TWI758351B - 無線傳輸/接收單元及由其實施的方法 - Google Patents

無線傳輸/接收單元及由其實施的方法 Download PDF

Info

Publication number
TWI758351B
TWI758351B TW106137539A TW106137539A TWI758351B TW I758351 B TWI758351 B TW I758351B TW 106137539 A TW106137539 A TW 106137539A TW 106137539 A TW106137539 A TW 106137539A TW I758351 B TWI758351 B TW I758351B
Authority
TW
Taiwan
Prior art keywords
wtru
receiver
bandwidth
receiver bandwidth
network
Prior art date
Application number
TW106137539A
Other languages
English (en)
Other versions
TW201828667A (zh
Inventor
伯努瓦 佩勒特爾
保羅 馬里內爾
馬里恩 魯道夫
派翠克 圖爾
濤 鄧
基斯蘭 佩勒特爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201828667A publication Critical patent/TW201828667A/zh
Application granted granted Critical
Publication of TWI758351B publication Critical patent/TWI758351B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線電存取技術(RAT)的接收器頻寬適應可以用於新無線電(NR) 或5G彈性RAT。例如基於使用與第一頻寬(BW)配置相關聯的BW監視下鏈通道以獲取指示,WTRU控制通道(例如,接收器)頻寬可以改變。該指示可以包括改變接收器BW的信號。當WTRU在下鏈(DL)通道上接收到指示時,WTRU可以將與第一BW配置相關聯的接收器BW改變為第二BW配置。回應於該接收器BW至該第二BW配置的該改變,該WTRU可以執行與第二BW配置相關聯的一或多個測量。WTRU可以向網路實體傳送測量資訊。WTRU可以使用第二BW配置從網路接收DL傳輸。

