TWI758906B - 微型掃描面鏡 - Google Patents
微型掃描面鏡 Download PDFInfo
- Publication number
- TWI758906B TWI758906B TW109135690A TW109135690A TWI758906B TW I758906 B TWI758906 B TW I758906B TW 109135690 A TW109135690 A TW 109135690A TW 109135690 A TW109135690 A TW 109135690A TW I758906 B TWI758906 B TW I758906B
- Authority
- TW
- Taiwan
- Prior art keywords
- piezoelectric material
- material layer
- rotating shaft
- scanning mirror
- regions
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 128
- 239000000758 substrate Substances 0.000 claims description 30
- 125000006850 spacer group Chemical group 0.000 description 26
- 230000008859 change Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 2
- 239000002305 electric material Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/02—Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0035—Constitution or structural means for controlling the movement of the flexible or deformable elements
- B81B3/004—Angular deflection
- B81B3/0043—Increasing angular deflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
- G02B26/0858—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/101—Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/108—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors around multiple axes of rotation, e.g. spherical rotor motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/04—Optical MEMS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/04—Optical MEMS
- B81B2201/042—Micromirrors, not used as optical switches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/05—Type of movement
- B81B2203/058—Rotation out of a plane parallel to the substrate
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Micromachines (AREA)
Abstract
一種微型掃描面鏡,包括鏡片、壓電材料層、兩第一轉軸元件以及多個第一驅動電極。第一軸方向通過鏡片的中心。壓電材料層沿著鏡片的圓周方向設置,其中壓電材料層具有多個第一驅動電極區域,未設有壓電材料層的兩第一間隔區域分別形成於相鄰的兩第一驅動電極區域之間。各第一轉軸元件位於各第一間隔區域與對應的相鄰的第一驅動電極區域之間,其中各第一轉軸元件連接鏡片與位於第一驅動電極區域中的壓電材料層。第一驅動電極分別位於對應的第一驅動電極區域上。
Description
本發明是有關於一種微機電系統(micro electronical mechanical systems, MEMS)元件,且特別是有關於一種微型掃描面鏡。
以微機電技術製作之微型掃描面鏡,依其驅動方式可概分為三大類: 靜電式致動、電磁式致動、以及壓電式致動。
採用靜電式致動技術的微型面鏡為目前市場主流,但其存在有下述限制:首先是需高電壓(例如高於150V)操作,且對碰撞或震動敏感。更具體而言,靜電式致動技術的微型面鏡的兩高壓電極間隙通常只有數微米,一旦有碰撞或震動的外力導致結構些微位移,便會導致兩電極接觸而短路或互相沾黏,進而使整個系統元件失去功能。
另一方面,採用電磁式致動技術的微型面鏡則是通過操作電流來控制面鏡旋轉角度,因此其也存在有下述限制:首先是其具有大功耗,其次是其亦需將電流生熱對整體結構的影響列入考量。此外,採用電磁式致動技術的微型面鏡也需外部磁鐵提供磁場,如此一來不僅組裝較為複雜,亦限制其封裝體積縮小之可能性。並且,目前採用電磁式致動技術的微型面鏡僅能以單軸驅動,因此也僅能進行一個維度上的掃描,而不能進行在兩個維度上的掃描。
