TWI766549B - 用於減少放大器中失真之裝置與方法以及具有放大器電路之系統 - Google Patents

用於減少放大器中失真之裝置與方法以及具有放大器電路之系統 Download PDF

Info

Publication number
TWI766549B
TWI766549B TW110102085A TW110102085A TWI766549B TW I766549 B TWI766549 B TW I766549B TW 110102085 A TW110102085 A TW 110102085A TW 110102085 A TW110102085 A TW 110102085A TW I766549 B TWI766549 B TW I766549B
Authority
TW
Taiwan
Prior art keywords
transistor
diode
impedance
amplifier
input
Prior art date
Application number
TW110102085A
Other languages
English (en)
Other versions
TW202143637A (zh
Inventor
喬瑟夫 L 蘇薩
Original Assignee
愛爾蘭商亞德諾半導體國際無限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛爾蘭商亞德諾半導體國際無限公司 filed Critical 愛爾蘭商亞德諾半導體國際無限公司
Publication of TW202143637A publication Critical patent/TW202143637A/zh
Application granted granted Critical
Publication of TWI766549B publication Critical patent/TWI766549B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3276Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using the nonlinearity inherent to components, e.g. a diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F3/505Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/24Indexing scheme relating to amplifiers the supply or bias voltage or current at the source side of a FET being continuously controlled by a controlling signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21139An impedance adaptation circuit being added at the output of a power amplifier stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

本發明提供一種用於減少放大器中失真之裝置,其包含用於根據一輸入訊號而產生一電壓之一輸入電晶體。該裝置更包含用於汲取電流之一二極體接法電晶體。該二極體接法電晶體包含一輸出端子及一控制端子,其中,該輸出端子係耦接於控制端子。該裝置更包含耦接於該控制端子之一電流源電路。該裝置更包含一阻抗元件,於一第一節點耦接於該輸出端子,且於一第二節點耦接於該控制端子及該電流源電路。