Description

無線傳輸/接收單元及由其實施的方法 相關申請案的交叉引用
本申請案要求2016年11月2日申請的美國臨時申請案序號No.62/416,235、2016年12月29日申請的美國臨時申請案序號No.62/440,262、2017年5月3日申請的美國臨時申請案序號No.62/500,785、2017年6月14日申請的美國臨時申請案序號No.62/519,249、2017年7月31日申請的美國臨時申請案序號No.62/539,057以及2017年9月26日申請的美國臨時申請案序號No.62/563,440的權益,其內容藉由引用合併於此,並且本申請案要求這些優先權申請案的申請日期的權益。
行動通信不斷發展。第五代可以被稱為5G。先前(傳統)的一代行動通信可以是例如第四代(4G)長期演進(LTE)。
揭露了用於例如新無線電(NR)或5G彈性RAT的無線電存取技術(RAT)的接收器頻寬適應的系統、方法和手段。無線傳輸/接收單元(WTRU)控制通道(例如,WTRU控制通道接收器)頻寬可以例如基於WTRU活動(例如基於活動計時器等)而適應或改變。WTRU可以例如發送顯式確認(ACK)及/或通道品質指示符(CQI)以確認接收器頻寬適應(例如,接收器頻寬的改變)。WTRU可以例如基於以下活動中的一或多個來改變(例如,自主地改變)其接收器頻寬:緩衝器中的新資料、緩衝器狀態報告(BSR)傳輸、實體隨機存取通道(PRACH)傳輸、無線電資源控制(RRC)狀態的改變等等。
探測參考信號(SRS)的WTRU性能可以取決於例如WTRU接收器(RX)頻寬(例如,所連結的RX-TX頻寬)。相對索引可以基於例如WTRU RX頻寬和參考點配置(例如,絕對參考點配置)。WTRU控制資源集合及/或參數(例如,下鏈控制指示(DCI)格式)可以取決於例如WTRU RX頻寬(例如,頻率資源位元欄位)。頻寬適應可以針對具有多個載波(例如,多個分量載波)及/或多個控制資源集合的WTRU來執行。控制資源集合可以被縮放(例如,基於WRTU接收器頻寬)。WTRU可以表明網路的重調諧時間要求(例如,基於所配置的頻寬部分)。WTRU可以拒絕配置(例如,當下鏈(DL)接收間隙太短時)。接收器頻寬適應可以例如在WTRU及/或網路層(例如,L1及/或L2)中實施。接收器頻寬適應可以改善控制通道操作並且可以降低功率消耗。WTRU可以傳送確認(例如,顯式確認)。例如,當WTRU接收到頻寬的顯式改變(例如,經由沒有關聯的資料分配的DCI)時,WTRU可以傳送顯式確認。WTRU可以基於例如頻寬部分(BWP)是在相同BWP集合(例如,WTRU可能不重新調諧的集合)內、或是在BWP集合之外來報告其重調諧時間。WTRU可以基於一或多個功率節省程序(例如,不連續接收(DRX))來管理頻寬(BW)及/或BWP。
在範例中,WTRU可以使用與第一BW配置相關聯的接收器BW以針對一指示而監視 DL通道。該指示可以包括用於改變接收器BW的信號。該指示可以包括在DL控制通道上接收的DL控制資訊。WTRU可以將與第一BW配置相關聯的接收器BW改變為第二BW配置。例如,在WTRU在DL通道上接收到指示的情況下,WTRU可以將與第一BW配置相關聯的接收器BW改變為第二BW配置。WTRU可以回應於接收器BW改變為第二BW配置來執行與第二BW配置相關聯的一或多個測量。可以對探測信號或其他參考信號執行一或多個測量,並且該一或多個測量可以被用於產生通道狀態資訊(CSI)報告。WTRU可以向網路實體傳送與第二BW配置相關聯的測量資訊及/或CSI報告。所發送的測量資訊可以表明(例如,隱式表明)WTRU對接收器BW中的改變的確認。WTRU可以使用第二BW配置從網路接收DL傳輸。第二BW配置(例如,操作BW)可以與比第一BW配置(例如,低功率BW)寬的頻寬相關聯。第一BW配置可以允許WTRU使用比用於使用第二頻寬配置執行接收少的功率來執行接收。WTRU可以在一不活動周期之後重新應用第一BW配置。
現在將參照各個附圖描述說明性實施方式的詳細描述。儘管本說明書提供了可能的實施方式的詳細範例,但是應該注意的是,這些細節旨在是範例性的,並不以任何方式限制本申請的範圍。
第1A圖是示出可以實施一或多個所揭露的實施方式的範例通信系統100的圖式。通信系統100可以是為多個無線使用者提供如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100經由共用包括無線頻寬的系統資源來使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以採用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾獨特字DFT擴展OFDM(ZT UW DTS-s OFDM)、獨特字OFDM(UW-OFDM)、資源塊濾波的OFDM、濾波器組多載波(FBMC)等等。
如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,但是應該瞭解,所揭露的實施方式涵蓋了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d中的每一者可以是被配置為在無線環境中操作及/或通信的任意類型的裝置。例如,WTRU 102a、102b、102c、102d(任何一者可以被稱為“站”及/或“STA”)可以被配置為傳送及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動使用者單元、基於使用者的單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴式、頭戴式顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如,遠端手術)、工業裝置和應用(例如,在工業及/或自動化處理鏈環境中操作的機器人及/或其它無線裝置)、消費電子裝置、在商業及/或工業無線網路上操作的裝置等。WTRU 102a、102b、102c和102d中的任一者可以可交換地稱為UE。。
通信系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b中的每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線介接以促使存取一或多個通信網路的任何類型的裝置,該通信網路例如CN 106/115、網際網路110及/或其它網路112。作為範例,基地台114a、114b可以是基地台收發站(BTS)、節點B、e節點B、本地節點B、本地e節點B、gNB、NR節點B、網站控制器、存取點(AP)、無線路由器等等。雖然基地台114a、114b中的每一者都被描述為是單一元件,但是應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104/113的一部分,該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可以被配置為在可以被稱為胞元(未顯示)的一或多個載波頻率上傳送及/或接收無線信號。這些頻率可能在許可頻譜、未許可頻譜、或許可和未許可頻譜的組合中。胞元可以將無線服務的覆蓋範圍提供給可以相對固定或可以隨時間而改變的特定地理區域。胞元可以被進一步劃分成胞元扇區。例如,與基地台114a關聯的胞元可以被分為三個扇區。因此,在一種實施方式中,基地台114a可以包括三個收發器,也就是說,一個收發器用於胞元的一個扇區。在另一個實施方式中,基地台114a可以採用多輸入多輸出(MIMO)技術、並可以將多個收發器用於胞元的每個扇區。例如,波束形成可以被用於在期望的空間方向中傳送及/或接收信號。
基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,該空中介面116可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以採用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。舉例來說,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括例如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。
在實施方式中,基地台114a與WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該技術可以使用長期演進(LTE)及/或LTE-高級(LTE-A)及/或LTE-高級 Pro(LTE-A Pro)來建立空中介面116。
在實施方式中,基地台114a和WTRU 102a、102b、102c可以實施例如NR無線電存取的無線電技術,其可以使用新無線電(NR)來建立空中介面116。
在實施方式中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以例如使用雙連通性(DC)原則一起實施LTE無線電存取和NR無線電存取。因此,WTRU 102a、102b、102c使用的空中介面可以由多種類型的無線電存取技術及/或發送至/來自多種類型的基地台(例如,eNB和gNB)的傳輸來表徵。
在其它實施方式中,基地台114a和WTRU 102a、102b、102c可以實施無線電技術,該無線電技術例如IEEE 802.11(即,無線保真(WiFi))、IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA 2000、CDMA 2000 1X、CDMA 2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)等。
第1A圖中的基地台114b可以是例如無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任意適當的RAT來促成例如營業場所、住宅、交通工具、校園、工業設施、空中走廊(例如,無人機使用)、道路等等的局部區域中的無線連接。在一種實施方式中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。在實施方式中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施方式中,基地台114b和WTRU 102c、102d可以使用基於蜂巢的RAT(例如WCDMA、CDMA 2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直接連接到網際網路110。因此,基地台114b未必需要經由CN 106/115來存取網際網路110。
RAN 104/113可以與CN 106/115通信,CN 106/115可以是被配置為向WTRU 102a、102b、102c、102d中的一者或多者提供語音、資料、應用及/或經由網際網路協定語音(VoIP)服務的任意類型的網路。資料可以具有不同服務品質(QoS)要求,例如不同的輸送量要求、延遲要求、容錯要求、可靠性要求、資料輸送量要求、行動性要求等。CN 106/115可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或執行使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,但是應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地和與RAN 104/113使用相同RAT或不同RAT的其他RAN進行通信。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的其他RAN(未顯示)通信。
CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通信協定的全球性互連電腦網路裝置系統,協定例如傳輸控制協定(TCP)、使用者資料報通訊協定(UDP)及/或傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定族中的IP。網路112可以包括由其他服務供應者擁有及/或操作的有線及/或無線通訊網路。例如,網路112可以包括與一或多個RAN連接的另一CN,一或多個RAN可以使用與RAN 104/113相同的RAT或不同RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可以被配置為與使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。
第1B圖是示出範例WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138等等。應該瞭解的是,在保持符合實施方式的同時,WTRU 102可以包括前述元件的任意子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任意類型的積體電路(IC)、狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理及/或能使WTRU 102在無線環境中操作的任何其他功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述為是獨立元件,但是應該瞭解,處理器118和收發器120可以集成在電子封裝或晶片中。
傳輸/接收元件122可以被配置為經由空中介面116來傳送信號至基地台(例如基地台114a)、或從基地台(例如基地台114a)接收信號。舉個例子,在一個實施方式中,傳輸/接收元件122可以是被配置為傳送及/或接收RF信號的天線。在實施方式中,例如,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施方式中,傳輸/接收元件122可以被配置為傳輸及/或接收RF和光信號二者。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任意組合。
雖然在第1B圖中將傳輸/接收元件122被描述為是單一元件,但是WTRU 102可以包括任意數量的傳輸/接收元件122。更具體地,WTRU 102可以使用MIMO技術。因此,在一個實施方式中,WTRU 102可以包括經由空中介面116來傳送和接收無線電信號的兩個或更多個傳輸/接收元件122(例如多個天線)。
收發器120可以被配置為對傳輸/接收元件122將要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括使WTRU 102能夠經由例如NR和IEEE 802.11之類的多個RAT來進行通信的多個收發器。
WTRU 102的處理器118可以耦合至揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從任意類型的適當的記憶體(例如非可移記憶體130及/或可移記憶體132)存取資訊、以及將資料存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是任意其他類型的記憶體存放裝置。可移記憶體132可以包括使用者身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施方式中,處理器118可以從那些並非實體上位於WTRU 102的記憶體存取資訊、以及將資料存入這些記憶體,其中舉例來說,記憶體可以例如在伺服器或家用電腦(未顯示)上。
處理器118可以接收來自電源134的電力、並且可以被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任意適當的裝置。舉例來說,電源134可以包括一或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、燃料電池等等。
處理器118還可以與GPS晶片組136耦合,該晶片組可以被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或基於從兩個或多個附近基地台接收的信號的時序來確定其位置。應該瞭解的是,在保持符合實施方式的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,可以包括提供附加特徵、功能及/或有線或無線連接的一或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、活動追蹤器等。週邊設備138可以包括一或多個感測器,感測器可以是陀螺儀、加速計、霍爾效應感測器、磁力計、方位感測器、接近感測器、溫度感測器、時間感測器中的一者或多者;地理位置感測器;高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物感測器及/或濕度感測器。
WTRU 102可以包括全雙工無線電,對於該全雙工無線電,UL(例如,用於傳輸)和下鏈(例如,用於接收)的一些或全部信號(例如,與特定子訊框相關聯)的傳輸和接收可以是並行的及/或同時的。全雙工無線電可以包括干擾管理單元,以經由硬體(例如,扼流圈)、或者經由處理器(例如,單獨的處理器(未示出)或經由處理器118)的信號處理來減少及/或基本上消除自干擾。在實施方式中,WRTU 102可以包括半雙工無線電,對於該半雙工無線電,傳輸和接收一些或全部信號(例如與用於UL(例如,用於傳輸)或下鏈(例如,用於接收)的特定子訊框相關聯的))。
第1C圖是根據實施方式的RAN 104和CN 106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術以經由空中介面115而與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106通信。
RAN 104可以包括e節點B 160a、160b、160c,但是應該理解的是在保持符合實施方式的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c中的每一者可以包括經由空中介面115以與WTRU 102a、102b、102c通信的一或多個收發器。在一個實施方式中,e節點B 160a、160b、160c可以實施MIMO技術。因此,例如e節點B 160a可以使用多個天線以向WTRU 102a傳送無線信號及/或從WTRU 102a接收無線信號。
e節點B 160a、160b、160c中的每一者都可以與特定胞元(未示出)相關聯、並可以被配置為處理無線電資源管理決定、切換決定、UL及/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c可以經由X2介面彼此通信。
第1C圖所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然上述每一個元件都被描述為是CN 106的一部分,但是應該瞭解,CN操作者之外的實體可以擁有及/或操作這些元件中的任何元件。
MME 162可以經由S1介面以與RAN 104中的每一個e節點B 160a、160b、160c相連、並且可以充當控制節點。例如,MME 162可以負責認證WTRU 102a、102b、102c的使用者、承載啟動/停用、在WTRU 102a、102b、102c的初始連結期間選擇特定服務閘道等等。MME 162可以提供控制平面功能,以在RAN 104與使用例如GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間進行切換。
SGW 164可以經由S1介面而連接到RAN 104中的e節點B 160a、160b、160c中的每一者。SGW 164通常可以路由和轉發使用者資料封包至WTRU 102a、102b、102c/從WTRU 102a、102b、102c路由和轉發使用者資料封包。此外,SGW 164可以執行其他功能,例如在e節點B間的切換期間錨定使用者面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,可以為WTRU 102a、102b、102c提供至例如網際網路110之類的封包交換網路的存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通信。
CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供至例如PSTN 108之類的電路切換式網路的存取,以促進WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。作為範例,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通信,其中IP閘道充當了CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供至其它網路112的存取,其中該網路可以包括由其他服務供應者擁有及/或操作的其他有線及/或無線網路。
