22 2020-11-13 Gated ferroelectric memory cells for memory cell array and methods of forming the same

Publications (2)

Publication Number Publication Date
TW202201741A TW202201741A (zh) 2022-01-01
TWI769750B true TWI769750B (zh) 2022-07-01

Family

ID=78061901

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110110364A TWI769750B (zh) 2020-06-22 2021-03-23 半導體元件及其形成方法

Country Status (5)

Country Link
US (2) US11515313B2 (zh)
KR (1) KR20210157841A (zh)
CN (1) CN113517294A (zh)
DE (1) DE102020130395A1 (zh)
TW (1) TWI769750B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764304B2 (en) * 2021-07-28 2023-09-19 Powerchip Semiconductor Manufacturing Corporation Semiconductor device and method of manufacturing the same
KR102633513B1 (ko) * 2022-02-21 2024-02-06 한국과학기술원 강유전체 기반 메모리 소자 및 그 제조 방법
US11978500B2 (en) 2022-05-25 2024-05-07 Nanya Technology Corporation Memory device having protrusion of word line
TWI833296B (zh) * 2022-05-25 2024-02-21 南亞科技股份有限公司 具有突出字元線的記憶體元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201933613A (zh) * 2017-11-15 2019-08-16 台灣積體電路製造股份有限公司 半導體裝置及其形成方法
TW202010111A (zh) * 2018-08-21 2020-03-01 台灣積體電路製造股份有限公司 鐵電mfm結構

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010038788A (ko) * 1999-10-27 2001-05-15 윤종용 씨오비형 비파괴 읽기 강유전체 랜덤 액세스 메모리 및 그 작동 방법
KR100399436B1 (ko) 2001-03-28 2003-09-29 주식회사 하이닉스반도체 마그네틱 램 및 그 형성방법
US8213226B2 (en) * 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8859367B2 (en) * 2010-07-09 2014-10-14 Micron Technology, Inc. Gate constructions of recessed access devices and methods of forming gate constructions of recessed access devices
US11355381B2 (en) * 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
WO2012121265A1 (en) * 2011-03-10 2012-09-13 Semiconductor Energy Laboratory Co., Ltd. Memory device and method for manufacturing the same
KR20140058278A (ko) * 2012-11-06 2014-05-14 삼성전자주식회사 저항성 메모리 소자, 저항성 메모리 어레이 및 저항성 메모리 소자의 제조 방법
US9754874B2 (en) 2013-10-25 2017-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Inductive capacitive structure and method of making the same
US9698261B2 (en) 2014-06-30 2017-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical device architecture
US9780100B1 (en) * 2016-09-23 2017-10-03 International Business Machines Corporation Vertical floating gate memory with variable channel doping profile
US10608085B2 (en) * 2016-12-23 2020-03-31 Imec Vzw Two dimensional field effect transistors
US10256272B2 (en) * 2017-06-26 2019-04-09 Sandisk Technologies Llc Resistive memory device containing etch stop structures for vertical bit line formation and method of making thereof
US10714400B2 (en) 2017-08-30 2020-07-14 Micron Technology, Inc. Methods of forming semiconductor structures comprising thin film transistors including oxide semiconductors
US10403631B1 (en) * 2018-08-13 2019-09-03 Wuxi Petabyte Technologies Co., Ltd. Three-dimensional ferroelectric memory devices
JP7185149B2 (ja) * 2018-08-31 2022-12-07 株式会社ソシオネクスト 半導体装置
CN109768087B (zh) * 2018-12-20 2021-04-27 中国科学院微电子研究所 半导体器件、其制造方法、集成电路及电子设备
US11997855B2 (en) * 2020-05-28 2024-05-28 Taiwan Semiconductor Manufacturing Company, Ltd. Back-end-of-line selector for memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201933613A (zh) * 2017-11-15 2019-08-16 台灣積體電路製造股份有限公司 半導體裝置及其形成方法
TW202010111A (zh) * 2018-08-21 2020-03-01 台灣積體電路製造股份有限公司 鐵電mfm結構

Also Published As

Publication number Publication date
DE102020130395A1 (de) 2021-12-23
KR20210157841A (ko) 2021-12-29
US20210398994A1 (en) 2021-12-23
US12069868B2 (en) 2024-08-20
US20230090306A1 (en) 2023-03-23
TW202201741A (zh) 2022-01-01
US11515313B2 (en) 2022-11-29
CN113517294A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
TWI769750B (zh) 半導體元件及其形成方法
TWI806071B (zh) 記憶體結構及形成記憶體結構的方法
KR102602498B1 (ko) 박막 트랜지스터 선택기를 갖는 메모리 셀 디바이스 및 그 형성 방법
CN113140588A (zh) 存储器件及其制造方法
US12057471B2 (en) Ferroelectric tunnel junction devices with a sparse seed layer and methods for forming the same
TWI786644B (zh) 具有平面薄膜電晶體(tft)選擇器的高密度記憶體裝置以及其製造方法
US11917832B2 (en) Ferroelectric tunnel junction devices with metal-FE interface layer and methods for forming the same
KR20210158323A (ko) 이중층 채널 트랜지스터 및 이의 형성 방법
US20230209836A1 (en) Memory device and method for fabricating the same
US20240357834A1 (en) Gated Ferroelectric Memory Cells for Memory Cell Array and Method for Forming the Same
TW202310196A (zh) 記憶體結構及其製造與控制方法