TWI767403B - 沉積具有減少的表面粗糙度的材料之方法 - Google Patents

沉積具有減少的表面粗糙度的材料之方法 Download PDF

Info

Publication number
TWI767403B
TWI767403B TW109138793A TW109138793A TWI767403B TW I767403 B TWI767403 B TW I767403B TW 109138793 A TW109138793 A TW 109138793A TW 109138793 A TW109138793 A TW 109138793A TW I767403 B TWI767403 B TW I767403B
Authority
TW
Taiwan
Prior art keywords
containing precursor
silicon
boron
less
precursor
Prior art date
Application number
TW109138793A
Other languages
English (en)
Other versions
TW202124763A (zh
Inventor
楊毅
克里希納 尼塔拉
卡希克 加納基拉曼
艾古特 艾汀
狄瓦卡 凱德拉雅
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202124763A publication Critical patent/TW202124763A/zh
Application granted granted Critical
Publication of TWI767403B publication Critical patent/TWI767403B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

示例性沉積方法可包括以下步驟:輸送含矽前驅物及含硼前驅物至半導體處理腔室的處理區域。該等方法可包括以下步驟:為含氫前驅物提供該含矽前驅物及該含硼前驅物。該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的流率比率大於或約為2:1。該等方法可包括以下步驟:在半導體處理腔室的該處理區域內形成所有前驅物的電漿。該等方法可包括以下步驟:在該半導體處理腔室的該處理區域內設置的基板上沉積矽硼材料。