而現有在研發中採用壓電式致動技術的微型面鏡,具有兩種驅動方式。一種驅動方式是使用環架(gimble)架構,將微型面鏡透過第一轉軸(例如X 軸)連接於環架上,環架垂直於第一轉軸的方向上設置有第二轉軸(例如Y 軸),第二轉軸連接環架與晶片基板的固定端。另一種驅動方式是不使用環架,直接使用四組驅動部在晶片基板的固定端,兩組驅動部連接微型面鏡的第一轉軸,另兩組驅動部連接微型面鏡的第二轉軸。此種不採用環架的驅動方式能夠以雙軸驅動,直接透過不同的驅動部驅動轉軸帶動微型面鏡繞第一轉軸或第二轉軸旋轉。另一方面,採用環架的驅動方式是以單軸驅動方式設計,但可透過環架上布置有驅動電極而使環架本身產生扭轉變形,進而帶動面鏡繞第一轉軸或第二轉軸旋轉。
然而,現有採用壓電式致動技術的微型面鏡皆需犧牲部分連接驅動部與轉軸處的驅動樑面積來設置感測部電極,導致面鏡旋轉角度未能最大化,或是驅動方式未能最佳化。並且,當
採用壓電式致動技術的微型面鏡的轉軸為單軸設計時,在相同扭轉剛性條件下,抵抗外界震動效果也會較差。
“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。
本發明提供一種微型掃描面鏡,能夠具有在相同的驅動條件下可獲得更大的面鏡轉動角度,且具有良好的可靠度。
本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。
為達上述之一或部份或全部目的或是其他目的,本發明的一實施例提出一種微型掃描面鏡。微型掃描面鏡包括鏡片、壓電材料層、兩第一轉軸元件以及多個第一驅動電極。第一軸方向通過鏡片的中心。壓電材料層沿著鏡片的圓周方向設置,其中壓電材料層具有多個第一驅動電極區域,未設有壓電材料層的兩第一間隔區域分別形成於這些第一驅動電極區域中相鄰的兩第一驅動電極區域之間。兩第一轉軸元件分別位於鏡片沿著第一軸方向上的相對兩側,且各第一轉軸元件位於各第一間隔區域與對應的相鄰的兩第一驅動電極區域之間,其中各第一轉軸元件連接鏡片與位於兩第一驅動電極區域中的壓電材料層。多個第一驅動電極分別位於對應的這些第一驅動電極區域上,其中壓電材料層分別被對應的這些第一驅動電極驅動,以使位於各第一間隔區域的兩側的壓電材料層產生形變後,藉由兩第一轉軸元件帶動鏡片繞第一軸方向旋轉。
在本發明的一實施例中,上述的第一軸方向通過兩第一間隔區域。
在本發明的一實施例中,上述的各第一轉軸元件具有兩第一延伸部與第一內側連接部,第一內側連接部與鏡片連接,第一內側連接部自鏡片的兩端朝向鏡片的徑向外側延伸後分岔以形成兩第一延伸部,且兩第一延伸部與兩第一驅動電極區域中的壓電材料層相連接。
在本發明的一實施例中,上述的第一軸方向通過第一內側連接部。
在本發明的一實施例中,上述的各第一轉軸元件還具有中間連接部,中間連接部自兩第一延伸部的中間處突出並沿著不平行於第一軸方向的方向延伸,以使兩第一延伸部彼此相連接。
在本發明的一實施例中,上述的各第一轉軸元件的中間連接部較第一內側連接部更遠離鏡片,且各第一轉軸元件的中間連接部較位於各第一間隔區域的兩側的壓電材料層的外周更靠近鏡片。
在本發明的一實施例中,上述的各第一轉軸元件還具有外側連接部,外側連接部自兩第一延伸部的一端突出並沿著壓電材料層的周向外側延伸,以使兩第一延伸部彼此相連接。
在本發明的一實施例中,上述的各第一轉軸元件的外側連接部較位於各第一間隔區域的兩側的壓電材料層的外周更遠離鏡片。
在本發明的一實施例中,上述的這些第一驅動電極中靠近各第一間隔區域的其中一側的第一驅動電極對壓電材料層所施加的驅動電壓的方向與這些第一驅動電極中靠近各第一間隔區域的另一側的第一驅動電極對壓電材料層所施加的驅動電壓的方向相反。
在本發明的一實施例中,上述的微型掃描面鏡更包括多個第一感測電極。第一感測電極位於兩第一轉軸元件上。
在本發明的一實施例中,上述的鏡片還具有第二軸方向,第一軸方向與第二軸方向彼此正交,第一軸方向與第二軸方向相交於鏡片的中心,壓電材料層還具有多個第二驅動電極區域,未設有壓電材料層的兩第二間隔區域分別形成於這些第二驅動電極區域中相鄰的兩第二驅動電極區域之間,且微型掃描面鏡還包括兩第二轉軸元件以及多個第二驅動電極。兩第二轉軸元件分別位於鏡片沿著第二軸方向上的相對兩側,且各第二轉軸元件位於各第二間隔區域與對應的相鄰的兩第二驅動電極區域之間。多個第二驅動電極分別位於對應的這些第二驅動電極區域上,其中壓電材料層分別被對應的這些第二驅動電極驅動,以使位於各第二間隔區域的兩側的壓電材料層產生形變後,藉由兩第二轉軸元件帶動鏡片繞第二軸方向旋轉。
在本發明的一實施例中,上述的第二軸方向通過兩第二間隔區域。
在本發明的一實施例中,上述的各第二轉軸元件連接基板的固定端與位於兩第二驅動電極區域中的壓電材料層。
在本發明的一實施例中,上述的各第二轉軸元件具有兩第二延伸部與第二內側連接部,各第二內側連接部自位於各第二間隔區域的兩側的壓電材料層沿著壓電材料層的周向內側延伸,以使位於各第二間隔區域的兩側的壓電材料層彼此相連接,各第二內側連接部自壓電材料層的徑向內側朝向壓電材料層的徑向外側延伸形成兩第二延伸部,且兩第二延伸部與位於兩相鄰的這些第二驅動電極區域中的壓電材料層相連接。
在本發明的一實施例中,上述的各第二轉軸元件的內側連接部較位於各第二間隔區域的兩側的壓電材料層的內周更靠近鏡片。