儘管WTRU在第1A圖至第1D圖中被描述為無線終端,但是可以設想這種終端可以使用(例如,臨時或永久地)與通信網路的有線通信介面的特定典型實施方式。
在典型實施方式中,其它網路112可以是WLAN。
基礎設施基本服務集(BSS)模式中的WLAN可以具有用於BSS的存取點(AP)以及與AP相關聯的一或多個站(STA)。AP可以具有到分散式系統(DS)或將訊務攜帶至及/或攜帶出BSS的另一類型的有線/無線網路的存取或介面。源自BSS外的STA的訊務可以經由AP到達、並且可以被遞送到STA。源自STA的訊務到BSS之外的目的地可以被發送到AP以被遞送到各自的目的地。BSS內的STA之間的訊務可以經由AP發送,例如,其中源STA可以將訊務發送到AP,並且AP可以將訊務遞送到目的地STA。BSS內的STA之間的訊務可以被視為及/或被稱為對等訊務。對等訊務可以在直接鏈路建立(DLS)的源STA與目標STA之間(例如直接在源和目的地STA之間)發送。在某些代表性實施方式中,DLS可以使用802.11e DLS或802.11z隧道DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可以不具有AP,並且IBSS內或使用IBSS的STA(例如,所有STA)可以彼此直接通信。IBSS通信模式於此有時可以被稱為“ad-hoc”通信模式。
當使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在例如主通道之類的固定通道上傳送信標。主通道可以是固定寬度(例如,20 MHz寬頻寬)或經由傳訊動態設定寬度。主通道可以是BSS的操作通道、並且可以被STA用來建立與AP的連接。在某些代表性實施方式中,可以例如在802.11系統中實現具有衝突避免的載波感測多路存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如,每個STA)可以感測主通道。如果主通道被感測/偵測到及/或被確定為由特定STA占線,則特定STA可以退避。一個STA(例如,只有一個站)可以在任何給定時間在給定BSS中傳送。
高輸送量(HT)STA可以使用40 MHz寬的通道以用於通信,例如,經由主20 MHz通道與相鄰或不相鄰的20 MHz通道的組合來形成40 MHz寬的通道。
超高輸送量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160MHz寬通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以通過組合8個連續的20 MHz通道或通過組合兩個不連續的80 MHz通道(可以被稱為80 + 80配置)來形成。對於80 + 80配置,通道編碼之後的資料可以通過可以將資料分成兩個流的分段解析器。逆快速傅立葉變換(IFFT)處理和時域處理可以分別在每個流上進行。這些流可以被映射到兩個80MHz通道上,並且資料可以由傳送STA來傳送。在接收STA的接收器處,用於80 + 80配置的上述操作可以是反向的,並且可以將組合的資料發送到媒體存取控制(MAC)。
Sub 1 GHz操作模式由802.11af和802.11ah支援。802.11af和802.11ah中的通道操作頻寬和載波相對802.11n和802.11ac中使用的頻寬減少了。802.11af支援TV白空間(TVWS)頻譜中的5 MHz、10 MHz和20 MHz頻寬,及802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz和16 MHz頻寬。根據代表性實施方式,802.11ah可以支援例如巨集覆蓋區域中的MTC裝置之類的計量器類型控制/機器型通信。MTC裝置可以具有某些能力,例如,包括支援(例如僅支援)某些及/或有限頻寬的有限能力。MTC裝置可以包括具有高於臨界值的電池壽命的電池(例如,以維持非常長的電池壽命)。
可以支援多個通道以及例如802.11n、802.11ac、802.11af和802.11ah之類的通道頻寬的WLAN系統包括可以被指定為主通道的通道。主通道可以具有等於BSS中所有STA支援的最大公共操作頻寬的頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA中的STA來設定及/或限制。在802.11ah的範例中,對於支援(例如僅支援)1 MHz模式的STA(例如,MTC類型的裝置),主通道可以是1 MHz寬,即使AP和BSS中的其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式。載波感測及/或網路分配向量(NAV)設定可能取決於主通道的狀態。如果主通道忙,例如由於傳送至AP的STA(其僅支援1 MHz操作模式),則整個可用頻帶可以被認為是忙的,即使大部分頻帶保持空閒並且可以是可用的。
在美國,802.11ah可以使用的可用頻段從902 MHz到928 MHz。在韓國,可用頻段從917.5 MHz到923.5 MHz。在日本,可用頻段從916.5 MHz到927.5 MHz。取決於國家代碼,可用於802.11ah的總頻寬是6 MHz到26 MHz。
第1D圖是示出根據實施方式的RAN 113和CN 115的系統圖。如上所述,RAN 113可以使用NR無線電技術以經由空中介面116以與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。
RAN 113可以包括gNB 180a、180b、180c,但是可以理解,在保持與實施方式一致的同時,RAN 113可以包括任意數量的gNB。gNB 180a、180b、180c每個可以包括一或多個收發器,用於經由空中介面116以與WTRU 102a、102b、102c進行通信。在一種實施方式中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、108b可以利用波束形成向gNB 180a、180b、180c傳送信號及/或從gNB 180a、180b、180c接收信號。因此,gNB 180a例如可以使用多個天線以向WTRU 102a傳送無線信號及/或從WTRU 102a接收無線信號。在實施方式中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送多個分量載波(未示出)。這些分量載波的子集合可以在未許可的頻譜上,而其餘的分量載波可以在許可的頻譜上。在實施方式中,gNB 180a、180b、180c可以實施協調多點(CoMP)技術。例如,WTRU 102a可以從gNB 180a和gNB 180b(及/或gNB 180c)接收協調傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集合(scalable numerology)相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或無線傳輸頻譜的不同部分,OFDM符號間距及/或OFDM子載波間距可以變化。WTRU 102a、102b、102c可以使用各種或可縮放長度(例如,包含不同數量的OFDM符號及/或持續不同長度的絕對時間)的子訊框或傳輸時間間隔(TTI)以與gNB180a、180b、180c進行通信。
gNB 180a、180b、180c可以被配置為以獨立配置及/或非獨立配置與WTRU 102a、102b、102c通信。在獨立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c進行通信,而不必存取其他RAN(例如,例如e節點B 160a、160b、160c)。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用未許可頻帶中的信號與gNB 180a、180b、180c通信。在非獨立配置中,WTRU 102a、102b、102c可以與gNB 180a、180b、180c通信/連接到gNB 180a、180b、180c,並且還與另一RAN通信/連接到另一RAN,例如e節點B 160a、160b、160c。例如,WTRU 102a、102b、102c可以實施DC原則以與一或多個gNB 180a、180b、180c和一或多個e節點B 160a、160b、160c基本上同時通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動性錨點,並且gNB 180a、180b、180c可以提供用於服務WTRU 102a、102b、102c的額外覆蓋及/或輸送量。
gNB 180a、180b、180c中的每一者可以與特定胞元(未示出)相關聯、並且可以被配置為處理無線電資源管理決定、切換決定、UL及/或DL中使用者的排程、支援網路切片、雙重連接性、NR與E-UTRA之間的互通、使用者平面資料向使用者平面功能(UPF)184a、184b的路由、控制平面資訊向存取和行動性管理功能(AMF)182a、182b的路由等等。如第1D圖所示,gNB 180a、180b、180c可以經由Xn介面相互通信。
第1D圖中所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b以及可能的資料網路(DN)185a、185b。雖然前述元件中的每一者被描繪為CN 115的一部分,但是應當理解的是,這些元件中的任何元件可以由CN操作者以外的實體擁有及/或操作。
AMF 182a、182b可以經由N2介面被連接到RAN 113中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責認證WTRU 102a、102b、102c的使用者,支援網路切片(例如處理具有不同要求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、NAS傳訊的終止、行動性管理等。AMF 182a、182b可以使用網路切片,以便基於WTRU 102a、102b、102c所使用的服務的類型來定制對於WTRU 102a、102b、102c的CN支援。例如,可以針對不同的使用情況建立不同的網路切片,例如依賴於超可靠低延遲(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與採用例如LTE、LTE-A、LTE-A Pro及/或如WiFi的非3GPP存取技術等其它無線電技術的其他RAN(未示出)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面被連接到CN 115中的AMF 182a、182b。SMF 183a、183b也可以經由N4介面被連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b並經由UPF 184a、184b配置訊務的路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略執行和QoS、提供下鏈資料通知等。PDU對話類型可以是基於IP的、基於非IP的、基於乙太網路的等等。
UPF 184a、184b可以經由N3介面被連接到RAN 113中的gNB 180a、180b、180c的一者或多者,該N3介面可以向WTRU 102a、102b、102c提供對例如網際網路110之類的封包交換網路的存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通信。UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、緩衝下鏈封包、提供行動性錨定等。
CN 115可以促進與其他網路的通信。例如,CN 115可以包括充當CN 115與PSTN 108之間的介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器)或者可以與其通信。另外,CN 115可以向WTRU 102a、102b、102c提供對其他網路112的存取,其他網路112可以包括由其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一種實施方式中,WTRU 102a、102b、102c可以經由UPF 184a、184b以經由到UPF 184a、184b的N3介面、以及在UPF 184a、184b與DN 185a、185b之間的N6介面而被連接到本地資料網路(DN)185a、185b。
鑒於第1A圖至第1D圖、以及第1A圖至第1D圖的相應描述,本文關於以下一者或多者所描述的功能中的一或多個或全部可以由一或多個模擬裝置(未示出)執行:WTRU 102A圖至第D、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b及/或於此描述的一或多個任何其它裝置。模擬裝置可以是被配置為模擬於此所述的一或多個或全部功能的一或多個裝置。例如,模擬裝置可以被用於測試其他裝置及/或類比網路及/或WTRU功能。
模擬裝置可以被設計為實施實驗室環境中及/或操作者網路環境中的其他裝置的一或多個測試。例如,在完全或部分地實施及/或部署為有線及/或無線通訊網路的一部分的同時,一或多個模擬裝置可以執行一或多個或全部功能,以測試通信網路內的其他裝置。一或多個模擬裝置可以在作為有線及/或無線通訊網路的一部分臨時實施/部署的同時執行一或多個或全部功能。為了測試的目的,模擬裝置可以直接被耦合到另一個裝置,及/或可以使用空中無線通訊來執行測試。
一或多個模擬裝置可以執行包括全部功能的一或多個功能,而不是作為有線及/或無線通訊網路的一部分來實施/部署。例如,可以在測試實驗室及/或未部署(例如測試)有線及/或無線通訊網路中的測試場景中使用模擬裝置,以實施對一或多個元件的測試。一或多個模擬裝置可以是測試裝置。模擬裝置可以使用經由RF電路(例如,其可以包括一或多個天線)的直接RF耦合及/或無線通訊來傳送及/或接收資料。
行動無線通訊可以實施各種無線電存取技術(RAT),例如新無線電(NR)或5G彈性RAT。NR的使用實例可以包括例如極大行動寬頻(eMBB)、超高可靠性和低延遲通信(URLLC)以及大規模機器類型通信(mMTC)。NR實施可能是節能的。
在行動無線系統的範例中,使用者設備(UE)(例如WTRU)可以例如經由接收可以在單獨控制通道上傳送的下鏈控制指示(DCI)。DCI不可以攜帶許多位元而知道何時接收及/或傳送資料。eNB可以在任何時間點排程多個裝置。實體下鏈控制通道(PDCCH)可以被相應地確定尺寸。
在範例中(例如,LTE),PDCCH可以在(例如,每個)子訊框的前幾個符號上的系統頻寬(例如整個系統頻寬)上被傳送。此方法可以允許eNB在整個系統頻寬上排程DCI。這種方法可能要求WTRU在整個頻寬上搜尋潛在的DCI。這可能要求WTRU為潛在的小DCI接收整個頻寬。從電池消耗的角度來看,這可能是低效的,例如,假定WTRU接收器可以處理比必要的更多樣本。
在範例(例如,NR)中,可以在比整個系統頻寬及/或頻率位置(例如,頻寬部分(BWP))更小的頻寬上排程DCI(例如,或其他指示)。在其上傳送PDCCH的一組子帶可以是WTRU特定的。WTRU可以(例如,在網路指示時)增加其接收器頻寬及/或改變其頻率位置(例如中心頻率)。系統可使用大頻寬操作。系統可以將系統負載在給定胞元及/或載波的不同資源集合中傳播。此方法(例如,接收器頻寬適應)可以不要求一或多個(例如所有)WTRU具有接收整個系統頻寬的能力及/或可以實現較低功率消耗、並且可以被稱為接收器頻寬適應。WTRU的接收器頻寬可以改變(例如,增加及/或減少)。WTRU的接收器頻寬的增加及/或減少可能暗示(例如進一步暗示)頻率位置(例如,中心頻率)的改變。這種改變可能對應於BWP(例如,UL、DL或兩者)的改變或對應於BWP的活動集合(例如,UL、DL或兩者)的改變。WTRU的接收器頻寬的改變可以用於下鏈操作及/或WTRU的上鏈頻寬操作的確定。
WTRU可以被配置有給定胞元及/或載波的一或多個頻寬部分(BWP)。一或多個BWP可以是作為一組BWP的群組。一組BWP可以用於下鏈操作(DL BWP)或用於上鏈操作(UL BWP)。BWP可以由以下中的至少一者或多者來表徵:子載波間距;循環前綴;及/或多個連續實體資源塊(PRB)。該一或多個特徵可以是WTRU的配置方面。BWP可以由頻率位置(例如中心頻率)來表徵(例如進一步表徵)。
WTRU可以例如藉由在(例如,每次)頻寬及/或頻率位置(例如,中心頻率)改變時重新調諧其接收器鏈來實施接收器頻寬適應。儘管重新調諧時間可能短,但是例如當未由eNB及/或WTRU(例如,UE)正確處理時,重新調諧可能導致資料丟失。例如,藉由實施以下一者或多者可以避免或減緩與頻寬適應相關聯的資料丟失:(i)用於改變接收器頻寬及/或頻率位置(例如,中心頻率)的觸發及/或規則;(ii)在WTRU可以重新調諧(例如,及/或可能不接收至少一些傳輸)時的特定時間實例;(iii)在WTRU與網路(NW)之間的接收器頻寬狀態一致性;及/或(iv)通道狀態資訊。
例如,取決於所使用的接收器頻寬及/或頻率位置(例如,中心頻率),用於控制通道區域的資源可以改變。可以為WTRU提供程序以確定控制通道資源(例如,控制通道資源集合或CORESET)。
在範例中(例如,具有波束形成的NR),例如當WTRU使用不同的頻寬及/或頻率位置(例如中心頻率)時,在WTRU已經重新調諧之後,用於傳輸第一控制通道區域的波束可能不合適。例如,在波束形成增益在關閉鏈路預算中可能是重要的(例如,必不可少)的部署中,這可能是有問題的。
第2圖是接收器頻寬適應的範例。第2圖示出下鏈時頻柵格。BWLP 可以是WTRU(例如,低功率)接收器頻寬。BWOP 可以是WTRU操作頻寬。BWSYS 可以是系統頻寬。TSLOT 可以是時槽的時間(例如,在第2圖所示的範例中,每時槽7個OFDM符號)。
WTRU可以接收第一下鏈(DL)指示(例如,DCI或其他指示),其可能導致WTRU將其接收器頻寬從BWLP 改變為BWOP (例如,將接收器頻寬增加到標稱操作位準)。WTRU可以用BWOP 操作(例如,正常地)接收其他DCI及/或相關聯的資料。第一指示可以跟隨有下鏈接收間隙。在下鏈接收間隙時間期間,WTRU可以重新調諧其接收器。當重新調諧其接收器時,WTRU可能不被期望接收資訊(例如,DCI及/或資料)。
當WTRU的頻寬適應機制包括(例如,進一步包括)針對給定胞元及/或載波的操作頻寬的頻率位置(例如,中心頻率)的改變時,於此描述的接收器頻寬適應的一或多個範例可以應用。
多個預定義的傳輸或時槽格式及固定的時間線可以被定義和用於賦能頻寬適應。DL控制通道頻寬適應時槽格式可以包括以下元素中的一者或多者:(i)控制區域(例如控制資源集合),(ii)資料區域,(iii)DL接收間隙(例如,用於重新調諧),(iv)參考信號(RS)區域(例如,解調RS(DM-RS)或其它)及/或(v)上鏈控制/資料區域。
第3圖是使用跨時槽排程的接收器頻寬適應的範例。在範例中,BWLP 中控制區域中的DCI可以表明時槽的不同元素的位置。指示可以伴隨著時槽中的下鏈分派(例如,用於DL接收間隙之前及/或之後的傳輸)。BWLP 中的DCI可以(例如也可以)在BWOP 可能適用的下一個時槽中表明下鏈分派。其中使用BWOP (例如,僅BWOP )的第一時槽可以不具有控制通道區域(例如,所有符號可以被用於資料傳輸)。控制通道區域可能存在。例如,對於可以使用BWOP (例如,僅BWOP )的第一時槽之外的時槽(例如,沒有重新調諧間隙的時槽),可能存在控制通道區域。
可以提供接收器頻寬適應時槽格式。可以根據例如每時槽及/或雙工方案(例如分時雙工(TDD)對分頻雙工(FDD))的符號數量來定義不同的時槽格式。接收器頻寬適應時槽格式可以由網路配置。
WTRU可以確定接收器頻寬適應時槽格式例如由DCI的內容正在使用。在範例中,例如,當DCI包括用於改變WTRU接收器頻寬的顯式指示時,WTRU可以確定目前時槽(例如,以及一或多個後續時槽)可以是接收器頻寬適應時槽(一或多個)。
WTRU可以被配置有一或多個接收器頻寬適應時槽格式。在範例中,WTRU可以(例如,動態地)確定接收器頻寬適應時槽格式。例如,WTRU可以基於DCI的內容以基於隱式規則或者基於DCI中的顯式指示或欄位來動態地確定接收器頻寬適應時槽格式。在範例中,可以配置單一接收器頻寬適應時槽格式。WTRU可以確定接收器頻寬適應時槽格式。例如,WTRU可以基於配置來確定接收器頻寬適應時槽格式,該配置可以在規範(一或多個)中被固定或者被半靜態地配置。
可能存在多個接收器頻寬適應時槽格式。儘管範例可以涉及時槽中的特定數量的OFDM符號,並且範例信號可以使用整個BWLP 頻寬,但是於此描述的主題可以不限於這些範例。一或多個實現可以使用在各個範例中描述的相同或不同數量的OFDM符號及/或信號頻寬。儘管範例可能涉及FDD系統,但是於此描述的主題可以適用於TDD操作。