Description

用於減少放大器中失真之裝置與方法以及具有放大器電 路之系統
本發明主要係關於放大器電路,且更詳而言之,係關於減少放大器中因偏壓電流源而產生之訊號失真,但不以此為限。
放大器係以電子電路接收電性訊號,並提供此等訊號之調節後版本,以滿足進一步利用或處理之需。所接收訊號之調節方式可為根據設定規格修改訊號之一或多種電氣特性。所述修改可包含對訊號進行位準位移,例如經由改變訊號之直流(DC)偏壓點。所述修改可包含放大訊號之電流、電壓或整體功率。在一範例中,放大器可包含一源極隨耦電路,其係經由位移訊號之DC偏壓點且經由增加訊號之整體功率(例如提供訊號流增益)而緩衝訊號。放大器通常是修改輸入訊號之指定電氣特性,以產生經調節之輸出訊號,使得此輸出訊號相較於原始輸入訊號呈現高度保真(fidelity)。然而,源極隨耦電路及其他放大器電路中所使用之偏壓電路可能包含具有非線性輸出特性(例如非線性輸出阻抗)之電流源,導致訊號失真。此種非線性輸出特性可成為偏壓電路中 之缺陷物,例如用於構成偏壓電路之電晶體之非線性接面電容、非線性汲極阻抗、或非線性集極阻抗。
為減少因偏壓電路之非線性特性所造成之訊號失真,現有技術為在具有負回饋之非線性特徵之節點前設置可調整之增益,但此舉可能大幅提高電路之複雜度,例如為提供可調整增益及回饋而必須增設額外電路元件。此等技術亦可能減損放大器之頻率性能,例如隨頻率上升出現增益下降或滾降之情形。其他用於減少訊號失真之技術可包含放大器內部電流源之退化,但此類技術並無法改善放大器內部電流源之阻抗,例如由與電流源並聯之接面電容所產生之阻抗。
因此,需要一種放大器電路,其偏壓電路中具有非線性輸出特性之電流源(例如缺陷電流源),但不致大幅增加電路複雜性或降低性能。
本發明之一實施例提供一種用於減少放大器中失真之裝置,包括一輸入電晶體、一二極體接法電晶體、一電流源電路、以及一阻抗元件。該輸入電晶體根據一輸入訊號而產生一電壓。該二極體接法電晶體用於吸收一電流,且包含一輸出端子以及一控制端子。該輸出端子係耦接於該控制端子。該電流源電路耦接於該控制端子。該阻抗元件於一第一節點耦接於該輸出端子,且於一第二節點耦接於該控制端子及該電流源電路。
本發明之一實施例提供一種具有一放大器電路之系統。放大器電路包含一輸出級、一偏壓級、以及一電流源。該偏壓級其用於驅動該輸出級且 包含一二極體接法電晶體以及一阻抗元件。該阻抗元件係設於該二極體接法電晶體之一輸出端子與一控制端子之間。該電流源於一第一節點耦接於該二極體接法電晶體,且該第一節點係由該控制端子與該阻抗元件所形成。
本發明之一實施例提供一種用於減少放大器中失真之方法。該方法包含下列步驟:利用一二極體接法電晶體及一電流源偏壓一放大器之一輸出級;以及利用一阻抗元件抵銷該輸出級中之一訊號失真,該阻抗元件係耦接於該二極體接法電晶體之一控制端子與該二極體接法電晶體之一輸出端子之間。
100:放大器
105:輸入級
110:輸出級/輸出電路
115:輸入偏壓電路
120:輸入電晶體
125:二極體接法電晶體
130:偏壓電流源
135:阻抗元件
140:節點
145:輸入訊號VIN之第一版本
150:輸入訊號VIN之第二版本
155:輸入端子
160:輸出端子
165:控制端子
170:節點
200:電路
205:電阻器
210,215:電晶體
300:電路
305:節點
310:負載電晶體
315:回饋元件
400:放大器
405,410:電晶體
500:操作方法
505,510,515:步驟
I 1 :電流
V BIAS :偏壓電壓
V DD :電軌
V IN :輸入訊號
V OUT :輸出訊號
V SS :電軌
圖1說明一放大器之實施例,該放大器包含一輸入偏壓電路,用以減少因偏壓電流源之非線性輸出阻抗所造成之訊號失真。
圖2說明一電路之實施例,該電路在二極體接法電晶體之回饋路徑中設有一被動阻抗元件,用以減少因偏壓電流源之非線性阻抗所造成之訊號失真。
圖3說明一輸入偏壓電路之實施例,該輸入偏壓電路在二極體接法電晶體之回饋路徑中設有一電晶體,用以減少因偏壓電流源之非線性阻抗所造成之訊號失真。
圖4說明一放大器之實施例,該放大器包含一輸入偏壓電路,用以減少因偏壓電流源之非線性阻抗所造成之訊號失真。
圖5根據各種實施例說明一組操作方法,用以減少因放大器中偏壓電流源所造成之訊號失真。
圖式未必按照比例描繪,且於各圖中,相似之符號可指稱類似之組件。具有不同後綴字母之相似符號可能代表相似組件之不同實施例。圖式旨在提供說明實施態樣,而非以任何方式限制本發明所描述之各種實施例。
本發明係用以減少因放大器電路中缺陷偏壓電流源而引發之訊號失真或其他不利干擾(例如增益誤差、偏移誤差或飄移效應)。在一實施例中,在放大器之輸入偏壓電路之回饋路徑插設一阻抗元件,例如一電阻器或負載電晶體,用以對因電流源造成之訊號失真進行採樣並抵銷失真。此等技術可用於製造能夠適應偏壓電流源之有限阻抗之放大器,例如因缺陷偏壓電流源之非線性、製程、溫度或振幅飄移而導致之有限阻抗。此一適應能力之達成不需使用額外增益及回饋電路。
本發明之實施態樣係基於認知放大器電路中之偏壓電流源可能具有顯著之不利成分,包含非線性輸出阻抗。此類偏壓電流源通常為放大器內電壓隨耦級中輸入偏壓電路內之子電路。所述偏壓電流源之非線性輸出阻抗可能來自輸入偏壓電路中電晶體之非線性接面電容、汲極阻抗或集極阻抗,或其他切換或半導體元件。非線性阻抗在隨耦級造成非線性負載並導致訊號失真產生。
於本發明之一實施例中,一輸入偏壓電路包含一耦接於一偏壓電流源之二極體接法電晶體(diode-connected transistor),用於例如控制另一電路之偏壓電壓,或根據輸入訊號提供更準確之電壓。該二極體接法電晶體之回饋路徑中插設有一阻抗元件,例如位於二極體接法金屬氧化物半導體場效電晶體 (MOSFET)之閘極與汲極之間,或雙極接面電晶體(BJT)之基極與集極之間。阻抗元件之大小或配置係經設計而使其阻抗與輸入偏壓電路之輸出阻抗相匹配。於操作時,會在阻抗元件的兩端產生例如壓降等的失真,以抵銷偏壓電流源之不當(例如非線性)阻抗之訊號失真效應。
圖1說明一放大器100之實施例,放大器100具有一輸入偏壓電路115,用以減少因偏壓電流源之非線性輸出阻抗所造成之訊號失真。於一實施例中,放大器100包含一緩衝器放大器,例如一電壓或源極隨耦器。於另一實施例中,放大器100包含一較大之放大器電路之隨耦級。放大器100包含一輸入偏壓電路115及一偏壓電流源130。於一實施例中,放大器100包含一輸入級105及一輸出級110。
於一實施例中,輸入級105包含一可接收並調節一輸入訊號VIN之電路。所述電路可包含一高阻抗電路,用於將輸入訊號VIN之電壓位準位移至能夠驅動放大器100之後級內之電路之位準。於一實施例中,輸入級105包含一p型MOSFET電路(PMOS),其可以一指定電壓位移輸入訊號VIN,並將位移後之輸入訊號VIN提供至輸出電路110或提供至輸入偏壓電路115。
於一實施例中,輸出級110包含一電路,以提供輸入訊號VIN之調節後版本,例如提供給一或多個其他裝置或電路使用。所述電路可包含一上提電路,用以自輸入級105接收輸入訊號VIN之第一版本145,以及包含一下拉電路,用以自輸入偏壓電路115接收輸入訊號VIN之第二版本150。於一實施例中,輸出級110可例如藉由在輸入訊號VIN與輸出訊號VOUT之間提供一電流或功率增益來緩衝輸入訊號VIN
於一實施例中,輸入偏壓電路115可對輸出級110之輸入電路或元件進行偏壓,例如使輸入電路在其操作或特性曲線之一指定區域內操作。對輸入電路進行偏壓之方式,可包含將接收自輸入級105之輸入訊號VIN之第一版本之電壓位準位移,例如偏移(offsetting),至一指定電壓位準。於一實施例中,輸入偏壓電路115包含一輸入電晶體120、一二極體接法電晶體125及一阻抗元件135。
輸入電晶體120可包含任何適合之電晶體,例如MOSFET、BJT或JFET。輸入電晶體120可包含任何之電路,所述電路可具有一或多個半導體裝置(例如電晶體或二極體),且可如同輸入電晶體般操作或執行輸入電晶體功能。於一實施例中,輸入電晶體120係一MOSEFT,其可將接收自輸入級105之輸入訊號VIN之第一版本耦接至二極體接法電晶體125。上述耦接可包含位移輸入訊號VIN之電壓位準以偏移由輸入級105所造成之輸入訊號VIN電壓位準位移。於一實施例中,輸入電晶體120係用於為來自電軌VDD之一偏壓電流I1提供一傳導路徑,該偏壓電流I1可例如由偏壓電流源130決定。
二極體接法電晶體125可包含任何適合之電晶體,例如MOSFET、BJT或JFET如同雙端子二極體般操作。二極體接法電晶體125可包含任何之電路,所述電路可具有一或多個電晶體,且可如同二極體接法電晶體般操作或可執行二極體接法電晶體功能。於一實施例中,二極體接法電晶體125包含一輸入端子155、一輸出端子160及一控制端子165。於一實施例中,二極體接法電晶體125係一MOSFET,且輸入端子155、輸出端子160及控制端子165分別為該MOSFET之源極、汲極及閘極。於其他實施例中,二極體接法電晶體125為一BJT,且輸入端子155、輸出端子160及控制端子165分別為該BJT之射極、集極及基極。輸出端子160可耦接於該控制端子165,以形成包含阻抗元件135之一回饋路徑。
阻抗元件135可包含任何之電路或電路元件,所述電路或電路元件可在輸出端子160與控制端子165間之回饋路徑中插入一被動或主動阻抗。於一實施例中,阻抗元件135包含由一或多個電阻器所構成之一電阻器網。於一實施例中,阻抗元件135包含具有一或多個電晶體之一主動電路。於一實施例中,阻抗元件135之阻抗與看進節點170之電路所見之阻抗相匹配。於一實施例中,阻抗元件135之阻抗匹配於輸入電晶體120之射極阻抗與二極體接法電晶體160之輸出阻抗之串聯組合(以下合稱為「輸入電晶體120與輸出電晶體125之串聯阻抗」)。
偏壓電流源130包含能夠提供實質上固定電流之任何適合電流源,所述固定電流例如是僅有一個針對目標應用所設置之指定閾值(例如規格限制)變化量之電流,此電流源配合輸入電晶體120及二極體接法電晶體125運作,而為輸出級110內一電路元件(例如,一電晶體)設定偏壓點。於一實施例中,偏壓電流源130係放大器100之內部電流源,例如一MOSFET電流鏡,且偏壓電流源130配合輸入電晶體120及二極體接法電晶體125運作,以將輸入訊號VIN之電壓位準位移至適合驅動輸出級110內一電晶體(例如一MOSFET)之電壓範圍。
現有放大器之操作,例如不含阻抗元件135之放大器,係將放大器100中節點170短路連接至節點140。在此一放大器中,輸入電晶體120、二極體接法電晶體125與偏壓電流源130之組合形成一偏壓電路,此偏壓電路之操作類似於位準移位電路。偏壓電流源130對輸入電晶體120及二極體接法電晶體125進行偏壓,例如將偏壓電流I1汲取至適當操作點。
結合的電路自輸入級105接收一輸入訊號,例如輸入訊號VIN之位移版本,並在節點170產生輸入訊號VIN之位準位移版本。於一實施例中,輸入電 晶體120與二極體接法電晶體125在輸出端子160之串聯阻抗為零,且偏壓電流源130之輸出阻抗為無限。於此實施例中,於節點170產生之輸入訊號VIN之位準位移版本為該輸入訊號VIN之高保真度(或完美)位準位移複製。
於另一實施例中,輸入電晶體120與二極體接法電晶體125之串聯組合具有一有限非零阻抗,且偏壓電流源130具有數值高但有限之阻抗。輸入電晶體120與二極體接法電晶體125之有限串聯阻抗配合偏壓電流源130之有限輸出阻抗操作,以形成一衰減器電路,此衰減器電路造成在節點170之輸入訊號VIN之位準位移複製中之增益損失或失真損失(以下稱為「訊號失真」)。於一實施例中,訊號失真為輸入電晶體120與二極體接法電晶體125兩端因偏壓電流I1流動而產生之壓降。此訊號失真可能出現於輸出級110,並可能傳播至其他電路。
在輸入偏壓電路115中增設阻抗元件135,例如圖1所示者,可產生一機制以抵銷或稀釋在節點170產生之至少部分之訊號失真。於運作時,具有阻抗元件135之輸入偏壓電路115自輸入級105接收一輸入訊號,例如輸入訊號VIN之一位移版本,並在節點170產生輸入訊號VIN之一位準位移版本,如上所述。輸入電晶體120與二極體接法電晶體125之有限串聯阻抗配合偏壓電流源130之有限輸出阻抗操作,以形成一衰減器電路,此衰減器電路造成在節點170之輸入訊號VIN之位準位移複製中之訊號失真。然而,阻抗元件135在節點140與170間造成之壓降幅度(但經位準位移)等於輸入電晶體120之基極端子與節點140間之壓降。電流I2導致阻抗元件135兩端產生電壓。自節點140上之電路觀之,在阻抗元件135兩端因電流I2而形成之電壓,與在輸入電晶體120與二極體接法電晶體125因偏壓電流I1而形成之電壓具有同等大小但相反極性。此係部分由於電流I1與I2具有同等大小,且阻抗元件135之阻抗匹配於輸入電晶體120與二極體接法電晶體125之串聯阻抗。在阻抗元件135兩端及在輸入電晶體120與二極體接法電晶體 125之串聯組合兩端所產生之具有同等大小但極性相反之電壓在節點140抵銷,藉此抵銷或消除了在節點170上訊號失真之作用。換言之,在節點170產生之失真經由阻抗元件135之運作而在節點140抵銷。
圖2說明一電路200之實施例,其在二極體接法電晶體之回饋路徑中設有一被動阻抗元件135,用以減少因偏壓電流源之非線性阻抗所造成之訊號失真。電路200包含輸入偏壓電路115及偏壓電流源130。偏壓電流源130包含一MOSFET電流源,例如由電晶體210與電晶體215所構成者,其受一偏壓電壓VBIAS促動而產生恆定電流,用以對輸入電晶體120及二極體接法電晶體125進行偏壓。偏壓電壓VBIAS係自一待由電晶體215鏡射之外部電流所產生。被動阻抗元件135可包含由一或多個電阻器205所構成之網路,設於節點140與節點170之間。所述一或多個電阻器205之整體電阻取決於由看進二極體接法電晶體125之汲極之電路所見之阻抗。於一實施例中,該一或多個電阻器205之電阻值係匹配於,即實質上等同於,輸入電晶體120之射極電阻值與二極體接法電晶體125之輸出(或汲極)電阻值之總和。類似於圖1所述輸入偏壓電路115與偏壓電流源130之組合,電路200用於接收一輸入訊號VIN,例如輸入級105(圖1)之一輸出,並在節點170產生輸入訊號VIN之位移複製。此位移複製之輸入訊號VIN係耦接於節點140,並提供成為一輸出訊號VOUT。雖然失真產生於節點170,如上所述,但此失真在節點140受跨一或多個電阻器205上產生之電壓所抵銷。因此,在節點170之失真不會傳播,例如在輸出訊號VOUT中傳播至輸出級110(圖1)。
圖3說明一電路300之實施例,其在二極體接法電晶體之回饋路徑中設有一主動阻抗元件135,用以減少因偏壓電流之非線性阻抗所造成之訊號失真。電路300包含輸入偏壓電路115及偏壓電流源130。類似於圖1及圖2中輸入偏壓電路115與偏壓電流源130之組合,電路300係用於接收一輸入訊號VIN,例如輸 入級105(圖1)之一輸出,並在節點140產生該輸入訊號VIN之位移複製。此位移複製之輸入訊號係耦接於節點140,並提供成為一輸出訊號VOUT。在節點170產生之失真在節點140受到跨主動阻抗元件135所產生之電壓作用而抵銷,藉此預防失真傳播至其他電路,例如在輸出訊號VOUT中傳播至輸出級110(圖1)。
主動阻抗元件135可包含一電路,其具有一或多個主動電路元件,例如負載電晶體310(例如一抵銷電晶體),用於在節點140與節點170之間提供一可調整阻抗。於一實施例中,主動阻抗元件135亦包含一回饋元件315(例如一補償電路),例如一二極體接法電晶體。主動阻抗元件135之阻抗或負載電晶體310之阻抗係經選擇而匹配,或實質上等於,輸入電晶體120之射極阻抗及二極體接法電晶體125之輸出(或汲極)阻抗。於一實施例中,主動阻抗元件135之阻抗為輸入電晶體120之射極電阻與二極體接法電晶體125之輸出電阻(或汲極電阻)之總和。於一實施例中,主動阻抗元件135之阻抗係至少部分取決於負載電晶體310及回饋元件315之幾何選擇。
回饋元件315用於調整主動阻抗元件135之阻抗,以補償製程、溫度及電壓(合稱PVT)變動對二極體接法電晶體125之輸出阻抗之影響。於一實施例中,回饋元件315之閾值電壓大於主動阻抗元件135之閾值電壓。回饋元件315、二極體接法電晶體125及阻抗元件135均具有實質上相同之PVT變動。如此使得二極體接法電晶體125之輸出阻抗中之PVT相關變動,係受主動阻抗元件135之阻抗或負載電晶體310之阻抗的相對應變動所追蹤,藉以確保主動阻抗元件135之阻抗在各種PVT變動下始終維持與輸入電晶體120及二極體接法電晶體125之阻抗匹配。
圖4說明一放大器400之實施例,其包含一用於減少訊號失真之輸入偏壓電路。放大器400為放大器100之一種實施例。如圖4所示,輸入偏壓電路 115結合偏壓電流源130而自輸入級105接收一輸入訊號。於一實施例中,輸入訊號為輸入訊號VIN之向下位移版本,例如通過電晶體405之閘極-源極電壓VGS向上位移之輸入訊號VIN之一版本。輸入偏壓電路115結合偏壓電流源130係用於在節點140將輸入訊號VIN之位移複製提供給輸出級110。於一實施例中,輸入訊號VIN之此種位移複製係藉由閘極-源極電壓VGS或其他任何適合驅動電晶體410之閘極之電壓,將輸入訊號VIN向下位移而產生。如在此所述,在節點170產生之失真在節點140受到跨主動阻抗元件135所產生之電壓作用而抵銷,藉此預防失真傳播至其他電路,例如傳播至輸出級110。
圖5說明一種操作方法500,用以減少放大器中偏壓電流源所造成之訊號失真,該放大器例如為放大器400。於步驟505,接收一輸入訊號,例如來自輸入級105(圖1或圖4)之訊號。於一實施例中,是由一輸入電晶體接收該輸入訊號,該輸入電晶體與一二極體接法電晶體之輸入端子串聯耦接。於步驟510,將輸入訊號耦接於該放大器之一輸出級,例如輸出級110(圖1或圖4)。所述耦接可包含利用輸入電晶體、二極體接法電晶體及一偏壓電流源,對該輸出級進行偏壓,如在此所述。於步驟510,利用一阻抗元件(例如一阻抗裝置)所產生之一電壓來抵銷耦接訊號中之失真,該阻抗元件係耦接於二極體接法電晶體之控制端子,如在此所述。於一實施例中,該阻抗元件之阻抗係根據輸入電晶體與二極體接法電晶體之阻抗而決定或建立。於一實施例中,該阻抗元件包含由一或多個電阻器所構成之網路。於一實施例中,該阻抗元件包含具有一或多個主動元件之電路,所述主動元件例如為負載電晶體及回饋元件,其中,回饋元件係用於調整該阻抗元件之阻抗,以使其跟隨或匹配該二極體接法電晶體之阻抗。
操作方法500可進一步包含其他適合用於實施本發明之步驟或操作。
雖然操作方法500之操作步驟係顯示為按特定順序而發生或執行,但在其他實施例中,一或多項操作步驟可同時實施或以不同順序實施。此外,一或多項操作步驟可重複二或多次。
在此所述之各種非限制性態樣或實施例係可獨立實施,或可與其他一或多種實施例進行置換或組合。
本發明提出之電路之實施例包含特定類型之電晶體。所述之電晶體類型係為舉例說明本發明之技術。但本發明技術亦可利用任何其他適當種類之電晶體加以實現,此亦不脫離本發明之範疇。更具體而言,在此所述之任何MOSFETs或BJTs皆可改為適合之MOSFETs、BJTs、接面FETs或其他半導體裝置或電路。
本發明之實施態樣係討論減少或抵銷因放大器輸入偏壓電路所造成之訊號失真之相關技術。然而,所述技術亦可應用於有使用耦接至偏壓電流源之一輸入偏壓二極體接法電晶體(以下稱「二極體接法電晶體」)之任何裝置,以減少或抵銷訊號失真或其他不利訊號干擾(例如增益誤差、偏移誤差或飄移效應)。
以上實施方式包含對於各圖式之引用,使各圖式亦屬於實施方式之一部分。圖式經由說明之方式,顯示可用於實施本發明之具體實施例。該等實施說明在此亦稱為「實施例」。該等實施例可包含圖式所示及文中所述以外之元件。然而,本發明亦應包含僅具有所示及所述元件之實施例。此外,本發明亦包含使用所示及所述元件任何組合或置換之實施例(或一或多種其中之態 樣),不論是關於在此所述之一特定實施例(或一或多種其中之態樣),或關於其他實施例(或一或多種其中之態樣)。
若本文與任何參考文獻出現使用不一致之情形,應以本文之用法為準。
於本文中,「一」之用法如同一般專利文件中之用法,可包含一或多於一,不受任何「至少一」或「一或多」之其他實例或使用所影響。本文中之用語「或」係用於非排他性之指稱,因此,除非另有說明,否則「A或B」包含「A但非B」、「B但非A」及「A及B」。本文中,「包含」及「在其中」等語之用法分別等於「包含」及「其中」等語之普通英文等效表述。並且,於以下請求項中,「包含」及「包含」等語為開放性質,亦即,包含請求項所述元件之後列出之元件之系統、裝置、物品、組成、配方或製造方法,其仍應屬於本發明請求項之範疇。此外,於以下之請求項中,「第一」、「第二」及「第三」等用語僅為標示之目的,並非用於表示對於所稱物件之數值要求。
在此所述之方法實施例可至少部分以機器或電腦加以實施。些許實施例可包含電腦可讀媒體或機器可讀媒體,其係採用指令編碼,可經操作而使電子裝置以執行以上實施例所述之方法。所述方法之實施可包含程式碼,例如微碼、組合語言碼、高階語言碼或類似者。此類程式碼可包含電腦可讀指令,用以執行各種方法。所述程式碼可構成電腦程式產品之部分。再者,於一實施例中,所述程式碼在執行時或在其他時刻,可以有形方式儲存於一或多個非永久性、非暫態或永久性之有形電腦可讀媒介。此等有形電腦可讀媒介之實施例包含但不限於硬碟、可拆式磁碟、可移除光碟(例如資料光碟及數位影音光碟)、磁匣、記憶卡或隨身碟,隨機存取記憶體(RAM)、唯讀記憶體(ROM)等。
以上敘述之目的在於說明而非限制。例如,上述實施例(或一或多種其中之態樣)可彼此結合運用。所屬技術領域中具有通常知識者經閱讀以上說明後應可用其他實施例。摘要係符合37 C.F.R.§1.72(b)之要求,使讀者能夠快速明瞭本發明之技術性質,其提交目的並非用於解讀或限制請求項之範圍或意涵。並且,在以上之[實施方式],各特徵可經由組合以利說明本公開之發明,但此舉並非表示未經主張之發明為任何請求項之必要條件。實則是發明主體可不需具備特定所述實施例中之所有特徵。因此,以下請求項在此如同實施例或實施說明併入[實施方式]中,其中各項本身即代表一單獨實施例,且此等實施例可彼此相互結合而成為各種組合或置換。本發明主體之範疇應取決於所附請求項,連同該等請求項有權主張之完整等效範圍。
100:放大器
105:輸入級
110:輸出級/輸出電路
115:輸入偏壓電路
120:輸入電晶體
125:二極體接法電晶體
130:偏壓電流源
135:阻抗元件
140:節點
145:輸入訊號VIN之第一版本
150:輸入訊號VIN之第二版本
155:輸入端子
160:輸出端子
165:控制端子
170:節點
I 1 :電流
V DD :電軌
V IN :輸入訊號
V OUT :輸出訊號
V SS :電軌

Claims (17)

  1. 一種用於減少放大器中失真之裝置,其包含:一輸入電晶體,其用於根據一輸入訊號而產生一電壓;一二極體接法電晶體,其耦接該輸入電晶體,該二極體接法電晶體包含:一輸出端子;以及一控制端子,該輸出端子係耦接於該控制端子;一電流源電路,其耦接於該控制端子;以及一阻抗元件,其於一第一節點耦接於該輸出端子,且於一第二節點耦接於該控制端子及該電流源電路;其中,該阻抗元件之阻抗係匹配於該輸入電晶體之輸出阻抗與該二極體接法電晶體之輸出阻抗之串聯組合。
  2. 如請求項1之用於減少放大器中失真之裝置,其中,該阻抗元件係用於抵銷由該電流源電路在該第二節點所造成之失真。
  3. 如請求項1或2之用於減少放大器中失真之裝置,其中,該阻抗元件包含一電阻器。
  4. 如請求項1或2之用於減少放大器中失真之裝置,其中,該阻抗元件包含一抵銷電晶體及一補償電路,該補償電路可控制該抵銷電晶體之阻抗。
  5. 如請求項4之用於減少放大器中失真之裝置,其中,該補償電路包含另一二極體接法電晶體,其設於該電流源與該第二節點之間。
  6. 如請求項1之用於減少放大器中失真之裝置,其更包含一輸出級,耦接於該第一節點。
  7. 如請求項6之用於減少放大器中失真之裝置,其中,該輸出級包含一供應電路及一吸收電路,該供應電路與該輸入電晶體並聯耦接,且該吸收電路耦接於該第一節點。
  8. 如請求項1之用於減少放大器中失真之裝置,其中,該二極體接法電晶體係一金屬氧化物半導體場效電晶體,該輸出端子包含一汲極端子,且該控制端子包含一閘極端子。
  9. 一種具有一放大器電路之系統,該放大器電路包含:一輸出級;一偏壓級,其用於驅動該輸出級,該偏壓級包含:一輸入電晶體;一二極體接法電晶體,耦接該輸入電晶體;以及一阻抗元件,其中,該阻抗元件係設於該二極體接法電晶體之一輸出端子與一控制端子之間;其中,該阻抗元件係用於匹配該輸入電晶體與該二極體接法電晶體之串聯阻抗;以及一電流源,其於一第一節點耦接於該二極體接法電晶體,該第一節點係由該控制端子與該阻抗元件所形成。
  10. 如請求項9之具有一放大器電路之系統,其中,該阻抗元件係用於抵銷由該電流源在該第一節點所造成之失真。
  11. 如請求項9之具有一放大器電路之系統,其中,該輸入電晶體用於將該二極體接法電晶體耦接至一電源供應,該輸入電晶體用於因應一輸入訊號而將一電流供應至該二極體接法電晶體。
  12. 如請求項9至11中任一項之具有一放大器電路之系統,其中,該阻抗元件包含一負載電晶體及一偏壓電路,該偏壓電路用於控制該負載電晶體之阻抗。
  13. 如請求項12之具有一放大器電路之系統,其中,該偏壓電路包含一二極體接法電晶體,設於該電流源與該第一節點之間。
  14. 一種用於減少放大器中失真之方法,其包含下列步驟:利用一輸入電晶體接收一輸入訊號,該輸入電晶體係耦接於一二極體接法電晶體之一輸入端子;利用該輸入電晶體、該二極體接法電晶體及一電流源偏壓一放大器之一輸出級;根據該輸入電晶體與該二極體接法電晶體之阻抗而建立該阻抗元件之阻抗;以及利用一阻抗元件抵銷該輸出級中之一訊號失真,該阻抗元件係耦接於該二極體接法電晶體之一控制端子與該二極體接法電晶體之一輸出端子之間。
  15. 如請求項14之用於減少放大器中失真之方法,其中,該阻抗元件包含一電阻器。
  16. 如請求項14之用於減少放大器中失真之方法,其中,該阻抗元件包含一負載電晶體及一偏壓電路,該偏壓電路用於控制該負載電晶體之阻抗。
  17. 如請求項16之用於減少放大器中失真之方法,其更包含:因應該二極體接法電晶體之阻抗改變而調整該阻抗元件之阻抗。
TW110102085A 2020-01-23 2021-01-20 用於減少放大器中失真之裝置與方法以及具有放大器電路之系統 TWI766549B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/750,251 US11095254B1 (en) 2020-01-23 2020-01-23 Circuits and methods to reduce distortion in an amplifier
US16/750,251 2020-01-23

Publications (2)

Publication Number Publication Date
TW202143637A TW202143637A (zh) 2021-11-16
TWI766549B true TWI766549B (zh) 2022-06-01

Family

ID=76753851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102085A TWI766549B (zh) 2020-01-23 2021-01-20 用於減少放大器中失真之裝置與方法以及具有放大器電路之系統

Country Status (4)

Country Link
US (1) US11095254B1 (zh)
CN (1) CN113242022A (zh)
DE (1) DE102021100323A1 (zh)
TW (1) TWI766549B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795870B (zh) * 2020-11-06 2023-03-11 大陸商廣州印芯半導體技術有限公司 影像感測器以及影像感測方法
US11711073B1 (en) 2022-03-04 2023-07-25 Analog Devices, Inc. Buffer cascade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027201A1 (en) * 2002-04-12 2004-02-12 Saul Darzy Rail to rail class AB output for an amplifier
US6784739B2 (en) * 2001-09-18 2004-08-31 Stmicroelectronics Sa Class AB amplifier circuit
US6933784B2 (en) * 2003-11-05 2005-08-23 Texas Instruments Incorporated Output stage for high gain and low distortion operational amplifier
US20060208800A1 (en) * 2005-03-15 2006-09-21 Harman Jefferson H Biasing stage for an amplifier

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648154A (en) 1970-12-10 1972-03-07 Motorola Inc Power supply start circuit and amplifier circuit
US3958135A (en) 1975-08-07 1976-05-18 Rca Corporation Current mirror amplifiers
US4045747A (en) 1976-06-25 1977-08-30 Rca Corporation Complementary field effect transistor amplifier
US5105165A (en) 1990-12-17 1992-04-14 At&T Bell Laboratories Low distortion, low noise, amplifier
US5399991A (en) 1993-01-28 1995-03-21 National Semiconductor Corporation High speed low power op-amp circuit
EP0849878A3 (en) 1996-12-19 2002-06-26 Texas Instruments Incorporated Improvements in or relating to integrated circuits
US6313705B1 (en) * 1999-12-20 2001-11-06 Rf Micro Devices, Inc. Bias network for high efficiency RF linear power amplifier
JP3556577B2 (ja) 2000-06-23 2004-08-18 株式会社東芝 インピーダンス変換回路
US6333677B1 (en) 2000-10-10 2001-12-25 Rf Micro Devices, Inc. Linear power amplifier bias circuit
US6531924B2 (en) 2001-04-18 2003-03-11 Qualcomm Incorporated Bias method and circuit for distortion reduction
DE10132800C1 (de) 2001-07-06 2003-01-30 Infineon Technologies Ag Rauscharme Verstärkerschaltung
US6556075B1 (en) 2001-08-24 2003-04-29 Analog Devices, Inc. Amplifier system and method that approximate constant impedance and quiescent outputs during forward and reverse modes
US6831504B1 (en) * 2003-03-27 2004-12-14 National Semiconductor Corporation Constant temperature coefficient self-regulating CMOS current source
DE102004034880B4 (de) 2004-07-19 2006-11-23 Infineon Technologies Ag Versorgungsschaltung für einen Verstärkertransistor und Einrichtung zum Kalibrieren der Versorgungsschaltung und entsprechende Verfahren hierfür
US7298210B2 (en) * 2005-05-24 2007-11-20 Texas Instruments Incorporated Fast settling, low noise, low offset operational amplifier and method
JP2007159085A (ja) 2005-11-10 2007-06-21 Thine Electronics Inc バイアス回路およびそれを用いる増幅装置
JP2007329831A (ja) 2006-06-09 2007-12-20 Matsushita Electric Ind Co Ltd 増幅回路
JP4852435B2 (ja) 2007-01-22 2012-01-11 パナソニック株式会社 定電流源
US7834698B2 (en) 2008-05-23 2010-11-16 Qualcomm Incorporated Amplifier with improved linearization
US7714659B2 (en) 2008-07-25 2010-05-11 Infineon Technologies Ag Bias circuit with a feedback path and a method for providing a biasing signal
US8022765B1 (en) 2008-09-10 2011-09-20 Marvell International Ltd. Source follower with gain compensation, and circuits and methods for source follower gain error compensation
US8212617B2 (en) * 2010-01-05 2012-07-03 Analog Devices, Inc. Fast class AB output stage
CN103138687B (zh) * 2011-11-22 2017-04-12 应美盛股份有限公司 能处理高电平的音频放大电路中的失真抑制
US8841894B1 (en) * 2011-12-16 2014-09-23 Cirrus Logic, Inc. Pulse-width modulated (PWM) audio power amplifier with output transition slope control
US8872589B2 (en) * 2012-09-20 2014-10-28 Infineon Technologies Ag System and method for a programmable gain amplifier
US9218014B2 (en) * 2012-10-25 2015-12-22 Fairchild Semiconductor Corporation Supply voltage independent bandgap circuit
US9214942B2 (en) 2014-02-17 2015-12-15 Freescale Semiconductor, Inc. Low output impedance, low power buffer
US10340858B2 (en) * 2016-07-12 2019-07-02 Qorvo Us, Inc. Linearized distributed amplifier architecture
US10374557B2 (en) * 2016-10-28 2019-08-06 Samsung Electro-Mechanics Co., Ltd. Adaptive multiband power amplifier apparatus
US10014851B2 (en) * 2016-11-02 2018-07-03 Texas Instruments Incorporated Current sensing and control for a transistor power switch
US10848109B2 (en) * 2017-01-26 2020-11-24 Analog Devices, Inc. Bias modulation active linearization for broadband amplifiers
CN110690862A (zh) * 2018-07-06 2020-01-14 天工方案公司 放大器线性度提升电路和用于后失真反馈消除的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784739B2 (en) * 2001-09-18 2004-08-31 Stmicroelectronics Sa Class AB amplifier circuit
US20040027201A1 (en) * 2002-04-12 2004-02-12 Saul Darzy Rail to rail class AB output for an amplifier
US6933784B2 (en) * 2003-11-05 2005-08-23 Texas Instruments Incorporated Output stage for high gain and low distortion operational amplifier
US20060208800A1 (en) * 2005-03-15 2006-09-21 Harman Jefferson H Biasing stage for an amplifier

Also Published As

Publication number Publication date
TW202143637A (zh) 2021-11-16
US11095254B1 (en) 2021-08-17
US20210234514A1 (en) 2021-07-29
DE102021100323A1 (de) 2021-07-29
CN113242022A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
US8040187B2 (en) Semiconductor integrated circuit device
US9325305B1 (en) Active biasing in metal oxide semiconductor (MOS) differential pairs
US8878612B2 (en) Accurate bias tracking for process variation and supply modulation
TWI766549B (zh) 用於減少放大器中失真之裝置與方法以及具有放大器電路之系統
US8502603B2 (en) Output common mode voltage stabilizer over large common mode input range in a high speed differential amplifier
CN108352836B (zh) 具有改进的电源噪声抑制的可变增益放大器
US7253687B2 (en) Clamping circuit for operational amplifiers
US7525359B2 (en) Duty cycle correction amplification circuit
US6400219B1 (en) High-speed offset comparator
US7005913B2 (en) I/O buffer with wide range voltage translator
US6903539B1 (en) Regulated cascode current source with wide output swing
CN112534713A (zh) 用于电压缓冲的方法和装置
US8432226B1 (en) Amplifier circuits and methods for cancelling Miller capacitance
CN116232242A (zh) Ab类输出级的偏置电路以及ab类放大器、芯片和电子设备
US9847762B1 (en) Low voltage high speed CMOS line driver without tail current source
US6933784B2 (en) Output stage for high gain and low distortion operational amplifier
US7414461B2 (en) Linearization technique for current mode filters
US20210075370A1 (en) Amplifer biasing techniques
CN114362700B (zh) 差分放大器及其背栅控制方法
JP6964880B2 (ja) コンダクタンスアンプ
TW200935731A (en) Semiconductor circuit and method for mitigating current variation in a semiconductor circuit
KR100792432B1 (ko) 출력이 안정적인 연산증폭기.
US7285990B1 (en) High-precision buffer circuit
CN114448367A (zh) 一种固定电位的共模反馈电路
CN117134712A (zh) 运算放大器电路