在本發明的一實施例中,上述的這些第二驅動電極中靠近各第二間隔區域的其中一側的第二驅動電極對壓電材料層所施加的驅動電壓的方向與這些第二驅動電極中靠近各第二間隔區域的另一側的第二驅動電極對壓電材料層所施加的驅動電壓的方向相反。
在本發明的一實施例中,上述的微型掃描面鏡,更包括:多個第二感測電極。第二感測電極位於兩第二轉軸元件上。
基於上述,本發明的實施例至少具有以下其中一個優點或功效。在本發明的實施例中,微型掃描面鏡通過未設有壓電材料層的第一間隔區域與第二間隔區域的設置,能夠使鏡片在繞第一軸方向時或在繞第二軸方向時達到更大的旋轉角度,而可在旋轉相同角度的情況下,降低所需的驅動電壓,降低驅動電路設計的困難度。並且微型掃描面鏡通過第二轉軸元件連接基板的固定端與位於兩第二驅動電極區域中的壓電材料層,將可提高微型掃描面鏡的剛性,而可進一步提高微型掃描面鏡的可靠度。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。
圖1A是本發明一實施例的一種微型掃描面鏡的正視示意圖。圖1B是圖1A的微型掃描面鏡沿線A-A或沿線B-B的剖視示意圖。圖1C是圖1A的第一轉軸元件的正視示意圖。圖1D是圖1A的第二轉軸元件的正視示意圖。請參照圖1A與圖1B,本實施例的微型掃描面鏡100包括基板110、鏡片120、壓電材料層130、兩第一轉軸元件140、兩第二轉軸元件150、多個第一驅動電極DE1以及多個第二驅動電極DE2。舉例而言,在本實施例中,基板110的材質例如為矽(Silicon) ,但本發明不以此為限。並且,值得注意的是,如圖1A與圖1B所示,在本實施例中,微型掃描面鏡100沿線A-A的剖視示意圖可以顯示出壓電材料層130、第一轉軸元件140以及第一驅動電極DE1的相對疊構關係的剖面結構,而微型掃描面鏡100沿線B-B的剖視示意圖可以顯示出壓電材料層130、第二轉軸元件150以及第二驅動電極DE2的相對疊構關係的剖面結構。
具體而言,如圖1A與圖1B所示,在本實施例中,壓電材料層130、第一驅動電極DE1與第二驅動電極DE2可設置於基板110上。如圖1A所示,在本實施例中,第一軸方向D1與第二軸方向D2皆通過鏡片120的中心,且第一軸方向D1與第二軸方向D2平行於鏡面。更詳細而言,如圖1A所示,第一軸方向D1與第二軸方向D2彼此正交,第一軸方向D1與第二軸方向D2相交於鏡片120的中心。
進一步而言,如圖1A所示,在本實施例中,壓電材料層130沿著鏡片120的圓周方向設置。如圖1A與圖1B所示,在本實施例中,壓電材料層130具有多個第一驅動電極區域DR1以及多個第二驅動電極區域DR2,且第一驅動電極DE1分別位於對應的第一驅動電極區域DR1上,第二驅動電極DE2分別位於對應的第二驅動電極區域DR2上。並且,如圖1A與圖1B所示,在本實施例中,在這些第一驅動電極區域DR1中相鄰的兩第一驅動電極區域DR1之間,分別形成有未設置壓電材料層130的兩第一間隔區域SR1。類似地,在第二驅動電極區域DR2中相鄰的兩第二驅動電極區域DR2之間,分別形成有未設置壓電材料層130的兩第二間隔區域SR2。進一步而言,如圖1A所示,在本實施例中,第一軸方向D1通過兩第一間隔區域SR1,第二軸方向D2通過兩第二間隔區域SR2。
另一方面,如圖1A與圖1C所示,在本實施例中,兩第一轉軸元件140分別位於鏡片120沿著第一軸方向D1上的相對兩側,且各第一轉軸元件140位於各第一間隔區域SR1與對應的相鄰的兩第一驅動電極區域DR1之間。各第一轉軸元件140連接鏡片120與位於兩第一驅動電極區域DR1中的壓電材料層130。
更具體而言,如圖1C所示,在本實施例中,各第一轉軸元件140具有兩第一延伸部141、第一內側連接部142以及外側連接部143。第一內側連接部142與鏡片120連接,且第一軸方向D1通過第一內側連接部142。如圖1C所示,在本實施例中,第一內側連接部142自鏡片120的兩端朝向鏡片120的徑向外側延伸後分岔以形成兩第一延伸部141。各第一轉軸元件140的第一內側連接部142較位於各第一間隔區域SR1的兩側的壓電材料層130的內周更靠近鏡片120。並且,如圖1C所示,在本實施例中,外側連接部143自兩第一延伸部141的一端突出並沿著壓電材料層130的周向外側延伸,以使兩第一延伸部141彼此相連接。各第一轉軸元件140的外側連接部143較位於各第一間隔區域SR1的兩側的壓電材料層130的外周更遠離鏡片120。外側連接部143、第一內側連接部142與兩第一延伸部141形成圍繞所述第一間隔區域SR1的邊界,而使第一轉軸元件140的輪廓形成為封閉型(O字型)圖案。
另一方面,如圖1A與圖1D所示,在本實施例中,兩第二轉軸元件150分別位於鏡片120沿著第二軸方向D2上的相對兩側,且各第二轉軸元件150位於各第二間隔區域SR2與對應的相鄰的兩第二驅動電極區域DR2之間。各第二轉軸元件150連接基板110的固定端FX與位於兩第二驅動電極區域DR2中的壓電材料層130。
更具體而言,如圖1D所示,在本實施例中,各第二轉軸元件150具有兩第二延伸部151與第二內側連接部152,各第二內側連接部152自位於各第二間隔區域SR2的兩側的壓電材料層130沿著壓電材料層130的周向內側延伸,以使位於各第二間隔區域SR2的兩側的壓電材料層130彼此相連接,各第二內側連接部152自壓電材料層130的徑向內側朝向壓電材料層130的徑向外側延伸形成兩第二延伸部151,且兩第二延伸部151與位於兩相鄰的這些第二驅動電極區域DR2中的壓電材料層130相連接。各第二轉軸元件150的第二內側連接部152較位於各第二間隔區域SR2的兩側的壓電材料層130的內周更靠近鏡片120。