第4圖是具有探測信號的範例接收器頻寬適應時槽格式。此接收器頻寬適應時槽格式可以賦能WTRU側上的接收器頻寬的改變及/或可以使WTRU能夠在開始接收下鏈上的資料之前進行測量。eNB可能(例如,具有恰當的報告)能夠在稍後的時間(例如,在下一個時槽(例如,使用BWOP 的WTRU))使用測量來排程資料。
探測信號(例如,在此上下文中)可以包括DM-RS、胞元特定參考信號(CRS)、通道狀態資訊RS(CSI-RS)、定位參考信號(PRS)、或主同步信號(PSS)/輔助同步信號(SSS)。在範例中,探測信號可以包括用於執行波束形成搜尋/適應程序的信號序列。例如,當WTRU及/或網路可以被配置有大量的天線時,這可以被實施。
在範例中,WTRU可以被配置為在無線電已經重新調諧之後改變其接收及/或傳輸波束。這可以例如基於探測信號或波束形成適應過程來完成。網路可以(例如也)改變其傳輸波束,這可以取決於WTRU CQI回饋。
在範例中,WTRU可以接收多於一個探測信號或者CSI-RS。這例如可以在WTRU處於多個總輻射功率(TRP)附近或者可以由多個波束服務時實施。WTRU可以從每個TRP接收一組探測信號或表示不同的波束。WTRU可以被配置為傳送多個CQI作為應答(例如,其針對其接收到的每個相關探測信號或者基於WTRU配置)。
在範例中,出於同步目的,探測信號可以由WTRU使用。
第5圖是具有資料的範例接收器頻寬適應時槽格式。DCI可以表明WTRU可以(例如應該或必須)將接收器頻寬改變為BWOP 。DCI可以(例如也)表明DL資料接收參數,例如在時槽期間或稍後的時間。
在範例中,WTRU可以不被提供顯式下鏈接收間隙。WTRU可以在資料接收週期期間(例如,在任何時間)重新調諧。例如,資料可以被編碼以保護其免於WTRU重新調諧間隙,例如以避免資料丟失。資料可以用低碼率傳送或編碼,這可以允許從WTRU重新調諧間隙導致的錯誤中恢復。資料可以(例如,可選地)被編碼(例如,進一步編碼),例如使用例如李德-所羅門(reed-solomon)碼或其他碼(例如噴泉(fountain)碼)的外部碼。WTRU可以基於例如顯式指示(例如,在DCI格式上)來確定資料編碼(例如,應用於傳輸的外部碼及/或其它碼)。WTRU可以例如隱式地(例如,基於可以選擇的接收器頻寬適應時槽格式或者在接收器頻寬被改變的時槽期間)確定資料編碼(例如,應用於傳輸的外部碼及/或其他碼)。
第6圖是具有調諧間隙(例如,在末端)的範例接收器頻寬適應時槽格式。在範例中,DL接收間隙可以被包括在時槽的最後一或多個符號中,例如以減輕由於重新調諧而導致的潛在資料丟失。
第7圖是在資料週期內具有調諧間隙的範例接收器頻寬適應時槽格式。在範例中,傳輸塊(TB)可以被映射到調諧間隙之前和之後的部分,例如,使用資源元素(RE)擊穿(puncture)或速率匹配來適應調諧間隙。下行控制傳訊可以表明時槽內的間隙的位置。TB可以在重新調諧間隙之前和之後被不同地映射。例如,(例如,在重新調諧間隙之前的符號中)頻率分配可以被限制在時槽的開始處的接收器頻寬,而頻率分配可以被限制在時槽結束時的接收器頻寬(例如,後續符號)。可以在重新調諧間隙之前和之後為OFDM符號提供分別的頻率分配。單一頻率分配可以(例如,替代地)被提供。在間隙之前或之後落在接收器頻寬之外的部分可以被排除(例如,被隱性地排除)。在範例中,時槽的資料部分可以由重新調諧間隙分成兩部分。(例如,每個)部分可以賦能不同TB的傳輸。
第8圖是用於接收器頻寬的低延遲變化的範例接收器頻寬適應時槽格式。WTRU可以監視接收器頻寬指示的改變的控制區域可以位於時槽的末端,例如,在末端具有DL接收間隙。
第9圖是具有資料的低延遲接收器頻寬適應時槽格式的範例。控制區域可以位於時槽的中間、並且可以跟隨有下鏈資料區域以用於WTRU。時槽格式可以(例如,替代地)在時槽的末端具有DL接收間隙。
在範例中,WTRU可以被配置有固定的一組接收器頻寬適應時槽格式(例如,在表格中被編索引)。WTRU可以被配置為根據所配置的格式來監視/操作。WTRU可以(例如,替代地)被配置有多組控制區域以進行監視。DCI可以提供接收器頻寬適應時槽格式的動態指示(例如,具有資料或不具有資料)。
在範例中,接收器頻寬適應時槽格式可以(例如,替代表中的預定義)由網路配置(例如,顯式地配置)。網路可以顯式地配置具有接收器頻寬適應時槽格式的每個欄位的WTRU。例如,網路可以用特定功能(例如,控制區域、探測信號、DL接收間隙、DL資料等)來配置時槽的每個OFDM符號。
WTRU可以被配置有可以跨越一或多個(多)時槽的一或多個接收器頻寬適應時槽格式。傳輸格式可以跨越一個或多於一個的時槽的持續時間。
傳輸格式的持續時間(例如,根據OFDM符號或者根據絕對時間)可以取決於例如子載波間距。可以為(例如,每個)子載波間距定義不同的格式。
接收器頻寬適應時槽格式可以與一或多個服務類型相關聯(例如,可以依賴於)。例如,特定組的接收器頻寬適應時槽格式可以與eMBB、mMTC及/或URLLC類型的服務相關聯。
在範例中,基於例如一或多個邏輯通道QoS參數,WTRU可以被配置有特定組的接收器頻寬適應時槽格式。例如,輸送通道可以使用與正被傳送的資料相關聯的最高優先序邏輯通道或所配置的最高優先序邏輯通道的接收器頻寬適應時槽格式。
WTRU及/或網路實體可以被配置為支援多個傳輸器及/或接收器頻寬配置。例如,WTRU可以被配置有一或多個接收器頻寬配置。在範例中,不同於被配置為使用特定時槽格式(例如,針對給定組的實體資源)操作的WTRU或除此之外,WTRU可以利用多個接收器頻寬配置。接收器頻寬配置可以包括以下元素中的一者或多者:頻率參數(例如,例如一組實體資源塊(PRB)、頻寬及/或中心頻率/偏移PRB)及/或相關聯的控制資源集合(一或多個)。
WTRU可以被配置有間隙持續時間(例如,在從一個接收器頻寬重新配置到另一個接收器頻寬時)。間隙持續時間可以例如取決於中心頻率是否在兩種配置之間改變。間隙持續時間可以對應於WTRU從第一接收器頻寬配置切換到第二接收器頻寬配置的時間。
WTRU可以被配置為例如在接收器頻寬配置改變時監視可能在接收器頻寬範圍內的(一或多個)控制資源集合。這可以是除了被配置有新的頻率參數的WTRU之外。
WTRU頻寬接收器配置可以例如基於所配置的控制資源集合的特徵來確定。WTRU可以被配置為例如基於(一或多個)活動控制資源集合的特性來確定WTRU接收器頻寬。在範例中,WTRU可以被配置有可以是PRB的控制資訊可定址集合的函數的操作頻寬(例如,基於對應於控制資源集合的控制區域的頻寬大小)。
WTRU可以被配置為(例如,基於配置)確定活動控制資源集合頻寬。WTRU可以被配置為例如使用所配置的乘法因數β(例如,接收器頻寬=β×控制資源集合頻寬)來確定接收器頻寬。在範例中,乘法因數β= 1。如果乘法因數β= 1,則WTRU可以使用與活動控制資源集合頻寬相同的接收器頻寬。
WTRU可以被配置為確定中心頻率。在範例中,WTRU可以基於活動控制資源集合來確定中心頻率(例如,使用與活動控制資源集合相關聯的中心頻率)。
WTRU可以被配置為確定接收器間隙持續時間。
WTRU接收器重新調諧時間可以例如取決於中心頻率是否可以(例如進行)改變及/或(例如潛在地)其他實施特定因素。在範例中,WTRU接收器可以被實施(例如,支援非常寬的頻寬)具有寬頻RF前端(例如,單寬頻RF前端)及/或具有多個窄帶RF前端,其(例如一起或累積地)可以(例如將要)覆蓋接收器頻寬(例如,整個接收器頻寬)。各種WTRU實施可以是等同的,但是可能涉及(例如,需要)不同的重新調諧時間配置,例如當經歷頻寬變化時。在範例中(如,對於6GHz以下的帶內),可以實施20 μs的調諧間隙(如,可能是必要的),例如以改變頻寬。例如,當(如,另外)中心頻率改變時,可以實施50-200 μs之間的調諧間隙。
極度保守的下鏈接收間隙的網路配置可能導致較低的整體WTRU輸送量。網路可以知道關於頻寬適應和重新調諧的WTRU能力。例如,假定重新調諧時間可能取決於頻寬配置和WTRU實施,網路可能難以提前確定適當的下鏈接收間隙。
在範例中,WTRU可以被配置有多個(例如,兩個或更多個)頻寬配置或者頻寬部分配置(例如,用於頻寬適應)。用於頻寬適應的頻寬部分配置可以包括例如可以與頻寬部分(例如,相同的頻寬部分)相關聯的至少兩個頻寬或PRB集合。在範例中,多個(例如,兩個)頻寬可以共用相同的中心頻率。為了簡單起見,任何集合、組或多個(例如,兩個)不同的頻寬分配可以被稱為頻寬配置(例如,不管它們如何被配置或建模)。
在範例中(例如,為了簡化,假定兩個頻寬配置),WTRU可以被配置有第一頻寬(BW1)和第二頻寬(BW2)。頻寬配置(例如,用於頻寬適應)可以包括例如開始和結束頻率或PRB索引、或者開始頻率或PRB索引和頻寬(例如,根據PRB或其它)。
第10圖是向網路提供重新調諧要求的WTRU的範例。WTRU可以被配置有頻寬部分(BWP)對、並且可以向網路報告重新調諧時間(例如,由WTRU用來重新調諧其收發器的時間週期)。WTRU可以確定重新調諧時間,例如,當從BW1轉到BW2時及/或反之亦然。WTRU可以向網路報告(例如,所需的)重新調諧時間(例如,經由可能值的表格中的索引)。網路(NW)可以(例如,然後適當地)配置DL接收間隙。
第11圖是WTRU確定DL接收間隙是否充足的範例。WTRU可以被配置有間隙,並且WTRU可以確定間隙是否充足。在範例中,網路可以配置WTRU具有顯式DL接收間隙(例如,除了頻寬配置BW1和BW2之外)。WTRU可以被配置為例如確定其重新調諧時間是否可以小於DL接收間隙。WTRU可以被配置為向網路表明配置可能不適合/無效,例如,當重新調諧時間可能不小於DL接收間隙時。WTRU可以向網路表明(例如,進一步表明)針對接收的頻寬配置的WTRU重新調諧時間(例如,所需的重新調諧時間)。
第12圖是WTRU拒絕配置的範例。在範例中,WTRU可以被配置為例如在其不可行(例如,從WTRU實施角度來看)時拒絕配置。例如,當頻寬配置可能不可能、或不可行、或者DL接收間隙可能比WTRU所需要的更短時,配置可能是不可行的。WTRU可以表明(例如,進一步表明)拒絕原因。例如,拒絕原因可能包括DL接收間隙太短或其他原因。
WTRU可以報告一或多個接收器參數。在範例中(例如,附加的或替代的範例),WTRU可以向網路表明可以與其接收器相關聯的參數,例如以允許網路確定(例如,自己確定)適當的DL接收間隙以用於頻寬配置。WTRU可以提供或指示資訊,例如可以覆蓋通道頻寬的多個接收器鏈,當(例如,僅)頻寬可被改變時的重新調諧時間、及/或中心頻率可被改變時的重新調諧時間。WTRU可以提供或表明資訊,例如作為其能力配置的一部分及/或在通過網路配置頻寬適應時。
WTRU可以配置有時槽格式(一種或多種)表格(例如,而不是間隙)。在範例中,WTRU可以被配置為具有一或多個時槽格式配置(例如,而不是DL接收間隙配置)。(例如每個)時槽格式配置可以(例如已經)包括DL接收間隙(例如,具有定義的持續時間)。例如,時槽格式配置可以在表格中預配置及/或索引。
WTRU可以報告(例如,每個)配對的一或多個(例如,多個)BWP配置及/或最大重新調諧時間。例如,當WTRU可以被配置有多於兩個頻寬部分配置或頻寬配置時,WTRU可以被配置為確定(例如,所要求的或所請求的)重新調諧時間(例如,在每個可能組合之間)。WTRU可以向網路報告(例如,顯式報告)針對(例如,每個)組合可能需要或要求的重新調諧時間。WTRU可以向網路報告一或多個(例如全部)組合上的最多或最大重新調諧時間(例如,所需或所請求的最大重新調諧時間)。WTRU可以被配置為確定(例如,首先確定)在一或多個(例如,每個可能的)組合之間可能需要或請求的最長重新調諧時間,例如,當配置單一DL接收間隙時。WTRU可以(如,然後)例如藉由將DL接收間隙與最長重新調諧時間(例如,確定的最長重新調諧時間)進行比較來確定DL接收間隙是否足夠長(例如,充分地足夠長)。
對於一或多個BWP配置,可以提供自主轉換。WTRU可以被配置有兩對或更多對頻寬部分、或者一對頻寬部分和一個或更多個獨立頻寬部分。例如,WTRU可以被配置有兩個頻寬部分對(例如,BWPA 、BWPA ’)和(例如,BWPB 、BWPB ’)。WTRU可以關注兩種類型的間隙:BWP對內間隙和BWP對間間隙。於此描述的配置可以例如如下使用。WTRU可以被配置為在BWP對內改變(例如,自主地改變)WTRU的BWP。WTRU可以被允許經由顯式網路指示而在不同BWP對之間改變BWP。
在範例中,BWP對中的兩個BWP可以以這樣的方式來配置,使得WTRU在從一個BWP改變到另一個(例如,從BWPA 到BWPA ’)時可以不重新調諧(例如,可能不需要重新調諧)其中心頻率。WTRU可以利用短重新調諧時間以用於BWP對內BWP改變。如果WTRU被配置為在BWP對中的BWP之間改變(例如,自主地改變)並且具有如本文所述的短重新調諧時間,則可節省能量。例如,WTRU可以被配置為使得BWPA 具有比BWPA ’寬的BW,並且在不活動的週期,WTRU可以將其BWP改變為BWPA ’。不同的BWP對之間的BWP的改變可能需要較長的重新調諧時間(例如,由於不同的中心頻率)、並且可以由網路用於賦能無線電資源管理。
在範例中,WTRU可以被配置為報告BWP對內重新調諧時間和BWP對間重新調諧時間。例如,WTRU可以如分別報告BWP對內重調諧時間和BWP對間重新調諧時間。例如,在由網路配置/重新配置BWP對之後,WTRU可以分別報告BWP對內重調諧時間和BWP對間調諧時間。在範例中,網路可以配置WTRU在相同對的BWP之間具有顯式關聯。在範例中,WTRU可以例如基於中心頻率隱式地確定該對。
在範例中,WTRU可以報告BWP對內的重新調諧時間(例如,所需的或者所請求的重新調諧時間)以及BWP對間的重新調諧時間(例如,所需的或者所請求的重新調諧時間)。如果WTRU被配置有一或多個(例如多)對,則WTRU可以被配置為報告BWP對內和BWP對間的每一者的最長重新調諧時間。WTRU可以被配置為分別報告對的組合(例如,或對的組合的子集合)的重新調諧時間。
如於此所描述的,針對這些BWP對所配置的WTRU可以被配置為應用於廣義的BWP集合。例如,WTRU可以被配置為可應用於一組BWP(例如,比BWP對大的BWP集合)。WTRU可以被配置為適用於配置了多於一個BWP的第一集合的情況,其中該集合中的一或多個(例如全部)BWP可以共用相同的中心頻率(例如,或者等同地WTRU不可以重新調諧其接收器從一個BWP轉換到在該BWP集合內另一個BWP)。該集合(例如,具有相同的中心頻率)可以具有與於此所述的BWP對相似的特徵。例如,BWP對內重新調諧時間當量可以是BWP集合內重新調諧時間,其可以是用於該集合內的BWP改變的重新調諧時間(例如,所需要的或所要求的重新調諧時間)。BWP對間重新調諧時間當量可以是BWP集合間重新調諧時間,例如,其可以是隨著該集合外的BWP而改變的BWP的重新調諧時間(例如,所需的或請求的重調諧時間)。其他BWP可以屬於另一個集合或者可以是獨立的BWP(例如,沒有關聯的集合)。
WTRU可以使用用於BWP對內的間隙和用於BWP對間的間隙(例如,另一個間隙)。在範例中,WTRU可以被配置為當從一個BWP改變到該集合(例如,或者對)內的另一個BWP時使用間隙(例如,第一時間間隙),以及當從一個BWP改變到該集合(例如,或者對)外另一個BWP時使用另一時間間隙(例如,第二時間間隙)。WTRU可以從網路配置確定間隙的值、或者可以在配置時間使用於此描述的一種或多種方法向網路表明。
WTRU可以表明何時在對(例如,或者集合)內不能滿足重新調諧間隙要求。在範例中,WTRU可以被配置有一或多個BWP對或BWP集合。WTRU可以被配置有BWP對內或者BWP集合內的重新調諧間隙。WTRU可以被配置為確定WTRU是否可以在由重新調諧間隙施加的延遲預算內在該對或者集合內執行BWP的改變。WTRU可以向網路表明何時不能滿足該要求,例如經由錯誤訊息的RRC傳訊。WTRU可以表明(例如,進一步表明)可能不被支援的一或多個對或者一或多個集合。
WTRU可以利用接收器控制資源集合。可以為每個接收器頻寬配置提供多個控制資源集合。WTRU可以被配置有多於一個的控制資源集合以用於監視。控制資源集合可以與一或多個配置的接收器頻寬相關聯。
WTRU可以針對具有一或多個控制資源集合的每個接收器頻寬配置(例如,或者時槽格式)進行配置。當特定的接收器頻寬被啟動時,WTRU可以被配置為監視一些或全部相關的控制資源集合。在範例中,WTRU可以配置有具有單一控制資源集合的第一接收器頻寬配置和具有兩個(例如,兩個相鄰集合,例如頻率上相鄰的兩個集合)控制資源集合的第二接收器頻寬配置,其中兩個相鄰控制資源集合中的一者可以對應於與第一接收器頻寬配置相關聯的資源集合。
WTRU可以被配置有特定的控制資源集合(例如,預設或回退)。例如,無論接收器頻寬配置如何,WTRU都可以被配置為監視這個特定控制資源集合。WTRU可以將其接收器頻寬配置為能夠接收(例如,至少能夠接收)該特定控制資源集合。
WTRU可以被配置有多個控制資源集合(例如,與接收器頻寬配置分開)、並且可以被配置為監視在目前活動的接收器頻寬中包含的控制資源集合。WTRU可以獨立於接收器頻寬配置而被配置有控制資源集合。WTRU可以例如基於接收器頻寬及/或接收器頻寬是否包含控制資源集合來確定要監控哪些控制資源集合。
當WTRU具有要監控的多個相鄰或重疊的控制資源集合時,WTRU可以將多個相鄰或重疊的控制資源集合視為單一控制資源集合(例如,藉由聚合)。WTRU可以在這個單一控制資源集合塊上執行盲偵測。在聚合將導致資源的預設或回退集合內的不同集合的盲解碼可能性的情況下,WTRU可以被配置為避免將預設或回退控制資源集合與其他相鄰或重疊的控制資源集合聚合。WTRU可以對該聚合集合的控制資源執行盲解碼。WTRU可以(例如也可以)單獨對預設或回退資源執行盲解碼(例如,不聚合它們)。如果WTRU和網路狀態不同步,則上述方法可以賦能強健的回退機制。
控制資源集合的縮放可以由WTRU隱式地執行。WTRU可以被配置為例如基於配置的接收器頻寬來隱式地確定控制資源集合。
WTRU可以被配置有不同類別的接收器頻寬配置。例如,WTRU可以被配置有一個“窄帶”和多於一個的“寬頻”接收器頻寬。
WTRU可以被配置用於與窄帶接收器頻寬配置相關聯的特定控制資源集合(例如,控制資源集合可以包括整個窄帶接收器頻寬配置頻寬)。
WTRU可以被配置為基於隱式規則來確定與接收器頻寬相關聯的控制資源集合。在範例中,可以(例如,也可以)使用一或多個配置的參數(例如,縮放)來確定與接收器頻寬相關聯的控制資源集合。WTRU可以被配置有針對接收器頻寬的控制資源集合的特定比率以及關於接收器頻寬的關聯的PRB偏移。WTRU可以藉由將該比率應用於活動頻寬並藉由應用所配置的偏移來確定控制資源集合。在範例中,此方法可適用於寬頻接收器頻寬配置(例如,不是窄帶頻寬配置)。
接收器頻寬的變化可以由一或多個觸發器觸發。接收器頻寬的系統範圍變化可以被實施。初始WTRU接收器頻寬配置可以基於初始存取參數。
可以在系統資訊中表明第一WTRU接收器頻寬。在範例中,可以基於例如隨機存取程序的一或多個參數向WTRU提供第一WTRU接收器頻寬。在範例中,WTRU可以基於例如用於傳輸PRACH前導碼的頻寬(BW)或用於接收隨機存取回應的頻寬來獲得第一接收器頻寬。接收器頻寬可以(例如也可以)被綁定到用於傳輸同步信號或廣播資訊的頻寬。
接收器頻寬可以週期性地及/或基於排程而改變。WTRU可以被配置有接收器頻寬的週期性變化。例如,WTRU可以被配置有操作接收器頻寬和低功率接收器頻寬。WTRU可以被配置為例如使用低功率接收器頻寬並且重新調諧(例如,週期性地重新調諧),以在特定的時間量使用操作的接收器頻寬。例如,可以實施頻寬的週期性改變,以使大系統範圍或廣播/多播訊息能夠接收(例如,在限制其他時間的功率消耗/接收器複雜度的同時)。使用頻寬隨時間的改變可以(例如也可以)被用於WTRU執行測量(例如,為了行動性或無線電資源管理(RRM)目的)。
網路可以配置與WTRU可以執行其重新調諧的配置的週期相關聯的一組特定時刻(例如,時槽、符號、子訊框等)。WTRU可能不期望在特定時刻期間接收任何下鏈資料。
接收器頻寬可以例如基於全系統信號(例如,顯式信號)而改變。WTRU可以被配置為改變其接收器頻寬(例如從BWLP 到BWOP )。舉例來說,WTRU可被配置為在接收到預定義的廣播訊息或信號時改變其接收器頻寬(例如,從BWLP 到BWOP )。這種方法可以使系統能夠以更活躍的狀態操作,其中大量的資訊可以被傳送給胞元中的WTRU。在範例中,信號可以是主資訊塊(MIB)中的特定指示或特定的PSS/SSS。在範例中,訊息可以由具有特定無線電網路臨時識別符(RNTI)的DCI攜帶,該特定無線電網路臨時識別符對於一個以上的WTRU可以是共同的。
WTRU可以被配置有接收器頻寬配置。例如,WTRU可以被配置有第一(例如,或預設的)接收器頻寬配置。訊息可以攜帶(例如,進一步攜帶)WTRU可以維持其新的(例如第二)接收器頻寬配置所在的排程或時間。WTRU可以被配置為將其接收器頻寬改變回先前的(例如,第一或預設的)的接收器頻寬配置及/或另一個(例如,第三)接收器頻寬配置(例如,在WTRU在排程或一時間期間維持其新的(例如,第二)接收器頻寬配置之後)。例如,WTRU可以被配置為在時間週期已逝去之後(例如,自從頻寬配置被改變之後)及/或在不活躍的時間週期之後(例如,自上一次傳輸活動之後的時間長度)返回到之前的頻寬配置。
接收器頻寬的改變可以是WTRU特定的。WTRU接收器頻寬的改變可以例如藉由例如在DCI中的下鏈指示來觸發。在範例中,DCI可以包括用於改變接收器頻寬的顯式欄位或指示(例如,顯式DCI)。在範例中,DCI可以包括正常資料分配(例如,隱式DCI)。DCI可以在專用PDCCH上或者例如在組PDCCH上被接收。
WTRU可以被配置為例如基於組PDCCH及/或喚醒信號來接收及/或確定顯式指示的接收器頻寬改變。WTRU可以被配置為基於在PDCCH或者組PDCCH上(例如,在DCI中)接收到的顯式指示的接收來改變其接收器頻寬。WTRU可以基於指示來確定新的接收器頻寬。例如,WTRU可以被配置有與各自的索引值(在4個接收器頻寬配置的情況下,例如0、1、2和3)相關聯的多個接收器頻寬。在接收到索引時,WTRU可以根據相關聯的配置來配置其接收器。指示可以包括單一位元並且可以表明頻寬配置。例如,指示可以包括單一位元、並且可以表明兩個接收器頻寬配置中的一者(例如,窄或寬)。指示可以被解釋為喚醒訊息。
WTRU可以被配置為例如基於在PDCCH上接收到其ID(如,或RNTI)或在組PDCCH上接收到其組ID(如,或組RNTI)來改變其接收器頻寬(如,改變為第二配置或更寬的頻寬)。
接收器頻寬的變化可以基於DCI內容(例如,缺乏頻寬分配)。在範例中,WTRU可以被配置為隱式地改變其接收器頻寬(例如,基於DCI的內容或隱式DCI)。在範例中,WTRU可以被配置為例如當在用於DL資料接收的DCI中分配的資源在目前接收器頻寬之外時改變其接收器頻寬。例如,WTRU可以改變其接收器頻寬,以例如在目前時槽(例如,可能導致無法接收前幾個符號)或在隨後的(例如,下一個)時槽中接收排程的資料。
在範例中,WTRU可以被配置為基於接收到的DCI來改變接收器頻寬,例如當下鏈資料分配在目前接收器頻寬之外並且接收到的DCI表明該分配可以比目前時槽長的時間週期有效時。在範例中,DCI可以表明分配對於下列是有效的:目前時槽和下一個時槽,或者對於下一個時槽(例如,僅對於下一個時槽),或者對於多個即將到來的時槽等。WTRU可以(例如,替代地)被配置為在目前時槽中不接收或不試圖接收下鏈分配。例如,下鏈分配可能由於重新調諧而不能由基地台傳送。此方法可以(例如,從開銷的觀點來看)需要單一DCI(例如,僅單一DCI)來傳訊WTRU接收器頻寬的變化以及傳訊資料分配。此方法可以支援確保WTRU和網路可以(例如,就是)與WTRU接收器頻寬同步。在範例中,WTRU可以被配置為傳送NACK,例如,當在DCI上接收到的DL分配在接收器頻寬之外時。DCI可以表明分配對於目前時槽(例如,僅目前時槽)是有效的。
在範例中,WTRU可以在接收到具有上鏈資料分配的DCI時改變(例如,隱含地改變)其接收器頻寬。這可以例如基於WTRU下鏈資料活動可以與WTRU上鏈資料活動(例如,TCP ACK / NACK)相關的觀察來實施。
例如,當WTRU移動到資料活動的更活躍狀態時,可能發生接收器頻寬的變化(例如,從降低的低功率BWLP 到標稱BWOP )。
WTRU可以例如基於上鏈資料活動將其接收器頻寬改變(例如,自動地改變)為更大的操作頻寬。在範例中,WTRU可以被配置為基於上鏈資料活動自動地增加其接收器頻寬,例如基於一或多個觸發,例如下列中的一者或多者:(i)UL緩衝器中的新資料或總數高於臨界值(例如,其可以是可配置的);(ii)對於具有特定QoS保證的無線電承載或其初始配置(例如,保證位元速率可能需要比目前可用資料速率更多的可排程資源),新資料變得可用於UL緩衝器中的傳輸;(iii)排程請求(SR)被觸發或待決或者與SR相關聯的傳輸被執行;(iv)例如,當所報告的量高於特定(例如,可配置)臨界值(例如,針對一或多個適用無線電承載)時,WTRU觸發緩衝器狀態報告(BSR)的傳輸;(v)例如,當RACH可以用於排程請求及/或BSR報告時,WTRU例如傳送PRACH;(vi)WTRU從低功率狀態轉移(例如,離開非連續接收(DRX)非活動時間,例如當WTRU離開低功率/ DRX狀態時);及/或(vii)WTRU改變RRC狀態(例如,從空閒/非活動連接或類似)。
接收器頻寬的改變(例如,在WTRU重新調諧其RF時)可以發生在觸發事件之前或之後,這可能取決於事件。例如,WTRU可以被配置為在傳送BSR之前自動地改變其接收器頻寬。
WTRU可以被配置為(例如,自動地)基於(例如,在特定時間週期之後)不活動性改變其接收器頻寬(例如,從例如BWOP 之類的操作值改變為例如BWLP 之類的較小值)。在範例中,WTRU可以被配置有不活動計時器TBW 。WTRU可以被配置為例如在不活動計時器TBW 到期時改變其接收器頻寬(例如,減小到BWLP )。在範例中,不活動計時器可以是與另一不活動計時器(例如,用於DRX的)相同的計時器。在範例中,WTRU可以被配置為在配置數量的DRX循環之後自動地改變其接收器頻寬(例如,改變為更小的值)。例如,不活動計時器可以被解釋為整數個DRX循環。
WTRU可以(例如,替代地)被配置為自動地改變(例如,減小)其接收器頻寬,例如,當移動到較低的RRC活動狀態時(例如,從RRC連接移動到RRC空閒或其他狀態)。
WTRU可以(例如,替代地)被配置為向網路傳送請求以改變(例如,減少)接收器頻寬或活動指示(例如,低活動性指示)。請求/指示可以是例如實體層訊息或緩衝器指示訊息(例如,緩衝器中具有0位元的BSR)或RRC訊息。
WTRU可以被配置為例如使用來自網路(例如,DCI、MAC控制訊息、RRC、或甚至來自更高層)的控制訊息來顯式地改變(例如,減少)其接收器頻寬。
WTRU可以被配置為例如在確定WTRU可能不再具有與系統的有效上鏈時序同步時改變(例如,減小)其接收器頻寬(例如,WTRU可以確定上鏈時序提前不再有效)。WTRU可以被配置為例如在確定其可以進入低功率狀態(例如,DRX非活動時間、轉換到RRC空閒、轉換到RRC非活動狀態等等)時改變(例如,減小)其接收器頻寬。
WTRU可以被配置為改變(例如,減小)其接收器頻寬、並且可以恢復為預設頻寬配置(例如,可應用於初始存取系統的頻寬),例如,當WTRU確定錯誤狀況可能已經發生時。例如,錯誤狀況可以對應於下列中的一者或多者:無線電通道品質不足(例如,針對特定控制通道)、無線電鏈路問題、無線電鏈路故障、上鏈同步丟失、下鏈同步丟失、發起例如連接重新建立程序的程序及/或WTRU是功率受限的確定及/或其報告等等。
WTRU可以接收改變(例如,減小)其接收器頻寬的指示。例如,WTRU可以用一連串傳輸進行排程。WTRU可以(例如,在叢發中傳輸最後TB時)接收指示(例如在協定資料單元標頭(例如MAC或其它)中或經由相關聯的DCI)來恢復到不同的(例如,較小)接收器頻寬以用於將來的控制通道監控。WTRU可以例如藉由傳送針對最後傳輸的ACK來對此進行確認(例如,隱性地確認)。最後TB的重傳可能會超過更大的頻寬。改變的(例如,減少的)頻寬可以在最後的重傳之後生效。網路可以為即將到來的修改的(例如,減少的)接收器頻寬表明適當的中心頻率。這可以使網路適當地平衡其負載。
WTRU可以在一段不活動週期之後及/或基於活動等級將接收器頻寬改變為較小的值(例如,從BWOP 到BWLP )。接收器頻寬可以被稱為頻寬部分或DL頻寬部分,而低功率(或低活動性)頻寬可以被稱為預設頻寬部分或預設DL頻寬部分。WTRU在給定時間點使用的接收器頻寬可以被稱為活動頻寬部分。WTRU可以確定活動頻寬部分的時間可以是時槽、迷你時槽、子訊框及/或NR-UNIT。活動頻寬部分的確定可以針對由DRX程序定義的活動時間或針對WTRU具有配置的DL指派或UL許可的時槽、迷你時槽及/或子訊框而發生。當WTRU確定將其活動頻寬部分設定為與第二頻寬部分不同的第一頻寬部分(例如,其可以是目前活動頻寬部分)時,第二頻寬部分可以被停用,並且第一頻寬部分可以被啟動。
WTRU可以基於用作DRX操作的一部分的至少一個計時器是否正在運行來確定將其活動頻寬部分設定為特定頻寬部分(例如,預設頻寬部分)。一或多個計時器可以包括以下範例中的一者或多者:drx-不活動計時器(drx-InactivityTimer); 針對(例如,每個)DL HARQ進程定義的drx-重傳計時器DL(drx-RetransmissionTimerDL);針對(例如,每個)DL HARQ進程定義的drx-HARQ-RTT-計時器DL(drx-HARQ-RTT-TimerDL);針對(例如,每個)UL HARQ進程定義的drx-重傳計時器UL(drx-RetransmissionTimerUL);針對(例如每個)UL HARQ進程定義的drx-HARQ-RTT-計時器UL(drx-HARQ-RTT-TimerUL);drx短循環計時器 (drxShortCycleTimer);開起持續時間計時器(onDurationTimer);及/或mac-爭用解決計時器(mac-ContentionResolutionTimer)。
在範例中,在發生以下一組條件中的一者或多者的情況下,WTRU可以確定活動頻寬部分可以被設定為特定頻寬部分(例如,預設頻寬部分):當drx-InactivityTimer已經期滿;當針對一或多個(例如,全部)HARQ進程的drx-RetransmissionTimerDL及/或drx-RetransmissionTimerUL已經期滿時;及/或當針對一或多個(例如,全部)HARQ進程的drx-HARQ-RTT-TimerDL及/或drx-HARQ-RTT-TimerUL已經期滿時。
基於一或多個條件將活動頻寬部分設定為特定(例如,預設)頻寬部分可以確保WTRU在自最後的新傳輸及/或當沒有HARQ重傳被期望時起最短時間之後將其活動頻寬部分改變(例如,僅改變)為預設頻寬部分。
可以將以下標準中的一者或多者添加到於此描述的一或多個條件,使得WTRU處於活動時間:onDurationTimer可以正在運行或者mac-ContentionResolutionTimer可以正在運行;排程請求可以在PUCCH上被發送並且可以被暫懸;及/或針對暫懸的HARQ重傳的上鏈許可可能發生並且相應的HARQ緩衝器中可能存在資料;及/或表明定址到MAC實體的C-RNTI的新傳輸的PDCCH在成功接收到針對未被MAC實體選擇的前導碼的隨機存取回應之後可能未被接收到。
在範例中,當(例如,僅)onDurationTimer(例如,及/或mac-ContentionResolutionTimer及/或drxShortCycleTimer)正在運行(例如,在用於DRX操作的計時器之中)時,WTRU可以確定活動頻寬部分可以被設定為特定(例如,預設)頻寬部分。
短DRX循環可以被配置。當配置短DRX循環時,在接收到DRX命令MAC控制元素時、或者在drx-InactivityTimer期滿時、或者直到drxShortCycleTimer期滿時,WTRU可以使用短DRX循環。如果短DRX循環沒有被配置,則WTRU可以在drxShortCycleTimer期滿時或者在接收到長DRX命令MAC控制元素時或者在接收到DRX命令MAC控制元素時使用長DRX循環。
在範例中,如果WTRU根據於此描述的條件集合中的至少一者使用長DRX循環,則WTRU可以確定活動頻寬部分可以被設定為預設頻寬部分。例如,在接收到長DRX命令MAC控制元素時,或者在未配置短DRX循環的情況下接收到DRX命令MAC控制元素時,或者在drxShortCycleTimer已經期滿並且其他計時器沒有運行的情況下(例如,如於此所述),WTRU可以確定活動頻寬部分可以被設定為預設頻寬部分。
在範例中,WTRU可以配置有當WTRU使用短DRX循環時、或者當drxShortCycleTimer正在運行時適用的頻寬部分。這種頻寬部分可以被稱為短DRX頻寬部分。短DRX頻寬部分可以具有大於當WTRU使用長DRX循環時適用的預設頻寬部分但小於存在活動時(例如,當drx-InactivityTimer正在運行時)使用的頻寬部分的頻寬。用於將活動頻寬部分設定為短DRX頻寬部分的條件集合可以包括如於此所述的用於將活動頻寬部分設定為預設頻寬部分、及/或具有drxShortCycleTimer正在運行的附加條件中的一或多個條件集合。
WTRU可以在傳輸中不再活動(例如,基於HARQ傳輸)。
例如,如果適用於第二頻寬部分的一或多個(例如全部)HARQ進程是或變成不活動的,則WTRU可確定活動頻寬部分可被設定為第一頻寬部分(例如,預設BWP)。例如,可以成功完成一或多個(例如,全部)HARQ進程(例如,針對所關注的HARQ進程所接收或者假設的最後一個回饋是ACK,及/或所關心的HARQ進程被中斷,及/或自從上一次該進程一直處於活動狀態進行傳輸的給定時間週期內所關注的HARQ進程沒有藉由排程資訊來處理)。這可以與drx-InactivityTimer未運行(例如,或已經期滿)的情況結合,如果DRX被配置(例如,WTRU可以基於與第二頻寬部分相關聯的(一或多個)HARQ進程不活動以及基於drx-InactivityTime已期滿或未運行而將活動頻寬部分設定為第一頻寬部分)。如果與第二頻寬部分相關聯的(一或多個)HARQ進程是活動的、或者drx-InactivityTime正在運行,則WTRU可以確定活動頻寬部分可以被設定為第二頻寬部分(例如,WTRU的配置的BWP)及/或其集合。
WTRU可能不具有可以用於傳輸(一或多個)有關的BWP的資料。
例如,如果WTRU在其緩衝器中沒有可用於傳輸的資料(例如,WTRU的配置的(一或多個)邏輯通道((一或多個)LCH)的子集合)的資料,則WTRU可以確定活動頻寬部分可以被設定為第一(例如上鏈)頻寬部分(例如,預設BWP)。例如,在WTRU對於與特定QoS(例如,URLLC)對應的LCH沒有可用於傳輸的資料的情況下、及/或在WTRU配置有對應於有關QoS的至少一個BWP(例如具有給定可靠性的特定參數集合及/或TTI持續時間)時,WTRU可以確定使用預設BWP。WTRU可以被配置有使WTRU能夠使LCH與每個LCH的給定BWP相關聯(例如,或映射)的資訊,使得WTRU可以確定LCH是否可以被包括在這種確定中。這種資訊可以包括與實體層傳輸特性相關的一或多個參數,例如一或多個TTI持續時間、一或多個參數集合等等。這種參數可以對應於例如傳輸設定檔及/或傳輸參數的集合之類的傳輸子集合之間的配置映射。在範例中,WTRU可以在特定(例如,可能配置的)時間量之後執行這種確定。這種時間可以對應於從傳輸塊的傳輸(例如,包括導致確定沒有資料要傳輸的確定的資料)開始已經消逝的時間。在範例中,此時間可以對應於與這種傳輸塊相關聯的HARQ進程的完成(例如,如於此所述)。在範例中,如果DRX被配置,則這可以與drx-InactivityTimer未運行(例如,或已經期滿)的條件結合。在範例中,如果DRX被配置,則這可以與timingAlignmentTimer未運行(或已經期滿)的條件結合。在範例中,如果DRX被配置,則這可以與WTRU被配置有短DRX循環並且WTRU正使用長dRX循環的條件相結合。如果DRX沒有被配置,則WTRU可以確定活動頻寬部分可以被設定為第二頻寬部分(例如,WTRU的配置的BWP)及/或其集合。
WTRU可以被配置為不再在有關的(一或多個)BWP上可定址。
例如,如果WTRU確定(例如,WTRU的配置的)目前活動的第二頻寬部分的損害,則WTRU可以確定活動頻寬部分可以被設定為第一頻寬部分(例如,預設BWP)。這種損害可以包括波束失敗、波束管理失敗、達到上鏈傳輸的最大數目(例如,對於UL BWP)、確定無線電鏈路問題(例如,基於到達從較低層接收到的許多不同步指示)、確定無線電鏈路失敗、及/或WTRU發起RRC連接重新建立程序。
WTRU可以基於從TRP接收到傳呼指示/傳呼訊息來改變其接收器頻寬。WTRU可以被配置有與接收傳呼指示相關聯的第一接收器頻寬。傳呼指示可以例如包括預定序列及/或可以包含訊息(例如,傳呼訊息)。WTRU可以被配置有與在傳呼指示之後接收另外的控制資訊或資料指派相關聯的第二接收器頻寬。
WTRU可以被配置為當針對潛在的傳呼時機監視傳呼通道時以第一接收器頻寬操作。WTRU可以被配置為例如在成功接收到攜帶與WTRU相關聯的識別碼或序列(例如,國際行動使用者識別碼(IMSI)、IMSI功能、預先配置的序列或其他識別碼)的傳呼指示時將其接收器頻寬改變為配置的第二接收器頻寬。
在計時器期滿之後,WTRU可以將其接收器頻寬重新配置為第一接收器頻寬。例如,計時器可以在WTRU初始配置第一接收器頻寬時啟動。如果WTRU在計時器運行時接收到頻寬指示的進一步改變,則計時器可以被重置。所使用的計時器值可以是特定於每個接收器頻寬的、或者可以在多個接收器頻寬上是公共的。例如,在到達下一個傳呼時機時,WTRU可以將其接收器頻寬重新配置為第一接收器頻寬。如果WTRU進入IDLE(空閒)模式,則WTRU可以將其接收器頻寬重新配置為第一接收器頻寬。例如,當在IDLE模式下進入擴展的DRX週期時,WTRU可以被配置為使用第一接收器頻寬。WTRU可以被配置為在IDLE模式下退出擴展的DRX週期時將其接收器頻寬改變為第二接收器頻寬。
WTRU可以基於DRX循環及/或啟動狀態的改變來改變其接收器頻寬。WTRU可以被配置為基於WTRU DRX狀態來改變其接收器頻寬。WTRU可以被配置為當WTRU進入/退出DRX狀態時改變其接收器頻寬(例如,改變到預定配置)。這種DRX狀態可以是例如以下項中的一者或多者:DRX活動時間、DRX循環、DRX短循環等。
WTRU可以被配置有用於每個狀態的接收器頻寬配置(例如,其可以包括(一或多個)控制資源集合。)
WTRU可以被配置有由網路控制的頻寬適應啟動狀態(例如,經由MAC控制元素(CE)/L3 RRC或其它機制)。當頻寬適應啟動狀態被禁用時,WTRU可以被配置有接收器頻寬配置。WTRU可以被配置有一或多個接收器頻寬配置以在頻寬適應啟動狀態被賦能時應用。WTRU可以在這種情況下(例如,基於DRX狀態)確定應用哪個配置。
WTRU可以被配置為在DRX停用時禁用頻寬適應狀態。WTRU可以被配置為需要分別的啟動指示(例如,來自DRX啟動指示)用於頻寬適應啟動。
在WTRU和網路(NW)之間可以維持同步狀態,例如,兩個實體可以關於WTRU接收器頻寬的狀態同步,這可以使網路和WTRU能夠充分利用無線電資源。可以期望限制狀態同步錯誤。可以考慮範例同步錯誤情況。
在範例中,網路可以假設WTRU接收器頻寬是BWOP (例如,操作頻寬),而WTRU接收器頻寬是BWLP (例如,低功率接收器頻寬)。例如,錯誤可能導致WTRU未接收到下鏈指派,這可能延遲網路執行重傳的傳遞。
在範例中,網路可以假定WTRU接收器頻寬是BWLP ,而WTRU接收器頻寬是BWOP 。例如,此錯誤可能導致以下項中的一者或多者:(i)在傳送資料之前,增加對於接收器頻寬改變指示的網路傳輸的延遲;(ii)錯過的下鏈傳輸(例如,當WTRU搜尋空間(例如,包括DCI格式)在配置BWLP 與BWOP 時可能不同下);及/或(iii)不必要地降低傳輸速率(例如,當網路可能使用小頻寬(例如,BWLP )以用於資料傳輸時)。
第13圖是具有ACK的範例控制通道頻寬變化。例如,WTRU可以在接收到接收器頻寬改變請求時傳送確認控制訊息。這可以例如基於WTRU對網路對接收器頻寬改變請求的確認來實施。WTRU可以在已知的時間/位置(例如,在成功接收到導致接收器頻寬改變的DL指示之後)傳送ACK訊息(例如,在例如PUCCH之類的實體上鏈控制通道上)。上鏈ACK可以向網路表明接收器頻寬可能已經改變。網路可以使用WTRU操作頻寬來進行資料傳輸。
在範例中,WTRU可以被配置為傳送確認。舉例來說,WTRU可以被配置為在沒有其他形式的確認(例如,CQI或其它)待傳送時傳送確認(例如,顯式確認)。例如,WTRU可以被配置為當頻寬的改變由顯式DCI(例如,具有頻寬的顯式改變指示的DCI)觸發時傳送確認(例如,顯式確認)。隱式DCI可以包括資料分配、並且可以被配置為由WTRU傳訊ACK/NACK。網路可以使用ACK/NACK的存在來確認頻寬的改變(例如,對於隱式DCI,頻寬改變的顯式ACK可能是不必要的)。在範例中,WTRU可以被配置為在相關聯的PUCCH資源中傳送確認(例如,基於正常的關聯規則)。在範例中,可以為這種確認的傳輸保留一或多個特定資源。
第14圖是當DCI分配是在接收器頻寬之外時NACK的範例傳輸。在範例中,WTRU可以被配置為例如當WTRU接收到DL分配可以是(例如,就是)是在WTRU目前接收器頻寬之外的DCI時,傳送否定確認訊息(NACK)。WTRU可能不能接收資料。WTRU可以傳送特定的NACK信號,該特定的NACK信號可以不同於正常的HARQ-ACK訊息(例如,不同的時間或位置)。例如,可以在正常的HARQ-ACK訊息之前傳送特定的NACK信號(例如,BW-NACK)。
WTRU可以(例如,替代地)使用正常的HARQ-ACK機制和資源來傳送可以作為正常NACK訊息傳送的BW-NACK。
例如,在接收到DL分配可能在目前WTRU接收器頻寬之外的DCI時,WTRU可以將其接收器頻寬改變(例如,自動地改變)為隨後(隨後的時槽)的操作頻寬(BWOP )。例如,這可以在網路可以重傳NACK資料並且可能不能確定傳輸失敗的原因的情況下實施。例如,網路可能不知道由於WTRU接收器頻寬而發生傳輸失敗(例如,與由於通道錯誤引起的故障對照)。
第15圖是以CQI作為Ack的範例控制通道頻寬變化。WTRU可以用改變接收器頻寬來確認(例如,隱式確認)網路。CSI可以被用作隱式接收器頻寬改變確認。WTRU可以使用CSI資訊的傳輸作為接收器頻寬改變確認。例如,WTRU可以接收第一下鏈指示,表明WTRU應當改變其接收器頻寬。在改變其接收器頻寬時或之後,WTRU可以確定並可以測量關聯的DL探測信號。關聯的DL探測信號參數可以被預先配置及/或可以取決於DCI內容及/或特性。WTRU可以在可以由網路知道的資源上傳送CSI資訊。可以從DCI內容及/或參數確定資源。網路(例如,在接收到CSI資訊時)可以確定WTRU改變了其接收器頻寬並且可以用適當的CSI資訊來發起下鏈傳輸。
CSI資訊可以包括與波束、通道CQI、秩、預編碼資訊等相關的資訊。例如,WTRU可以被配置為當WTRU(例如,從多個TRP)接收到多個探測信號時回應於多個CQI來進行傳送。在範例中,WTRU可以基於例如探測信號強度/品質及/或配置(例如,基於TRP ID)選擇TRP的子集合來回應。
CSI資訊可以伴有確認(ACK)訊息。這可以改善接收錯誤或者可以確認接收器頻寬的改變(例如,對於可能不能夠接收或者可以被配置為解碼CSI資訊的其他TRP)。
控制通道區域可以取決於所配置的接收器頻寬。WTRU可以基於其接收器頻寬來確定控制區域。在範例中,用於控制通道接收的時間/頻率實體無線電資源集合可以改變,例如,取決於接收器頻寬配置。WTRU可以在利用BWLP 操作時被配置有控制通道資源集合以及在利用BWOP 操作時可以被配置有分別的控制通道資源集合。資源可以彼此配置(例如,獨立配置)或者(例如,替代地)可以存在關係。例如,與BWLP 相關聯的控制通道區域或資源可以被包括在與BWOP 相關聯的資源中。在範例中,(例如,使用參考配置表集合或公式集合實施的)規則可以將控制通道資源的時間/頻率資源與WTRU接收器頻寬相關聯。
WTRU可以(例如替代地)被配置有第一控制通道區域和第二控制通道區域。例如,可以將第一控制通道區域例如用於任何WTRU接收器頻寬(如,BWLP 或BWOP )。例如當WTRU接收器頻寬是BWOP (例如,操作頻寬)時,可以保留第二控制通道區域。這可以允許網路在第一控制通道區域上向WTRU發送DCI,而不管WTRU狀態如何(例如,其可以被用於恢復WTRU狀態)。WTRU可以被配置為監視(例如總是監視)第一控制通道區域(例如,至少第一控制通道區域)。
WTRU可以(例如替代地)被配置有單一控制通道區域,其可以被使用(例如,始終被使用),而不管接收器頻寬如何。該控制通道區域可以被限制為頻寬BWLP
可以提供減少的控制通道區域資源模式。在範例中,WTRU可以被配置有可以跳頻的控制通道區域(例如,以半靜態配置的模式)。例如,跳頻模式可以被配置為避免與例如與eMTC等其他服務相關聯的模式的衝突。
例如,當WTRU正在使用減少的接收器頻寬(BWLP )時,可以(例如,僅)應用跳頻模式。當WTRU使用操作頻寬(BWOP )時,可以不配置跳頻模式。
可以為多個接收器頻寬定義控制通道區域跳變模式。例如,可以為多個接收器頻寬中的每一者(例如,BWLP 和BWOP )獨立地定義控制通道區域跳變模式。
WTRU可以被配置有其監視的預設或回退控制資源集合。控制資源集合可以與特定的PRB集合和設定的實例/時間週期相關聯。時間實例可以在特定配置下是週期性的。時間實例可以與DRX循環、活動時間等等關聯。WTRU可以被配置有在DRX循環期間在活動時間處其週期性監視的回退控制資源集合。
例如,如果WTRU和網路關於WTRU接收器頻寬配置不同步,則具有預設或回退控制資源集合的配置可以使得網路能夠與WTRU通信。例如,如果WTRU還沒有接收到接收器頻寬配置改變指示,則網路可以嘗試經由可能不被WTRU監控的控制資源集合來排程WTRU。網路可以在下一個時機在已知的回退控制資源集合中發佈另一個命令。
WTRU可以(例如,在接收器頻寬改變時)被配置為執行多個動作,例如以減少與訊務活動的改變相關聯的延遲及/或來自WTRU的上鏈的延遲(例如,針對WTRU傳輸器頻寬)。
在範例中,例如當WTRU接收器頻寬增加到BWOP 時,WTRU可以被配置為傳送多個信號及/或訊息。下鏈與上鏈活動之間可能存在相關性。例如,下鏈活動的增加可以與上鏈活動的增加相關(例如,以傳送TCP Ack)。WTRU可以被配置為傳送探測信號及/或功率測量中的一者或多者,例如以減少上鏈排程延遲。
WTRU可以例如在改變接收器頻寬時傳送(例如,自主傳送)探測信號。在範例中,例如,在接收到改變接收器頻寬的指示之後或在改變接收器頻寬之後,WTRU可以被配置為在特定時間在上鏈上傳送SRS類型的信號。WTRU可以(例如,替代地)傳送SRS,例如,當接收器頻寬的改變可以(例如,能夠)導致WTRU接收器頻寬的增加時。SRS的性能(例如,頻寬、時序、序列ID、功率等)可以被預配置。
所傳送的SRS的性能可能取決於接收器頻寬變化。例如,WTRU可以被配置有多於一個集合的SRS參數,其每一者可以與接收器頻寬相關聯。WTRU可以被配置為傳送具有與其正在改變到的接收器頻寬相關聯的性能或參數的SRS。
WTRU可以被配置有SRS參數的一或多個集合,每一者與SRS索引相關聯。WTRU可以被動態地配置(例如,藉由網路)以藉由傳訊SRS索引(例如,在控制通道中)來傳送SRS,例如,與表明WTRU應該改變其接收器頻寬的控制通道相同。
網路可以用可控方式估計用於上鏈排程的通道。網路可以估計通道(例如,藉由將SRS的能量集中在較短的頻寬中)。這可以使排程的彈性能夠提高。
例如在接收器頻寬改變時,WTRU可以被配置為傳送(例如,自主傳送)功率測量或資訊。例如,當接收器頻寬的改變導致WTRU接收器頻寬增加時,WTRU可以(例如,僅可以)傳送資訊。
例如,WTRU可以被配置為報告參考信號接收功率(RSRP)、功率餘量報告(PHR)及/或虛擬功率餘量報告。
資訊訊息可以例如在接收上鏈授權之後被傳送。在範例中,可以首先傳送控制資訊訊息,而不管待傳送的其他資料的優先序。在範例中,可以維持具有低延遲要求的訊息的優先序,並且可以延遲控制訊息。
WTRU可以基於接收器頻寬配置來改變其PRB索引。
WTRU可以被配置為使用相對PRB索引(例如,其中實際頻率索引可以依賴於WTRU配置並且可以不依賴於載波頻寬)。例如在WTRU最大頻寬小於載波頻寬的情況下,可以使用此方法。網路可以將WTRU分配給載波頻寬的子集。藉由使用相對索引,可以減少傳訊(例如,可以減少用於表明WTRU的特定PRB或PRB集合的位元數量)。
WTRU的相對索引配置可以包括例如開始頻率、頻寬及/或結束頻率。頻率或頻寬可以用子載波或子載波群組(例如,PRB或等價物)表示。索引可以包括(例如也可選地包括)特定步長(例如,以賦能不連續的頻譜分配)。
在範例中,WTRU可以被配置有多於一個相對索引配置。相對索引配置可以與索引及/或WTRU接收器頻寬相關聯。WTRU可以被配置為使用相對索引配置(例如,基於WTRU接收器頻寬配置)。WTRU可以被配置為確定使用哪個相對索引配置(例如,基於經由控制通道從網路傳訊的索引、或者例如藉由與WTRU接收器頻寬的關聯)。
WTRU可以被配置有絕對頻率參考點以確定PRB索引與實際頻率之間的關係。例如,絕對參考點可以被配置為是DC載波。在範例中,絕對參考點可以與可以由網路提供的同步參考信號(例如,同步信號的預定義子載波)相關聯。在範例中,WTRU可以被配置為基於參數集合來選擇絕對參考(例如,WTRU可以被配置為使用(在配置的載波中)相同參數集合的同步信號作為參考點)。
子載波索引可以基於WTRU配置的參數集合。這可以導致索引位元欄位的有效使用。WTRU可以被配置為使用較小的子載波間距作為用於索引的基線。這可以導致資源使用的改善(例如,當使用多個參數集合時)。
WTRU可以基於接收器頻寬來適應控制通道接收參數。
WTRU可以被配置有為配置的每個接收器頻寬的控制資源集合及/或與其相關聯。控制資源集合可以與控制通道或信號格式(例如,DCI格式)的集合相關聯。WTRU可以確定要監視哪個控制資源集合(例如,基於正在使用及/或活動的接收器頻寬)。WTRU可以確定用於盲解碼的控制格式(例如,基於WTRU接收器頻寬)。用於索引資源(例如,以頻率及/或時間)的位元欄位大小可以改變(例如,取決於WTRU接收器頻寬)。WTRU可以被配置為執行盲解碼,假定可以取決於WTRU接收器頻寬的DCI格式。
頻寬適應可以在多載波操作的上下文中實施。WTRU可以被配置有多個載波(例如,也被稱為分量載波(CC))。WTRU可以將頻寬適應用於一或多個CC。在載波聚合(CA)中,除了主胞元CC(例如主CC)之外,每個CC可以被啟動或停用,主胞元CC可以是(例如總是)被啟動的。與輔助服務胞元(例如,輔助CC)關聯的CC可以被啟動和停用。
CC可以被配置(例如,獨立地配置),其中(例如,每個)CC可以被配置有一或多個接收器頻寬配置。每個配置可以與一或多個控制資源集合相關聯。
當為該CC配置0 PRB時,WTRU可以停用CC。例如,CC可以被配置有0 PRB的接收器頻寬;這個選項可能相當於停用CC。當WTRU被配置為將用於CC的接收器頻寬改變為0 PRB接收器頻寬配置時,WTRU可以停用此CC、並且可以執行(例如,可選地執行)一或多個(例如所有)與CC停用相關聯的任務。
輔助CC可以被配置有0 PRB接收器頻寬配置。主CC可以不被允許用於這種0 PRB配置。這可以確保WTRU維持到網路的固定連接(例如,至少在主CC上)。
可以實施與在另一個CC中的控制資源集合相關的WTRU的動作。在範例控制資源集合配置中,CC接收器頻寬配置(例如,或者CC)可以被配置有控制資源集合的相關聯集合,其可以屬於另一個CC或者另一個接收器頻寬(例如,關聯的控制資源集合頻率資源可能在該CC的接收器頻寬之外)。
WTRU可以被配置為當與CC相關聯的控制資源集合位於可以被停用的另一CC中時停用CC。WTRU被配置為停用目前沒有接收到控制資源集合的任何CC。WTRU可以被配置為啟動CC,針對該CC其關聯的控制資源集合的CC正被啟動。這可以用緊湊的控制資源集合實現有效的CC管理。
可以實施WTRU條件以將接收器頻寬改變為具有多個CC的窄帶。WTRU可以被配置有多個CC。WTRU可以被配置為例如在CC中的一者(例如,僅一者)上應用頻寬適應。WTRU可以被配置為在與主服務胞元(例如,主CC)相關聯的CC上應用頻寬適應。WTRU可以被配置為至少在一或多個(例如,所有)其他輔服務胞元CC被停用的條件下減少(例如,或改變)主服務胞元CC的頻寬。WTRU可以減少頻寬減少的處理。當WTRU具有多個啟動的CC時,WTRU可以主動地接收資料。WTRU可以被配置為在啟動至少一個附加CC時自主地增加(例如,或改變)主CC的接收器頻寬。WTRU可以用減小的接收器頻寬進行操作(例如,以僅監視主服務胞元上的控制資源集合),並且在接收到CC啟動訊息時,WTRU可以不啟動輔助服務胞元CC並且可以增加在主服務胞元CC上的接收器頻寬(例如,根據預定義的配置)。
可以為WTRU實施單一頻寬狀態。WTRU可以被配置有單一接收器頻寬狀態,其中狀態可以採用兩個或更多個配置的值(例如,窄帶、寬頻等等)。WTRU可以具有每CC的單一頻寬狀態。
WTRU接收器頻寬狀態可以控制CC啟動狀態。例如,在改變WTRU接收器頻寬狀態(例如,經由顯式傳訊或經由隱式規則)時,WTRU可以被配置為啟動或停用特定預配置的CC集合。例如,在減少接收器頻寬時,WTRU可以停用一或多個(例如,所有)啟動的輔助CC。WTRU可以在主CC上應用(例如,進一步應用)減少的接收器頻寬配置。WTRU可以被配置為儲存CC的啟動狀態(例如,在已經發生頻寬減少之前)。在WTRU增加其接收器頻寬時,WTRU可以重新啟動CC,例如當觸發這樣做時。WTRU可以被配置為在增加主CC上的接收器頻寬時不重新啟動任何輔助CC,並且可以依賴於顯式的CC啟動/停用訊息。
可以用一或多個(例如多個)所配置的BWP來選擇UL許可。
WTRU可以被配置有一或多個LCH及/或邏輯通道群組(LCG)。WTRU可以被配置(例如,進一步配置)有用於這種LCH及/或LCG的一或多個映射規則。映射規則可以基於確定作為DCI中的指示接收到的值是否對應於這種LCH及/或LCG的WTRU的配置的值。該指示可以對應於傳輸設定檔。WTRU可以被配置為基於映射規則確定是否可以多工來自這種LCH及/或LCG的資料。當所表明的值對應於作為LCH及/或LCG配置的一部分的值時,WTRU可以多工來自LCH及/或LCG的資料。在範例中,傳輸設定檔可以包括用於與授權相關聯的一或多個傳輸參數及/或特性的一或多個值。傳輸設定檔可以包括以下項中的一者或多者:傳輸的參數集合、傳輸的持續時間(例如,TTI持續時間)等。
WTRU可以被配置有給定載波及/或胞元的一或多個頻寬部分。BWP可以處於活動狀態或處於非活動狀態。WTRU可以被配置有用於胞元的資源的半持久性許可(SPS許可)。這種許可可以對應於(一或多個)傳輸設定檔。WTRU可以接收排程針對胞元的資源的傳輸的(一或多個)動態傳訊。動態排程的傳輸可以在時間上與SPS許可的時序一致(例如,至少部分地一致)。WTRU可以被配置為根據下列中的至少一者來確定是使用配置的許可還是動態排程的許可:如果兩個許可都對應於活動的BWP,則WTRU可以使用動態排程的許可;如果兩個許可對應於相同的BWP(例如,活動的BWP),則WTRU可以使用動態排程的許可;如果WTRU對應於與配置的許可的BWP不同的BWP,則WTRU可以使用動態排程的許可;及/或如果存在對應於配置的許可的傳輸設定檔但不對應於與動態排程的許可相關聯的至少一個傳輸設定檔的LCH及/或LCG的傳輸的可用資料,WTRU可以使用配置的許可。
對於WTRU使用動態排程的許可(如果其對應於與配置的許可的BWP不同的BWP)的情況,如果動態排程的許可的BWP是無效的,那麼WTRU可以確定(例如,隱式確定)BWP可以被啟動。WTRU可以停用一或多個其他BWP(例如,在任何時候最多一個BWP對於該胞元可以是活動的)。
WTRU可以確定在實體控制通道上接收到的DCI是否允許在所配置的許可和動態許可之間進行選擇,其可以根據可用於傳輸的資料(例如,資料的(一或多個)可應用傳輸設定檔)和(例如,每個)許可的相應特性(例如,對應的傳輸的(一或多個)傳輸設定檔)對於給定載波在時間上一致。例如,如果相應的(一或多個)傳輸設定檔對於兩個許可都不同,但是其中動態許可包括那些配置的許可,則WTRU可以藉由動態排程來確定配置的許可正在被適應(例如,動態排程可以重載配置的排程資訊)。如果相應的(一或多個)傳輸設定檔對於兩個許可都相同,則WTRU可以(例如並且僅當)存在可用於與配置的許可的傳輸設定檔相對應的傳輸的資料時確定其可以忽略動態排程許可。資料可以是可用的,其對應於根據動態接收的許可的傳輸設定檔可能不被動態排程的許可所容納的配置的許可的傳輸設定檔。WTRU可以例如按照優先序及/或優先化位元速率(例如根據邏輯通道優先化功能)的順序來多工適用於所選許可的一或多個(例如多個)LCH的資料。
於此描述的每個計算系統可以具有一或多個電腦處理器,該一或多個電腦處理器具有記憶體,記憶體被配置有用於完成於此描述的功能的可執行指令或硬體,包括確定於此描述的參數以及在實體(例如,WTRU和網路)間傳輸和接收訊息以完成所描述的功能。上述程序可以在包含在電腦可讀媒體中的電腦程式、軟體及/或韌體中實現,以供電腦及/或處理器執行。
在WTRU接收器的上下文中呈現的範例可適用於WTRU傳輸器。針對新無線電提出的範例可適用於其他無線電存取技術(例如,LTE、UMTS、WiFi)。
已經揭露了用於例如新無線電(NR)或5G彈性RAT的無線電存取技術(RAT)的接收器頻寬適應的系統、方法和手段。WTRU控制通道(例如,接收器)頻寬可以例如基於WTRU活動(例如,基於活動計時器等)而適應或改變。例如,WTRU可以發送ACK/CQI以確認接收器頻寬適應(例如,接收器頻寬的改變)。WTRU可以例如基於例如緩衝器中的新資料、BSR傳輸、PRACH傳輸、RRC狀態的改變等活動來自主地改變其接收器頻寬。SRS性質可以取決於例如WTRU RX頻寬(例如,連結的RX-TX頻寬)。相對索引可以基於例如WTRU RX頻寬和絕對參考點。WTRU控制資源集合和參數可以取決於例如WTRU RX頻寬。對於具有多個載波(例如,分量載波)及/或多個控制資源集合的WTRU可以執行頻寬適應。控制資源集合可以被縮放(例如,基於WRTU接收器頻寬)。WTRU可以表明網路的重新調諧時間要求(例如,基於配置的頻寬部分)。WTRU可以拒絕配置(例如,當DL接收間隙可能太短時)。接收器頻寬適應可以例如在WTRU及/或網路層(例如,L1及/或L2)中被實施。接收器頻寬適應可以改善控制通道操作並且可以降低功率消耗。
於此描述的過程和手段可以以任何組合應用,可以應用於其他無線技術以及用於其他服務。
WTRU可以指實體裝置的識別碼或者使用者的識別碼,例如訂用相關識別碼,例如MSISDN、SIP URI等。WTRU可以指代基於應用的識別碼,例如可以是每個應用使用的使用者名。
上述過程可以在包含在電腦可讀媒體中的電腦程式、軟體及/或韌體中實現,以供電腦及/或處理器執行。電腦可讀媒體的範例包括但不限於電子信號(經由有線及/或無線連接傳送)及/或電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、例如但不限於內部硬碟和可移光碟的磁性媒體、磁光媒體及/或例如CD-ROM盤及/或數位多功能光碟(DVD)的光學媒體。與軟體相關聯的處理器可以被用於實現在WTRU、終端、基地台、RNC及/或任何主機電腦中使用的射頻收發器。
100‧‧‧通信系統102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元(WTRU)104‧‧‧無線電存取網路(RAN)106‧‧‧核心網路108‧‧‧公共交換電話網路(PSTN)110‧‧‧網際網路112‧‧‧其他網路114a、114b‧‧‧基地台116‧‧‧空中介面118‧‧‧處理器120‧‧‧收發器122‧‧‧傳輸/接收元件124‧‧‧揚聲器/麥克風126‧‧‧小鍵盤128‧‧‧顯示器/觸控版130‧‧‧非可移記憶體132‧‧‧可移記憶體134‧‧‧電源136‧‧‧GPS(全球定位系統)晶片組138‧‧‧週邊設備160a、160b、160c‧‧‧e節點B162‧‧‧行動性管理實體(MME)164‧‧‧服務閘道(SGW)166‧‧‧封包資料網路閘道(PGW)180a、180b、180c‧‧‧gNB182a、182b‧‧‧行動性管理功能(AMF)183a、183b‧‧‧對話管理功能(SMF)184a、184b‧‧‧使用者平面功能(UPF)185a、185b‧‧‧資料網路(DN)ACK‧‧‧顯式確認BW‧‧‧頻寬DCI‧‧‧下鏈控制指示DL‧‧‧下鏈NACK‧‧‧否定確認訊息
第1A圖是示出可以實施一或多個所揭露的實施方式的範例通信系統的系統圖。[01] 第1B圖是示出根據實施方式可以在第1A圖中示出的通信系統中使用的範例無線傳輸/接收單元(WTRU)的系統圖。[02] 第1C圖是示出根據實施方式可以在第1A圖中示出的通信系統中使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖。[03] 第1D圖是示出根據實施方式可以在第1A圖中示出的通信系統中使用的另一範例RAN和另一範例CN的系統圖。[04] 第2圖是接收器頻寬適應的範例。[05] 第3圖是具有跨時槽排程的接收器頻寬適應的範例。[06] 第4圖是具有探測信號的範例接收器頻寬適應時槽格式。[07] 第5圖是具有資料的範例接收器頻寬時槽格式。[08] 第6圖是在末端具有調諧間隙的範例接收器頻寬適應時槽格式。[09] 第7圖是在資料週期內具有調諧間隙的範例接收器頻寬適應時槽格式。[10] 第8圖是用於接收器頻寬的低延遲改變的範例接收器頻寬適應時槽格式。[11] 第9圖是具有資料的低延遲接收器頻寬適應時槽格式的範例。[12] 第10圖是WTRU向網路提供重新調諧要求的範例。[13] 第11圖是WTRU確定DL接收間隙是否可以是充足的範例。[14] 第12圖是WTRU拒絕配置的範例。[15] 第13圖是具有ACK的範例控制通道頻寬改變。[16] 第14圖是當DCI分配超出接收器頻寬時NACK的範例傳輸。[17] 第15圖是通道品質指示符(CQI)作為ACK的範例控制通道頻寬改變。
BW:頻寬
DCI:下鏈控制指示
DL:下鏈

Claims (13)

  1. 一種由一無線傳輸/接收單元(WTRU)實施的方法,該方法包括:該WTRU使用一第一接收器頻寬(BW)從一網路接收一下鏈控制資訊(DCI),其中該DCI是在一下鏈控制通道被接收,且該DCI包含改變該第一接收器BW的一指示;基於包含在該DCI中的該指示,該WTRU將該第一接收器BW改變為一第二接收器BW;回應於將該第一接收器BW改變至該第二接收器BW,該WTRU執行與該第二接收器BW相關聯的一測量;該WTRU向該網路傳送與該測量相關聯的一資訊;以及該WTRU使用該第二接收器BW從該網路接收一傳輸。
  2. 如申請專利範圍第1項所述的方法,其中與該測量相關聯的所傳送資訊作為從該第一接收器BW到該第二接收器BW的改變的一確認。
  3. 如申請專利範圍第1項所述的方法,其中該第二接收器BW比該第一接收器BW寬。
  4. 如申請專利範圍第1項所述的方法,其中該第一接收器BW允許該WTRU使用一第一功率來執行一第一接收,該第二接收器BW允許該WTRU使用一第二功率來執行一第二接收,且其中該第一功率低於該第二功率。
  5. 如申請專利範圍第1項所述的方法,其中該測量包括一通道狀態資訊(CSI)測量或一探測信號測量中的至少一者。
  6. 如申請專利範圍第1項所述的方法,進一步包括該WTRU在一不 活動週期之後切換回使用該第一接收器BW。
  7. 一種無線傳輸/接收單元(WTRU),該WTRU包括:一處理器,被配置為:從一網路接收一下鏈控制資訊(DCI),其中該DCI是在一下鏈控制通道被接收,且該DCI包含改變該第一接收器BW的一指示;基於包含在該DCI中的該指示,將該第一接收器BW改變為一第二接收器BW;回應於將該第一接收器BW改變至該第二接收器BW,執行與該第二接收器BW相關聯的一測量;向該網路傳送與該測量相關聯的一資訊;以及使用該第二接收器BW從該網路接收一傳輸。
  8. 如申請專利範圍第7項所述的WTRU,其中與該測量相關聯的所傳送資訊作為從該第一接收器BW到該第二接收器BW的改變的一確認。
  9. 如申請專利範圍第7項所述的WTRU,其中該第二接收器BW比該第一接收器BW寬。
  10. 如申請專利範圍第7項所述的WTRU,其中該第一接收器BW允許該WTRU使用一第一功率來執行一第一接收,該第二接收器BW允許該WTRU使用一第二功率來執行一第二接收,且其中該第一功率低於該第二功率。
  11. 如申請專利範圍第7項所述的WTRU,其中該測量包括一通道狀態資訊(CSI)測量或一探測信號測量中的至少一者。
  12. 如申請專利範圍第7項所述的WTRU,其中該處理器進一步被 配置為在一不活動週期之後切換回使用該第一接收器BW。
  13. 如申請專利範圍第7項所述的WTRU,其中該第一接收器BW對應於一第一頻寬部分,以及該第二接收器BW對應於一第二頻寬部分。
TW106137539A 2016-11-02 2017-10-31 無線傳輸/接收單元及由其實施的方法 TWI758351B (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201662416235P 2016-11-02 2016-11-02
US62/416235 2016-11-02
US201662440262P 2016-12-29 2016-12-29
US62/440262 2016-12-29
US201762500785P 2017-05-03 2017-05-03
US62/500785 2017-05-03
US201762519249P 2017-06-14 2017-06-14
US62/519249 2017-06-14
US201762539057P 2017-07-31 2017-07-31
US62/539057 2017-07-31
US201762563440P 2017-09-26 2017-09-26
US62/563440 2017-09-26

Publications (2)

Publication Number Publication Date
TW201828667A TW201828667A (zh) 2018-08-01
TWI758351B true TWI758351B (zh) 2022-03-21

Family

ID=62076164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137539A TWI758351B (zh) 2016-11-02 2017-10-31 無線傳輸/接收單元及由其實施的方法

Country Status (5)

Country Link
US (3) US11290245B2 (zh)
EP (1) EP3535917A1 (zh)
CN (3) CN117134867A (zh)
TW (1) TWI758351B (zh)
WO (1) WO2018085145A1 (zh)

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873970B2 (en) * 2016-04-26 2020-12-22 Lg Electronics Inc. Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
WO2018074740A1 (ko) * 2016-10-23 2018-04-26 엘지전자 주식회사 무선랜 시스템에서 웨이크 업 신호를 송수신하는 방법 및 이를 위한 장치
JP6843984B2 (ja) * 2016-11-01 2021-03-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてnr搬送波のサブバンドアグリゲーションを構成する方法及び装置
WO2018085145A1 (en) * 2016-11-02 2018-05-11 Idac Holding, Inc. Receiver bandwidth adaptation
CN113472504A (zh) 2016-11-04 2021-10-01 中兴通讯股份有限公司 一种传输带宽的配置方法及发射节点
CN108289332B (zh) * 2017-01-09 2024-05-10 夏普株式会社 无线信号的频率位置指示方法、基站和用户设备
US10952212B2 (en) * 2017-01-30 2021-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Communication device and method for adapting radio frequency receiving bandwidth
US11147051B2 (en) * 2017-02-06 2021-10-12 Apple Inc. Transmission of group common PDCCH (physical downlink control channel) for NR (new radio)
KR102491144B1 (ko) * 2017-05-04 2023-01-25 레즈메드 아이엔씨. 무선 장치 및 무선 네트워크에서의 스케줄링 요청
CN108811121B (zh) * 2017-05-05 2022-09-09 华为技术有限公司 一种调整终端工作带宽的方法及装置
EP3636024B1 (en) * 2017-05-05 2023-08-23 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system
WO2018212509A1 (en) * 2017-05-15 2018-11-22 Samsung Electronics Co., Ltd. Method and apparatus for control resource set configuration and monitoring of downlink control channel in wireless communication system
IL271063B2 (en) 2017-06-09 2023-04-01 Guangdong Oppo Mobile Telecommunications Corp Ltd A method for allocating bandwidth and a device
CN109151912B (zh) * 2017-06-16 2021-02-05 华为技术有限公司 一种通信方法、用户设备、网络设备和通信系统
EP3646642B1 (en) * 2017-06-26 2023-07-19 Telefonaktiebolaget LM Ericsson (PUBL) Wake-up signal management
KR102394225B1 (ko) * 2017-07-25 2022-05-04 삼성전자주식회사 무선 통신 시스템에서 대역폭을 결정하기 위한 장치 및 방법
CN109391953B (zh) 2017-08-07 2020-06-30 维沃移动通信有限公司 一种无线链路监测的方法及终端
US20190052414A1 (en) * 2017-08-10 2019-02-14 Alireza Babaei Multiplexing mechanism for uplink control information
US11277828B2 (en) * 2017-08-11 2022-03-15 Guangdong Oppo Mobile Method, device and system for resource allocation, and computer-readable storage medium
US10798774B2 (en) * 2017-09-20 2020-10-06 Qualcomm Incorporated Techniques and apparatuses for bandwidth part wake-up signaling
WO2019066478A1 (en) * 2017-09-28 2019-04-04 Samsung Electronics Co., Ltd. METHOD AND NETWORK NODE FOR PERFORMING DATA TRANSMISSION AND MEASUREMENTS ON MULTIPLE BANDWIDTH PARTS
WO2019066532A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR UPLINK RESOURCE CONFIGURATION IN WIRELESS COMMUNICATION SYSTEM
WO2019068926A1 (en) * 2017-10-06 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) DYNAMIC CHANGE OF MEASUREMENT INTERVALS
US11277862B2 (en) * 2017-10-26 2022-03-15 Comcast Cable Communications, Llc Activation and deactivation of configured grant
US10887073B2 (en) 2017-10-26 2021-01-05 Ofinno, Llc Activation and deactivation of bandwidth part
US10887903B2 (en) * 2017-10-26 2021-01-05 Ofinno, Llc Wireless device processes with bandwidth part switching
EP3611866A1 (en) * 2017-10-26 2020-02-19 Ofinno, LLC Reference signal received power report
CA3022244A1 (en) * 2017-10-27 2019-04-27 Comcast Cable Communications, Llc Group common dci for wireless resources
US10693620B2 (en) 2017-10-27 2020-06-23 Ofinno, Llc Bandwidth part configuration and operation
US10869312B2 (en) 2017-10-31 2020-12-15 Ofinno, Llc Scheduling with bandwidth part switching
EP3787189A1 (en) 2017-11-09 2021-03-03 Comcast Cable Communications LLC Csi transmission with multiple bandwidth parts
US10945172B2 (en) 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching
WO2019097649A1 (ja) * 2017-11-16 2019-05-23 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN109803386B (zh) * 2017-11-16 2024-03-22 夏普株式会社 带宽配置方法和电子设备
CN114710233A (zh) * 2017-11-17 2022-07-05 华为技术有限公司 下行控制信息确定方法和通信装置
WO2019095251A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Control plane design for bandwidth part in new radio
US10827468B2 (en) * 2017-11-30 2020-11-03 Mediatek Inc. UE behaviour on resource assignment collision between coreset/search space and SFI assignment
US11678374B2 (en) * 2017-12-21 2023-06-13 Samsung Electronics Co., Ltd. System and method of handling bandwidth part inactivity timer
CN110022571B (zh) * 2018-01-08 2021-01-22 电信科学技术研究院 一种进行部分带宽维护的方法和设备
US10834778B2 (en) 2018-01-09 2020-11-10 Asustek Computer Inc. Method and apparatus of handling bandwidth part inactivity timer in a wireless communication system
CN110249674A (zh) * 2018-01-11 2019-09-17 瑞典爱立信有限公司 用于控制对被配置授权的超控的方法和设备
US10785656B2 (en) * 2018-01-22 2020-09-22 Qualcomm Incorporated Bandwidth part switch management
AU2018407179A1 (en) * 2018-02-08 2020-10-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method and device, and computer storage medium
EP3528561A1 (en) * 2018-02-15 2019-08-21 Panasonic Intellectual Property Corporation of America User equipment and base station involved in improved paging procedures
US10973008B2 (en) 2018-03-12 2021-04-06 Apple Inc. Wireless device preferred bandwidth part configuration and duty cycle indication
US10863389B2 (en) 2018-03-12 2020-12-08 Apple Inc. Network assisted wireless device preferred bandwidth part configuration
CA3038595A1 (en) 2018-03-30 2019-09-30 Comcast Cable Communications, Llc Beam failure recovery procedures using bandwidth parts
EP3744140B1 (en) 2018-03-30 2024-02-14 Ofinno, LLC Bandwidthpart (bwp) switching during beam failure recovery
TWI699978B (zh) 2018-04-04 2020-07-21 香港商鴻穎創新有限公司 針對部分頻寬‌切換‌操作的通道狀態資訊回報方法及相關裝置
CN112236963A (zh) * 2018-04-06 2021-01-15 诺基亚技术有限公司 未许可的新无线电上的上行链路带宽部分切换
CN110391870B (zh) * 2018-04-16 2022-04-29 华为技术有限公司 速率匹配的方法和装置,以及解速率匹配的方法和装置
CN110474736B (zh) * 2018-05-11 2021-07-16 华为技术有限公司 通信方法和通信装置
WO2019219155A1 (en) * 2018-05-14 2019-11-21 Nokia Technologies Oy Method, system and apparatus for new radio bandwidth part operations
EP3934150A1 (en) 2018-05-15 2022-01-05 Comcast Cable Communications, LLC Multiple active bandwidth parts
CA3043813A1 (en) 2018-05-18 2019-11-18 Comcast Cable Communications, Llc Cross-carrier scheduling with multiple active bandwidth parts
KR102611182B1 (ko) * 2018-05-18 2023-12-07 가부시키가이샤 엔티티 도코모 유저단말 및 무선기지국
EP3573420B1 (en) 2018-05-21 2023-07-05 Comcast Cable Communications LLC Failure detection and recovery for multiple active resources
US11357053B2 (en) 2018-05-21 2022-06-07 Comcast Cable Communications, Llc Random access procedures using multiple active bandwidth parts
CN110536421B (zh) * 2018-05-25 2022-05-10 华为技术有限公司 通信方法和装置
CN112219422B (zh) * 2018-06-06 2022-03-25 华为技术有限公司 支持无线通信系统中的测量和移动性的系统和方法
CN110611955B (zh) * 2018-06-14 2021-09-14 维沃移动通信有限公司 一种带宽部分处理方法及终端
WO2019242383A1 (zh) * 2018-06-19 2019-12-26 Oppo广东移动通信有限公司 一种带宽部分的激活与配置方法及终端设备
KR102587368B1 (ko) * 2018-06-19 2023-10-12 인터디지탈 패튼 홀딩스, 인크 공유 스펙트럼에서의 라디오 링크 모니터링
CN110621044B (zh) 2018-06-20 2021-06-11 维沃移动通信有限公司 调整带宽的方法、移动终端、网络侧设备和介质
US11330506B2 (en) * 2018-06-21 2022-05-10 Mediatek Singapore Pte. Ltd. Method and apparatus for multiple bandwidth parts operation in mobile communications
SG11202007700QA (en) * 2018-06-21 2021-01-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Bwp switching method and apparatus, and terminal device
EP3813432B1 (en) * 2018-06-21 2023-07-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Bandwidth part processing method, terminal device and network device
CN110635870B (zh) * 2018-06-22 2021-05-18 华为技术有限公司 生成混合自动重传请求harq信息的方法和装置
US11469835B2 (en) * 2018-06-22 2022-10-11 Lg Electronics Inc. Method and apparatus for reporting an ID of specific BWP among the multiple BWPs in wireless communication system
CN110635871B (zh) * 2018-06-22 2021-08-31 华为技术有限公司 生成混合自动重传请求harq信息的方法和装置
CN110635879B (zh) * 2018-06-22 2021-02-23 维沃移动通信有限公司 一种bwp去激活定时器的控制方法及终端设备
CN109076553B (zh) * 2018-06-27 2023-12-12 北京小米移动软件有限公司 下行带宽部分调整方法、电子设备和计算机可读存储介质
WO2020010493A1 (en) * 2018-07-09 2020-01-16 Nokia Shanghai Bell Co., Ltd. Harq solutions to support multiple active bandwidth parts
CN110708758B (zh) * 2018-07-10 2022-02-25 华为技术有限公司 一种数据发送方法及装置
WO2020020784A1 (en) * 2018-07-25 2020-01-30 Sony Corporation Base station, user equipment, circuitry, mobile telecommunications system and method
CA3051139A1 (en) 2018-08-03 2020-02-03 Comcast Cable Communications, Llc Uplink and downlink synchronization procedures
WO2020029746A1 (en) * 2018-08-07 2020-02-13 Mediatek Inc. Apparatuses and methods for configuration of initial downlink(dl) bandwidth part(bwp)
KR102628039B1 (ko) * 2018-08-08 2024-01-22 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
KR20210055036A (ko) * 2018-08-08 2021-05-14 아이디에이씨 홀딩스, 인크. 비면허 대역들에서의 뉴 라디오 동작을 위한 효율적이고 견고한 확인응답 절차들
WO2020030973A1 (en) * 2018-08-08 2020-02-13 Lenovo (Singapore) Pte. Ltd. Bandwidth part configuration based on a clear channel assessment
CN110831163B (zh) * 2018-08-08 2022-02-22 展讯通信(上海)有限公司 非授权频谱中激活bwp的配置、确定方法及装置、存储介质、基站、终端
CN110831167B (zh) 2018-08-08 2022-09-16 华为技术有限公司 一种信息指示方法及装置
CN112889346A (zh) * 2018-08-09 2021-06-01 株式会社Ntt都科摩 用户终端以及无线通信方法
CN110830200B (zh) * 2018-08-09 2021-09-07 华为技术有限公司 一种带宽部分处理方法及装置
US20200052782A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Intra-satellite handover
CN110839248B (zh) * 2018-08-17 2021-06-08 华为技术有限公司 一种配置方法及设备
US11405943B2 (en) * 2018-09-28 2022-08-02 Apple Inc. Cross-slot scheduling for New Radio
CN116233987A (zh) * 2018-10-17 2023-06-06 北京小米移动软件有限公司 带宽部分切换方法及装置
US20200128427A1 (en) 2018-10-19 2020-04-23 Mediatek Inc. Adaptation Framework for UE Power Saving
CN109496447B (zh) * 2018-10-19 2022-07-15 北京小米移动软件有限公司 定时器配置方法及装置
CN118119023A (zh) * 2018-11-01 2024-05-31 北京三星通信技术研究有限公司 Pdcch监听方法、装置、电子设备及计算机可读存储介质
CN112740788A (zh) * 2018-11-01 2021-04-30 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN115499929A (zh) * 2018-11-02 2022-12-20 展讯通信(上海)有限公司 唤醒信号的资源确定、配置方法及装置、终端、基站
EP3878217A1 (en) * 2018-11-05 2021-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device, method and computer program for selection of an energy efficient control information reception mode
US20210392643A1 (en) * 2018-11-07 2021-12-16 Nokia Technologies Oy Improved power saving for iot radio systems
CN109548087B (zh) * 2018-12-19 2023-02-03 新华三技术有限公司成都分公司 通信方法及装置
KR20200086149A (ko) * 2019-01-08 2020-07-16 삼성전자주식회사 무선 통신 시스템에서 단말의 전력 소모 감소 방법 및 장치
US12003995B2 (en) * 2019-01-11 2024-06-04 Nokia Technologies Oy Event-based adaption of UE measurements
CN111435896B (zh) * 2019-01-11 2022-12-13 华为技术有限公司 一种信号传输方法及装置
US10805829B2 (en) * 2019-02-08 2020-10-13 Cisco Technology, Inc. BLE-based location services in high density deployments
US20220158793A1 (en) * 2019-02-25 2022-05-19 Nokia Technologies Oy Enhancements to Sub-BWP Operation
US20220256328A1 (en) * 2019-03-22 2022-08-11 Qualcomm Incorporated Extended signaling for multi-subscriber identity module (msim) user-equipment (ue) for new radio (nr)
US11777764B2 (en) 2019-03-28 2023-10-03 Qualcomm Incorporated Sounding reference signal waveform design for wireless communications
US11611921B2 (en) * 2019-05-03 2023-03-21 Mediatek Inc. Bandwidth part switching within different switching delays
CN111800862B (zh) * 2019-07-17 2023-04-18 维沃移动通信有限公司 一种确定最小跨时隙调度间隔生效时刻的方法和电子设备
WO2021012130A1 (zh) * 2019-07-19 2021-01-28 北京小米移动软件有限公司 监听处理、策略下发方法及装置、通信设备及存储
US11109382B2 (en) 2019-07-22 2021-08-31 Dish Wireless L.L.C. Multiple concurrent bandwidth parts for a base station of a cellular network
US10932269B2 (en) * 2019-07-22 2021-02-23 Dish Wireless L.L.C. Bandwidth adjustment of multiple concurrent bandwidth parts for a base station of a cellular network
CN110475361B (zh) * 2019-08-16 2022-06-10 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
TWI724502B (zh) 2019-08-20 2021-04-11 中磊電子股份有限公司 主控基地台及資源分配指示方法
CN112637937B (zh) * 2019-09-24 2021-08-24 维沃移动通信有限公司 一种节能信号接收方法、节能信号发送方法及相关设备
WO2021075712A1 (ko) * 2019-10-17 2021-04-22 엘지전자 주식회사 단말의 bwp 활성화 방법
KR20210081931A (ko) 2019-12-24 2021-07-02 삼성전자주식회사 무선 통신 시스템에서 단말의 전력 소모 감소 방법 및 장치
KR20210101985A (ko) * 2020-02-11 2021-08-19 삼성전자주식회사 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 관리하는 방법 및 장치
US11792824B2 (en) * 2020-03-30 2023-10-17 Qualcomm Incorporated Multicast feedback and retransmission for transport block grouping
US10951255B1 (en) * 2020-05-14 2021-03-16 Lenovo (Singapore) Pte. Ltd. Method and apparatus for network assignment of the user equipment transmitter local oscillator frequency
US11265135B2 (en) 2020-06-03 2022-03-01 Dish Wireless Llc Method and system for slicing assigning for load shedding to minimize power consumption where gNB is controlled for slice assignments for enterprise users
US11202234B1 (en) 2020-06-03 2021-12-14 Dish Wireless L.L.C. Method and system for smart operating bandwidth adaptation during power outages
EP4165920A2 (en) * 2020-06-10 2023-04-19 Qualcomm Incorporated Positioning optimizations for multiplexing low latency downlink traffic
US11871376B2 (en) * 2020-06-15 2024-01-09 Qualcomm Incorporated Paging operation with narrow bandwidth part frequency hopping
US11405941B2 (en) 2020-07-31 2022-08-02 DISH Wireless L.L.C Method and system for traffic shaping at the DU/CU to artificially reduce the total traffic load on the radio receiver so that not all the TTLs are carrying data
US11470549B2 (en) 2020-07-31 2022-10-11 Dish Wireless L.L.C. Method and system for implementing mini-slot scheduling for all UEs that only are enabled to lower power usage
JP7366947B2 (ja) * 2021-01-07 2023-10-23 アンリツ株式会社 測定装置、及び測定方法
CN115087107A (zh) * 2021-03-15 2022-09-20 华为技术有限公司 通信方法和装置
CN115623546A (zh) * 2021-07-16 2023-01-17 北京三星通信技术研究有限公司 由用户设备执行的频段切换的方法及用户设备
US11937228B2 (en) 2021-10-21 2024-03-19 Qualcomm Incorporated Fast BWP switch based on UE feedback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130301569A1 (en) * 2012-05-11 2013-11-14 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting acknowledgements in response to received frames
US20150327284A1 (en) * 2013-01-21 2015-11-12 Sony Corporation Method and apparatus for reporting channel state information in wireless communication system

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521035C2 (sv) * 1997-12-29 2003-09-23 Ericsson Telefon Ab L M En mottagare och en metod för mobilradio, där mottagaren anpassas för olika radiokommunikationsnät, t ex GSM, AMPS
US7010672B2 (en) * 2002-12-11 2006-03-07 Infineon Technologies Ag Digital processor with programmable breakpoint/watchpoint trigger generation circuit
EP2078399A2 (en) * 2006-11-02 2009-07-15 Telefonaktiebolaget LM Ericsson (PUBL) Method and arrangement in a telecommunication system
BR112012004235B1 (pt) 2009-08-26 2021-08-24 Interdigital Patent Holdings, Inc Método e aparelho para reportar informações de retorno para operação multiportadora
EP2464075B1 (en) 2009-09-18 2019-01-16 LG Electronics Inc. Method and apparatus for transceiving scheduling signals in a multi-carrier wireless communication system
WO2012021879A2 (en) * 2010-08-13 2012-02-16 Interdigital Patent Holdings, Inc. Methods and systems for in-device interference mitigation
CN102487371B (zh) 2010-12-02 2014-03-19 无锡物联网产业研究院 一种带宽调整方法、发射机和接收机
JP2013034115A (ja) * 2011-08-02 2013-02-14 Sharp Corp 基地局、端末、通信システムおよび通信方法
KR102401006B1 (ko) * 2011-09-30 2022-05-24 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
US9072107B2 (en) 2012-01-11 2015-06-30 Interdigital Patent Holdings, Inc. Adaptive control channel
US9282509B2 (en) * 2012-01-25 2016-03-08 Telefonaktiebolaget L M Ericsson (Publ) Method and mechanism for conserving power consumption of single-carrier wireless transmission systems
US9602251B2 (en) * 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
US9345039B2 (en) * 2012-05-31 2016-05-17 Interdigital Patent Holdings, Inc. Device-to-device (D2D) link adaptation
US9215725B2 (en) * 2012-08-22 2015-12-15 Qualcomm Incorporated Adjusting channel state information reports to improve multi-radio coexistence
KR102580089B1 (ko) * 2012-08-23 2023-09-18 인터디지탈 패튼 홀딩스, 인크 디바이스간 탐색을 수행하기 위한 방법 및 장치
US9642140B2 (en) * 2013-06-18 2017-05-02 Samsung Electronics Co., Ltd. Methods of UL TDM for inter-enodeb carrier aggregation
US20150063098A1 (en) * 2013-09-04 2015-03-05 Qualcomm Incorporated Reducing interference from lte in unlicensed bands
US10075954B2 (en) * 2013-09-20 2018-09-11 Blackberry Limited Systems and methods for band-limited subframes in wireless networks
CN105794280B (zh) * 2013-12-05 2019-05-31 Lg 电子株式会社 在无线接入系统中控制上行链路传输功率的方法和装置
WO2015149333A1 (zh) * 2014-04-03 2015-10-08 华为技术有限公司 一种csi报告方法和设备
US10079665B2 (en) * 2015-01-29 2018-09-18 Samsung Electronics Co., Ltd. System and method for link adaptation for low cost user equipments
AR104950A1 (es) * 2015-01-30 2017-08-30 ERICSSON TELEFON AB L M (publ) Sistema de comunicación inalámbrica con equipo de usuario de subbanda única
WO2017142573A1 (en) * 2016-02-18 2017-08-24 Intel IP Corporation CONTROL SIGNALING FOR FIFTH GENERATION CHANNEL STATE INFORMATION REFERENCE SIGNALS (xCSI-RS)
US10812231B2 (en) * 2016-03-18 2020-10-20 Qualcomm Incorporated Enhanced coordinated multipoint operation
US10511421B2 (en) * 2016-05-18 2019-12-17 Qualcomm Incorporated CSI-RS design with dynamic subframe structure
EP3497862A1 (en) * 2016-08-10 2019-06-19 IDAC Holdings, Inc. Methods and apparatus for efficient power saving in wireless networks
JP6786715B2 (ja) * 2016-10-07 2020-11-18 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるnrのためのエネルギーセービングメカニズムをサポートするための方法及び装置
JP6843984B2 (ja) * 2016-11-01 2021-03-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてnr搬送波のサブバンドアグリゲーションを構成する方法及び装置
WO2018085145A1 (en) * 2016-11-02 2018-05-11 Idac Holding, Inc. Receiver bandwidth adaptation
JP7487313B2 (ja) * 2021-01-05 2024-05-20 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてビーム失敗復旧方法及び装置
JP2024514120A (ja) * 2021-04-05 2024-03-28 アップル インコーポレイテッド ワイヤレスネットワークにおける制御チャネル及び参照信号送信

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130301569A1 (en) * 2012-05-11 2013-11-14 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting acknowledgements in response to received frames
US20150327284A1 (en) * 2013-01-21 2015-11-12 Sony Corporation Method and apparatus for reporting channel state information in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On eMTC UE fast retuning time and potential benefit to the network", 3GPP DRAFT; R4-153578, 3RD GENERATION PARTNERSHIP PROJECT (3GPP)、網頁日期20150525、網址: URL:http://www.3gpp.org/ftp/ tsg_ran/WG4_Radio/TSGR4_75/Docs/查詢日期1100415 *

Also Published As

Publication number Publication date
CN117040693A (zh) 2023-11-10
US20200059345A1 (en) 2020-02-20
TW201828667A (zh) 2018-08-01
US20220173879A1 (en) 2022-06-02
WO2018085145A1 (en) 2018-05-11
CN109923819B (zh) 2023-08-22
WO2018085145A8 (en) 2019-06-13
EP3535917A1 (en) 2019-09-11
US20240056276A1 (en) 2024-02-15
US11838244B2 (en) 2023-12-05
CN117134867A (zh) 2023-11-28
US11290245B2 (en) 2022-03-29
CN109923819A (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
TWI758351B (zh) 無線傳輸/接收單元及由其實施的方法
TWI750499B (zh) 無線傳輸/接收單元(wtru)功率控制方法及裝置
JP7288946B2 (ja) 帯域幅部分動作のためのシステムおよび方法
US11856614B2 (en) Method and apparatus for accessing a wireless network
JP7138170B2 (ja) 無線システムにおける補助的なアップリンク送信
JP2021533668A (ja) Nruにおける受信機支援送信
TWI811755B (zh) 用於動態頻譜共用之方法及設備
TW202350006A (zh) 用於側行鏈路非授權頻道存取之方法
TW202241193A (zh) 活動時間中的wtru節能
CN117917160A (zh) 支持大规模QoS状态转变的方法和装置