Description

沉積具有減少的表面粗糙度的材料之方法
本技術相關於半導體沉積處理。更特定地,本技術相關於具有減少的表面粗糙度的沉積材料的方法。
藉由在基板表面上產生複雜圖案化的材料層的處理使得積體電路成為可能。在基板上產生圖案化材料需要受控的形成和移除暴露材料的方法。隨著裝置尺寸的持續縮小,材料的均勻性可能會影響後續操作。例如,遮罩材料的表面粗糙度可能影響後續的蝕刻均勻性。
因此,需要可用於生產高品質裝置和結構的改進的系統和方法。藉由本技術來解決這些和其他需求。
示例性沉積方法可包括以下步驟:輸送含矽前驅物及含硼前驅物至半導體處理腔室的處理區域。該等方法可包括以下步驟:為含氫前驅物提供該含矽前驅物及該含硼前驅物。該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的流率比率可大於或約為2:1。該等方法可包括以下步驟:在半導體處理腔室的該處理區域內形成所有前驅物的電漿。該等方法可包括以下步驟:在該半導體處理腔室的該處理區域內設置的基板上沉積矽硼材料。
在一些實施例中,該矽硼材料的特徵可在於:小於或約為2 nm的沉積的表面粗糙度。在半導體處理腔室的該處理區域內形成所有前驅物的該電漿期間可將電漿功率密度維持在大於或約為0.5 W/cm2 。在該基板上沉積該矽硼材料期間可將基板溫度維持在大於或約為攝氏400度。在該基板上沉積該矽硼材料期間可將壓力維持在小於或約為10 Torr。該等方法可包括以下步驟:為氬前驅物提供該含矽前驅物及該含硼前驅物。該等方法可包括以下步驟:在該沉積步驟之後,執行該矽硼材料的熱退火。該含矽前驅物可為或包括矽烷,且該含硼前驅物可為或包括乙硼烷。
本技術的一些實施例可包含沉積方法。該等方法可包括以下步驟:輸送含矽前驅物及含硼前驅物至半導體處理腔室的處理區域。該等方法可包括以下步驟:在半導體處理腔室的該處理區域內形成該含矽前驅物及該含硼前驅物的電漿。該等方法可包括以下步驟:在該半導體處理腔室的該處理區域內設置的基板上沉積矽硼材料。該矽硼材料的特徵可在於:小於或約為1.5 nm的沉積的表面粗糙度。
在一些實施例中,該等方法可包括以下步驟:為含氫前驅物提供該含矽前驅物及該含硼前驅物。該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的流率比率可大於或約為2:1。該等方法可包括以下步驟:為氬前驅物提供該含矽前驅物及該含硼前驅物。該氬前驅物對該含氫前驅物的流率比率可小於或約為1:1。該等方法可包括以下步驟:在該沉積步驟之後,將該矽硼材料熱退火第一時間週期。在該沉積步驟期間可將該基板維持在第一溫度。在將該矽硼材料熱退火時可將該基板維持在第二溫度,且該第二溫度可大於該第一溫度。該第二溫度可大於或約為攝氏500度。在半導體處理腔室的該處理區域內形成該含矽前驅物及該含硼前驅物的該電漿時可將電漿功率維持在大於或約為2.0 kW。
本技術的一些實施例可包含沉積方法。該等方法可包括以下步驟:輸送含矽前驅物及含硼前驅物至半導體處理腔室的處理區域。該等方法可包括以下步驟:在半導體處理腔室的該處理區域內形成所有前驅物的電漿。在半導體處理腔室的該處理區域內形成所有前驅物的該電漿期間可將電漿功率維持在大於或約為1.0 kW。該等方法可包括以下步驟:在該半導體處理腔室的該處理區域內設置的基板上沉積矽硼材料。
在一些實施例中,該等方法可包括以下步驟:為含氫前驅物提供該含矽前驅物及該含硼前驅物。該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的流率比率可大於或約為2:1。該等方法可包括以下步驟:為氬前驅物提供該含矽前驅物及該含硼前驅物。該氬前驅物對該含氫前驅物的流率比率可小於或約為1:1。該等方法可包括以下步驟:在該沉積步驟之後,執行該矽硼材料的熱退火第一時間週期。在該沉積步驟期間可將該基板維持在第一溫度。在該矽硼材料的該熱退火步驟期間可將該基板維持在第二溫度,且該第二溫度可大於該第一溫度。
相對於常規系統和技術,本技術可提供許多益處。例如,該等處理可產生特徵在於減少的表面粗糙度的膜。另外,本技術的實施例的操作可產生可促進處理操作的改進的遮罩材料。結合以下描述和附圖更詳細地描述了這些和其他實施例以及它們的許多優點和特徵。
在半導體製造期間,可利用各種沉積和蝕刻操作在基板上產生結構。可使用遮罩材料以允許材料被部分蝕刻,或被蝕刻以跨基板產生特徵。隨著裝置尺寸持續減小,且材料之間改進的選擇性可簡化結構的形成,利用改進的硬遮罩可便於製造。例如,與熱生產的非晶矽硬遮罩相比,摻入硼的矽膜的特徵可在於改進的硬度和其他材料性質,從而便於將膜用作遮罩材料。然而,儘管熱產生的矽的特徵可在於實質光滑的表面,摻入硼的矽膜的特徵可在於增加的表面粗糙度。
本技術可藉由調整沉積參數和材料以在沉積期間執行表面處理來克服這些限制。例如,本技術可包括在沉積期間蝕刻膜層的暴露的特徵。這可便於更均勻的表面剖面,而可減少或限制沉積期間的表面粗糙度。在描述了可執行下面論述的電漿處理操作的根據本技術的實施例的腔室的一般態樣之後,可論述特定的方法和部件配置。應理解,本技術並不意欲限制所論述的特定膜和處理,因為所描述的技術可用以改進許多膜形成處理,且可應用於各種處理腔室和操作。
圖1展示了根據本技術的一些實施例的示例性處理腔室100的橫截面視圖。該圖可圖示出併入本技術的一或多個態樣及/或可執行根據本技術的實施例的一或多個操作的系統的概圖。可在下面進一步描述腔室100的附加細節或所執行的方法。根據本技術的一些實施例,腔室100可用於形成膜層,儘管應理解,該等方法可相似地在其中可能發生膜形成的任何腔室內執行。處理腔室100可包括腔室主體102、設置在腔室主體102內部的基板支撐件104、及與腔室主體102耦合並將基板支撐件104封閉在處理空間120中的蓋組件106。可將基板103通過開口126提供到處理空間120,常規上可使用狹縫閥或門密封開口126以用於處理。在處理期間,基板103可位於基板支撐件的表面105上。如箭頭145所指示,基板支撐件104可沿著軸147旋轉,軸147可位於基板支撐件104的軸件144所在的位置。替代地,可在沉積處理期間根據需要將基板支撐件104提高以旋轉。
電漿剖面調變器111可設置在處理腔室100中,以控制電漿跨設置在基板支撐件104上的基板103的分佈。電漿剖面調變器111可包括第一電極108,第一電極108可設置以相鄰於腔室主體102,且可將腔室主體102與蓋組件106的其他部件分開。第一電極108可為蓋組件106的部分,或可為單獨的側壁電極。第一電極108可為環形或環狀構件,且可為環狀電極。第一電極108可為繞著處理腔室100的圓周的連續環而圍繞處理空間120,或如果需要可在所選位置處為非連續。第一電極108也可為穿孔電極,例如穿孔環或網狀電極,或可為平板電極,如,例如次級氣體分配器。
一或多個隔離器110a,110b(可為介電材料,例如陶瓷或金屬氧化物,例如氧化鋁及/或氮化鋁)可與第一電極108接觸且將第一電極108與氣體分配器112及與腔室主體102電性及熱性分離。氣體分配器112可界定用於將處理前驅物分配進入處理空間120的孔隙118。氣體分配器112可與第一電功率源142耦合,例如RF產生器、RF功率源、DC功率源、脈衝DC功率源、脈衝RF功率源、或可與處理腔室耦合的任何其他功率源。在一些實施例中,第一電功率源142可為RF功率源。
氣體分配器112可為導電氣體分配器或非導電氣體分配器。氣體分配器112也可由導電和​​非導電部件形成。例如,氣體分配器112的主體可為導電的,同時氣體分配器112的面板可為非導電的。氣體分配器112可例如由圖1中所展示的第一電功率源142供電,或在一些實施例中,氣體分配器112可與地面耦合。
第一電極108可與可控制處理腔室100的接地路徑的第一調諧電路128耦合。第一調諧電路128可包括第一電子感測器130和第一電子控制器134。第一電子控制器134可為或包括可變電容器或其他電路元件。第一調諧電路128可為或包括一或多個電感器132。第一調諧電路128可為處理期間在存在於處理空間120中的電漿條件下實現可變或可控制阻抗的任何電路。在所圖示的一些實施例中,第一調諧電路128可包括並聯耦合在接地和第一電子感測器130之間的第一電路分支和第二電路分支。第一電路分支可包括第一電感器132A。第二電路支路可包括與第一電子控制器134串聯耦合的第二電感器132B。第二電感器132B可設置在第一電子控制器134和將第一和第二電路分支兩者都連接到第一電子感測器130的節點之間。第一電子感測器130可為電壓或電流感測器,且可與第一電子控制器134耦合,第一電子控制器134可賦予對處理空間120內部的電漿條件的一定程度的封閉迴路控制。
第二電極122可與基板支撐件104耦合。第二電極122可被嵌入在基板支撐件104內或與基板支撐件104的表面耦合。第二電極122可為板、穿孔板、網、線屏、或導電元件的任何其他分佈式佈置。第二電極122可為調諧電極,且可藉由導管146與第二調諧電路136耦合,導管146例如是設置在基板支撐件104的軸件144中的具有選定的電阻(例如50歐姆)的電纜。第二調諧電路136可具有第二電子感測器138和第二電子控制器140,第二電子控制器140可為第二可變電容器。第二電子感測器138可為電壓或電流感測器,且可與第二電子控制器140耦合以提供對處理空間120中的電漿條件的進一步控制。
第三電極124(可為偏壓電極及/或靜電吸盤電極)可與基板支撐件104耦合。第三電極可通過濾波器148與第二電功率源150耦合,濾波器148可為阻抗匹配電路。第二電功率源150可為DC功率源、脈衝DC功率源、RF偏壓功率源、脈衝RF源或偏壓功率源,或這些或其他功率源的組合。在一些實施例中,第二電功率源150可為RF偏壓功率。
圖1的蓋組件106和基板支撐件104可與用於電漿或熱處理的任何處理腔室一起使用。在操作中,處理腔室100可賦予對處理空間120中的電漿條件的即時控制。可將基板103設置在基板支撐件104上,且可根據任何所需流量計畫使用入口114使處理氣體可流經蓋組件106。氣體可通過出口152離開處理腔室100。電功率可與氣體分配器112耦合以在處理空間120中建立電漿。在一些實施例中,可使用第三電極124使基板經受電偏壓。
在將處理空間120中的電漿賦能後,可在電漿與第一電極108之間建立電位差。也可在電漿與第二電極122之間建立電位差。然後,可使用電子控制器134、140以調整由兩個調諧電路128和136表示的接地路徑的流動性質。可將​​設定點輸送到第一調諧電路128和第二調諧電路136,以提供對沉積速率和電漿密度均勻性從中心到邊緣的獨立控制。在電子控制器都可為可變電容器的實施例中,電子感測器可調整可變電容器以獨立地最大化沉積速率且最小化厚度非均勻性。
每個調諧電路128、136可具有可變阻抗,可使用個別的電子控制器134、140來調整可變阻抗。在電子控制器134、140是可變電容器的情況下,可選擇每個可變電容器的電容範圍及第一電感器132A和第二電感器132B的電感以提供阻抗範圍。該範圍可取決於電漿的頻率和電壓特徵,而可在每個可變電容器的電容範圍中具有最小值。因此,當第一電子控制器134的電容為最小或最大時,第一調諧電路128的阻抗可能很高,導致電漿形狀在基板支撐件上具有最小的空中或橫向覆蓋。當第一電子控制器134的電容接近使第一調諧電路128的阻抗最小化的值時,電漿的空中覆蓋可成長到最大,從而有效地覆蓋了基板支撐件104的整個工作區域。由於第一電子控制器134的電容偏離最小阻抗設定,電漿形狀可能從腔室壁收縮且基板支撐件的空中覆蓋可能下降。第二電子控制器140可具有相似的效應,隨著第二電子控制器140的電容可改變,增加和減少電漿在基板支撐件上的空中覆蓋。
可使用電子感測器130、138以在封閉迴路中調諧相應電路128、136。取決於所使用的感測器的類型,可將用於電流或電壓的設定點安裝在每個感測器中,且該感測器可配備控制軟體以決定對每個相應電子控制器134、140的調整以最小化與設定點的偏離。因此,可在處理期間選擇並動態控制電漿形狀。應理解,儘管前面論述是基於可為可變電容器的電子控制器134、140,可使用具有可調整特徵的任何電子部件以提供調諧電路128和136可調整的阻抗。
圖2展示了根據本技術的一些實施例的沉積方法200中的示例性操作。該方法可在包括上述處理腔室100的各種處理腔室中執行。方法200可包括多個可選操作,可或不可與根據本技術的方法的一些實施例具體相關聯。例如,描述了許多操作以便提供更大範圍的結構形式,但是對技術而言不是關鍵的,或可藉由容易理解的替代方法來執行。方法200可描述圖3至圖5B中示意性展示的操作,將結合方法200的操作來描述其圖示。應理解,圖式僅圖示了部分示意視圖,且基板可含有具有多種特徵及態樣的任何數量的額外材料和特徵,如圖式中所圖示。
方法200可包括在列出的操作開始之前的額外操作。例如,額外處理操作可包括在半導體基板上形成結構,可包括形成和移除材料兩者。可在可執行方法200的腔室中執行先前的處理操作,或可在將基板輸送進入可在其中執行方法200的半導體處理腔室之前在一或多個其他處理腔室中執行處理。無論如何,方法200可以可選地包括將半導體基板輸送到半導體處理腔室的處理區域,例如上述處理腔室100或可包括上述部件的其他腔室。可在基板支撐件上沉積基板,基板支撐件可為基座,例如基板支撐件104,且可駐留在腔室的處理區域中,例如上述處理空間120。在開始沉積之前,在圖3中圖示了示例性的基板305。
基板305可為可在其上沉積材料的任何數量的材料。基板可為或包括矽、鍺、包括氧化矽或氮化矽的介電材料、金屬材料、或該等材料的任意數量的組合,可為基板305或在基板305上形成的材料。在一些實施例中,可執行可選的處理操作(例如,預處理)以準備用於沉積的基板305的表面。例如,可執行預處理以在基板的表面上提供某些配體終端,且可便於待沉積的膜的成核。例如,作為非限制性實例,氫、氧、碳、氮、或其他分子終端,包括該等原子或自由基的任何組合,例如醯胺基或其他官能團,可被吸附、反應、或在基板305的表面上形成。另外,可執行材料移除,例如減少天然氧化物或材料的蝕刻,或可準備用於沉積的基板305的一或多個暴露表面的任何其他操作。
在操作205處,可將一或多個前驅物輸送到腔室的處理區域。例如,在可形成摻入硼的矽膜的示例性實施例中,可將含矽前驅物和含硼前驅物輸送到處理腔室的處理區域。可在本技術的一些實施例中執行電漿增強的沉積,這可便於材料反應和沉積。如上所述,本技術的一些實施例可包含矽硼材料的形成或沉積,而常規上特徵可在於增加的表面粗糙度,例如,諸如與熱生產的矽膜相比。在一些實施例中,這些矽硼材料的成核可在基板305上形成島部405a,如圖4A中所圖示。該等島部可在初始膜形成期間以三維方式形成達不同高度,並可維持於膜生長期間。
本技術的一些實施例可包括在操作210處額外提供含氫前驅物,且為含氫前驅物提供含矽前驅物和含硼前驅物。在操作215處,可使用所有所輸送的前驅物以在半導體處理腔室的處理區域內形成電漿。在操作220處,可將矽硼材料沉積在基板305上。在一些實施例中,藉由摻入含氫前驅物,可減少或限制在成核期間形成的島部。
例如,如圖4B中所圖示,島部405b可形成為比島部405a更低或更小的程度。藉由摻入額外的氫源,可在沉積材料的同時執行膜修改或剖面蝕刻。例如,通過與由矽硼材料形成的特徵的反應及/或實體相互作用,氫自由基可修整島部的形成,同時產生更均勻的形成剖面。因此,該等島部相對於常規處理可能不會延伸到最大程度。為了在處理中提供足夠的氫自由基,可以比含矽前驅物或含硼前驅物之一者或兩者更大的流率包括含氫前驅物。例如,在一些實施例中,含氫前驅物對含矽前驅物及/或含硼前驅物之任一者或兩者的流率比率可大於或約為1:1,且在一些實施例中可大於或約為2:1,大於或約為3:1,大於或約為4:1,大於或約為5:1,大於或約為6:1,大於或約為8:1,大於或約為10:1,大於或約為15:1,大於或約為20:1,大於或約為25:1,大於或約為30:1,大於或約為35:1,大於或約為40:1,大於或約為45:1,大於或約為50:1,或更大。如將在下面進一步說明的,在一些實施例中,可執行進一步的稀釋,其中氫對矽及/或硼前驅物的比率可大於或約為100:1,且可大於或約為為500:1,大於或約為1,000:1,大於或約為1,500:1,大於或約為2,000:1,大於或約為2,500:1,或更大。
例如,取決於所使用的前驅物,可以小於或約為500 sccm的流率來輸送含矽前驅物,且可以小於或約為400 sccm,小於或約為300 sccm,小於或約為200 sccm,小於或約為100 sccm,小於或約為90 sccm,小於或約為80 sccm,小於或約為70 sccm,小於或約為60 sccm,小於或約為50 sccm,或更小的流率來輸送。相似地,可以小於或約為1,000 sccm的流率來輸送含硼前驅物,且可以小於或約為800 sccm,小於或約為600 sccm,小於或約為500 sccm,小於或約為450 sccm,小於或約為400 sccm,小於或約為350 sccm,小於或約為300 sccm,小於或約為250 sccm,小於或約為200 sccm,或更小的流率來輸送含硼前驅物。也可使用這些範圍內的任何額外範圍,或作為任何所陳述或未陳述數字的組合。
可以大於或約為1,000 sccm來輸送含氫前驅物,且可以大於或約為1,200 sccm,大於或約為1,400 sccm,大於或約為1,600 sccm,大於或約為1,800 sccm,大於或約為2,000 sccm,大於或約為2,200 sccm,大於或約為2,400 sccm,大於或約為2,600 sccm,大於或約為2,800 sccm,大於或約為3,000 sccm或更多的流率來輸送。增加含氫前驅物可進一步使被沉積的膜的表面光滑,然而,在沉積的膜內可能發生增加的氫摻入。據此,在一些實施例中,含氫前驅物可以小於或約為4,000 sccm的流率來輸送,且可以小於或約為3,800 sccm,小於或約為3,600 sccm,小於或約為3,400 sccm,小於或約為3,200 sccm,小於或約為3,000 sccm,小於或約為2,800 sccm,小於或約為2,600 sccm,或更小的流率來輸送。另外,在其中可執行更高稀釋的一些實施例中,含氫前驅物可以大於或約為5,000 sccm的流率來輸送,且可以大於或約為10,000 sccm,大於或約為15,000 sccm,大於或約為20,000 sccm,大於或約為25,000 sccm,或更大的流率來輸送。在一些實施例中,可將矽或硼前驅物的流率進一步減少,例如小於或約為200 sccm,且可減小至小於或約為150 sccm,小於或約為100 sccm,小於或約為50 sccm,小於或約為30 sccm,小於或約為20 sccm,小於或約為10 sccm,或更小。
可在基板305上將膜沉積至任何厚度。如上所述,所產生的膜的表面粗糙度可不限於膜成核期間的問題。例如,在本技術的一些態樣中,膜生長和電漿終止也可影響表面粗糙度。例如,當已發生足夠的膜生長時,可藉由熄滅處理腔室內的電漿來停止處理,諸如,例如藉由停止向產生電漿的電極供電。在沉積完成之後,電漿終止也可藉由引起一定量的殘留離子實體相互作用而增加表面粗糙度。可將成核效應和電漿終止效應都評估為一致的,而無視於形成的膜的厚度。然而,測試已展示,沉積膜的粗糙度隨著膜厚度的增加而增加。因此,在膜生長期間也會發生粗糙度效應,且隨著膜厚度的增加,膜的粗糙度也可進一步增加。如圖5A中所圖示,在成核期間形成的島部405a不僅可維持,而且可在沉積期間生長或擴展而沒有本技術通篇中描述的一或多個特徵。因此,所產生的膜505a的特徵可在於增加的粗糙度,而可影響後續蝕刻的均勻性。
例如,熱生產的矽(例如多晶矽或其他矽材料)的特徵可在於相對低的平均粗糙度,例如小於或約為0.5 nm,或小於或約為0.2 nm。該膜的特徵也可在於相對低的粗糙度範圍,例如所形成的膜上的最高峰和最低峰之間的差異。例如,粗糙度範圍可小於或約為1.5 nm,或小於或約為1 nm。然而,對於不具有本技術的一或多個態樣生產的矽硼膜,對於相似厚度的膜,平均粗糙度可大於或約為2 nm,大於或約為3 nm,或更大,儘管注意粗糙度可能會隨著膜厚度的增加而增加。此外,再次取決於膜厚度,所產生的矽硼材料的粗糙度範圍可大於或約為10 nm,且可大於或約為15 nm,或更大。在隨後的蝕刻操作期間,跨膜的這些較大的差距可能會挑戰蝕刻操作的均勻性,且可需要執行額外的操作,例如額外的化學機械拋光操作。
然而,本技術可藉由利用額外的含氫前驅物執行實質同時的蝕刻,或藉由執行下文進一步描述的一或多個額外的調整,來減少或大幅度減少所生產的矽硼膜的平均粗糙度和粗糙度範圍兩者。如圖5B中所圖示,產生的膜505b的特徵可在於小於或約為2 nm的平均粗糙度,且特徵可在於小於或約為1.5 nm,小於或約為1.0 nm,小於或約為0.9 nm,小於或約為0.8 nm,小於或約為0.7 nm,小於或約為0.6 nm,小於或約為0.5 nm,小於或約為0.4 nm,小於或約為0.3 nm,小於或約為0.2 nm,或更小的平均粗糙度。另外,在一些實施例中,可實質上控制粗糙度而無視於膜厚度。這可允許避免額外的化學機械拋光操作,因為所沉積的膜的特徵可在於所圖示的任何平均粗糙度範圍。另外,跨沉積膜的粗糙度範圍可小於或約為10 nm,且可小於或約為9 nm,小於或約為8 nm,小於或約為7 nm,小於或約為6 nm,小於或約為5 nm,小於或約為4 nm,小於或約為3 nm,小於或約為2 nm,小於或約為1 nm,或更小。因此,可生產改進的材料,可賦予優於常規材料和處理的膜和遮罩的優點,並且可藉由依序限制或減少拋光操作的次數來潛在地減少製造操作。
關於含矽前驅物和含硼前驅物,本技術可使用任何數量的前驅物。例如,含矽前驅物可包括任何含矽材料,例如有機矽烷,其可包括矽烷、乙矽烷和其他材料。額外的含矽材料可包括矽、碳、氧、或氮,例如三甲矽烷基胺。含硼材料可包括硼烷,例如硼烷、乙硼烷或其他多中心鍵合的硼材料,以及可用於生產含矽硼的材料的任何其他含硼材料。矽膜中的硼摻入可基於任何百分比的摻入。例如,所生產的膜可包含大於或約為5%的硼摻入,且在一些實施例中,可包括大於或約為10%的硼摻入,大於或約為15%的硼摻入,大於或約為20%的硼摻入,大於或約為25%的硼摻入,大於或約為30%的硼摻入,大於或約為35%的硼摻入,大於或約為40%的硼摻入,大於或約為45%的硼摻入,大於或約為50%的硼摻入,大於或約為55%的硼摻入,大於或約為60%的硼摻入,大於或約為65%的硼摻入,大於或約為70%的硼摻入,大於或約為75%的硼摻入,大於或約為80%的硼摻入,大於或約為85%的硼摻入,大於或約為90%的硼摻入,大於或約為95%的硼摻入,或更大。
也可調諧沉積的一或多個額外態樣以改進所執行的沉積的態樣。例如,電漿功率可影響氫離解的程度。可使用任何數量的含氫前驅物,且在一些實施例中,可包括雙原子氫。對於一些含矽硼的材料,該等材料在可包括最小電漿增強的沉積溫度下具有足夠的反應性。例如,一些常規技術利用小於或約為200瓦的電漿功率。本技術可利用更高或遠遠更高的電漿功率,這可便於氫離解,且可增加氫自由基,這可減少粗糙度,如先前所說明。
例如,在一些實施例中,電漿功率可維持在大於或約為1,000瓦,且可維持在大於或約為1,200瓦,大於或約為1,400瓦,大於或約為1,600瓦,大於或約為1,800瓦,大於或約為2,000瓦,大於或約為2,200瓦,大於或約為2,400瓦,大於或約為2,600瓦,大於或約為2,800瓦,大於或約為3,000瓦,或更高。這種增強的電漿功率也可改進其他前驅物的離解和活化,而也可增加沉積率。因此,儘管在沉積期間同時蝕刻了材料,如果不比常規沉積有所改進,膜的沉積率也可為可相比的。然後,可持續地或順序地維持用於剖面修改的沉積和同時蝕刻,直到已產生目標膜厚度。取決於所執行的電漿處理,也可維持電漿功率密度,這可允許頻率和功率的調變。例如,在一些實施例中,電漿功率密度可維持在大於或約為0.25 W/cm2 ,且可維持在大於或約為0.5 W/cm2 ,大於或約為1.0 W/cm2 ,大於或約為1.5 W/cm2 ,大於或約為2.0 W/cm2 ,大於或約為2.5 W/cm2 ,或更高。
基板的溫度可額外影響沉積。例如,在一些實施例中,基板可維持在大於或約為攝氏400度的溫度,且可維持在大於或約為攝氏420度,大於或約為攝氏440度,大於或約為攝氏460度,大於或約為攝氏480度,大於或約為攝氏500度,或更高的溫度。藉由執行根據本技術的一些實施例的沉積,可在沉積期間執行氫蝕刻以減少形成的膜的粗糙度。然而,例如隨著增強電漿和氫的輸送而產生的氫自由基的量也可增加在所產生的膜中摻入的氫的量。這可能會增加膜內的壓縮應力。例如,沉積膜的特徵可在於大於或約為-800 MPa的壓縮應力,可部分地基於氫的摻入。因此,在一些實施例中,方法200可包括減少膜中氫摻入的操作。
例如,在一些實施例中,方法200可包括在可選的操作225處將形成的含矽硼材料熱退火。雖然可在第一溫度下執行沉積,可在大於第一溫度的第二溫度下執行熱退火。例如,可在大於或約為攝氏480度的溫度下執行熱退火,且可在大於或約為攝氏500度,大於或約為攝氏510度,大於或約為攝氏520度,大於或約為攝氏530度,大於或約為攝氏540度,大於或約為攝氏550度,大於或約為攝氏560度,大於或約為攝氏570度,大於或約為攝氏580度,大於或約為攝氏590度,大於或約為攝氏600度,或更高的溫度下執行熱退火。可執行熱退火一時間週期,該時間週期可大於或約為0.5分鐘,且可大於或約為1分鐘,大於或約為2分鐘,大於或約為3分鐘,大於或約為4分鐘,大於或約為5分鐘,大於或約為6分鐘,或更長。
藉由執行熱退火,可移除摻入膜內的一定量的氫,這可緩解壓縮應力。例如,在一些實施例中,在熱退火之後,膜內的壓縮應力可維持在小於或約為-700 MPa,且可小於或約為-650 MPa,小於或約為-600 MPa,小於或約為-550 MPa,小於或約為-500 MPa,小於或約為-450 MPa,小於或約為-400 MPa,小於或約為-350 MPa,小於或約為-300 MPa,小於或約為-250 MPa,小於或約為-200 MPa,小於或約為-150 MPa,小於或約為-100 MPa,或更小。
處理區域內的壓力可影響在沉積期間執行的離子化的量和實體相互作用。藉由降低處理壓力,可發生增加的離子相互作用。據此,在一些實施例中,沉積期間的處理壓力可維持在小於或約為50 Torr,且可維持在小於或約為40 Torr,小於或約為30 Torr,小於或約為20 Torr,小於或約為15 Torr,小於或約為10 Torr,小於或約為9 Torr,小於或約為8 Torr,小於或約為7 Torr,小於或約為6 Torr,小於或約為5 Torr,小於或約為4 Torr,小於或約為3 Torr,小於或約為2 Torr,或更小。
測試已展示,摻入氬可增加粗糙度,因此限制或排除氬可改進膜的粗糙度。然而,當將氬從處理前驅物中排除時,測試已展示膜剝落可能會增加。據此,在一些實施例中,氬可仍被包含在含矽前驅物和含硼前驅物中。為了限制對粗糙度的影響,可將氬前驅物對含氫前驅物的流率比率維持在小於或約為2:1,且可維持在小於或約為1:1,小於或約為0.8:1,小於或約為0.7:1,小於或約為0.6:1,小於或約為0.5:1,小於或約為0.4:1,小於或約為0.3:1,小於或約為0.2:1,小於或約為0.1:1,或更小。
處理參數的組合或進一步調整也可能影響並可改進生產的膜的額外態樣。將硼摻入硬遮罩膜中可改進對許多膜的選擇性。由於膜堆疊包括更大數量的材料,兩者均與硬遮罩開啟操作以及隨後的膜蝕刻相關,提供改進的選擇性可進一步減少所執行的額外操作的數量。膜結晶度的增加也可增加蝕刻選擇性,然而,隨著膜結晶度的增加,常規技術已降低或惡化了線邊緣粗糙度和線寬粗糙度。因此,許多技術試圖將膜維持為非晶矽。本技術可至少部分地增加所形成的膜的結晶度,這可增加蝕刻選擇性,儘管藉由限制結晶度,本技術可維持線邊緣粗糙度和線寬粗糙度。
當相對於矽和硼前驅物利用根據本技術的實施例的增加的氫流率比率時,可增加結晶度。然而,藉由利用如前所述的處理參數,結晶度可維持在小於或約為50 Å,且可維持在小於或約為40 Å,小於或約為30 Å,小於或約為20 Å,小於或約為15 Å,小於或約為10 Å,小於或約為7 Å,小於或約為5 Å,小於或約為3 Å,或更小,儘管當結晶度增加到大於或約為2 Å或更高時,可賦予改進的蝕刻選擇性。
然而,隨著電漿中氫含量的增加,膜內的氫摻入也可增加。如前所述,這可影響膜應力,且可額外影響其他膜特徵。例如,硬遮罩膜的特徵可在於用於不同波長的光的消光係數,這可影響光刻操作。非晶矽材料的特徵可在於在約0.2的特定參數處的消光係數,基於較低的反射率,可允許在高達約800 nm的膜厚度下進行光刻,這可影響通過遮罩的視覺。矽和硼膜的特徵可在於,對於相似的參數,消光係數增加,儘管隨著氫摻入的增加,消光係數可至少部分降低。例如,當硼摻入增加時,消光係數可增加至大於或約為0.3,大於或約為0.35,大於或約為0.4,大於或約為0.45,或更高。
對於光而言,更高的消光係數的效應是可能挑戰光刻,且可能需要額外的處理。例如,這些增加的消光係數可將光刻的可見度限制為小於或約為400 nm,小於或約為300 nm或更低的膜厚度。然而,藉由增加氫的摻入,利用增加的電漿密度,消光係數可降低到小於或約為0.35,且可降低到小於或約為0.33,小於或約為0.30,小於或約為0.28,小於或約為0.25,或更小。這可允許光刻擴展到大於或約為400 nm,大於或約為450 nm,大於或約為500 nm,或更大的厚度,而無需執行額外的對準鍵開啟操作。藉由增加溫度和電漿特徵,即使增加氫的摻入,可形成膜結構以改進特徵,如消光係數和蝕刻選擇性。也可藉由在較低的溫度下(例如小於攝氏400度或小於約攝氏350度)處理來增加氫的摻入,然而,如上所述,這種生產的膜的膜性質差異可導致在後續處理中額外的氫逸出。藉由在更高的溫度下執行處理,結合如上所述形成的增加的氫的膜可賦予增加的熱穩定性。
在一些實施例中,可使用功率和頻率兩者來調整電漿特徵。例如,在較低的頻率下,例如小於或約為20 MHz,包括13.56 MHz,例如,大於或約為2000 W或大於或約為2500 W的電漿功率可產生所述膜特徵。應理解,也可使用其他電漿特徵。例如,藉由調整電漿頻率,也可調整電漿功率。當電漿頻率增加到例如高於或約為40 MHz,高於或約為60 MHz,甚至進入微波頻率範圍時,電漿功率可據此降低,這可改進腔室穩定性和彈性。FTIR分析表明,在這些電漿特徵下,與硼和氫相關的峰可能會增加透射,並會向較高波長稍微平移。這可指示結構的改進的穩定性,這可在後續的處理期間賦予膜增加的熱穩定性。因此,在一些實施例中,藉由增加結晶度,也可賦予較低的消光係數和改進的熱穩定性。藉由執行根據本技術的實施例的沉積,可賦予減少的含矽硼的膜的粗糙度,這可改進硬遮罩的有效性。在隨後的可選操作230的蝕刻期間,與未實施本技術時相比,使用本技術可維持蝕刻的臨界尺寸更加均勻。藉由減少表面粗糙度,可賦予改進的蝕刻和結構開發。
在先前的描述中,出於說明的目的,已闡述了許多細節以便提供對本技術的各種實施例的理解。然而,對於發明所屬技術領域中具有通常知識者而言將顯而易見的是,可在沒有這些細節中的一些或具有額外細節的情況下實踐某些實施例。
已揭露了幾個實施例,發明所屬技術領域中具有通常知識者將認知到,在不脫離實施例的精神的情況下,可使用各種修改、替代構造、和等同物。另外,為了避免不必要地混淆本技術,沒有描述許多公知的處理和元件。據此,以上描述不應被視為限制本技術的範圍。另外,方法或處理可被描述為依序的或依步驟的,但應理解,操作可同時執行,或以與所列順序不同的順序執行。
在提供數值範圍的情況下,應理解,除非上下文另外明確指出,否則在此範圍的上限和下限之間的每個中間值,直到下限的單位的最小分數也被具體揭露。涵蓋在陳述範圍內的任何陳述值或未陳述中間值與該陳述範圍中的任何其他陳述或中間值之間的任何較窄範圍。這些較小範圍的上限和下限可獨立地包括在該範圍中或排除在該範圍外,且在陳述範圍中任何明確排除的限值下,在該等較小範圍中既不包含任一限值或兩個限值的每個範圍也包括在本技術內。在陳述範圍包括一個或兩個限值的情況下,也包括排除那些包括的限值中的一個或兩個的範圍。
如本文和所附請求項中所使用的,單數形式的「一(a)」,「一(an)」及「該(the)」包括複數引用,除非上下文另外明確指出。因此,例如,對「前驅物」的引用包括複數個該等前驅物,而對「層」的引用包括對一或多個層及發明所屬技術領域中具有通常知識者已知的等同物的引用,等等。
此外,當在本說明書和以下請求項中使用詞語「包括(comprise)」,「包括(comprising)」,「含有(contain)」,「含有(containing)」,「包括(include)」,和「包括(including)」時,意欲指定所陳述的特徵、整數、部件、或操作的存在,但是它們不排除一或多個其他特徵、整數、部件、操作、動作或群組的存在或加入。
100:處理腔室 102:腔室主體 103:基板 104:基板支撐件 105:表面 106:蓋組件 108:第一電極 110a,110b:隔離器 111:電漿剖面調變器 114:入口 118:孔隙 120:處理空間 122:第二電極 124:第三電極 126:開口 128:第一調諧電路 130:第一電子感測器 132:電感器 132A:第一電感器 132B:第二電感器 134:第一電子控制器 136:第二調諧電路 138:第二電子感測器 140:第二電子控制器 142:第一電功率源 144:軸件 145:箭頭 146:導管 147:軸 148:濾波器 150:第二電功率源 152:出口 200:方法 205~230:操作 305:基板 405a~405b:島部 505a~505b:膜
藉由參考說明書的其餘部分和附圖,可實現對所揭露技術的本質和優點的進一步理解。
圖1展示了根據本技術的一些實施例的示例性處理腔室的示意性橫截面視圖。
圖2展示了根據本技術的一些實施例的沉積方法中的示例性操作。
圖3展示了根據本技術的一些實施例的在沉積之前的基板的示意視圖。
圖4A至圖4B展示了根據本技術的一些實施例的在沉積期間的示例性基板的示意視圖。
圖5A至圖5B展示了根據本技術的一些實施例的在沉積期間的示例性基板的示意視圖。
一些圖式被包括為示意圖。應理解,圖式僅用於說明目的,除非特別說明是按比例繪製,否則不應視為按比例繪製。另外,作為示意圖,提供了圖式以幫助理解,且與實際表示相比,圖式可能不包括所有態樣或資訊,且出於說明目的,圖式可能包括誇大的材料。
在附圖中,相似的部件及/或特徵可具有相同的參考標記。進一步地,相同類型的各種部件可藉由在參考標記後面加上在相似部件間進行區分的字母來進行區分。如果在說明書中僅使用第一參考標記,則該描述適用於具有相同的第一參考標記的相似部件之任一者,而與字母無關。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
505b:膜

Claims (20)

  1. 一種沉積具有減少的表面粗糙度的材料之方法,包括以下步驟:輸送一含矽前驅物及一含硼前驅物至一半導體處理腔室的一處理區域;為一含氫前驅物提供該含矽前驅物及該含硼前驅物,其中該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的一體積流率比率大於或約為2:1;在一半導體處理腔室的該處理區域內形成所有前驅物的一電漿;及在該半導體處理腔室的該處理區域內設置的一基板上沉積一矽硼材料。
  2. 如請求項1所述之方法,其中該矽硼材料的特徵在於:小於或約為2nm的一沉積的表面粗糙度。
  3. 如請求項1所述之方法,其中在一半導體處理腔室的該處理區域內形成所有前驅物的該電漿期間將一電漿功率密度維持在大於或約為0.5W/cm2
  4. 如請求項1所述之方法,其中在該基板上沉積該矽硼材料期間將一基板溫度維持在大於或約為攝氏400度。
  5. 如請求項1所述之方法,其中在該基板上沉積該矽硼材料期間將一壓力維持在小於或約為10Torr。
  6. 如請求項1所述之方法,進一步包括以下步 驟:為一氬前驅物提供該含矽前驅物及該含硼前驅物。
  7. 如請求項1所述之方法,進一步包括以下步驟:在該沉積步驟之後,執行該矽硼材料的一熱退火。
  8. 如請求項1所述之方法,其中該含矽前驅物包括矽烷,且其中該含硼前驅物包括乙硼烷。
  9. 一種沉積具有減少的表面粗糙度的材料之方法,包括以下步驟:輸送一含矽前驅物及一含硼前驅物至一半導體處理腔室的一處理區域;在一半導體處理腔室的該處理區域內形成該含矽前驅物及該含硼前驅物的一電漿;及在該半導體處理腔室的該處理區域內設置的一基板上沉積一矽硼材料,其中該矽硼材料的特徵在於:小於或約為1.5nm的一沉積的表面粗糙度。
  10. 如請求項9所述之方法,進一步包括以下步驟:為一含氫前驅物提供該含矽前驅物及該含硼前驅物,其中該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的一體積流率比率大於或約為2:1。
  11. 如請求項10所述之方法,進一步包括以下步驟:為一氬前驅物提供該含矽前驅物及該含硼前驅物,其 中該氬前驅物對該含氫前驅物的一體積流率比率小於或約為1:1。
  12. 如請求項9所述之方法,進一步包括以下步驟:在該沉積步驟之後,將該矽硼材料熱退火一第一時間週期。
  13. 如請求項12所述之方法,其中在該沉積步驟期間將該基板維持在一第一溫度,其中在將該矽硼材料熱退火時將該基板維持在一第二溫度,且其中該第二溫度大於該第一溫度。
  14. 如請求項13所述之方法,其中該第二溫度大於或約為攝氏500度。
  15. 如請求項9所述之方法,其中在一半導體處理腔室的該處理區域內形成該含矽前驅物及該含硼前驅物的該電漿期間將一電漿功率維持在大於或約為2.0kW。
  16. 一種沉積具有減少的表面粗糙度的材料之方法,包括以下步驟:輸送一含矽前驅物及一含硼前驅物至一半導體處理腔室的一處理區域;在一半導體處理腔室的該處理區域內形成所有前驅物的一電漿,其中在一半導體處理腔室的該處理區域內形成所有前驅物的該電漿期間將一電漿功率維持在大於或約為1.0kW;及 在該半導體處理腔室的該處理區域內設置的一基板上沉積一矽硼材料。
  17. 如請求項16所述之方法,進一步包括以下步驟:為一含氫前驅物提供該含矽前驅物及該含硼前驅物,其中該含氫前驅物對該含矽前驅物或該含硼前驅物之任一者的一體積流率比率大於或約為2:1。
  18. 如請求項17所述之方法,進一步包括以下步驟:為一氬前驅物提供該含矽前驅物及該含硼前驅物,其中該氬前驅物對該含氫前驅物的一體積流率比率小於或約為1:1。
  19. 如請求項16所述之方法,進一步包括以下步驟:在該沉積步驟之後,執行該矽硼材料的一熱退火一第一時間週期。
  20. 如請求項19所述之方法,其中在該沉積步驟期間將該基板維持在一第一溫度,其中在該矽硼材料的該熱退火步驟期間將該基板維持在一第二溫度,且其中該第二溫度大於該第一溫度。
TW109138793A 2019-11-08 2020-11-06 沉積具有減少的表面粗糙度的材料之方法 TWI767403B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962933012P 2019-11-08 2019-11-08
US62/933,012 2019-11-08

Publications (2)

Publication Number Publication Date
TW202124763A TW202124763A (zh) 2021-07-01
TWI767403B true TWI767403B (zh) 2022-06-11

Family

ID=75846397

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109138793A TWI767403B (zh) 2019-11-08 2020-11-06 沉積具有減少的表面粗糙度的材料之方法
TW111118035A TWI802410B (zh) 2019-11-08 2020-11-06 沉積具有減少的表面粗糙度的材料之方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111118035A TWI802410B (zh) 2019-11-08 2020-11-06 沉積具有減少的表面粗糙度的材料之方法

Country Status (6)

Country Link
US (2) US11618949B2 (zh)
JP (1) JP2023500375A (zh)
KR (1) KR20220097483A (zh)
CN (1) CN115280467A (zh)
TW (2) TWI767403B (zh)
WO (1) WO2021091835A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618949B2 (en) * 2019-11-08 2023-04-04 Applied Materials, Inc. Methods to reduce material surface roughness
US11935751B2 (en) * 2021-05-25 2024-03-19 Applied Materials, Inc. Boron nitride for mask patterning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553146B (zh) * 2010-12-30 2016-10-11 應用材料股份有限公司 使用微波電漿之薄膜沉積
TW201823159A (zh) * 2016-09-30 2018-07-01 美商蘭姆研究公司 漸變或多層矽碳化物膜之基於遠端電漿的沉積

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276723A (ja) * 1990-03-27 1991-12-06 Nippon Telegr & Teleph Corp <Ntt> 絶縁薄膜およびその形成方法
US6410090B1 (en) * 1998-09-29 2002-06-25 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films
US6500771B1 (en) 2000-01-31 2002-12-31 Chartered Semiconductor Manufacturing Ltd. Method of high-density plasma boron-containing silicate glass film deposition
US6620723B1 (en) * 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6805952B2 (en) * 2000-12-29 2004-10-19 Lam Research Corporation Low contamination plasma chamber components and methods for making the same
US7563715B2 (en) 2005-12-05 2009-07-21 Asm International N.V. Method of producing thin films
US6391803B1 (en) * 2001-06-20 2002-05-21 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US7638161B2 (en) * 2001-07-20 2009-12-29 Applied Materials, Inc. Method and apparatus for controlling dopant concentration during BPSG film deposition to reduce nitride consumption
US20060270190A1 (en) * 2005-05-25 2006-11-30 The Regents Of The University Of California Method of transferring a thin crystalline semiconductor layer
US7633125B2 (en) 2007-08-31 2009-12-15 Intel Corporation Integration of silicon boron nitride in high voltage and small pitch semiconductors
US8563090B2 (en) * 2008-10-16 2013-10-22 Applied Materials, Inc. Boron film interface engineering
US8247332B2 (en) * 2009-12-04 2012-08-21 Novellus Systems, Inc. Hardmask materials
US8329599B2 (en) * 2011-02-18 2012-12-11 Asm Japan K.K. Method of depositing dielectric film by ALD using precursor containing silicon, hydrocarbon, and halogen
JP2013045822A (ja) * 2011-08-23 2013-03-04 Panasonic Corp プラズマ成膜方法及びプラズマ成膜装置
US10371416B2 (en) * 2012-05-04 2019-08-06 The Regents Of The University Of California Spectrally selective coatings for optical surfaces
JP6339236B2 (ja) * 2014-12-22 2018-06-06 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6456185B2 (ja) * 2015-02-26 2019-01-23 東京エレクトロン株式会社 シリコン含有膜の成膜方法
US10763103B2 (en) * 2015-03-31 2020-09-01 Versum Materials Us, Llc Boron-containing compounds, compositions, and methods for the deposition of a boron containing films
US20170178899A1 (en) 2015-12-18 2017-06-22 Lam Research Corporation Directional deposition on patterned structures
US10699897B2 (en) * 2016-01-24 2020-06-30 Applied Materials, Inc. Acetylide-based silicon precursors and their use as ALD/CVD precursors
US9803277B1 (en) * 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US10297445B2 (en) * 2016-06-14 2019-05-21 QROMIS, Inc. Engineered substrate structure for power and RF applications
JP6456893B2 (ja) * 2016-09-26 2019-01-23 株式会社Kokusai Electric 半導体装置の製造方法、記録媒体および基板処理装置
KR102084296B1 (ko) * 2016-12-15 2020-03-03 도쿄엘렉트론가부시키가이샤 성막 방법, 붕소 막 및 성막 장치
US11011371B2 (en) * 2016-12-22 2021-05-18 Applied Materials, Inc. SiBN film for conformal hermetic dielectric encapsulation without direct RF exposure to underlying structure material
JP7518835B2 (ja) * 2019-01-02 2024-07-18 アプライド マテリアルズ インコーポレイテッド 漏れ電流が少ない、ケイ素ホウ素を含む膜の形成方法
US11618949B2 (en) * 2019-11-08 2023-04-04 Applied Materials, Inc. Methods to reduce material surface roughness
US12033848B2 (en) * 2021-06-18 2024-07-09 Applied Materials, Inc. Processes for depositing sib films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553146B (zh) * 2010-12-30 2016-10-11 應用材料股份有限公司 使用微波電漿之薄膜沉積
TW201823159A (zh) * 2016-09-30 2018-07-01 美商蘭姆研究公司 漸變或多層矽碳化物膜之基於遠端電漿的沉積

Also Published As

Publication number Publication date
TW202233882A (zh) 2022-09-01
US11618949B2 (en) 2023-04-04
US20210140045A1 (en) 2021-05-13
JP2023500375A (ja) 2023-01-05
US11939674B2 (en) 2024-03-26
TWI802410B (zh) 2023-05-11
WO2021091835A1 (en) 2021-05-14
CN115280467A (zh) 2022-11-01
TW202124763A (zh) 2021-07-01
KR20220097483A (ko) 2022-07-07
US20230203652A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US11939674B2 (en) Methods to reduce material surface roughness
TWI794691B (zh) 高硼含量硬遮罩材料及其形成方法
US20220336216A1 (en) Helium-free silicon formation
TW202300687A (zh) 金屬摻雜的硼膜
TWI817522B (zh) 用於遮罩圖案化的氮化硼
US11894228B2 (en) Treatments for controlling deposition defects
TWI809877B (zh) 矽鍺的熱沉積
US11676813B2 (en) Doping semiconductor films
TWI807230B (zh) 用於電漿沉積的初始調制
US20230050255A1 (en) Seam removal in high aspect ratio gap-fill
TW202120739A (zh) 表面被覆材料層
JP2024502610A (ja) 低誘電率の炭窒化ホウ素膜