並且,如圖1A至圖1D所示,在本實施例中,微型掃描面鏡100更包括多個第一感測電極SE1以及多個第二感測電極SE2,其中第一感測電極SE1分別位於各第一轉軸元件140的兩第一延伸部141上,第二感測電極SE2位於兩第二轉軸元件150的兩第二延伸部151上。舉例而言,在本實施例中,第一轉軸元件140以及第二轉軸元件150的材質可包含矽(Silicon) 與壓電材料,換言之,第一轉軸元件140以及第二轉軸元件150可包含基板110及壓電材料層130延伸至第一間隔區域SR1與對應的相鄰的兩第一驅動電極區域DR1之間的部分。具體而言,其中第一轉軸元件140所包含的壓電材料需設置於第一感測電極SE1的下方,並與兩第一驅動電極區域DR1中的壓電材料層130相連並一體成形,以用以感測壓電材料層130受第一驅動電極DE1驅動時的電荷變化,進而反推微型掃描面鏡100的鏡片120繞第一軸方向D1旋轉的位移變化或角度變化。類似地,第二轉軸元件150所包含的壓電材料也需設置於第二感測電極SE2的下方,並與兩第二驅動電極區域DR2中的壓電材料層130相連並一體成形,以用以感測壓電材料層130受第二驅動電極DE2驅動時的電荷變化,進而反推微型掃描面鏡100的鏡片120繞第二軸方向D2旋轉的位移變化或角度變化。
換言之,如圖1B至圖1D所示,在本實施例中,各第一轉軸元件140的兩第一延伸部141與各第二轉軸元件150的兩第二延伸部151可由包含矽的基材與壓電材料的疊構層所形成,而如圖1C與圖1D所示,在本實施例中,第一轉軸元件140上的其他部分(如:第一內側連接部142與外側連接部143)的材質與第二轉軸元件150上的其他部分(如:第二內側連接部152)的材質則可以是僅包含矽的基材,且第一轉軸元件140與第二轉軸元件150的這些包含矽的部分會與基板110一體成形,以使第一轉軸元件140與第二轉軸元件150可基於壓電材料層130與基板110的形變而帶動鏡片120旋轉。
以下將搭配圖2A至圖3C,針對微型掃描面鏡100繞第一軸方向D1旋轉時或繞第二軸方向D2旋轉時的過程進行進一步地解說。
圖2A至圖2C是圖1A的微型掃描面鏡繞第一軸方向旋轉時的示意圖。圖3A至圖3C是圖1A的微型掃描面鏡繞第二軸方向旋轉時的示意圖。如圖2A至圖2C所示,在本實施例中,當欲驅動微型掃描面鏡100繞第一軸方向D1旋轉時,可對位於各第一間隔區域SR1的兩側的第一驅動電極DE1施加不同電壓,並且,使第一驅動電極DE1中靠近各第一間隔區域SR1的其中一側的第一驅動電極DE1對壓電材料層130所施加的驅動電壓的方向與第一驅動電極DE1中靠近各第一間隔區域SR1的另一側的第一驅動電極DE1對壓電材料層130所施加的驅動電壓的方向相反。
如此,如圖2B與圖2C所示,由於壓電材料層130分別被對應的這些第一驅動電極DE1驅動,而會使位於各第一間隔區域SR1的兩側的壓電材料層130產生形變。更詳細而言,當在壓電材料層130的上下端施加一電場,壓電材料層130於垂直電場的方向(即水平方向)的尺寸會縮短,但與壓電材料層130接合的基板110的尺寸不會因施加的電場而變,因此,這種尺寸上的不匹配致使壓電材料層130與基板110的整體結構往垂直電場的方向彎曲以維持接合面間的尺寸一致。也就是說,壓電材料層130的形變會帶動基板110朝某方向彎曲而也隨之產生形變。
並且,由於靠近各第一間隔區域SR1的兩側的第一驅動電極DE1被施加的驅動電壓的方向相反,因此,如圖2C所示,位於各第一間隔區域SR1的兩側的壓電材料層130與其帶動基板110產生形變的方向也會相反,其中一側朝一方向彎曲時,另一側則也會朝此方向的相反方向產生形變,如此,如圖2B與圖2C所示,位於各第一間隔區域SR1的兩側的壓電材料層130與基板110的形變將會致使第一轉軸元件140的法線方向N發生變化,並進而透過第一轉軸元件140帶動鏡片120繞第一軸方向D1旋轉。
另一方面,類似地,如圖3A至圖3C所示,在本實施例中,當欲驅動微型掃描面鏡100繞第二軸方向D2旋轉時,可對位於各第二間隔區域SR2的兩側的第二驅動電極DE2施加不同電壓。第二驅動電極DE2中靠近各第二間隔區域SR2的其中一側的第二驅動電極DE2對壓電材料層130所施加的驅動電壓的方向與第二驅動電極DE2中靠近各第二間隔區域SR2的另一側的第二驅動電極DE2對壓電材料層130所施加的驅動電壓的方向相反。如此,如圖3B與圖3C所示,當壓電材料層130分別被對應的第二驅動電極DE2驅動時,位於各第二間隔區域SR2的兩側的壓電材料層130也會產生形變,其中位於各第二間隔區域SR2的兩側的壓電材料層130的形變機制原理與位於各第一間隔區域SR1的兩側的壓電材料層130的形變機制原理相同,在此就不再贅述。如此,如圖3C所示,位於各第二間隔區域SR2的兩側的壓電材料層130與基板110的形變將會致使第二轉軸元件150的法線方向N’發生變化,連帶地,如圖3B與圖3C所示,第二轉軸元件150與基板110一體成形的部分也會帶動壓電材料層130與基板110的其他部分產生形變,進而透過第二轉軸元件150帶動鏡片120繞第二軸方向D2旋轉。
