TWI766266B - 微孔裝置及其製造方法 - Google Patents

微孔裝置及其製造方法 Download PDF

Info

Publication number
TWI766266B
TWI766266B TW109112902A TW109112902A TWI766266B TW I766266 B TWI766266 B TW I766266B TW 109112902 A TW109112902 A TW 109112902A TW 109112902 A TW109112902 A TW 109112902A TW I766266 B TWI766266 B TW I766266B
Authority
TW
Taiwan
Prior art keywords
microporous
micro
substrate
microporous device
present
Prior art date
Application number
TW109112902A
Other languages
English (en)
Other versions
TW202039821A (zh
Inventor
林耿慧
黃政廣
Original Assignee
中央研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央研究院 filed Critical 中央研究院
Publication of TW202039821A publication Critical patent/TW202039821A/zh
Application granted granted Critical
Publication of TWI766266B publication Critical patent/TWI766266B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本發明公開一種微孔裝置及其製造方法。所述微孔裝置包括一基板以及形成於所述基板上的多個微孔。每一個所述微孔包含一凹設於所述基板上的空腔以及一開口,其中所述開口的口徑小於所述空腔的最大內直徑。其中,多個所述微孔的形狀為曲面。

Description

微孔裝置及其製造方法
本發明涉及一種細胞培養裝置,特別是涉及一種微孔裝置及其製造方法。
在過往,科學家是利用二維(2D)細胞培養的方式觀察以及操作細胞來建立細胞生物學的知識。隨著科技的進步,科學家發現由3D細胞培養方式的細胞,其細胞型態發生與遷移、細胞存活率、基因表現、組織形成、細胞分化、毒力耐受性等表現都與2D細胞培養的細胞表現有所不同,並且與2D細胞培養相比,3D細胞培養於更可以反映出細胞在活體內的生長情況。因此,科學家開始使用3D細胞培養,例如膠體包埋(gel-embedded culture)、提供細胞支架(prefabricated scaffolds)或懸滴培養(hanging-drop culture)等,以取代2D細胞培養。
大部分3D細胞培養微孔的形狀為圓柱形,與細胞在活體內的生長環境仍有一段落差。有些3D細胞培養微孔是半球形的,比圓柱形3D細胞培養微孔可以達到更好的效果;然而,在進行操作時(例如:更換細胞培養液或潤洗細胞),細胞容易從細胞培養微孔中滑出,會導致實驗數據量的損失以及造成操作人員的負擔。
此外,在生物醫學研究上,高通量(high-throughput)的實驗技術 能在生物醫學研究中對於篩選藥物進行高效篩選,因此期望3D細胞培養裝置也可應用於高通量分析。進一步而言,高通量的形式還可以讓長期追蹤(long-term tracking)變得更加容易。因此,如何通過結構設計改良,讓細胞培養裝置更可以貼近細胞在活體內的生長環境、降低細胞流失,並且讓實驗人員操作便利,是本案欲解決的重要課題之一。
本發明所要解決的技術問題在於,針對現有技術的不足提供一種微孔裝置,其可以應用於3D細胞培養,有效防止細胞流出細胞培養井,且可提供單一細胞的長期研究與高通量實驗結果分析。
為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種微孔裝置,其包括一基板以及形成於所述基板上的多個微孔。其中,每一個所述微孔包含一凹設於所述基板上的空腔以及一開口,其中所述開口的口徑小於所述空腔的最大內直徑。其中,多個所述微孔的形狀為曲面。優選地,所述微孔的形狀為負曲面。
在本發明其中一實施例中,所述基板的材質為選自於由聚(丙烯醯胺)、明膠、矽氧樹脂、聚二甲基矽氧烷、聚乙烯、聚苯乙烯、聚烯烴、聚烯烴共聚物、聚碳酸酯、乙烯乙酸乙烯酯、聚丙烯、聚碸、聚四氟乙烯、含氟聚合物、聚(苯乙烯-丁二烯-苯乙烯)及其組合所組成的群組。
在本發明其中一實施例中,所述基板的長度為10公釐至30公釐,以及所述基板的寬度為10公釐至30公釐。
在本發明其中一實施例中,所述多個微孔的數量大於或等於100個。
在本發明其中一實施例中,所述相鄰微孔之間的間隔距離為 等距或非等距。
在本發明其中一實施例中,每一個所述微孔的形狀為球形或橢圓球形。
在本發明其中一實施例中,所述開口的口徑為26微米至155微米。
在本發明其中一實施例中,所述空腔的最大內直徑為40微米至215微米。
在本發明其中一實施例中,每一個所述微孔包含一側表面以及一底表面,以及所述側表面以及所述底表面的曲率皆不等於0。
在本發明其中一實施例中,所述側表面的曲率以及所述底表面的曲率相同或不相同。在本發明其中一實施例中,所述微孔裝置進一步包含一功能性塗層,其塗佈於至少一所述微孔的一內表面,且不塗佈於所述基板的表面。
在本發明其中一實施例中,所述微孔裝置進一步包含一功能性塗層,其塗佈於至少一所述微孔的所述內表面與所述基板的一上表面。
在本發明其中一實施例中,所述微孔裝置進一步包含一蓋體,其具有一功能層於所述蓋體表面,且所述蓋體是可裝卸地覆蓋於所述微孔裝置上。
在本發明其中一實施例中,所述功能性塗層是選自於由細胞外基質蛋白、糖胺聚醣、多肽、蛋白聚醣、氨基聚醣以及多醣蛋白所組成的群組。
在本發明其中一實施例中,所述功能性塗層以及所述功能層是選自於由細胞外基質蛋白、糖胺聚醣、多肽、蛋白聚醣、氨基聚醣以及多醣蛋白所組成的群組。
在本發明其中一實施例中,所述微孔裝置具有至少兩種不同容積大小的所述微孔。
為了解決上述的技術問題,本發明所採用的另外一技術方案是,提供一種製造微孔裝置的方法,其包含以下步驟。首先,通過光刻或軟光刻法,將一第一模板產生一微柱裝置,其中所述微柱裝置包括多個微柱。接下來,在所述微柱裝置上塗覆一剝離層後,在所述微柱裝置的每一個所述微柱上放置一微珠。將一矽氧樹脂倒覆至放置有所述微珠的所述微柱裝置上,固化所述矽氧樹脂,再將固化後的矽氧樹脂與放置有所述微珠的所述微柱裝置分離,以形成一具有多個微腔的第二模板。接著,將一環氧材料倒覆至所述第二模板上,固化所述環氧材料,再將固化後的環氧材料與所述第二模板分離,以形成一微孔裝置模具。最後,將一鑄模材料倒覆至所述微孔裝置模具上,固化所述鑄模材料,再將固化後的鑄模材料與所述微孔裝置模具分離,以形成所述微孔裝置。
在本發明其中一實施例中,每一個所述微柱的深度小於45微米。
在本發明其中一實施例中,所述剝離層的材料為蛋白質。
本發明的其中一有益效果在於,本發明所提供的微孔裝置及其製造方法,其能通過“每一個所述微孔包含一凹設於所述基板上的空腔以及一開口,其中所述開口的口徑小於所述空腔的最大內直徑”以及“多個所述微孔的形狀為曲面”的技術方案,以讓細胞培養裝置更可以讓細胞處於3D微環境中、降低細胞流失,並且讓實驗人員操作便利的效果。
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。
M,M1,M2,M3:微孔裝置
10:基板
11:上表面
20,20a,20b,20c:微孔
