TWI763553B - 用於製造單晶襯底的方法 - Google Patents

用於製造單晶襯底的方法 Download PDF

Info

Publication number
TWI763553B
TWI763553B TW110125078A TW110125078A TWI763553B TW I763553 B TWI763553 B TW I763553B TW 110125078 A TW110125078 A TW 110125078A TW 110125078 A TW110125078 A TW 110125078A TW I763553 B TWI763553 B TW I763553B
Authority
TW
Taiwan
Prior art keywords
single crystal
layer
susceptor
seed layer
separation
Prior art date
Application number
TW110125078A
Other languages
English (en)
Other versions
TW202202674A (zh
Inventor
李惠龍
崔泳畯
吳海坤
Original Assignee
南韓商盧密基恩科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商盧密基恩科技股份有限公司 filed Critical 南韓商盧密基恩科技股份有限公司
Publication of TW202202674A publication Critical patent/TW202202674A/zh
Application granted granted Critical
Publication of TWI763553B publication Critical patent/TWI763553B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明提供一種用於製造單晶襯底的方法,方法包含:在裝入單晶生長裝置中的基座上形成晶種層的製程;從單晶生長裝置取出其上形成有晶種層的基座且從基座的下側將雷射照射到晶種層上以形成具有多個空隙的分離層的製程;將其上形成有分離層的基座裝入單晶生長裝置中以在分離層上形成單晶層的製程;以及從單晶生長裝置取出其上形成有分離層和單晶層的基座以使單晶層與基座分離的分離製程。因此,單晶層可生長於分離層的平坦表面上,且可製備具有極佳結晶度和抑制缺陷的發生的單晶襯底。也就是說,可製備具有極佳結晶度和抑制缺陷的發生的單晶襯底,同時省略用於使平坦分離層的表面平坦化的平坦化製程。

Description

用於製造單晶襯底的方法
本公開涉及一種用於製造單晶襯底的方法,且更確切地說,涉及一種用於製造單晶襯底的方法,所述方法能夠抑制或防止單晶層缺陷的發生。
通過在藍寶石襯底上生長GaN單晶層且接著使GaN單晶層與藍寶石襯底分離來製造GaN單晶襯底。在此,與藍寶石襯底分離的GaN單晶層通常稱為GaN單晶襯底。
作為用於使GaN單晶層與藍寶石襯底分離的方法,存在一種用於經由冷卻製程自然地分離GaN單晶層的方法。用於經由冷卻製程自然分離的方法為用於在藍寶石襯底與GaN單晶層之間形成具有多個空隙的弱層以通過使用弱層來分離GaN單晶層的方法。也就是說,當具有多個空隙的弱層和GaN單晶層層壓於藍寶石襯底上且接著冷卻時,在弱層中產生應力歸因於藍寶石襯底與GaN單晶層之間的熱膨脹係數差。在此,在藍寶石襯底和GaN單晶層的層壓方向上分離或劃分弱層以使GaN單晶層與藍寶石襯底分離。
在製備具有多個空隙的弱層中,根據相關技術,薄膜形成於藍寶石襯底上,且接著通過化學蝕刻方法去除薄膜的部分。另外,作為另一方法,在第一薄膜形成於藍寶石襯底上之後,製備用於在第一薄膜上選擇性形成第二薄膜的方法。執行這些方法使得空隙安置於弱層的厚度方向的中心處。因此,其上將形成有GaN單晶層的弱層的頂表面因為空隙而不形成為平坦的。
另外,當GaN生長於不平坦弱層上時,結晶度可能較差,且因此可製造較差襯底。因此,另外執行用於使不平坦弱層的頂表面平坦化的製程,例如磊晶橫向生長(epitaxial lateral growth;ELG)製程。然而,存在製程複雜的限制性,且因為在形成弱層之後伴隨著平坦化製程,所以製程時間增加。
(現有技術文件)韓國專利登記第1379290號
本公開提供一種用於製造單晶襯底的方法,所述方法能夠在通過使單晶層與基座分離來製造單晶襯底時抑制或防止單晶層缺陷的發生。
本公開還提供一種用於製造單晶襯底的方法,所述方法能夠在通過使單晶層與基座分離來製造單晶襯底時減小製造時間。
根據示範性實施例,用於製造單晶襯底的方法包含:在裝入單晶生長裝置中的基座上形成晶種層的製程;從單晶生長裝置取出其上形成有晶種層的基座且從基座的下側將雷射照射到晶種層上以形成具有多個空隙的分離層的製程;將其上形成有分離層的基座裝入單晶生長裝置中以在分離層上形成單晶層的製程;以及從單晶生長裝置取出其上形成有分離層和單晶層的基座以使單晶層與基座分離的分離製程。
在形成分離層的製程中,空隙可形成於基座與分離層之間的介面中。
從基座的下側將雷射照射到晶種層上的製程可包含在晶種層的延伸方向上不連續地照射雷射的製程。
在晶種層的延伸方向上不連續地照射雷射的製程可包含:製備遮罩的製程,其中交替地安置多個開口和閉合部分;在晶種層的相對側處將遮罩安置為面向基座的製程;以及發射雷射以穿過遮罩和基座的製程。
在製備遮罩的製程中,開口中的每一個的長度與閉合部分中的每一個的長度的比率可為2:1到1:5。
在製備遮罩的製程中,開口可具有大約1微米到大約100微米的長度。
在晶種層的延伸方向上不連續地照射雷射的製程可包含:水平地移動其上形成有晶種層的基座的製程;以及從形成於水平地移動的基座上的晶種層的相對側將雷射照射到基座上,且交替地重複執行照射的停止操作的製程。
分離製程可包含在基座和單晶層的層壓方向上劃分分離層的製程。
晶種層和單晶層中的每一個可包含GaN層。
在形成晶種層的製程中,晶種層可形成為大約2微米到大約30微米的厚度。
在下文中,將參考隨附圖式更詳細描述具體實施例。然而,本發明可以用不同形式實施,並且不應解釋為限於本文所闡述的實施例。確切地說,提供這些實施例以使得本公開將透徹且完整,並且將向所屬技術領域的技術人員充分傳達本發明的範圍。在圖式中,出於說明清楚起見而放大層和區的尺寸。貫穿全文相似的附圖標號指代相似的元件。
本公開涉及一種用於製造單晶襯底的方法,所述方法能夠在通過使單晶層與基座分離來製造單晶襯底時抑制或防止單晶層缺陷的發生。另外,本公開涉及一種用於製造單晶襯底的方法,所述方法能夠減小製造單晶襯底所花費的時間。
在下文中,將參考圖1到3描述根據示範性實施例的製造單晶襯底的方法。
圖1為示出根據示例性實施例的用於製造單晶襯底的方法的流程圖。圖2為依序示出根據示範性實施例的用於製造單晶襯底的方法的概念圖。圖3為用於解釋根據示例性實施例的遮罩的視圖。
參考圖1和圖2,根據示範性實施例的製造單晶襯底的方法包含:在所製備的基座10上形成具有多個空隙V的分離層30的製程(S100);在分離層30上形成單晶層40的製程(S200);冷卻其上形成有單晶層40的基座10以使單晶層40與基座10分離的製程(S300);以及處理單晶層40的表面的製程(S400)。
在此,與基座10分離的單晶層40或其上完成表面處理的單晶層40通常稱為單晶襯底400。
參考圖2,基座10可具有板狀,所述板狀具有其上能夠形成有薄膜的預定區域。此外,基座10可為由能夠透射雷射(laser light)(下文稱作雷射(laser))的材料製成的襯底。作為具體實例,襯底可用作基座10,具有大約362奈米或小於362奈米的波長的雷射能夠透射通過所述襯底。作為更具體實例,可優選地使用襯底,例如可使用藍寶石襯底,在固體雷射當中,具有大約355奈米的波長的雷射、具有大約266奈米的波長的雷射、具有大約308奈米的波長的XeCl準分子雷射、具有大約248奈米的波長的KrF準分子雷射以及具有大約193奈米的波長的準分子雷射中的任一個能夠透射通過所述襯底。在此,藍寶石襯底可為藍寶石晶片。
當提供基座10時,分離層30形成於基座10上(S100)。對此,首先,如圖2的(a)中所示出,晶種層20形成於的基座10上(S110)。晶種層20可由與稍後形成的單晶層40相同的材料製成,且可形成為GaN層。晶種層20可形成為若干微米到幾十微米的厚度,優選地大約2微米到大約30微米,並且更優選地大約5微米到大約20微米。
當晶種層20具有小於大約2在微米的厚度時,可將晶種層20與基座10分離,例如在將雷射照射到晶種層20上以稍後形成空隙V的製程中從基座10剝離。此外,如果晶種層20的厚度超出大約30微米,那麼當雷射照射到晶種層20上以形成空隙V時,將較大應力施加到晶種層20。在這種情況下,當單晶層40生長於其中形成有空隙V的晶種層20(也就是說,分離層30)上時,可發生生長失敗,例如在單晶層40的生長期間,單晶層40中的至少一部分從分離層30剝離。
可通過在單晶生長裝置中的基座10上生長GaN層來形成晶種層20。此外,單晶生長裝置可為例如用於經由氫化物氣相磊晶(hydride vapor phase epitaxial;HVPE)方法生長GaN層的裝置。下文將簡要地描述用於通過HVPE方法形成GaN層的晶種層20的方法。
首先,基座10裝入反應空間中,即,單晶生長裝置的爐子,且將Ga源材料和HCl氣體供應到爐子中。隨後,通過Ga源材料與HCl氣體之間的反應產生GaCl氣體。隨後,當供應NH 3氣體時,通過GaCl與NH 3之間的反應形成GaN層。
反應式1)Ga + HCl(g) -> GaCl(g) + 1/2 H 2(g)
反應式1)GaCl(g) + NH 3-> GaN(s) + HCl(g) + H 2(g)
在此,優選的是將爐子中的溫度調整到大約950℃到大約1,050℃。
當爐子中的溫度小於大約950℃時,可降低晶種層20的結晶度。另外,當單晶層40形成於通過將雷射照射到具有低結晶度的晶種層20上所形成的分離層30上時,可在單晶層40中發生缺陷。另一方面,當爐子中的溫度超出大約1 ,050℃時,晶種層20的生長率變慢,且晶種層20中的應力增加。因此,雖然晶種層20生長於基座10上,但晶種層20可與基座10分離,也就是說,剝離。
用於形成晶種層20的方法不限於HVPE方法,且可使用例如化學氣相沉積(chemical vapor deposition;CVD)、金屬有機化學氣相沉積(metal organic chemical vapor deposition;MOCVD)等的各種方法。
當晶種層20形成於基座10上時,通過將雷射照射到晶種層20上來形成分離層30(S120)。也就是說,分離層30形成為晶種層20。對此,首先,其上形成有晶種層20的基座10從單晶生長裝置帶出。
隨後,雷射照射到晶種層20上。對此,例如,其上形成有晶種層20的基座10支撐於面向用於照射雷射的雷射照射器件的平臺上。隨後,如圖2的(b)中所示出,具有多個孔(下文稱為開口OA)的遮罩M安置於基座10之下。因此,穿過遮罩M的開口OA的雷射在穿過基座10之後照射到晶種層20上。在此,由於GaN能帶隙大約為3.425電子伏特,且吸收波長大約為362奈米,所以優選的是使用具有大約362奈米或小於362奈米的波長的雷射。當雷射照射到晶種層上時,可優選地使用固體雷射當中的具有大約355奈米的波長的雷射(3.5電子伏特)、具有大約266奈米的波長的雷射(4.68電子伏特)、具有大約308奈米的波長的XeCl準分子雷射(4.04電子伏特)、具有大約248奈米的波長的KrF準分子雷射(5.02電子伏特)以及具有大約193奈米的波長的ArF準分子雷射(6.45伏特)中的任一個。
從基座10的下側發射的雷射穿過如上文所描述的設置於遮罩M中的多個開口OA,且接著穿過基座10且照射到晶種層20上。換句話說,照射雷射以穿過設置以彼此間隔開的多個開口OA可描述為在基座10或晶種層20的延伸方向上不連續地照射雷射。照射到晶種層20上的雷射熔化晶種層20中的至少一部分。在此,由於經由設置於遮罩M中的多個開口OA將雷射照射到晶種層20上,所以可熔化面向遮罩M的多個開口OA的晶種層20的區域。也就是說,晶種層20可由遮罩M選擇性或不連續地熔化。
此外,作為多個自由空間的多個空隙V通過由雷射對晶種層20的選擇性熔化而形成於晶種層20中。也就是說,由GaN製成的晶種層20當中的面向遮罩M的多個開口OA的區域可由雷射熔化,且空隙V可形成於所述區域中。也就是說,多個空隙V可不連續地形成。另外,如圖2的(c)中所示出,空隙V形成於晶種層20內的基座10與晶種層20之間的介面中。換句話說,在與介面相對的方向上空隙V中的每一個形成為具有距晶種層20與基座10之間的介面預定高度。此外,由於如上文所描述,空隙V形成於晶種層20與基座10之間的介面中,所以其可描述為與稍後待形成於分離層30上的單晶層40相比,形成為更鄰近於基座10。另外,由於其中形成有空隙V的晶種層20稱為分離層300,所以空隙V可描述為形成於基座10與分離層30之間的介面中。
空隙V形成於基座10與分離層30之間的介面中且具有各種形狀。也就是說,空隙V中的每一個的形狀可取決於照射雷射的強度、其上安放有基座10的平臺的移動速度、晶種層20的厚度以及類似物而變化。
其中形成有多個空隙V的晶種層20,也就是說,分離層30為形成為當在單晶層40形成於分離層30上且接著冷卻之後單晶層40與基座10分離時促進分離的層。也就是說,在單晶層40形成於分離層30上且接著冷卻之後,通過單晶層40與基座10之間的熱膨脹係數差來將應力施加到基座10與單晶層40之間的分離層30。應力可相對於分離層30在基座10和單晶層40的兩個方向上施加,且因此在基座10和單晶層40的配置方向或層壓方向上分離或撕扯分離層30。因此,單晶層40與基座10分離,且通過冷卻的分離稱為自然分離。
為了在基座10和單晶層40的配置方向上通過由於在冷卻期間基座10與單晶層40之間的熱膨脹係數差產生的應力來劃分分離層30,分離層30需要弱化。也就是說,由於熱膨脹係數差的應力,分離層30需弱化,使得在配置方向上或在豎直方向上在基座10與單晶層40之間容易地劃分、分離或撕扯分離層30。
因此,在這一實施例中,分離層30經形成為具有多個空隙V。當多個孔隙V設置於分離層30中時,與不存在孔隙V時相比,構成分離層30的元件之間的接合力較弱。確切地說,在形成有空隙V的位置處的元件之間的接合力較弱。因此,當單晶層40形成於分離層30上且接著冷卻時,通過由於基座10與單晶層40之間的熱膨脹係數差產生的應力來在基座10和單晶層40的層壓方向上容易地分離分離層30。因此,在冷卻期間施加到單晶層40的應力可減小,且因此單晶層40中的缺陷和由於應力產生的缺陷的發生可減小。
此外,因為空隙V形成於基座10與分離層30之間的介面中,所以在形成單晶層40之後的冷卻期間,單晶層40可更容易地與基座10分離。也就是說,當通過由冷卻施加的應力劃分分離層30時,如果空隙V形成於基座10與分離層30之間的介面中,那麼當與在分離層30厚度方向上的中心中形成空隙時相比時,分離層30可利用相對較少應力來分離。當與由相同材料製成的層之間的接合力相比時,由不同材料製成的層之間的接合力可相對弱。確切地說,由不同材料製成的層之間的介面處或鄰近於介面的區中的接合力可能較弱。在這一實施例中,由於空隙V形成於基座10與由不同材料製成的分離層之間的介面中,所以基座10與分離層30之間的介面可更易受應力損壞。因此,可減小施加到單晶層40的應力。
此外,相對於空隙V劃分分離層30,由於空隙V形成於基座10與分離層30之間的介面中,以便遠離單晶層40安置,所以可抑制或最小化在分離期間施加到單晶層40的應力。如上文所描述,可減小施加到單晶層40的應力,且可抑制或防止由於應力而產生的單晶層40中缺陷的發生。
在下文中,將再次描述從基座10的下側照射雷射的製程。
如上文所描述,當晶種層20形成於基座10上時,遮罩M安置於基座10下方,且從遮罩M的下側朝向基座10照射雷射。在通過穿過設置於遮罩M中的多個開口OA來透射通過基座10之後,將雷射照射到晶種層20上。因此,多個空隙V形成於晶種層20中。
如上文所描述,遮罩M提供以包含多個開口OA,雷射能夠穿過所述開口。換句話說,如圖3中所示出,遮罩M提供以包含多個開口OA和作為開口OA之間的區域且不打開的閉合部分CA。另外,開口OA和閉合部分CA提供以交替地安置。
在這一實施例中,開口OA與閉合部分CA的長度比率,即,開口的長度L o:閉合部分的長度L c'為2:1到1:5。也就是說,開口OA的長度L o可小於、相同或大於閉合部分CA的長度L c。當開口OA的長度L o小於閉合部分CA的長度L c時,開口OA的長度L o大約為0.2或大於和小於閉合部分CA的長度L c的大約1。另外,當開口OA的長度L o大於閉合部分CA的長度L c時,開口OA的長度L o大於閉合部分CA的長度L c的一倍或小於兩倍。此外,優選的是開口OA的長度L o為大約1微米到大約100微米。
當開口OA的長度L o形成為小於閉合部分CA的長度時,如果開口OA的長度L o形成為小於閉合部分CA的長度L c的大約0.2,或開口OA的長度L o小於大約1微米,那麼在冷卻期間分離層30可不在基座10和單晶層40的配置方向上劃分。這可能是因為遮罩M的開口OA的長度或區域太小,且因此形成於分離層30中的空隙V中的每一個的大小太小。也就是說,這可能是因為空隙V的大小太小,且分離層30強抵抗由於基座10與單晶層40之間的熱膨脹係數產生的應力。
另一方面,當開口OA的長度形成為大於閉合部分CA的長度時,如果開口OA的長度L o大於閉合部分CA的長度L c的兩倍,或開口OA的長度L o超出大約100微米,那麼晶種層20可在雷射照射期間從基座10剝離。
在以上描述中,遮罩M安置於其上形成有晶種層20的基座10下方,且從遮罩M的下側照射雷射。然而,這一實施例不限於此,且可從基座10的上側照射雷射。也就是說,在其中晶種層20反相為面向下側的狀態下,遮罩M可安置於雷射照射器件與基座10之間,且雷射可從遮罩M的上側照射。
此外,在上文中,已描述通過使用具有開口OA和閉合部分CA的遮罩M在晶種層20的延伸方向上不連續地照射雷射來形成分離層30。然而,雷射可在晶種層20的延伸方向上不連續地照射而不使用遮罩M。也就是說,當其上安放有基座10(其上形成有晶種層20)的平臺水平地移動時,雷射可朝向晶種層20照射(或發射)(開啟),或可交替地重複地執行若干次停止(斷開)照射(或發射)以不連續地照射雷射。在此,停止雷射的照射可意味著不發射雷射。
當分離層30形成於基座10上時,單晶層40形成於分離層30上,如圖2的(d)中所示出(S200)。換句話說,使用分離層30作為晶種生長薄膜(也就是說單晶)以生長單晶層40。對此,其上形成有分離層30的基座10裝入單晶生長裝置中,且單晶層40形成於分離層30上。在此,單晶層40由與分離層30或晶種層20相同的材料製成,且可由例如GaN製成。此外,單晶層40形成為厚於分離層30的數百微米到數千微米的厚度,且優選地形成為大約400微米或大於400微米的厚度。更優選,其形成為大約400微米到大約2,000微米的厚度。
如上文所描述,在晶種層20形成於基座10上之後,空隙V通過將雷射照射到基座10的下側而形成於基座10與晶種層20之間的介面中。因此,分離層30的另一表面(其為與基座10接觸且其上生長有單晶層40的分離層30的一個表面的相對表面)形成為平坦的。因此,在形成分離層30之後,不需要另外執行使分離層30的另一表面平坦化的製程。因此,可形成具有極佳結晶度和抑制缺陷的單晶層40同時省略使分離層30平坦化的製程。
然而,如在根據相關技術的方法中,通過化學蝕刻方法去除晶種層的部分,但當通過經由使用遮罩的選擇性生長方法在晶種層中形成空隙來製備分離層時,空隙安置於分離層的厚度方向上的中心處。在這種情況下,由於分離層的另一表面(其上生長有單晶層)不是平坦的,所以存在必須另外執行用於使分離層的另一表面平坦化的製程(例如磊晶橫向生長(ELG)製程)的限制性。因此,存在製程為複雜的,且製程時間較長的限制性。
如上文所描述,當單晶層40與基座10分離時,分離分離層30以便在厚度方向上劃分。因此,分離單晶層40和基座10,使得分離層30的部分附接到單晶層40,且其餘部分附接到基座10。當單晶層40與基座10分離時,需要拋光至少面向基座10的表面(即,單晶層40的一個表面,分離層30附接到所述表面)。當完成表面處理時,製備作為最終產物的單晶襯底400。
當拋光一個表面(即,單晶層40的表面)時,單晶層40的厚度減小。為了獲得穩定的單晶襯底400,厚度需要大約為350微米或大於350微米。然而,當形成於分離層30上的單晶層40的厚度小於大約400微米時,在表面處理之後單晶層40的厚度可小於大約350微米。也就是說,可製造具有小於大約350微米的厚度的不穩定的單晶襯底400。因此,在分離層30上形成單晶層40時,單晶層40形成為具有大約400微米或大於400微米的厚度。
單晶層40可以與晶種層20相同的方式形成。也就是說,將Ga源材料和HCl氣體供應到其中形成有基座10,其上形成有分離層30的反應空間中,即,爐子裝料。因此,GaCl氣體通過Ga源材料和HCl氣體之間的反應來形成,且接著通過所供應的NH 3氣體與GaCl之間的反應形成由GaN製成的單晶層40。
當完成單晶層40的形成時,從單晶生長裝置中取出基座10。此外,其上形成有分離層30和單晶層40的基座10從單晶生長裝置取出且優選地在室溫下冷卻。
當冷卻其上形成有分離層30和單晶層40的基座10時,通過基座10與單晶層40之間的熱膨脹係數差將應力施加到分離層30。在此,應力在熱膨脹係數不同的方向(即,配置基座10和單晶層40的方向上)上起作用。也就是說,相對於分離層30在基座10和單晶層40的兩個方向上施加應力。
因此,如圖2的(e)中所示出,分離鄰近於基座10的下部部分以相對於分離層30的厚度方向朝向基座10劃分,且分離剩餘部分以朝向單晶層40劃分。在分離層30中的位置處發生分離,在所述位置處形成多個空隙V。也就是說,基於分離層30的厚度方向,分離分離層30的部分以朝向基座10劃分,且分離剩餘部分以在其中形成有空隙V的區域上朝向單晶層40劃分。當再次基於一個空隙V而描述時,分離接近於基座10的下部以朝向基座10劃分,且分離剩餘區以朝向單晶層40劃分。
隨後,當將預定衝擊施加到單晶層40或基座10時,單晶層40可完全地與基座10分離。當然,單晶層40可僅通過冷卻而不施加衝擊來與基座10分離。
接著,拋光附接有分離層30的部分的單晶層40一個表面(參見圖2的(f))以從單晶層40去除分離層30。另外,還可拋光附接有分離層30的單晶層40的一個表面的相對表面。在此,可通過研磨或拋光(其為機械拋光方法或化學機械拋光(chemical mechanical polishing;CMP)方法)來拋光表面,其中經由使用研磨漿的化學反應來執行拋光。
經由上述表面處理製備作為最終產物的單晶襯底400(參見圖2的(g))。
圖4為經由根據示範性實施例的方法通過照相其中形成有空隙的分離層的部分所獲得的相片。
在下文中,根據本發明的實施例的製造單晶襯底的方法將參考圖2和圖4共同地描述。在此,將省略或簡要地描述與先前所描述的內容重複的內容。
首先,晶種層20形成於如圖2的(a)所示出的基座10上(S110)。對此,將基座10裝入單晶生長裝置中,且晶種層20形成於基座10上。在此,基座10可為藍寶石晶片,且晶種層20可為形成為大約2微米到大約30微米的厚度的GaN層。此外,可在大約950℃到大約1,050℃的溫度下形成晶種層20。
隨後,將雷射照射到晶種層20上以形成具有多個空隙V的分離層30。對此,首先,其上形成有晶種層20的基座10從單晶生長裝置帶出。隨後,如圖2的(b)中所示出,具有多個開口OA和閉合部分CA的遮罩M安置於基座10下方,且從遮罩M的下側照射具有大約362奈米或小於362奈米的波長的雷射,更確切地說具有大約355奈米的波長的固體雷射。
雷射穿過設置於遮罩M中的多個開口OA,且接著穿過基座10且照射到晶種層20上。照射到晶種層20上的雷射熔化晶種層20中的部分。在此,由於經由設置於遮罩M中的多個開口OA將雷射照射到晶種層20上,所以可熔化面向遮罩M的多個開口OA的晶種層20的區域。由於熔化多個空隙V(其為自由空間)形成於晶種層20中,如圖2的(c)和圖4中所示出。此外,可見空隙V形成於面向遮罩M的開口OA或與遮罩M的開口OA相對的位置處。空隙V形成於晶種層20內的基座10與晶種層20之間的介面中或基座10與分離層30之間的介面中。換句話說,與稍後待在分離層30上形成的單晶層40相比,空隙V形成為鄰近於基座10。
當具有多個空隙V的分離層30形成於基座10上時,其上形成有分離層30的基座10裝入單晶生長裝置中以在分離層30上形成單晶層40,如圖2的(d)中所示出(S200)。在此,單晶層40可為形成為厚度為大約400微米到大約2,000微米的GaN層。此外,可在大約950℃到大約1,050℃的溫度下形成單晶層40。
接著,其上形成有分離層30和單晶層40的基座10從單晶生長裝置取出且在室溫下冷卻。因此,通過基座10與單晶層40之間的熱膨脹係數差將應力施加到分離層30。在此,應力在基座10和單晶層40的配置方向上起作用。因此,分離分離層30以在基座10和單晶層40的配置方向(即,在厚度方向上)上劃分。也就是說,基於分離層30的厚度方向,分離鄰近於基座10的下部部分以朝向基座劃分,且分離剩餘部分以朝向單晶層40劃分。在此,基於分離層30的厚度方向,分離分離層30的部分以朝向基座10劃分,且分離剩餘部分以在其中形成有空隙V的區域上朝向單晶層40劃分。
此外,當將預定衝擊施加到單晶層40或基座10時,單晶層40可完全地與基座10分離。當然,單晶層可僅通過冷卻而不施加衝擊與基座分離(參見圖2的(e))。
接著,如圖2的(f)中所示出,拋光其上層壓有分離層30的單晶層40的一個表面(S400)以從單晶層40去除分離層30。在此,更優選的是不僅處理單晶層40的一個表面,而且處理另一表面(其為與所述一個表面相對的表面)。當以上述方式完成單晶層的表面的處理時,完成單晶襯底400的製造(參見圖2的(g))。
如上文所描述,根據根據示範性實施例的製造單晶襯底400的方法,空隙V形成於基座10與晶種層20之間的介面中。因此,即使空隙V形成於分離層30中,其上生長有單晶層40的分離層30的另一表面可形成為平坦的。因此,單晶層40生長於平坦分離層30的另一表面上以製備具有極佳結晶度和抑制缺陷的發生的單晶襯底400。另外,可省略使分離層30的另一表面平坦化的製程,且可縮短製程時間。
此外,因為空隙V形成於基座10與分離層30之間的介面中,所以在形成單晶層40之後的冷卻期間,單晶層40可更容易地與基座10分離。也就是說,當通過由冷卻施加的應力劃分分離層30時,如果空隙V形成於基座10與分離層30之間的介面中,那麼當與在分離層30厚度方向上的中心中形成空隙時相比時,分離層30可利用相對較少應力來分離。因此,可減小施加到單晶層40的應力。此外,相對於空隙V劃分分離層30,由於空隙V形成於基座10與分離層30之間的介面中,以便遠離單晶層40安置,所以可抑制或最小化在分離期間施加到單晶層40的應力。因此,可減小施加到單晶層40的應力,且可抑制或防止由於應力而產生的單晶層40中缺陷(例如裂縫和斷裂)的發生。
根據根據示範性實施例的用於製造單晶襯底的方法,可將雷射從基座的下側照射到晶種層上以在基座與分離層之間的介面中形成空隙。因此,即使空隙形成於分離層中,其上生長有單晶層的分離層的表面可形成為平坦的。
因此,單晶層可生長於分離層的平坦表面上,且可製備具有極佳結晶度和抑制缺陷的發生的單晶襯底。也就是說,可製備具有極佳結晶度和抑制缺陷的發生的單晶襯底,同時省略用於使平坦分離層的表面平坦化的平坦化製程。
此外,由於空隙形成於基座與分離層之間的介面中以便遠離單晶層安置,所以可抑制或最小化在分離期間施加到單晶層的應力。因此,可減小施加到單晶層的應力以抑制或防止由於應力產生的單晶層中缺陷的發生。
雖然已參考具體實施例描述了用於製造單晶襯底的方法,但是其並不限於此。因此,所屬技術領域的技術人員將容易理解,在不脫離由隨附請求項定義的本發明的精神和範圍的情況下,可以對其進行各種修改和改變。
10:基座 20:晶種層 30:分離層 40:單晶層 400:單晶襯底 CA:閉合部分 LC:閉合部分的長度 LO:開口的長度 M:遮罩 OA:開口 S100、S110、S120、S200、S300、S400:製程 V:空隙。
根據結合隨附圖式進行的以下描述可更詳細地理解示範性實施例,其中: 圖1為示出根據示例性實施例的用於製造單晶襯底的方法的流程圖。 圖2為依序示出根據示範性實施例的用於製造單晶襯底的方法的概念圖。 圖3為用於解釋根據示例性實施例的遮罩的視圖。 圖4為經由根據示範性實施例的方法通過照相其中形成有空隙的分離層的部分所獲得的相片。
S100、S110、S120、S200、S300、S400:製程

Claims (10)

  1. 一種用於製造單晶襯底的方法,所述方法包括: 在裝入單晶生長裝置中的基座上形成晶種層的製程; 從所述單晶生長裝置取出其上形成有所述晶種層的所述基座且從所述基座的下側將雷射照射到所述晶種層上以形成具有多個空隙的分離層的製程; 將其上形成有所述分離層的所述基座裝入所述單晶生長裝置中以在所述分離層上形成單晶層的製程;以及 從所述單晶生長裝置取出其上形成有所述分離層和所述單晶層的所述基座以使所述單晶層與所述基座分離的分離製程。
  2. 如請求項1所述的用於製造單晶襯底的方法,其中,在形成所述分離層的製程中,所述空隙形成於所述基座與所述分離層之間的介面中。
  3. 如請求項1所述的用於製造單晶襯底的方法,其中從所述基座的所述下側將所述雷射照射到所述晶種層上的製程包括在所述晶種層的延伸方向上不連續地照射所述雷射的製程。
  4. 如請求項3所述的用於製造單晶襯底的方法,其中在所述晶種層的所述延伸方向上不連續地照射所述雷射的製程包括: 製備遮罩的製程,所述遮罩中交替地安置多個開口和閉合部分; 在所述晶種層的相對側處將所述遮罩安置為面向所述基座的製程;以及 發射所述雷射穿過所述遮罩和所述基座的製程。
  5. 如請求項4所述的用於製造單晶襯底的方法,其中,在製備所述遮罩的製程中,所述開口中的每一個的長度與所述閉合部分中的每一個的長度的比率為2:1到1:5。
  6. 如請求項5所述的用於製造單晶襯底的方法,其中,在製備所述遮罩的製程中,所述開口具有1微米到100微米的長度。
  7. 如請求項3所述的用於製造單晶襯底的方法,其中在所述晶種層的所述延伸方向上不連續地照射所述雷射的製程包括: 水平地移動其上形成有所述晶種層的所述基座的製程;以及 從形成於水平地移動的所述基座上的所述晶種層的相對側將所述雷射照射到所述基座上,且交替地重複執行所述照射的停止操作的製程。
  8. 如請求項1所述的用於製造單晶襯底的方法,其中所述分離製程包括在所述基座和所述單晶層的層壓方向上劃分所述分離層的製程。
  9. 如請求項1到請求項8中任一項所述的用於製造單晶襯底的方法,其中所述晶種層和所述單晶層中的每一個包括氮化鎵層。
  10. 如請求項8所述的用於製造單晶襯底的方法,其中,在形成所述晶種層的製程中,所述晶種層形成為2微米到30微米的厚度。
TW110125078A 2020-07-09 2021-07-08 用於製造單晶襯底的方法 TWI763553B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200084854A KR20220006880A (ko) 2020-07-09 2020-07-09 단결정 기판의 제조 방법
KR10-2020-0084854 2020-07-09

Publications (2)

Publication Number Publication Date
TW202202674A TW202202674A (zh) 2022-01-16
TWI763553B true TWI763553B (zh) 2022-05-01

Family

ID=77042682

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125078A TWI763553B (zh) 2020-07-09 2021-07-08 用於製造單晶襯底的方法

Country Status (6)

Country Link
US (1) US20220013357A1 (zh)
EP (1) EP3937208A1 (zh)
JP (1) JP2022016374A (zh)
KR (1) KR20220006880A (zh)
CN (1) CN113913929A (zh)
TW (1) TWI763553B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593797B (en) * 2001-09-05 2004-06-21 Advanced Tech Materials Free-standing (Al, Ga, In)N and parting method for forming same
US20190010605A1 (en) * 2016-03-15 2019-01-10 Mitsubishi Chemical Corporation METHOD FOR PRODUCING GaN CRYSTAL

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616656B1 (ko) * 2005-01-03 2006-08-28 삼성전기주식회사 질화갈륨계 단결정 기판의 제조방법 및 제조장치
KR100682881B1 (ko) * 2005-01-19 2007-02-15 삼성코닝 주식회사 결정 성장 방법
JP5548351B2 (ja) * 2007-11-01 2014-07-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR100969812B1 (ko) * 2007-12-12 2010-07-13 주식회사 실트론 자가 분리를 이용한 질화갈륨 단결정 기판의 제조 방법
KR101379290B1 (ko) 2012-12-28 2014-03-27 주식회사 루미스탈 질화알루미늄 핵생성층을 사용한 질화갈륨 웨이퍼 제조 방법
DE112017001472T5 (de) * 2016-03-24 2018-11-29 Ngk Insulators, Ltd. Verfahren zur Herstellung von Impfkristallsubstraten und Gruppe 13-Element-Nitridkristallen, und Impfkristallsubstrate
WO2018092218A1 (ja) * 2016-11-16 2018-05-24 株式会社ブイ・テクノロジー レーザ照射装置、薄膜トランジスタおよび薄膜トランジスタの製造方法
CN107170668B (zh) * 2017-06-01 2020-06-05 镓特半导体科技(上海)有限公司 一种自支撑氮化镓制备方法
JP7117690B2 (ja) * 2017-09-21 2022-08-15 国立大学法人大阪大学 Iii-v族化合物結晶の製造方法および半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593797B (en) * 2001-09-05 2004-06-21 Advanced Tech Materials Free-standing (Al, Ga, In)N and parting method for forming same
US20190010605A1 (en) * 2016-03-15 2019-01-10 Mitsubishi Chemical Corporation METHOD FOR PRODUCING GaN CRYSTAL

Also Published As

Publication number Publication date
TW202202674A (zh) 2022-01-16
CN113913929A (zh) 2022-01-11
JP2022016374A (ja) 2022-01-21
KR20220006880A (ko) 2022-01-18
EP3937208A1 (en) 2022-01-12
US20220013357A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5907730B2 (ja) 低減した格子ひずみを備えた半導体材料、同様に包含する半導体構造体、デバイス、および、加工された基板を製造する方法
JP5165526B2 (ja) 窒化物単結晶基板の製造方法
US8349076B2 (en) Method of fabricating GaN substrate
KR102109292B1 (ko) 다결정 SiC 기판 및 그 제조방법
JP5607781B2 (ja) 大面積で均一な低転位密度GaN基板およびその製造プロセス
US20060267024A1 (en) Semiconductor layer structure and process for producing a semiconductor layer structure
TWI394874B (zh) A nitride semiconductor-independent substrate manufacturing method, and a nitride semiconductor-independent substrate
JP2012514316A (ja) 半導体材料、半導体構造、デバイスおよびそれらを含む加工された基板の緩和した層を形成する方法
IL272530B2 (en) Membrane and method for producing a membrane
JP4595207B2 (ja) 窒化物半導体基板の製造方法
JP2019206467A (ja) 複数のイオン注入を用いた窒化ガリウム基板の製造方法
TWI763553B (zh) 用於製造單晶襯底的方法
US11505878B2 (en) Diamond crystal substrate, method for producing diamond crystal substrate, and method for homo-epitaxially growing diamond crystal
JP3805673B2 (ja) 窒化物半導体基板の製造方法
WO2009113455A1 (ja) 化合物半導体単結晶の製造装置および製造方法
US6902989B2 (en) Method for manufacturing gallium nitride (GaN) based single crystalline substrate that include separating from a growth substrate
JP2003277194A (ja) 単結晶サファイア基板およびその製造方法
JP2002343718A (ja) 窒化物半導体基板の製造方法
JP4015849B2 (ja) 窒化物半導体基板の製造方法
JP2006298752A (ja) 窒化物半導体基板の製造方法
KR20180070781A (ko) 질화물 반도체 기판의 형성 방법 및 반도체 소자의 제조 방법
JP2005005723A (ja) 窒化物半導体エピタキシャルウェハの製造方法及び窒化物半導体エピタキシャルウェハ
TWI843689B (zh) 半導體基板的製造方法、半導體基板、及半導體基板的製造裝置
JP2023108897A (ja) 窒化ガリウム基板の製造方法
WO2023233781A1 (ja) Iii族窒化物単結晶基板の製造方法