圖4是本發明一對照例的一種微型掃描面鏡的正視示意圖。請參照圖4,圖4的對照例的微型掃描面鏡100’與圖1A的微型掃描面鏡100類似,而差異如下所述。在圖4的對照例中,微型掃描面鏡100’的壓電材料層130’不具有第一間隔區域SR1與第二間隔區域SR2,換言之,壓電材料層130’為一完整的環狀壓電材料層,第一轉軸元件140’與第二轉軸元件150’的表面則為一完整的矩形圖案,且第一轉軸元件140’與第二轉軸元件150’的包含矽的部分與基板110一體成形。
以下將舉出圖4的對照例的微型掃描面鏡100’與圖1A的實施例的微型掃描面鏡100在相同的驅動電壓時的位移變化或角度變化的模擬數據。然而,下文中所列舉的數據資料並非用以限定本發明,任何所屬領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明的範疇內。
〈表一〉
圖4的對照例 | 圖1A的實施例 | |
鏡片120繞第一軸方向D1的最大旋轉角度 (°) | 4.9 | 6.1 |
鏡片120繞第二軸方向D2的最大旋轉角度(°) | 6 | 6.7 |
鏡片120在第一軸方向D1上的最大位移(數值已歸一化) | 0.8 | 1 |
鏡片120在第二軸方向D2上的最大位移(數值已歸一化) | 0.9 | 1 |
第一共振頻率(數值已歸一化) | 0.89 | 1 |
具體而言,如〈表一〉的數據所示,在相同的驅動電壓下,圖1A的實施例的微型掃描面鏡100通過第一間隔區域SR1與第二間隔區域SR2的設置,能夠容易使位於各第一間隔區域SR1或各第二間隔區域SR2的兩側的壓電材料層130與基板110的形變,進而使鏡片120在繞第一軸方向D1時或在繞第二軸方向D2時達到更大的旋轉角度。並且,一般而言,若元件在固定端的連接數目或面積增加,則可使元件的剛性提高。而如〈表一〉的數據所示,圖1A的實施例的微型掃描面鏡100的共振頻率會大於圖4的對照例的微型掃描面鏡100’的共振頻率,在此,元件的共振頻率較大的數值意味著元件會具有較大的剛性。這也就是說,圖1A的實施例的微型掃描面鏡100通過第二轉軸元件150連接基板110的固定端FX與位於兩第二驅動電極區域DR2中的壓電材料層130,將可提高微型掃描面鏡100的剛性。
如此一來,微型掃描面鏡100通過未設有壓電材料層130的第一間隔區域SR1與第二間隔區域SR2的設置,能夠使鏡片120在繞第一軸方向D1時或在繞第二軸方向D2時達到更大的旋轉角度,而可在旋轉相同角度的情況下,降低所需的驅動電壓,降低驅動電路設計的困難度。並且微型掃描面鏡100通過第二轉軸元件150連接基板110的固定端FX與位於兩第二驅動電極區域DR2中的壓電材料層130,可提高微型掃描面鏡100的剛性,而可進一步提高微型掃描面鏡100的可靠度。
圖5A至圖5C是本發明的另一實施例的不同第一轉軸元件的正視示意圖。請參照圖5A至圖5C,圖5A至圖5C的第一轉軸元件540A、540B、540C與圖1A的第一轉軸元件140類似,而差異如下所述。如圖5A至圖5C所示,在這些實施例中,第一轉軸元件540A、540B、540C皆具有兩第一延伸部141以及第一內側連接部142,並且可以選擇性地具有外側連接部143或是中間連接部544。具體而言,在這些實施例中,若第一轉軸元件540A、540B具有中間連接部544時,中間連接部544自兩第一延伸部141的中間處突出並沿著不平行於第一軸方向D1的方向延伸,以使兩第一延伸部141彼此相連接。在此,不平行於第一軸方向D1的方向可以是鏡片120的圓周方向,也可以是垂直於第一軸方向D1的方向。
更具體而言,如圖5A所示,各第一轉軸元件540A同時具有中間連接部544與外側連接部143,如此,第一轉軸元件540A的輪廓可形成為日字型圖案。另一方面,如圖5B所示,各第一轉軸元件540B不具有外側連接部143,而各第一轉軸元件540B的中間連接部544較第一內側連接部142更遠離鏡片120,且各第一轉軸元件140的中間連接部544較位於各第一間隔區域SR1的兩側的壓電材料層130的外周更靠近鏡片120。如此,第一轉軸元件540B的輪廓可形成為類似A字型的圖案。此外,如圖5C所示,各第一轉軸元件540C不具有中間連接部544與外側連接部143時,第一轉軸元件540C的輪廓則可形成為開放型圖案。
如此,當微型掃描面鏡100採用各第一轉軸元件540A、540B、540C時,微型掃描面鏡100仍可通過未設有壓電材料層130的第一間隔區域SR1與第二間隔區域SR2的設置,而可使鏡片120在繞第一軸方向D1時或在繞第二軸方向D2時達到更大的旋轉角度,而能達到前述的效果與優點,在此就不再贅述。
圖6是本發明的另一實施例的第二轉軸元件的正視示意圖。請參照圖6,圖6的第二轉軸元件650與圖1A的第二轉軸元件150類似,而差異如下所述。如圖6所示,在本實施例中,第二轉軸元件650不具有第二內側連接部152,而僅具有兩第二延伸部151。即便如此,當微型掃描面鏡100採用各第二轉軸元件650時,微型掃描面鏡100仍可通過第二轉軸元件650連接基板110的固定端FX與對應兩第二驅動電極DE2的壓電材料層130,來提高微型掃描面鏡100的剛性,而可進一步提高微型掃描面鏡100的可靠度,而能達到前述的效果與優點,在此就不再贅述。此外,圖1A、1D的第二轉軸元件150及圖6的第二轉軸元件650也可具有中間連接部(圖未示),類似於如圖5A及圖5B中的中間連接部544,此時的中間連接部可自兩第二延伸部151的中間處突出並沿著不平行於第二軸方向D2的方向延伸,以使兩第二延伸部151彼此相連接,可再提高微型掃描面鏡100的剛性。