21:空腔
22:開口
23:側表面
24:底表面
25:內表面
30:功能性塗層
40:蓋體
41:功能層
T:緊密連接
S100~S110:步驟
N:微柱裝置
70:微柱
80:剝離層
90:玻璃微珠
K:第二模板
J:微孔裝置模具
D1:口徑
D2,D3,D4:直徑
L:長度
W:寬度
圖1為本發明第一實施例的微孔裝置的俯視示意圖。
圖2為本發明第一實施例的微孔裝置的剖面示意圖。
圖3為本發明第一實施例的微孔裝置的剖面示意圖。
圖4為本發明的微孔裝置M1的剖面示意圖。
圖5為本發明的微孔裝置M2的剖面示意圖。
圖6為本發明的微孔裝置M3的剖面示意圖。
圖7為本發明第二實施例的微孔裝置的製造方法的步驟流程方塊圖。
圖8為本發明第二實施例的微孔裝置的製造方法的步驟S100的示意圖。
圖9為本發明第二實施例的微孔裝置的製造方法的步驟S102的示意圖。
圖10為本發明第二實施例的微孔裝置的製造方法的步驟S104的示意圖。
圖11為本發明第二實施例的微孔裝置的製造方法的步驟S106的示意圖。
圖12為本發明第二實施例的微孔裝置的製造方法的步驟S108的示意圖。
圖13為本發明第二實施例的微孔裝置的製造方法的步驟S110的示意圖。
圖14為本發明第三實施例的經過步驟(1)處理後,培養有MDCK細胞的80μm的微孔裝置的示意圖。
圖15為本發明第三實施例的經過步驟(4)處理後,培養有MDCK細胞的80μm的微孔裝置的示意圖。
圖16為使用60μm“裸盤型”微孔裝置培養MDCK細胞4天後的示意圖。
圖17為使用60μm“全接合型”微孔裝置培養MDCK細胞6天後的示意圖。
圖18為使用60μm“隔離型”微孔裝置培養MDCK細胞7天後的示意圖。
圖19為使用60μm“封閉型”微孔裝置培養MDCK細胞7天後的示意圖。
圖20為使用具有不同直徑(最大內徑分別為40μm、60μm、80μm、100μm、200μm)的本發明的微孔裝置、2D培養盤(平面培養裝置)以及圓柱狀微孔培養裝置培養細胞的未分裂細胞及細胞追蹤百分比的折線圖。
以下是通過特定的具體實施例來說明本發明所公開有關“微孔裝置及其製造方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。
應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應 受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。
[第一實施例]
參閱圖1至圖2所示,本發明第一實施例提供一種微孔裝置M,其包括:一基板10以及形成於基板10上的多個微孔20。每一個微孔20包含一凹設於基板10上的空腔21以及一開口22,其中,開口22的口徑D1小於空腔21的最大內直徑D2。其中,微孔20的形狀可以為曲面。
進一步而言,基板10的材質可以為聚(丙烯醯胺)、明膠、矽氧樹脂、聚二甲基矽氧烷、聚乙烯、聚苯乙烯、聚烯烴、聚烯烴共聚物、聚碳酸酯、乙烯乙酸乙烯酯、聚丙烯、聚碸、聚四氟乙烯、含氟聚合物或聚(苯乙烯-丁二烯-苯乙烯),但不以此為限。
參閱圖1所示,本發明的微孔裝置M的長度L可以是10公釐(mm)至30公釐,以及微孔裝置的寬度W可以是10公釐至30公釐,但不以此為限。再者,每個相鄰微孔20之間的間隔距離可以為等距或非等距,而且多個微孔20的數量可以大於或等於100個。在其他具體實施例中,本發明的微孔裝置的基板,由俯視的角度可以是圓盤狀、橢圓形或是多邊形。
參閱圖2及圖3所示,每一個微孔20可以是球形微孔20a或橢圓球形微孔20b、20c。優選地,微孔20的開口22的口徑D1與微孔20的空腔21的最大內直徑D2的比值範圍為1:0.13至1:0.97。更優選地,微孔20的開口22的口徑D1與微孔20的空腔21的最大內直徑D2的比值範圍為1:0.43至1:0.66。因此,在細胞培養時,一單一細胞可以被單獨分別種入每一個微孔20中,且開口22窄於空腔21可以有效防止細胞從微孔20中滑出。
詳細而言,開口22的口徑D1可以為26微米(μm)至155微米,且 空腔21的最大內直徑D2可以為40微米至215微米,但不以此為限。每一個微孔20包含一側表面23以及一底表面24,且側表面23及底表面24的曲率不等於0。此外,側表面23及底表面24可以具有不相同或相同的曲率。再者,微孔裝置M中可以具有至少兩種不同容積大小的微孔20。
參閱圖2所示,當微孔裝置M並無任何塗佈(接合)時,可被稱為裸盤型”。參閱圖4所示,在其他實施例中,微孔裝置M1可以進一步包含一功能性塗層30,其只塗布於至少一微孔20的表面,且功能性塗層可以是選自於由細胞外基質蛋白質、糖胺聚醣、多肽、蛋白聚醣、氨基聚醣以及多醣蛋白所組成的群組,微孔裝置M1可被稱為“隔離型”。參閱圖5所示,在其他實施例中,微孔裝置M2的功能性塗層30可以被塗佈於基板10的上表面11以及微孔20的空腔21的內表面25,微孔裝置M2可被稱為“全接合型”。參閱圖6所示,在其他實施例中,微孔裝置M3可以進一步包含一蓋體40,其具有一功能層41在蓋體40的表面上,且蓋體40是可裝卸地蓋合於微孔裝置M3,微孔裝置M3可被稱為“封閉型”。其中,蓋體40的材質可以與基板10的材質相同,且蓋體40的功能層41的材質可以與功能性塗層30的材質相同。
[第二實施例]
參閱圖7至圖13所示,本發明第二實施例提供一種製造微孔裝置M的方法,其至少包含以下步驟S100至步驟S110。首先,在步驟S100中,通過光刻或軟光刻法,將一第一模板產生一微柱裝置N,其中微柱裝置N包括多個微柱70,且微柱裝置N可以是由聚二甲基矽氧烷(PDMS)製成的。其中,微柱70的深度可以小於或等於45微米。接下來,於步驟S102中,在微柱裝置N上塗覆一剝離層80,其中,剝離層80的材料可以為蛋白質(1%牛血清白蛋白的磷酸鹽緩衝溶液)。於步驟S104中,在微柱裝置N的每一個微柱70上放置玻璃微珠90。於步驟S106,將一矽氧樹脂(快速固化矽氧樹脂) 倒覆至放置有玻璃微珠90的微柱裝置N上,固化矽氧樹脂,再將固化後的矽氧樹脂與放置有玻璃微珠90的微柱裝置N分離,以形成一具有多個微腔的第二模板K。接著,於步驟S108中,將一環氧材料(雙液型5分鐘環氧樹脂)倒覆至第二模板K上,固化環氧材料,再將固化後的環氧材料與第二模板K分離,以形成一微孔裝置模具J。最後,於步驟S110中,將一鑄模材料(聚丙烯酰胺)倒覆至微孔裝置模具J上,固化鑄模材料,再將固化後的鑄模材料與所孔裝置模具J分離,以形成微孔裝置M。值得注意的是,不具任何接合(conjugated)或塗佈的微孔裝置M可被稱為“裸盤型”。
參閱圖2及圖10所示,詳細而言,微柱70的直徑D3決定微孔裝置M的微孔20的開口22的口徑D1。值得一提的是,玻璃微珠90的直徑D4決定微孔裝置M的微孔20的空腔21的最大內直徑D2。在其他實施例中,每一個微柱70的深度可以是45微米,以及直徑D4分別為40μm、60μm、80μm、100μm、200μm的玻璃微珠90是分別放置於直徑D3分別為26μm、40μm、53μm、66μm、132μm的微柱70上,最終成型的微孔如下表1所示。其中,鑄模材料例如為聚丙烯酰胺可以被些微地沿著Z軸向(垂直軸向)伸長。
Figure 109112902-A0305-02-0011-1
優選地,微柱70的直徑D3與玻璃微珠90的直徑D4的比值範圍為1:0.13至1:0.97。更優選地,微柱70的直徑D3與玻璃微珠90的直徑D4的比值範圍為1:0.43至1:0.66。
為在培養細胞時讓細胞基質具較佳的黏附力,通過使用雙功能交聯劑sulfo-SANPAH作為功能性塗層(以及蓋體的功能層),將細胞外基質(extracellular matrix)蛋白質(例如:膠原蛋白或纖連蛋白)接合於基板上及/或微孔上。
[第三實施例]
將Madin-Darby canine kidney(MDCK)腎臟上皮細胞培養於微孔裝置的微孔(最大內直徑為80微米)中,並將微孔裝置置於迴轉式震盪機上。依序使用4段不同的參數,每段30分鐘,對微孔裝置進行擾動,每段依序如下:(1)將微孔裝置面朝上,以100rpm搖晃;(2)將微孔裝置面朝下,以100rpm搖晃;(3)將微孔裝置面朝上,以200rpm搖晃;以及(4)將微孔裝置面朝下,以200rpm搖晃。經過步驟(1)以及經過步驟(4)的結果示意圖分別如圖14及圖15所示。經過2小時的擾動,在32個微孔(圖14和15中的虛線框中具有MDCK細胞)中僅丟失了一個微孔的MDCK細胞(圖15中的黑色邊框為丟失細胞)。因此,本實施例可證明,本發明的微孔裝置的微孔可以有效防止細胞滑出微孔。
[第四實施例]
將上皮細胞培養於以下4種不同的微孔裝置上:“裸盤型”微孔裝置(未接合)、“全接合型”微孔裝置(接合ECM在基板與微孔)、隔離型”微孔裝置(接合ECM在微孔)以及“封閉型”微孔裝置(具有蓋體)。
於“裸盤型”微孔裝置中,MDCK細胞並未貼附於基板10,也沒有貼附在微孔20,細胞展現極性反轉,緊密連接(tight junction)T朝外(如圖16所示),此狀態如同研究中將MDCK細胞培養於懸浮液中。於“全接合型” 微孔裝置中,MDCK細胞隨時間覆蓋基板10的上表面11和微孔20,其中緊密連接T面向培養基(如圖17所示)。於“隔離型”微孔裝置中,細胞於微孔20中生長及分裂,子細胞的群體最終從微孔20中生長出來(如圖18所示)。於“封閉型”微孔裝置中,MDCK細胞的緊密連接T面向內腔(如圖19所示),其極性與相關文獻中,於3D凝膠中生長的囊腫的極性相同。因此,由此實施例可說明,功能性塗層30的塗佈位置會顯著影響細胞聚集形成組織。
[第五實施例]
除了上皮細胞外,使用了本發明的微孔裝置培養纖維母細胞(fibroblasts)。當在“全接合型”微孔裝置培養纖維母細胞時,纖維母細胞傾向於遷移(migrate)到平坦的基板上(數據未顯示)。當在“隔離型”微孔裝置中培養時,纖維母細胞則是表現出細胞週期停滯(cell-cycle arrest)。將G1周期同步化的REF52細胞種到最大內直徑為40、60、80、100或200微米的微孔中、直徑90微米的平面培養裝置與圓柱形微孔為對照組,並每天追蹤細胞分裂3天。
參閱圖20所示,於培養第3天,可以清楚發現微孔的曲率越大(最大內直徑越小),細胞分裂百分比越小。在圓柱形微孔中的細胞分裂率是介於平面培養裝置與本發明的微孔裝置的微孔所培養的細胞的細胞分裂率之間,但更接近於平面培養裝置所培養的細胞的細胞分裂率。圓柱形微孔的底部仍然為平面,附著在底部上的細胞粘附屬於共面,因此細胞仍然可以感知並反應出部分處於2D微環境的情況。換句話說,圓柱形微孔的平面比曲面內壁對於細胞行為的影響更大。將細胞種在80、100和200微米的微孔中後,有些細胞會在一天後開始分裂,然而不論是在平面培養裝置和圓柱形微孔中,大多數細胞在第一天都不會分裂。因此,本實施例說明了,在3D細胞培養裝置中,幾何結構的微環境可以用於控制細胞增殖,且在先前研究中從未發現過此現 象。
本發明的其中一有益效果在於,本發明所提供的微孔裝置及其製造方法,其能通過“每一個所述微孔包含一凹設於所述基板上的空腔以及一開口,其中所述開口的口徑小於所述空腔的最大內直徑”以及“多個所述微孔的形狀為曲面”的技術方案,以讓細胞培養裝置更可以讓細胞處於3D微環境中、降低細胞流失,並且讓實驗人員操作便利的效果。
此外,可以設計為高通量技術使用的3D培養裝置對於大量化合物藥物篩選的應用非常重要。因此,可以將微孔排列為陣列(array),以提高單井分析通量,也使得長期追蹤更為簡易。
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。
M:微孔裝置
10:基板
20:微孔
L:長度
W:寬度

Claims (17)

  1. 一種微孔裝置,其包括:一基板;以及多個微孔,其形成於所述基板上,每一個所述微孔是由一凹設於所述基板上的空腔以及一開口所組成,其中所述開口的口徑小於所述空腔的最大內直徑;其中,多個所述微孔的形狀為曲面。
  2. 如請求項1所述的微孔裝置,其中,所述基板的材質為選自於由聚(丙烯醯胺)、明膠、矽氧樹脂、聚二甲基矽氧烷、聚乙烯、聚苯乙烯、聚烯烴、聚烯烴共聚物、聚碳酸酯、乙烯乙酸乙烯酯、聚丙烯、聚碸、聚四氟乙烯、含氟聚合物、聚(苯乙烯-丁二烯-苯乙烯)及其組合所組成的群組。
  3. 如請求項1所述的微孔裝置,其中,所述基板的長度為10公釐至30公釐,以及所述基板的寬度為10公釐至30公釐。
  4. 如請求項1所述的微孔裝置,其中,所述多個微孔的數量大於或等於100個。
  5. 如請求項1所述的微孔裝置,其中,每一個所述微孔的形狀為球形或橢圓球形。
  6. 如請求項1所述的微孔裝置,其中,所述開口的口徑為26微米至155微米。
  7. 如請求項1所述的微孔裝置,其中,所述空腔的最大內直徑為40微米至215微米。
  8. 如請求項1所述的微孔裝置,其中,每一個所述微孔包含一側表面以及一底表面,以及所述側表面以及所述底表面的曲率皆不等於0。
  9. 如請求項1所述的微孔裝置,其中,所述微孔裝置進一步包含一功能性塗層,其塗佈於至少一所述微孔的一內表面。
  10. 如請求項1所述的微孔裝置,其中,所述微孔裝置進一步包含一功能性塗層,其塗佈於至少一所述微孔的所述內表面與所述基板的一上表面。
  11. 如請求項9或10中任一項所述的微孔裝置,其中,所述功能性塗層是選自於由細胞外基質蛋白、糖胺聚醣、多肽、蛋白聚醣、氨基聚醣以及多醣蛋白所組成的群組。
  12. 如請求項9所述的微孔裝置,其中,所述微孔裝置進一步包含一蓋體,其具有一功能層於所述蓋體表面,且所述蓋體是可裝卸地覆蓋於所述微孔裝置上。
  13. 如請求項12所述的微孔裝置,其中,所述功能性塗層以及所述功能層是選自於由細胞外基質蛋白、糖胺聚醣、多肽、蛋白聚醣、氨基聚醣以及多醣蛋白所組成的群組。
  14. 如請求項1所述的微孔裝置,其中,所述微孔裝置具有至少兩種不同容積大小的所述微孔。
  15. 一種製造微孔裝置的方法,其包含:(a)通過光刻或軟光刻法,將一第一模板產生一微柱裝置,其中所述微柱裝置包括多個微柱;(b)在所述微柱裝置上塗覆一剝離層;(c)在所述微柱裝置的每一個所述微柱上放置一微珠;(d)將一矽氧樹脂倒覆至放置有所述微珠的所述微柱裝置上,固化所述矽氧樹脂,再將固化後的矽氧樹脂與放置有所述微珠的所述微柱裝置分離,以形成一具有多個微腔的第二模板;(e)將一環氧材料倒覆至所述第二模板上,固化所述環氧材料,再將固化後的環氧材料與所述第二模板分離,以形成一微孔裝置模具;以及(f)將一鑄模材料倒覆至所述微孔裝置模具上,固化所述鑄模材料,再將固化後的鑄模材料與所述微孔裝置模具分離,以形成所述微孔裝置。
  16. 如請求項15所述的製造微孔裝置的方法,其中,每一個所述微柱的深度小於45微米。
  17. 如請求項15所述的製造微孔裝置的方法,其中,所述剝離層的材料為蛋白質。
TW109112902A 2019-04-17 2020-04-17 微孔裝置及其製造方法 TWI766266B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962835009P 2019-04-17 2019-04-17
US62/835,009 2019-04-17

Publications (2)

Publication Number Publication Date
TW202039821A TW202039821A (zh) 2020-11-01
TWI766266B true TWI766266B (zh) 2022-06-01

Family

ID=72833047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109112902A TWI766266B (zh) 2019-04-17 2020-04-17 微孔裝置及其製造方法

Country Status (3)

Country Link
US (1) US11492581B2 (zh)
CN (1) CN111826286A (zh)
TW (1) TWI766266B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282481A (zh) * 2010-12-08 2013-09-04 诺维信公司 微孔板取样适配器
US20140273191A1 (en) * 2013-03-15 2014-09-18 New Renaissance Institute Cell Incubator and Cellular Culture Laboratory Test bed
WO2017135153A1 (ja) * 2016-02-01 2017-08-10 日立化成株式会社 細胞捕捉フィルター、細胞捕捉デバイス、細胞捕捉方法、細胞観察方法、及び、細胞培養方法
WO2018061846A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 細胞組織の製造方法、及び多孔フィルム
CN109016275A (zh) * 2018-09-19 2018-12-18 中国科学院生态环境研究中心 微孔模具及其制备方法和应用
CN109337814A (zh) * 2018-11-07 2019-02-15 深圳大学 细胞孔板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333286A4 (en) * 2000-09-18 2004-05-12 Card Corp I MICRO-COUPLER ASSEMBLY AND METHOD FOR HERMETICALLY HERBALIZING LIQUIDS USING THIS ASSEMBLY
US6833238B2 (en) * 2002-01-04 2004-12-21 Applera Corporation Petal-array support for use with microplates
US6632660B2 (en) * 2002-01-04 2003-10-14 Applera Corporation Petal-array support for use with microplates
US7981362B2 (en) * 2003-11-04 2011-07-19 Meso Scale Technologies, Llc Modular assay plates, reader systems and methods for test measurements
US8230959B2 (en) * 2005-09-02 2012-07-31 Deere & Company Folding air intake scoop
WO2008157480A1 (en) * 2007-06-14 2008-12-24 University Of Rochester Microfluidic device and method of manufacturing the microfluidic device
WO2009148509A1 (en) * 2008-05-30 2009-12-10 Corning Incorporated Cell culture apparatus having different micro-well topography
US20100022416A1 (en) * 2008-07-25 2010-01-28 Life Bioscience, Inc. Assay plates, methods and systems having one or more etched features
US8753880B2 (en) * 2011-07-08 2014-06-17 University Of Rochester Method of enriching stem and/or progenitor cells
US11369966B2 (en) * 2015-09-18 2022-06-28 Arizona Board Of Regents On Behalf Of Arizona State University Layered structure for improved sealing of microwell arrays
US20170253844A1 (en) * 2016-03-04 2017-09-07 Corning Incorporated Bowl shaped microwell
KR101847303B1 (ko) * 2016-12-27 2018-04-11 중앙대학교 산학협력단 마이크로웰 서브스트레이트 및 이의 제작 방법
CN108342318A (zh) * 2017-01-23 2018-07-31 南方医科大学珠江医院 成型模具板、成型基板、细胞聚球培养模具及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282481A (zh) * 2010-12-08 2013-09-04 诺维信公司 微孔板取样适配器
US20140273191A1 (en) * 2013-03-15 2014-09-18 New Renaissance Institute Cell Incubator and Cellular Culture Laboratory Test bed
WO2017135153A1 (ja) * 2016-02-01 2017-08-10 日立化成株式会社 細胞捕捉フィルター、細胞捕捉デバイス、細胞捕捉方法、細胞観察方法、及び、細胞培養方法
WO2018061846A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 細胞組織の製造方法、及び多孔フィルム
CN109016275A (zh) * 2018-09-19 2018-12-18 中国科学院生态环境研究中心 微孔模具及其制备方法和应用
CN109337814A (zh) * 2018-11-07 2019-02-15 深圳大学 细胞孔板

Also Published As

Publication number Publication date
TW202039821A (zh) 2020-11-01
US11492581B2 (en) 2022-11-08
US20200332239A1 (en) 2020-10-22
CN111826286A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US20200239854A1 (en) Adherent cell culture method
KR101454580B1 (ko) 배양 기재
JP5578779B2 (ja) スフェロイド培養方法及びスフェロイド培養容器
US20090298166A1 (en) Cell culture apparatus having variable topography
JP5676265B2 (ja) 細胞保存方法、及び細胞輸送方法
JP6534380B2 (ja) スフェロイド作製用デバイス、スフェロイドの回収方法及び製造方法
CN110903976A (zh) 一种用于类器官球体培养的孔板装置
JPWO2008130025A1 (ja) 肝細胞培養容器及び肝細胞培養方法
CN106047706A (zh) 一种基于单细胞捕获实现细胞定位培养芯片及其使用及制备方法
JP2021118749A (ja) 細胞培養容器、細胞培養容器の支持治具、及び細胞培養方法
US20200095526A1 (en) Production of cellular spheroids
TWI766266B (zh) 微孔裝置及其製造方法
JP5231909B2 (ja) 任意の分布形状と分布密度を有する分子または粒子の集団を同時に多種大量生成する方法とその方法に使用するマスク材
US11345881B2 (en) Nanofiber structure for cell culture, method for manufacturing the nanofiber structure, and cell analysis device including the nanofiber structure
JP2020526219A (ja) 3d培養のための細胞培養容器及び3d細胞の培養方法
KR101949856B1 (ko) 웰 플레이트, 이의 제조방법, 및 이를 이용하여 세포를 배양하는 방법
US20240124819A1 (en) Cell culture membrane structure, methods for producing the same, cell culture plate and microfluidic device using the same
JP2023551403A (ja) 開放ウェル型マイクロキャビティプレート
Kubrin et al. 3D printed platforms to facilitate cell culture on carbon nanotube arrays
JPH03160988A (ja) 細胞産生物の調製方法
JP6318843B2 (ja) 細胞培養容器
CN114752550A (zh) 一种人血脑脊液屏障模型及其制备方法与应用
Ikeuchi et al. Soft tapered stencil mask for combinatorial 3D cluster formation of stem cells
CN112867783A (zh) 球体培养构件、培养容器、开孔构件的加工方法及洗涤容器
JP2018113945A (ja) 細胞スフェロイドの形成方法