綜上所述,本發明的實施例至少具有以下其中一個優點或功效。在本發明的實施例中,微型掃描面鏡通過未設有壓電材料層的第一間隔區域與第二間隔區域的設置,能夠使鏡片在繞第一軸方向時或在繞第二軸方向時達到更大的旋轉角度,而可在旋轉相同角度的情況下,降低所需的驅動電壓,降低驅動電路設計的困難度。並且微型掃描面鏡通過第二轉軸元件連接基板的固定端與位於兩第二驅動電極區域中的壓電材料層,將可提高微型掃描面鏡的剛性,而可進一步提高微型掃描面鏡的可靠度。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。
100、100’:微型掃描面鏡
110:基板
120:鏡片
130、130’:壓電材料層
140、140’、540A、540B、540C:第一轉軸元件
141:第一延伸部
142:第一內側連接部
143:外側連接部
150、150’、650:第二轉軸元件
151:第二延伸部
152:第二內側連接部
544:中間連接部
A-A、B-B:剖線
D1:第一軸方向
D2:第二軸方向
DE1:第一驅動電極
DE2:第二驅動電極
DR1:第一驅動電極區域
DR2:第二驅動電極區域
FX:固定端
N、N’:法線方向
SE1:第一感測電極
SE2:第二感測電極
SR1:第一間隔區域
SR2:第二間隔區域。
圖1A是本發明一實施例的一種微型掃描面鏡的正視示意圖。
圖1B是圖1A的微型掃描面鏡沿線A-A或沿線B-B的剖視示意圖。
圖1C是圖1A的第一轉軸元件的正視示意圖。
圖1D是圖1A的第二轉軸元件的正視示意圖。
圖2A至圖2C是圖1A的微型掃描面鏡繞第一軸方向旋轉時的示意圖。
圖3A至圖3C是圖1A的微型掃描面鏡繞第二軸方向旋轉時的示意圖。
圖4是本發明一對照例的一種微型掃描面鏡的正視示意圖。
圖5A至圖5C是本發明的另一實施例的不同第一轉軸元件的正視示意圖。
圖6是本發明的另一實施例的第二轉軸元件的正視示意圖。
100:微型掃描面鏡
120:鏡片
130:壓電材料層
140:第一轉軸元件
150:第二轉軸元件
D1:第一軸方向
D2:第二軸方向
DE1:第一驅動電極
DE2:第二驅動電極
DR1:第一驅動電極區域
DR2:第二驅動電極區域
FX:固定端
SE1:第一感測電極
SE2:第二感測電極
SR1:第一間隔區域
SR2:第二間隔區域
A-A、B-B:剖線
Claims (16)
- 一種微型掃描面鏡,包括:一鏡片,其中一第一軸方向通過該鏡片的中心;一壓電材料層,沿著該鏡片的圓周方向設置,其中該壓電材料層具有多個第一驅動電極區域,未設有該壓電材料層的兩第一間隔區域分別形成於該些第一驅動電極區域中相鄰的兩第一驅動電極區域之間,其中該第一軸方向通過該兩第一間隔區域;兩第一轉軸元件,分別位於該鏡片沿著該第一軸方向上的相對兩側,且各該兩第一轉軸元件位於各該兩第一間隔區域與對應的相鄰的該兩第一驅動電極區域之間,其中各該兩第一轉軸元件連接該鏡片與位於該兩第一驅動電極區域中的該壓電材料層;以及多個第一驅動電極,分別位於對應的該些第一驅動電極區域上,其中該壓電材料層分別被對應的該些第一驅動電極驅動,以使位於各該兩第一間隔區域的兩側的該壓電材料層產生形變後,藉由該兩第一轉軸元件帶動該鏡片繞該第一軸方向旋轉。
- 如請求項1所述的微型掃描面鏡,其中各該兩第一轉軸元件具有兩第一延伸部與一第一內側連接部,該第一內側連接部與該鏡片連接,該第一內側連接部自該鏡片的兩端朝向該鏡片的徑向外側延伸後分岔以形成該兩第一延伸部,且該兩第一延伸部與該兩第一驅動電極區域中的該壓電材料層相連接。
- 如請求項2所述的微型掃描面鏡,其中該第一軸方向通過該第一內側連接部。
- 如請求項2所述的微型掃描面鏡,其中各該兩第一轉軸元件還具有一中間連接部,該中間連接部自該兩第一延伸部的中間處突出並沿著不平行於該第一軸方向的方向延伸,以使該兩第一延伸部彼此相連接。
- 如請求項4所述的微型掃描面鏡,其中各該兩第一轉軸元件的該中間連接部較該第一內側連接部更遠離該鏡片,且各該兩第一轉軸元件的該中間連接部較位於各該兩第一間隔區域的兩側的該壓電材料層的外周更靠近該鏡片。
- 如請求項2所述的微型掃描面鏡,其中各該兩第一轉軸元件還具有一外側連接部,該外側連接部自該兩第一延伸部的一端突出並沿著該壓電材料層的周向外側延伸,以使該兩第一延伸部彼此相連接。
- 如請求項6所述的微型掃描面鏡,其中各該兩第一轉軸元件的該外側連接部較位於各該兩第一間隔區域的兩側的該壓電材料層的外周更遠離該鏡片。
- 如請求項1所述的微型掃描面鏡,其中該些第一驅動電極中靠近各該兩第一間隔區域的其中一側的第一驅動電極對該壓電材料層所施加的驅動電壓的方向與該些第一驅動電極中靠近各該兩第一間隔區域的另一側的第一驅動電極對該壓電材料層所施加的驅動電壓的方向相反。
- 如請求項1所述的微型掃描面鏡,更包括:多個第一感測電極,位於該兩第一轉軸元件上。
- 如請求項1所述的微型掃描面鏡,其中該鏡片還具有一第二軸方向,該第一軸方向與該第二軸方向彼此正交,該第一軸方向與該第二軸方向相交於該鏡片的中心,該壓電材料層還具有多個第二驅動電極區域,未設有該壓電材料層的兩第二間隔區域分別形成於該些第二驅動電極區域中相鄰的兩第二驅動電極區域之間,且該微型掃描面鏡還包括:兩第二轉軸元件,分別位於該鏡片沿著該第二軸方向上的相對兩側,且各該兩第二轉軸元件位於各該兩第二間隔區域與對應的相鄰的該兩第二驅動電極區域之間;以及多個第二驅動電極,分別位於對應的該些第二驅動電極區域上,其中該壓電材料層分別被對應的該些第二驅動電極驅動,以使位於各該兩第二間隔區域的兩側的該壓電材料層產生形變後,藉由該兩第二轉軸元件帶動該鏡片繞該第二軸方向旋轉。
- 如請求項10所述的微型掃描面鏡,其中該第二軸方向通過該兩第二間隔區域。
- 如請求項10所述的微型掃描面鏡,其中各該兩第二轉軸元件連接一基板的固定端與位於該兩第二驅動電極區域中的該壓電材料層。
- 如請求項10所述的微型掃描面鏡,其中各該兩第二轉軸元件具有兩第二延伸部與一第二內側連接部,各該第二內 側連接部自位於各該兩第二間隔區域的兩側的該壓電材料層沿著該壓電材料層的周向內側延伸,以使位於各該兩第二間隔區域的兩側的該壓電材料層彼此相連接,各該第二內側連接部自該壓電材料層的徑向內側朝向該壓電材料層的徑向外側延伸形成該兩第二延伸部,且該兩第二延伸部與位於兩相鄰的該些第二驅動電極區域中的該壓電材料層相連接。
- 如請求項13所述的微型掃描面鏡,其中各該兩第二轉軸元件的該第二內側連接部較位於各該兩第二間隔區域的兩側的該壓電材料層的內周更靠近該鏡片。
- 如請求項10所述的微型掃描面鏡,其中該些第二驅動電極中靠近各該兩第二間隔區域的其中一側的第二驅動電極對該壓電材料層所施加的驅動電壓的方向與該些第二驅動電極中靠近各該第二間隔區域的另一側的第二驅動電極對該壓電材料層所施加的驅動電壓的方向相反。
- 如請求項10所述的微型掃描面鏡,更包括:多個第二感測電極,位於該兩第二轉軸元件上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010876578.9 | 2020-08-27 | ||
CN202010876578.9A CN114105081A (zh) | 2020-08-27 | 2020-08-27 | 微型扫描面镜 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202208272A TW202208272A (zh) | 2022-03-01 |
TWI758906B true TWI758906B (zh) | 2022-03-21 |
Family
ID=80358473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109135690A TWI758906B (zh) | 2020-08-27 | 2020-10-15 | 微型掃描面鏡 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220066199A1 (zh) |
CN (1) | CN114105081A (zh) |
TW (1) | TWI758906B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117458912A (zh) * | 2022-07-18 | 2024-01-26 | 中光电智能感测股份有限公司 | 压电致动装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200925104A (en) * | 2007-10-05 | 2009-06-16 | Koninkl Philips Electronics Nv | MEMS scanning micromirror manufacturing method |
JP4926596B2 (ja) * | 2006-08-08 | 2012-05-09 | スタンレー電気株式会社 | 光偏向器及びその製造方法 |
CN104297919A (zh) * | 2013-07-17 | 2015-01-21 | 富士胶片株式会社 | 反射镜驱动装置及其驱动方法 |
US20190339509A1 (en) * | 2018-05-04 | 2019-11-07 | Coretronic Corporation | Variable focal length optical element |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101852917B (zh) * | 2010-03-31 | 2012-02-22 | 重庆大学 | 大转角压电扫描微镜 |
JP5916667B2 (ja) * | 2013-07-17 | 2016-05-11 | 富士フイルム株式会社 | ミラー駆動装置及びその駆動方法 |
JP6498047B2 (ja) * | 2015-06-09 | 2019-04-10 | 株式会社トライフォース・マネジメント | 可動反射装置およびこれを利用した反射面駆動システム |
EP3287830B1 (en) * | 2016-08-24 | 2023-04-12 | Murata Manufacturing Co., Ltd. | A scanning mems reflector system |
CN110892306B (zh) * | 2017-06-13 | 2022-02-22 | 三菱电机株式会社 | 光扫描装置以及光扫描装置的调整方法 |
CN109613695B (zh) * | 2019-01-14 | 2022-01-25 | 清华大学深圳研究生院 | 一种mems扫描镜 |
EP3950572A4 (en) * | 2019-03-28 | 2022-05-18 | FUJIFILM Corporation | MICROSMIRROR DEVICE AND METHOD FOR DRIVING A MICROSMIRROR DEVICE |
JP7420645B2 (ja) * | 2020-05-25 | 2024-01-23 | スタンレー電気株式会社 | 光走査装置 |
-
2020
- 2020-08-27 CN CN202010876578.9A patent/CN114105081A/zh active Pending
- 2020-10-15 TW TW109135690A patent/TWI758906B/zh not_active IP Right Cessation
-
2021
- 2021-08-25 US US17/411,063 patent/US20220066199A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4926596B2 (ja) * | 2006-08-08 | 2012-05-09 | スタンレー電気株式会社 | 光偏向器及びその製造方法 |
TW200925104A (en) * | 2007-10-05 | 2009-06-16 | Koninkl Philips Electronics Nv | MEMS scanning micromirror manufacturing method |
CN104297919A (zh) * | 2013-07-17 | 2015-01-21 | 富士胶片株式会社 | 反射镜驱动装置及其驱动方法 |
US20190339509A1 (en) * | 2018-05-04 | 2019-11-07 | Coretronic Corporation | Variable focal length optical element |
Also Published As
Publication number | Publication date |
---|---|
TW202208272A (zh) | 2022-03-01 |
US20220066199A1 (en) | 2022-03-03 |
CN114105081A (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8711460B2 (en) | Moving structure and micro-mirror device using the same | |
US7880365B2 (en) | Actuator capable of driving with large rotational angle or large deflection angle | |
CN107942509B (zh) | 一种具有分布式弹性结构的微镜 | |
US7161275B2 (en) | Actuator | |
WO2009157509A1 (ja) | 可動構造体及びそれを用いた光走査ミラー | |
US7250705B2 (en) | Resonant oscillating device actuator structure | |
US20080061026A1 (en) | Gimbal-less micro-electro-mechanical-system tip-tilt and tip-tilt-piston actuators and a method for forming the same | |
JP4814257B2 (ja) | ミラー素子およびミラー素子の製造方法 | |
JP4098792B2 (ja) | ミラー装置 | |
JP2008020701A (ja) | 2次元光スキャナ、それを用いた光学装置および2次元光スキャナの製造方法 | |
JP5038732B2 (ja) | 光走査ミラー | |
TWI758906B (zh) | 微型掃描面鏡 | |
JP2008052220A (ja) | チルトミラー素子 | |
WO2012111332A1 (ja) | ミアンダ型振動子および光学反射素子 | |
JP2010008613A (ja) | 半導体機械構造体及びそれを用いた光走査ミラー | |
JP2003195204A (ja) | 光偏向器及び光偏向器アレイ | |
JP2003262803A (ja) | 可動構造体およびこれを用いた偏向ミラー素子と光スイッチ素子と形状可変ミラー | |
CN221101146U (zh) | 微机电系统反射镜器件 | |
WO2024062856A1 (ja) | マイクロミラーデバイス及び光走査装置 | |
CN114815222B (zh) | 一种基于压电薄膜的双轴微反射镜 | |
Lin et al. | Wide Angle and High Frequency Resonant Piezoelectric Mems Mirror for Laser Beam Scanning Application | |
KR100492772B1 (ko) | 2 자유도 스캐닝 미러 및 그 제조 방법 | |
TWI783637B (zh) | 微型掃描面鏡 | |
JP7562469B2 (ja) | マイクロミラーデバイス及び光走査装置 | |
WO2024219157A1 (ja) | ミラー装置及び光走査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |