TWI758201B - 基於小角度x射線散射量測之計量系統之校準 - Google Patents

基於小角度x射線散射量測之計量系統之校準 Download PDF

Info

Publication number
TWI758201B
TWI758201B TW110123940A TW110123940A TWI758201B TW I758201 B TWI758201 B TW I758201B TW 110123940 A TW110123940 A TW 110123940A TW 110123940 A TW110123940 A TW 110123940A TW I758201 B TWI758201 B TW I758201B
Authority
TW
Taiwan
Prior art keywords
angle
wafer
incidence
azimuth
illumination beam
Prior art date
Application number
TW110123940A
Other languages
English (en)
Other versions
TW202138797A (zh
Inventor
約翰 漢琪
安東尼歐 吉里紐
尼可雷 亞提湄夫
里勾洛 約瑟夫 A 迪
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW202138797A publication Critical patent/TW202138797A/zh
Application granted granted Critical
Publication of TWI758201B publication Critical patent/TWI758201B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by using a combination of at least two measurements at least one being a transmission measurement and one a scatter measurement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/054Investigating materials by wave or particle radiation by diffraction, scatter or reflection small angle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/303Accessories, mechanical or electrical features calibrating, standardising

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

本發明揭示用於校準入射於一x射線散射量測計量系統中之一樣品上之x射線光束之位置的方法及系統。基於由兩個或兩個以上遮擋元件之照明光束的遮擋來判定經入射於晶圓之表面上之照明光束的精確位置。基於所傳輸之通量之量測值及光束與各遮擋元件之交互作用之一模型來判定照明光束的中心。將一晶圓定向為在一入射角範圍內的旋轉軸線的位置經調整以與晶圓的表面對準,且在量測位置處與照明光束交叉。判定相對於晶圓表面之照明光束之法線入射角與由樣品定位系統量測之零入射角之間之一精確偏移值。

Description

基於小角度X射線散射量測之計量系統之校準
所描述之實施例係關於x射線計量系統及方法,且更特定言之,係關於用於改良量測準確度之方法及系統。
半導體裝置(諸如邏輯裝置及記憶體裝置)通常由施加於一樣品之一序列處理步驟製造。半導體裝置之各種特徵及多個結構階層由此等處理步驟形成。例如,微影(尤其)係涉及在一半導體晶圓上產生一圖案之一半導體製造程序。半導體製造程序之額外實例包含(但不限於)化學機械拋光、蝕刻、沈積及離子植入。多個半導體裝置可製造於一單一半導體晶圓上且接著分成個別半導體裝置。 計量程序在一半導體製造程序期間之各種步驟處用於偵測晶圓上之缺陷以促進較高良率。包含散射量測實施方案及反射量測實施方案及相關聯之分析演算法之若干基於計量之技術通常用於特徵化奈米尺度結構之臨界尺寸、薄膜厚度、成分及其他參數。 通常,對由薄膜及/或重複週期性結構組成之目標執行散射量測臨界尺寸量測。在裝置製造期間,此等薄膜及週期性結構通常表示實際裝置幾何形狀及材料結構或一中間設計。當裝置(例如邏輯裝置及記憶體裝置)朝向較小奈米尺度尺寸移動時,特徵化變得更難。併入複雜三維幾何形狀及具有多種物理性質之材料之裝置促成特徵化難度。例如,現代記憶體結構通常係使得光學輻射穿透底層較困難之高縱橫比三維結構。利用紅外至可見光之光學計量工具可穿透許多層半透明材料,但提供良好穿透深度之較長波長不提供對小異常之足夠敏感度。另外,特徵化複雜結構(例如FinFET)所需之越來越多的參數導致增加參數相關。因此,特徵化目標之參數通常無法可靠地與可用量測分開。 在一實例中,已在克服利用多晶矽作為堆疊中之交替材料之一者之3D FLASH裝置之穿透問題之一嘗試中採用較長波長(例如近紅外線)。然而,3D FLASH之鏡狀結構在照明傳播更深入薄膜堆疊中時本質上引起光強度越來越小。此引起深度處之敏感度喪失及相關問題。在此方案中,SCD僅能夠成功提取一組具有高敏感度及低相關之減少計量尺寸。 在另一實例中,在現代半導體結構中越來越多地採用不透明高介電常數材料。光學輻射通常不能夠穿透由此等材料構造之層。因此,使用薄膜散射量測工具(諸如橢圓偏光計或反射計)之量測變得越來越具有挑戰性。 回應於此等挑戰,已開發更複雜光學計量工具。例如,已開發具有多個照明角度、較短照明波長、較寬照明波長範圍及來自反射信號更完整資訊獲取之工具(例如量測除更習知反射率或橢圓偏光信號之外之多個穆勒矩陣元件)。然而,此等方法尚未可靠地克服與許多先進目標(例如複雜3D結構、小於10 nm之結構、採用不透明材料之結構)及量測應用(例如線邊緣粗糙度量測及線寬粗糙度量測)相關聯之基本挑戰。 原子力顯微鏡(AFM)及掃描穿隧顯微鏡(STM)能夠達成原子解析度,但AFM顯微鏡及STM顯微鏡僅可探測樣品之表面。另外,AFM顯微鏡及STM顯微鏡需要較長掃描時間。掃描電子顯微鏡(SEM)達成中間解析度位準,但不能夠穿透結構至足夠深度。因此,高縱橫比孔未良好特徵化。另外,樣品之所需充電對成像效能具有一不利影響。X射線反射計在量測高縱橫比結構時亦遭受限制其有效性之穿透問題。 為克服穿透深度問題,採用傳統成像技術(諸如TEM、SEM等等)及破壞性樣本製備技術(諸如聚焦離子束(FIB)加工、離子研磨、敷層或選擇性蝕刻等等)。例如,透射電子顯微鏡(TEM)達成高解析度位準且能夠探測任意深度,但TEM需要樣品之破壞性分區。材料移除及量測之若干反覆通常提供量測整個一三維結構之臨界計量參數所需之資訊。但,此等技術需要樣本破壞及冗長處理時間。完成此等類型之量測之複雜性及時間歸因於蝕刻步驟及計量步驟之漂移而引入較大偏差。另外,此等技術需要多次反覆,該等反覆引入對位錯誤。 透射、小角度X射線散射量測(T-SAXS)系統已展示承諾解決挑戰性量測應用。當前T-SAXS工具採用光束形成狹縫以在量測下形成入射於樣品上之照明光束。一光束發散塑形狹縫在聚焦光學器件界定光束之發散角之前或之後位於光束路徑中。一光束塑形狹縫在光束發散塑形狹縫界定入射於晶圓上之光束點之大小之後位於光束路徑中。此外,在較大入射角範圍內執行T-SAXS量測。需要在一較大入射角範圍內之量測下之計量目標上的入射光束之位置之對位以確保可靠量測。 為進一步改良裝置效能,半導體工業繼續聚焦於垂直整合而非橫向縮放。因此,複雜完全三維結構之準確量測對確保生存力及繼續縮放改良而言係至關重要。未來計量應用歸因於越來越小之解析度要求、多參數相關、包含高縱橫比結構之越來越複雜之幾何結構及不透明材料之越來越多之使用而呈現計量之挑戰。因此,期望用於改良式T-SAXS量測之方法及系統。
本文描述用於校準入射於一透射、小角度X射線散射量測(T-SAXS)計量系統中之一樣品上之x射線光束之位置之方法及系統。一半導體製造環境中之實際T-SAXS量測需要在相對於具有一小光束點大小(例如整個有效照明點上小於50微米)之一樣品(例如半導體晶圓)之表面之一較大入射角範圍及方位角內之量測。本文描述將照明光束準確定位於遍及全範圍之入射角及方位角之一半導體晶圓之表面上之所要目標區域上之校準。 在一態樣中,基於照明光束與兩個或兩個以上遮擋元件之交互作用而判定晶圓之表面之平面中之兩個維度中的照明光束之精確入射位置。基於所傳輸之通量之量測值及光束與遮擋元件之材料及幾何形狀之交互作用之一模型而判定照明光束之中心。 在一進一步態樣中,基於由一對準攝影機量測之影像而在晶圓上之任何位置處判定照明光束之入射位置。該對準攝影機對位照明光束相對於遮擋元件之一特徵(例如邊緣或基準)之相對位置且將該對位轉移至晶圓之表面上之一或多個位置。另外,藉由改變對準攝影機之焦點位置直至晶圓之表面上之微影特徵精確聚焦而量測相對於遮擋元件之Z位置之Z方向上之晶圓之位置。焦點位置之改變指示遮擋元件之間的Z位置與晶圓上之成像位置中之差異。 在一些實施例中,一遮擋元件為一刀刃結構。一刀刃結構通常係具有定向為垂直於待校準之位置之方向之一筆直邊緣的一薄、銳化密集高Z材料(諸如碳化鎢)。另外,刀刃之表面與晶圓之表面重合。此使得對準攝影機能夠聚焦於相同於晶圓之平面上,從而確保晶圓處之經量測之光束位置與由對準攝影機量測之刀刃處之參考光束位置之間的一良好匹配。 在一些實施例中,遮擋元件為具有已知直徑之一精密圓柱體。在此等實施例中,光束之遮擋在Z方向上偏移達該圓柱體之半徑。在此等實施例中,與該圓柱體之中心軸線重合且標記有一基準參考標記之一額外表面有利地使攝影機框架參考圓柱形遮擋元件之軸線及半徑。在此等實施例中,圓柱形遮擋元件之中心軸線與晶圓之表面重合,且定向為垂直於待校準之位置之方向。 在另一態樣中,與在一入射角範圍內定向一晶圓相關聯之旋轉軸線之位置經對準以與晶圓之表面共面且與量測位置處之照明光束交叉以避免入射角之該範圍內之照明點之漂移。 在一些實施例中,藉由使照明光束之中心與一遮擋元件對準且依複數個不同入射角量測所傳輸之通量而達成旋轉軸線之位置之校準。基於所選之遮擋模型自經量測之通量判定該遮擋元件之視運動。一幾何模型將該遮擋元件之視運動映射至載台組態之調整以達成所要對準。 在一些其他實施例中,藉由定位具有與晶圓載台之晶圓平面對準之一焦平面之一高解析度x射線攝影機來達成旋轉軸線之位置之校準。當載台在一較大入射角範圍內旋轉時,晶圓平面處之照明點之位置由該高解析度x射線攝影機量測。基於量測而產生依據入射角之晶圓平面處之照明點之位置之一映射。 在一些其他實施例中,藉由將一小目標定位於具有一高繞射效率之一晶圓上達成載台參考框架之旋轉軸線之位置之校準。當載台在一較大入射角範圍內旋轉時量測繞射級之強度。繞射級之強度指示依據一入射角之照明點與目標之間的失準。基於量測產生依據一入射角之失準之一映射。 在另一態樣中,判定照明光束相對於晶圓表面之法線入射角與由樣品定位系統量測之零入射角之間之一AOI偏移值之一精確量測。 在一些實施例中,基於一AOI範圍內之吸收量測來判定該AOI偏移值。在一些實施例中,基於自分離達180度之兩個方位角處之一校準光柵散射之繞射級的量測來判定該AOI偏移值。 在另一態樣中,判定晶圓表面相對於照明光束之零方位角與由樣品定位系統量測之零方位角之間之一方位角偏移值之一精確量測。另外,判定晶圓表面之中心與旋轉載台之旋轉中心之間之一偏移值之一精確量測。 在另一態樣中,晶圓座標與載台座標之間之方位角偏移之一精確校準係基於與依一或多個方位角之具有已知回應特性之一校準光柵之量測相關聯之繞射級的位置。 在另一態樣中,使用多個經校準之入射角連同熟知圓錐形繞射之公式來相對於載台校準偵測器,且同時相對於載台校準方位角。 在一些實施例中,一光束塑形狹縫機構圍繞與樣品之定向協調之光束軸旋轉,以最佳化各入射角、方位角或入射角及方位角兩者之入射光束的輪廓。依此方式,光束形狀匹配於計量目標之形狀。不幸地,旋轉致動器中之缺陷引起光束塑形狹縫機構圍繞照明光束之軸線旋進。此引起照明光束之入射位置針對不同方位角及對應光束狹縫角漂移。 在一進一步態樣中,基於一方位角及對應光束狹縫角範圍之照明光束之入射位置之量測而判定X-Y載台偏移之一校準映射。 在一些實施例中,量測由在晶圓表面之位置處具有一焦平面之一x射線攝影機執行。在一些其他實施例中,基於由一方位角及對應光束狹縫角範圍之偵測器量測之一小目標而判定X-Y載台偏移之一校準映射。 在另一態樣中,使用對準攝影機、一光學接近感測器、一電容接近感測器或任何其他適合接近感測器之任何者映射Z方向上之晶圓之表面之形狀。 在一進一步態樣中,Z-致動器經控制以回應於照明光束116之入射位置處之晶圓之表面之形狀而調整晶圓Z-位置、Rx定向、Ry定向或其等之任何組合。 在另一進一步態樣中,Z-致動器經控制以調整晶圓Z-位置、Rx定向、Ry定向或其等之任何組合以使方位角中之旋轉軸線與載台參考框架對準使得一特定目標保留在一方位角範圍內之對準攝影機之焦點中。 上述係一[發明內容]且因此必然含有細節之簡化、一般化及省略;因此,熟習技術者應瞭解[發明內容]僅具繪示性且不以任何方式限制。本文所描述之裝置及/或程序之其他態樣、發明特徵及優點將在本文所闡述之非限制性[實施方式]中變得明白。
相關申請案之交叉參考 本專利申請案根據35 U.S.C.§119規定主張2016年10月21日申請之美國臨時專利申請案第62/411,152號之優先權,該案之標的之全部內容係以引用的方式併入本文中。 現詳細參考背景實例及本發明之一些實施例,附圖中繪示本發明之實例。 本文描述用於校準入射於一透射、小角度X射線散射量測(T-SAXS)計量系統中之一樣品上之x射線光束之位置之方法及系統。一半導體製造環境中之實際T-SAXS量測需要在相對於具有一小光束點大小(例如整個有效照明點上小於50微米)之一樣品(例如半導體晶圓)之表面之一較大入射角範圍及方位角內之量測。本文描述將照明光束準確定位於遍及全範圍之入射角及方位角之一半導體晶圓之表面上之所要目標區域上之校準。 圖1繪示用於根據本文所呈現之例示性方法量測一樣品之特性之一T-SAXS計量工具100之一實施例。如圖1中所展示,系統100可用於對由一照明光束點照明之一樣品101之一檢驗區域102執行T-SAXS量測。 在所描繪之實施例中,計量工具100包含經組態以產生適合於T-SAXS量測之x射線輻射之一x射線照明源110。在一些實施例中,x射線照明源110經組態以產生介於0.01奈米與1奈米之間的波長。通常,可設想能夠依足以達成高處理量線內計量之通量位準產生高亮度x射線之任何適合高亮度x射線照明源來供應用於T-SAXS量測之x射線照明。在一些實施例中,一x射線源包含使該x射線源能夠依不同可選擇波長輸送x射線輻射之一可調諧單色器。 在一些實施例中,採用發射具有大於15 keV之光子能量之輻射之一或多個x射線源以確保x射線源依允許足夠傳輸透過整個裝置以及晶圓基板之波長供應光。以非限制性實例的方式,可採用一粒子加速器源、一液體陽極源、一旋轉陽極源、一靜止固體陽極源、一微焦源、一微焦旋轉陽極源、一基於電漿之源及一逆康普頓(Compton)源之任何者作為x射線照明源110。在一實例中,可設想可自Lyncean Technologies, Inc., Palo Alto, California (USA)購得之一逆康普頓源。逆康普頓源具有能夠產生一光子能量範圍內之x射線之一額外優點,藉此使x射線源能夠依不同可選擇波長輸送x射線輻射。 例示性x射線源包含經組態以撞擊固體或液體目標以刺激x射線輻射之電子束源。KLA-Tencor Corp.之2011年4月19日發佈之美國專利第7,929,667號中描述用於產生高亮度、液態金屬x射線照明之方法及系統,該專利之全部內容以引用的方式併入本文中。 x射線照明源110在具有有限橫向尺寸(即正交於光束軸之非零尺寸)之一源區域上產生x射線發射。聚焦光學器件111將源輻射聚焦於位於樣品101上之一計量目標上。有限橫向源尺寸導致由來自源之邊緣之光線117界定之目標上之有限點大小102。在一些實施例中,聚焦光學器件111包含橢圓形聚焦光學元件。 一光束發散控制狹縫112位於聚焦光學器件111與光束塑形狹縫機構120之間的光束路徑中。光束發散控制狹縫112限制在量測下提供至樣品之照明之發散。一額外中間狹縫113位於光束發散控制狹縫112與光束塑形狹縫機構120之間的光束路徑中。中間狹縫113提供額外的光束塑形。然而,通常,中間狹縫113係可選的。 光束塑形狹縫機構120位於緊接樣品101之前之光束路徑中。在一態樣中,光束塑形狹縫機構120之狹縫定位為靠近樣品101以歸因於由有限源大小界定之光束發散而最小化入射光束點大小之放大。在一實例中,歸因於由有限源大小產生之陰影之光束點大小之擴展對一10微米x射線源大小而言約為1微米及光束塑形狹縫與樣品101之間的一25毫米距離。 在一些實施例中,光束塑形狹縫機構120包含多個獨立致動之光束塑形狹縫(即葉片)。在一實施例中,光束塑形狹縫機構120包含4個獨立致動之光束塑形狹縫。此等4個光束塑形狹縫有效地阻擋射入光束115之一部分且產生具有一箱形照明橫截面之一照明光束116。 圖2及圖3描繪呈兩種不同組態之圖1中所描繪之光束塑形狹縫機構120之一端視圖。如圖2及圖3中所繪示,光束軸垂直於圖式頁面。如圖2中所描繪,射入光束115具有一大橫截面。在一些實施例中,射入光束115具有一約1毫米直徑。此外,光束塑形狹縫126至129內之射入光束115之位置可歸因於光束指向錯誤而具有一約3毫米不確定性。為適應射入光束之大小及光束位置之不確定性,各狹縫具有約6毫米之一長度L。如圖2中所描繪,各狹縫可在垂直於光束軸線之一方向上移動。在圖2之繪示中,狹縫126至129位於自光束軸線之一最大距離處(即狹縫完全敞開且狹縫未限制通過光束塑形狹縫機構120之光)。 圖3描繪阻擋射入光束115之之一部分之位置中之光束塑形狹縫機構120之狹縫126至129,使得在量測下輸送至樣品之出射光束116具有減少大小及明確界定的形狀。如圖3中所描繪,狹縫126至129之各者已向內、朝向光束軸移動以達成所要輸出光束形狀。 狹縫126至129由最小化散射且有效地阻擋入射輻射之材料構成。例示性材料包含單晶材料(諸如鍺、砷化鎵、磷化銦等等)。通常,狹縫材料沿一結晶方向分裂而非切割以最小化跨越結構邊界之散射。另外,相對於射入光束定向狹縫使得射入輻射與狹縫材料之內部結構之間的交互作用產生一最小散射量。晶體附接至由高密度材料(例如鎢)製成之各狹縫架以完全阻擋狹縫之一側上之x射線光束。在一些實施例中,各狹縫具有含一約0.5毫米寬度及一約1毫米至約2毫米高度之一矩形橫截面。如圖2中所描繪,一狹縫之長度L約為6毫米。 通常,x射線光學器件塑形及引導x射線輻射至樣品101。在一些實例中,x射線光學器件包含一x射線單色器以單色化入射於樣品101上之x射線光束。在一些實例中,x射線光學器件準直x射線光束或將x射線光束聚焦於樣品101之量測區域102上至使用多層x射線光學器件之小於1毫弧度發散。在此等實例中,多層x射線光學器件亦用作為一光束單色器。在一些實施例中,x射線光學器件包含一或多個x射線準直鏡、x射線孔徑、x射線光束止檔、折射x射線光學器件、繞射光學器件(諸如波帶片)、Montel光學器件、鏡面x射線光學器件(諸如掠射橢球面鏡)、毛細管光學器件(諸如空心毛細管x射線波導)、多層光學器件或系統或其等之任何組合。美國專利公開案第2015/0110249號中描述進一步細節,該案之全部內容以引用的方式併入本文中。 X射線偵測器119收集自樣品101散射之x射線輻射114且根據一T-SAXS量測模態產生指示對入射x射線輻射敏感之樣品101之性質之一輸出信號135。在一些實施例中,當樣品定位系統140定位及定向樣品101以產生角解析散射x射線時散射x射線114由x射線偵測器119收集。 在一些實施例中,一T-SAXS系統包含具有高動態範圍(例如大於105 )之一或多個光子計數偵測器。在一些實施例中,一單一光子計數偵測器偵測經偵測之光子之位置及數目。 在一些實施例中,x射線偵測器解析一或多個x射線光子能量且產生用於指示樣品之性質之各x射線能量組分之信號。在一些實施例中,x射線偵測器119包含一CCD陣列、一微通道板、一光電二極體陣列、一微帶比例計數器、一充氣比例計數器、一閃爍器或一螢光材料之任何者。 依此方式,偵測器內之X射線光子交互作用由除像素位置及計數之數目之外之能量辨別。在一些實施例中,藉由比較X射線光子與一預定上臨限值及一預定下臨限值之交互作用之能量而辨別X射線光子交互作用。在一實施例中,此資訊經由輸出信號135傳達至運算系統130用於進一步處理及儲存。 在一進一步態樣中,採用一T-SAXS系統以基於散射光之一或多個繞射級而判定一樣品之性質(例如結構參數值)。如圖1中所描繪,計量工具100包含用於獲取由偵測器119產生之信號135且至少部分地基於所獲取之信號判定樣品之性質之一運算系統130。 在一些實例中,基於T-SAXS之計量涉及由具有經量測之資料之一預定量測模型之反解判定樣本之尺寸。量測模型包含一些(約10個)可調整參數且表示樣品之幾何形狀及光學性質及量測系統之光學性質。反解之方法包含(但不限於)基於模型之迴歸、斷層掃描、機器學習或其等之任何組合。依此方式,藉由求解最小化經量測之散射x射線強度與模型化結果之間的誤差之一參數化量測模型值來估計目標量變曲線參數。 期望依較大入射角及方位角範圍來執行量測以增加經量測之參數值的精確度及準確度。此方法藉由擴展可用於分析之資料集的數目及多樣性來減少參數中的相關,以包含多種大角度、平面外定向。例如,在一正規定向中,T-SAXS能夠解析一特徵之臨界尺寸,但很大程度上對一特徵之側壁角及高度不敏感。然而,藉由在一廣泛平面外角定向範圍內收集量測資料,可解析一特徵之側壁角及高度。在其他實例中,依較大入射角及方位角範圍執行的量測提供足夠解析度及穿透深度,以透過高縱橫比結構之整個深度來特徵化高縱橫比結構。 收集依據相對於晶圓表面法線之x射線入射角之繞射輻射之強度的量測。包含於多個繞射級中的資訊在考慮中的各模型參數之間通常係唯一的。因此,x射線散射產生具有小誤差及經減少參數相關之所關注之參數值的估計結果。 照明x射線光束116相對於一半導體晶圓101之表面法線的各定向係由相對於x射線照明光束115之晶圓101的任兩次角旋轉來描述,或反之亦然。在一實例中,相對於經固定至晶圓之一座標系統來描述定向。圖4描繪在由一入射角θ及一方位角φ描述之一特殊定向處經入射於晶圓101上的x射線照明光束116。座標系XYZ經固定至計量系統(例如照明光束116),且座標系X’Y’Z’係固定至晶圓101。Y軸在平面中與晶圓101之表面對準。X及Z不與晶圓101之表面對準。Z’與垂直於晶圓101之表面之一軸對準,且X’及Y’係位於與晶圓101之表面對準之一平面中。如圖4中所描繪,x射線照明光束116與Z軸對準,且因此位於XZ平面內。入射角θ描述x射線照明光束116相對於XZ平面中之晶圓之表面法線的定向。此外,方位角φ描述XZ平面相對於X’ Z’平面之定向。θ與φ一起唯一地界定x射線照明光束116相對於晶圓101之表面的定向。在此實例中,x射線照明光束相對於晶圓101之表面的定向係由圍繞垂直於晶圓101之表面之一軸(即Z’軸)之一旋轉及圍繞與晶圓101之表面對準之一軸(即Y軸)之一旋轉來描述。在一些其他實例中,x射線照明光束相對於晶圓101之表面的定向係由圍繞與晶圓101之表面對準之一第一軸及與晶圓101之表面對準且垂直於該第一軸之另一軸之一旋轉來描述。 如圖1中所繪示,計量工具100包含經組態以在相對於照明光束116之一較大入射角及方位角範圍內對準樣品101且定向樣品101之一樣品定位系統140。在一些實施例中,樣品定位系統140經組態以使樣品101在與樣品101之表面平面內對準之一較大旋轉角範圍內(例如至少60度)旋轉。依此方式,樣品101之角度解析量測由計量系統100在樣品101之表面上之任何數目個位置及定向上收集。在一實例中,運算系統130將命令信號(圖中未展示)傳達至指示樣品101之所要位置之樣品定位系統140。作為回應,樣品定位系統140產生命令信號至樣品定位系統140之各種致動器以達成樣品101之所要定位。 圖5描繪一實施例中之一樣品定位系統140。如圖5中所描繪,樣品定位系統140包含一基底框架141、一橫向對準載台142、一載台參考框架143及一晶圓載台144。為了參考,{XBF , YBF , ZBF }座標系附接至基底框架141,{XNF , YNF , ZNF }座標系附接至橫向對準載台142,{XRF , YRF , ZRF }座標系附接至載台參考框架143且{XSF , YSF , ZSF }座標系附接至晶圓載台144。晶圓101由包含致動器150A至150C之一翻轉-傾斜-Z向平移載台156支撐於晶圓載台144上。安裝至翻轉-傾斜-Z向平移載台156之一旋轉載台158在相對於照明光束116之一方位角φ範圍內定向晶圓101。在所描繪之實施例中,三個線性致動器150A至150C安裝至晶圓載台144且支撐旋轉載台158,其繼而支撐晶圓101。 致動器145沿XBF 軸相對於基底框架141平移橫向對準載台142。旋轉致動器146使載台參考框架143圍繞與YNF 軸對準之一旋轉軸線153相對於橫向對準載台142旋轉。旋轉致動器146在相對於照明光束116之一入射角θ範圍內定向晶圓101。晶圓載台致動器147及148分別沿XRF 軸及YRF 軸相對於載台參考框架143平移晶圓載台144。致動器150A至150C協調操作以在ZSF 方向上相對於晶圓載台144平移旋轉載台158及晶圓101且圍繞與XSF -YSF 平面共面之軸相對於晶圓載台144翻轉及傾斜旋轉載台158及晶圓101。旋轉載台158使晶圓101圍繞垂直於晶圓101之表面之一軸旋轉。 總而言之,晶圓載台144能夠相對於照明光束116移動晶圓101使得照明光束116可入射於晶圓101之表面上之任何位置處(即在XRF 方向及YRF 方向上之至少300毫米範圍內)。旋轉致動器146能夠相對於照明光束116旋轉載台參考框架143使得照明光束116可依一較大入射角範圍之任何者(例如大於2度)入射於晶圓101之表面處。在一實施例中,旋轉致動器146經組態以在至少60度之一範圍內旋轉載台參考框架143。安裝至晶圓載台144之旋轉載台158能夠相對於照明光束116旋轉晶圓101使得照明光束116可依一較大方位角範圍(例如至少90度旋轉範圍)入射於晶圓101之表面處。 在一些其他實施例中,移除橫向對準載台142且載台參考框架143由旋轉致動器146相對於基底框架141旋轉。在此等實施例中,x射線照明系統包含移動x射線照明系統之一或多個光學元件之一或多個致動器,移動x射線照明系統之一或多個光學元件引起x射線照明光束116在(例如) XBF 方向上相對於基底框架141移動。在此等實施例中,如本文所描述之為了校準之載台參考框架143之移動由(例如) x射線照明系統之一或多個光學元件將x射線照明光束移動至相對於旋轉軸線153之所要位置之移動替代。 在一些實施例中(諸如圖5中所描繪之實施例),一樣品定位系統包含至少一光束遮擋元件及用於校準照明光束之入射位置且使載台參考框架之旋轉軸線相對於照明光束之入射點處之照明光束與一晶圓對準之一對準攝影機。該(等)遮擋元件在量測下安裝至與晶圓之表面共面之晶圓載台。對準攝影機安裝至載台參考框架,且因此與載台參考框架一起旋轉。 在圖5中所描繪之實施例中,遮擋元件係安裝至晶圓載台144之圓柱銷狀元件151及152使得圓柱銷狀元件151及152之中心軸線近似與晶圓101之表面共面。如圖5中所描繪,圓柱銷元件151包含與YNF 軸近似平行對準之一中心軸線且圓柱銷元件152包含與XRF 軸近似平行對準之一中心軸線。類似於一光束狹縫,圓柱銷藉由吸收任何照射x射線之一大部分來遮擋光束。 樣品定位系統140亦包含安裝至載台參考框架143之一對準攝影機154。對準攝影機154經組態以在其視野中產生物件之高解析度影像(諸如晶圓101)。對準攝影機154亦包含藉由精確地移動攝影機之焦點達一量測距離而維持一清晰影像焦點之一自動對焦機構。依此方式,對準攝影機154可用於量測攝影機本體安裝至其之載台參考框架與由攝影機藉由監視攝影機之焦點之z位移而成像之晶圓101或圓柱銷元件151及152之間的相對距離。 在一態樣中,基於照明光束與兩個或兩個以上遮擋元件之交互作用而判定晶圓之表面之平面中之兩個維度中的照明光束之精確入射位置。 圖7係說明具有移動至其中照明光束116由圓柱銷元件151遮擋之一位置之晶圓載台之樣品定位系統140之一圖。依據圓柱銷151相對於照明光束116之X位置(即基底框架141)基於由偵測器119量測之所傳輸之通量而判定照明光束相對於圓柱銷151之精確入射位置。如圖7中所描繪,當圓柱銷151在正X方向上(在XBF 之方向上)移動時,越來越多的照明光束116由圓柱銷151遮擋。因此,更少光子到達偵測器119。然而,當圓柱銷151在負X方向上(相反XBF )移動時,越來越少的照明光束116由圓柱銷151遮擋。偵測器119依據X位置產生指示經量測之通量之信號155且結果經分析以識別與照明光束116之中心相對應之圓柱銷之位置。 圖8描繪說明量測通量依據一圓柱銷(或替代地,一刀刃)相對於照明光束116之相對位置之一曲線圖170。量測通量155與相對位置之間的所描繪之關係為一S型函數。 在一些實例中,光束中心判定為圓柱銷相對於照明光束之相對位置,其中量測通量介於最小通量值FMIN 與最大通量值FMAX 之間。然而,在一些其他實例中,可在不同於量測通量之範圍中間之另一通量值處判定光束中心。在一些實例中,藉由光束與圓柱銷或刀刃之材料及幾何形狀之交互作用之模型化來判定一更精確關係。在此等實例中,模型化交互作用與經量測之所傳輸之通量相比較,且一擬合演算法用於基於量測結果與模型之擬合而判定圓柱銷或刀刃相對於與光束中心對準之照明光束之相對位置。 在一實例中,圓柱形151相對於照明光束116之中心之一當前位置與與光束中心重合之圓柱銷151之一位置之間的距離之一估計△X係基於量測通量FMEAS 、通量之中點FMID 及量測通量之導數之倒數作為由方程式(1)描述之圓柱銷位置之一函數
Figure 02_image001
(1) 且FMID 由方程式(2)描述。
Figure 02_image003
(2) 可藉由在量測所傳輸之通量時掃描晶圓載台來量測量測通量之最大值及最小值。此外,亦可估計中點處之斜率。基於此等數量,僅藉由量測一位置處之通量而根據方程式(1)判定圓柱銷之中心位置之變化之一估計。若有必要,則可反覆判定中心位置之變化以收歛於一中心位置上。 由於光束在兩個方向(例如X方向及Y方向)上具有一形心組分,所以量測各定向為垂直於形心組分之方向之兩個圓柱銷。在圖7中所描繪之實施例中,採用圓柱銷151以在X方向上相對於載台參考框架定位光束中心且採用圓柱銷152在Y方向上相對於載台參考框架定位定位光束中心。通常,兩個以上圓柱銷可用於產生冗餘且增加光束位置之校準之準確度。 在一進一步態樣中,基於由一對準攝影機量測之影像而在晶圓上之任何位置處判定照明光束之入射位置。如圖7中所描繪,照明光束116之中心與如上文所描述之垂直及水平定向之圓柱銷151及152對準。在圖7中所描繪之實施例中,一基準標記157定位為與圓柱銷151之中心軸線共面。類似地,一基準標記定位為與圓柱銷152之中心軸線共面。在與圓柱銷151對準之光束中心之位置處,照明光束116相對於圓柱銷151或圓柱銷處或附近之基準157之位置由對準攝影機154對位。此對位照明光束相對於對準攝影機之視野中之一精確位置之相對位置(假定焦點位置無變化)。如圖5中所描繪,晶圓101在對準攝影機154之視野內移動。晶圓101移動使得晶圓上之一所要位置(例如一基準標記)在對準攝影機154之視野內成像。照明光束116相對於所要位置之位置由對準攝影機154基於先前對位來判定。依此方式,基於由對準攝影機154收集之一影像而快速估計晶圓101上之照明光束116在X方向及Y方向上之位置。類似地,藉由改變對準攝影機154之焦點位置直至晶圓101之表面上之微影特徵進入精確對焦而量測Z方向上之晶圓相對於圓柱銷151之Z位置之位置。焦點位置之改變指示圓柱銷與晶圓上之成像位置之間的Z位置之差異。致動器150A至150C可用於在Z方向上重新定位晶圓101以將成像位置重新定位為與圓柱銷(例如基準157)位於同一平面中。 在一進一步態樣中,基於晶圓載台座標而在晶圓上之任何位置處判定照明光束之入射位置。一旦照明光束之中心與垂直及水平圓柱銷對準,且照明光束相對於圓柱銷或刀刃處或附近之一基準標記之位置由如上文所描述之一對準攝影機對位,照明光束之入射位置可轉移至載台座標。如圖5中所描繪,晶圓101在對準攝影機154之視野內移動。晶圓101之移動由晶圓載台144之位置量測系統(例如線性編碼器等等)量測。藉由將晶圓101移動至成像於對準攝影機154之視野內之晶圓上之三個或三個以上所要位置(例如一基準標記),在各所要位置處判定照明光束相對於所要位置之位置連同載台座標中之晶圓之位置。基於該等三個或三個以上位置處之照明光束及載台座標之已知位置,產生使載台座標與照明光束之入射位置相關之一映射。 在將圓柱銷151定位於照明光束116之中心處(在X方向上)之後,對準攝影機154使圓柱銷自身或位於圓柱銷上或附近之一基準標記之位置成像以在光束位置與對準攝影機154之視野內之影像位置之間建立一關係。由於對準攝影機154位於相對於載台參考框架143之一固定或可重複位置中,所以影像對位照明光束相對於載台參考框架143之位置,且因此充當X方向上之光束位置之一參考。再者,對準攝影機154圓柱銷自身或一基準標記之一精確焦點位置以建立圓柱銷相對於載台參考框架143之一精確Z位置。由於對準攝影機154與載台參考框架一起旋轉,所以對準攝影機154之焦點位置充當圓柱銷相對於載台參考框架之Z位置之一參考。 在一些實施例中,一遮擋元件為一刀刃結構。一刀刃結構通常係具有定向為垂直於待校準之位置之方向之一筆直邊緣的一薄、銳化密集高Z材料(諸如碳化鎢)。另外,刀刃之邊緣與晶圓之表面重合。此使得對準攝影機154能夠聚焦於相同於晶圓之平面上,從而確保晶圓處之經量測之光束位置與由對準攝影機量測之刀刃處之參考光束位置之間的一良好匹配。 在一些實施例中,遮擋元件為具有如上文所描述之已知直徑之一精密圓柱體。在此等實施例中,光束之遮擋在Z方向上偏移達該圓柱體之半徑。在此等實施例中,與該圓柱體之中心軸線重合且標記有一基準參考標記(例如基準157)之一額外表面有利地使攝影機框架參考圓柱形遮擋元件之軸線及半徑。在此等實施例中,圓柱形遮擋元件之中心軸線與晶圓之表面重合,且定向為垂直於待校準之位置之方向,如上文所描述。 通常,一遮擋元件可為線性延伸形狀。在一些實例中,一遮擋元件具有沿多邊形之一中心軸線延伸之一多邊形橫截面。在一些實例中,一遮擋元件包含在平行於該遮擋元件之一中心軸線之一方向上延伸之一或多個平面表面。 由於遮擋通量用於估計光束入射位置,所以存在一風險:照明光束中之通量之變化將解釋為位置之一位移。在一些實施例中,在刀刃量測之前、之後立即或與刀刃量測同時量測照明光束之通量。在量測通量155之分析中補償照明通量中之變動以估計變動對量測之影響。 為確保量測完整性,照明光束116在晶圓101之表面上之入射位置在一較大入射角及方位角範圍內之量測期間應保持靜止。為達成此目的,載台參考框架143之旋轉軸線153必須近似與量測位置處之晶圓101之表面共面。此外,旋轉軸線153必須在XBF 方向上與照明光束116對準使得旋轉軸線153在照明光束116之入射點處與照明光束116交叉,其中晶圓101位於量測位置處。 圖6A描繪如圖5中所描繪之入射於晶圓101上之照明光束116之一俯視圖。圖6A描繪其中旋轉軸線153在晶圓101上之位置103處之照明光束116之入射點處與照明光束116交叉之與晶圓101之一對準狀態中之旋轉軸線153之一端視圖。如圖6A中所描繪,當晶圓101在一較大入射角θ內圍繞旋轉軸線153旋轉時,照明光束116保持入射於位置103處。因此,在此方案中,照明光束116在晶圓101之表面上之入射位置在在一較大入射角範圍內之量測期間保持靜止。 圖6B描繪如圖5中所描繪之入射於晶圓101上之照明光束116之一俯視圖。圖6B描繪其中旋轉軸線153與晶圓101之表面失準達一距離∂z之一對準狀態中之旋轉軸線153之一端視圖。如圖6B中所描繪,當晶圓101在一較大入射角θ內圍繞旋轉軸線153旋轉時,不再照明位置103之一部分(即替代地,照明晶圓101之一些其他部分)。因此,在此方案中,照明光束116在晶圓101之表面上之入射位置在在一較大入射角範圍內之量測期間保持靜止,其係極不期望的。 圖6C描繪如圖5中所描繪之入射於晶圓101上之照明光束116之一俯視圖。圖6C描繪其中旋轉軸線153與晶圓101之表面共面但自照明光束116偏移達一距離∂x之一對準狀態中之旋轉軸線153之一端視圖。如圖6C中所描繪,當晶圓101在一較大入射角θ內圍繞旋轉軸線153旋轉時,不再照明位置103之一部分(即替代地,照明晶圓101之一些其他部分)。因此,在此方案中,照明光束116在晶圓101之表面上之入射位置在在一較大入射角範圍內之量測期間漂移,其係極不期望的。 在另一態樣中,一樣品定位系統經校準以對準待與晶圓、刀刃或其他遮擋元件之表面共面之載台參考框架之旋轉軸線且亦相對於近似平行於晶圓之表面之一方向(例如XBF 方向)上之照明光束對準載台參考框架之旋轉軸線使得旋轉軸線與照明光束在晶圓、刀刃或其他遮擋元件之表面上之照明光束之入射點處交叉。 在一些實施例中,藉由使照明光束之中心與X方向遮擋元件(例如圓柱銷151)對準且在載台參考框架之複數個不同旋轉位置θ量測通量而達成載台參考框架之旋轉軸線之校準。基於如上文所描述之所選遮擋模型(例如,在圖8中描述之S型函數,或其他模型)判定X方向上之圓柱銷之視運動(△X)。另外,X方向上之圓柱銷之視運動係以下之一函數:1)圓柱銷在x方向上自旋轉軸線之距離∂x及在z方向上自旋轉軸線之距離∂z;2)在x方向上自光束中心及旋轉軸線153之距離∂n及3)圍繞載台參考框架之旋轉軸線153之旋轉角θ。方程式(3)中描述該關係。
Figure 02_image005
(3) 在一實例中,在三個入射角{-Θ, 0, +Θ}處量測所傳輸之通量。由方程式(4)描述之方程式之一線性系統源於方程式(3)。
Figure 02_image007
(4) 藉由倒轉方程式(4)而獲得方程式(5)。方程式(5)自X方向上之圓柱銷之視運動解答∂n、∂x及∂z之值。
Figure 02_image009
(5) 與方程式(2)組合之方程式(5)自判定自量測通量之X方向上之圓柱銷之視運動解答∂n、∂x及∂z之值。在一些實例中,反覆地獲得∂n、∂x及∂z之值之解答,如方程式(6)所描述。
Figure 02_image011
(6),其中 其中k係反覆指數且w係使旋轉軸線153在X方向及Z方向上與刀刃151對準所需之樣品定位系統140之致動器之位移值之向量[∂n、∂x及∂z]。位移∂n由致動器145在X方向相對於照明光束116移動整個載台參考框架143而實現。位移∂x由致動器147將圓柱銷151移回成與光束對準而實現。位移∂z由致動器150A至150C在Z方向上移動圓柱銷以使平面中之旋轉軸線153與Z方向上之圓柱銷之中心軸線對準而實現。從一初始估計w0 開始,方程式(6)之遞迴將收歛至其中旋轉軸線153對準於圓柱銷151之一點。 通常,不需要精確應用方程式(6)。AΘ 及∂X/∂F之值可近似求值。在其他實例中,若反覆較穩定且收歛至正確值,則可使用其他矩陣。 通常,可依三個或三個以上不同入射角量測所傳輸之通量以判定使旋轉軸線153在X方向及Z方向上與刀刃151對準所需之位移值。任意三個不同入射角之選擇導致可直接倒轉之方程式之一線性系統。四個或四個以上不同入射角之選擇導致可使用一擬似逆推運算法來解答之方程式之一超定線性系統以判定使旋轉軸線153在X方向及Z方向上與刀刃151對準所需之位移值。方程式(4)及(5)中所繪示之矩陣項取決於選定入射角。因此,在其中選擇不同入射角之實例中,項將不同於方程式(4)及(5)。 為了旋轉軸線153之對準,在Y方向上具有一垂直邊緣之一刀刃可被視為在Z方向上無限薄。然而,實際上,一刀刃具有一有限厚度。歸因於較大入射角處之較長路徑長度之額外吸收可經模型化以補償此效應。在其中採用一圓柱形遮擋元件之其他實施例中,應用方程式(6)中之所描述之遞迴,然而,在收歛之後,自X方向上孩子偏移減去圓柱形遮擋元件之半徑ρ以達到正確對準。 就一理想化光束遮擋元件及旋轉軸線而言,僅將一光束遮擋元件用於光束校準係足夠的。然而,取決於系統之需求,可需要多次光束遮擋。藉由對準多個遮擋元件之邊緣,可能演繹旋轉軸線自標稱YNF 軸之任何偏差。另外,多個相同遮擋元件允許一邊緣自右及自左或自上及自下之校準,從而助於消除成像邊緣(即由對準攝影機154成像)中之系統誤差及自遮擋通量變化演繹之明顯邊緣。 在一些其他實施例中,藉由將具有一焦平面之一高解析度x射線攝影機定位為與晶圓載台之晶圓平面對準而達成載台參考框架之旋轉軸線之校準。當載台參考框架在一較大入射角範圍內旋轉時晶圓平面處之照明點之位置由該高解析度x射線攝影機量測。基於量測而產生依據入射角的晶圓平面處之照明點之位置之一映射。在量測期間,命令晶圓載台根據該映射移動以針對所有入射角維持照明點之相同位置。 在一些其他實施例中,藉由將一小目標(即約照明點大小)定位於具有一高繞射效率之一晶圓上而達成載台參考框架之旋轉軸線之校準。當載台參考框架在一較大入射角範圍內旋轉時繞射級之強度由偵測器119量測。繞射級之強度指示依據入射角之照明點與目標之間的失準。基於量測而產生依據入射角的失準之一映射。在量測期間,命令晶圓載台根據該映射移動以針對所有入射角維持照明點之相同位置。 在另一態樣中,判定照明光束相對於晶圓表面之法線(即零)入射角與由樣品定位系統(即載台座標)量測之零入射角之間的一AOI偏移值之一精確量測。 在一些實施例中,基於一AOI範圍內之吸收量測而判定AOI偏移值。在一實施例中,晶圓101上之一未圖案化區域經受由系統100在一入射角範圍內之一散射量測量測。基於依據入射角的任何或所有繞射級之經量測之強度而判定晶圓之相對吸收。吸收依循比爾(Beer)指數律α=e-2βk0L ,其中L為吸收長度,β為材料之消光指數,且k0 為波數。此外,吸收長度係入射角之一幾何函數L=Tcosθ,其中T為經量測之晶圓之厚度。在一些實例中,預期回應之一模型(例如比爾定律)對於經量測之通量資料的擬合以判定由載台計量(例如對應於致動器146之一旋轉編碼器)量測之AOI與偵測器119處之經量測之AOI之間的偏移。偏移由載台定位系統140施加於基於載台計量之一所要量測AOI處之正確定位晶圓101。 在一些實施例中,基於自分離達180度之兩個方位角處之一校準光柵散射之繞射級之量測而判定AOI偏移值。圖9A描繪由一零方位角處之T-SAXS系統100量測之一光柵結構171。圖9B描繪由一180度方位角處之T-SAXS系統100量測之相同柵結構171。如圖9A及圖9B中所繪示,光柵結構自身相對於晶圓之表面依一斜角α傾斜。儘管照明光束116對於兩個方位角依相同AOI入射於晶圓之表面上,但照明光束依不同角度入射於傾斜光柵結構上。因此,藉由依餘角(即分離達180度之方位角)量測目標,維持由樣品定位系統誘發之AOI偏移,同時倒轉歸因於光柵結構之傾斜之AOI偏移。 圖10描繪指示用於依一零方位角執行之一量測172及依一180度方位角執行之另一量測173之由偵測器119偵測之一繞射級之量測強度的一曲線圖。如圖10中所描繪,量測172及173之對稱點指示載台定位系統140之AOI偏移。該偏移由載台定位系統140施加於基於載台計量之一所要量測AOI處之正確定位晶圓101。 另外,各散射曲線之峰值與對稱點之間的差值指示與經量測之結構相關聯之傾角α。依此方式,藉由在一入射角及分離達180度之兩個方位角範圍內量測一樣品之一或多個繞射級而使一AOI偏移之校準與目標結構自身之一角向偏移分開。 通常,散射級之任何組合可用於使與經量測之結構之傾斜相關聯之角向偏移自與樣品定位系統相關聯之角向偏移分離。利用更多級增加量測準確度及穩健性。 此組量測在無需特定結構之先前知識之情況下提供一臨界計量參數(例如蝕刻孔傾斜)之一值之一估計且歸因於量測之差分本質而對於系統變動係穩健的。Andrei Veldman之美國專利公開案第2015/0117610號中描述基於穩健及準確x射線之量測之額外實例,該案之全部內容以引用的方式併入本文中。 在另一態樣中,判定晶圓表面相對於照明光束之零方位角與由樣品定位系統(即載台座標)量測之零方位角之間的一方位角偏移值之一精確量測。另外,判定晶圓表面之中心與旋轉載台158之旋轉中心之間的一偏移值之一精確量測。 在一些實施例中,對準攝影機154擷取位於晶圓101之不同位置處之已知點(例如基準)之影像。晶圓101由X致動器147、Y致動器148及旋轉致動器149移動至已知點之不同位置。自已知點之影像及與影像之各者相關聯之載台計量座標,運算判定晶圓座標中之旋轉中心點之一簡單剛性本體模型。另外,亦基於該剛性本體模型而判定特徵化晶圓座標中之零方位角與載台座標中之零方位角之間的失準之一方位角偏移。方位角偏移由載台定位系統140施加於旋轉致動器149以基於載台計量而將晶圓101準確定位於一所要方位角處。 在一些其他實施例中,一低解析度攝影機估計已使用熟知影像對位技術旋轉及平移達一已知量之影像之旋轉中心。 在另一態樣中,晶圓座標與載台座標之間的方位角偏移之一精確校準係基於與一或多個方位角處之一校準光柵之量測相關聯之繞射級之位置。校準光柵具有一已知光柵方向。在一實例中,不同方位角之繞射圖案由偵測器119量測。調整方位角直至預期繞射圖案在偵測器119處量測。與此量測相關聯之方位角係方位角偏移。若偵測器與載台對準,則一入射角足以校準晶圓相對於載台之方位角。 在另一態樣中,使用多個經校準之入射角連同熟知圓錐形繞射之公式相對於載台校準偵測器且同時相對於載台校準方位角。當針對載台處之一給定方位角改變AOI時經偵測之繞射級沿一指定歧管移動。但偵測器之旋轉偏移將表現為一恆定偏移。 在所描繪之實施例中,光束塑形狹縫機構120經組態以圍繞與樣品之定向協調之光束軸旋轉以最佳化各入射角、方位角或入射角及方位角兩者之入射光束之輪廓。依此方式,光束形狀匹配於計量目標之形狀。如圖5中所描繪,旋轉致動器122圍繞照明光束116之軸線旋轉框架120及所有附接機構、致動器、感測器及狹縫。不幸地,當光束塑形狹縫機構120相對於飛行管118旋轉時旋轉致動器120中之缺陷引起光束塑形狹縫機構120圍繞照明光束之軸線旋進。此引起照明光束116之入射位置針對不同方位角及對應光束狹縫角漂移。 在一進一步態樣中,基於一方位角及對應光束狹縫角範圍之照明光束116之入射位置之量測而判定X-Y載台偏移之一校準映射。 在一些實施例中,量測由在晶圓表面之位置處具有一焦平面之一x射線攝影機執行。當方位角及對應光束狹縫角改變時記錄照明光束116之入射位置。基於方位角與入射位置之間的功能關係,產生提供對於任何方位角維持相同入射位置之X-Y載台偏移之一校準映射。 在一些其他實施例中,基於由一方位角及對應光束狹縫角範圍之偵測器119量測之一小目標(即約照明點大小)而判定X-Y載台偏移之一校準映射。該目標具有高繞射效率。繞射級之經量測之強度指示目標與各方位角及對應光束狹縫角之照明光束116之入射位置之間的失準。基於方位角與經量測之失準之間的功能關係,產生提供對於任何方位角維持相同入射位置之X-Y載台偏移之一校準映射。 在另一態樣中,使用對準攝影機、一光學接近感測器、一電容接近感測器或任何其他適合接近感測器之任何者映射Z方向上之晶圓之表面之形狀。在一些實例中,晶圓表面映射於晶圓之前側(即圖案化側)。在一些其他實例中,若晶圓之厚度足夠均勻或經良好模型化,則晶圓表面映射於晶圓之背面。在一些實例中,使用若干標準插入器(例如多項式基函數、有理函數、神經網路等等)模型化晶圓圖。此外,可能使用晶圓之一分析或數值彎曲模型來耦合橫向位移及高度位移。 在一進一步態樣中,Z-致動器150A至150C經控制以回應於照明光束116之入射位置處之晶圓之表面之形狀而調整Z-位置、Rx定向、Ry定向或其等之任何組合。在一實例中,晶圓之傾斜由Z-致動器150A至150C校準。傾斜校準可基於晶圓傾斜之一映射或本地量測之一傾斜值。 在另一進一步態樣中,Z-致動器150A至150C經控制以調整晶圓Z-位置、Rx定向、Ry定向或其等之任何組合以使方位角中之旋轉軸線與載台參考框架143對準。在一實例中,Z-致動器150A至150C經調整使得一特定目標保留在一方位角範圍內之對準攝影機154之焦點中。為執行此校準,晶圓載台在X方向及Y方向上平移晶圓101以針對所有方位角將目標維持在對準攝影機154之視野中。 通常,不可能校準所有偏移效應。通常選擇用於移除最大偏差之校準且忽略或由解釋晶圓及載台中之非理想情況之載台映射處置其餘偏移。 另外,溫度及空氣壓力或任何其他周圍條件之改變對照明光束之定位可具有影響。在一些實施例中,光束運動與光束之位置基於經量測之溫度及壓力及相關模型而調整之此等變數相關。 通常,樣品定位系統140可包含用於達成所要線性及角定位效能之材料元件之任何適合組合,包含(但不限於)測角器載台、六足載台、角載台及線性載台。 通常,針對各量測應用最佳化照明光學器件系統之焦平面。依此方式,系統100經組態以取決於量測應用而將焦平面定位於樣品內之各種深度處。在一實例中,樣品定位系統140經組態以在z方向上移動樣品101以將晶圓定位於樣品101內之所要深度處之光學系統之焦平面內。 在一些實施例中,x射線照明源110、聚焦光學器件111、狹縫112及113或其等之任何組合維持在相同於樣品101之大氣環境(例如氣體淨化環境)中。然而,在一些實施例中,此等元件之任何者之間及此等元件之任何者內之光學路徑長度較長且空氣中之X射線散射將雜訊貢獻至偵測器上之影像。因此,在一些實施例中,x射線照明源110、聚焦光學器件111及狹縫112及113之任何者維持在彼此分離且由真空窗自樣品(例如樣品101)分離之一局部化真空環境中。 類似地,在一些實施例中,x射線偵測器119維持在相同於樣品101之大氣環境(例如氣體淨化環境)中。然而,在一些實施例中,樣品101與x射線偵測器119之間的距離超長且空氣中之X射線散射貢獻雜訊至經偵測之信號。因此,在一些實施例中,x射線偵測器之一或多者維持在由一真空窗自樣品(例如樣品101)分離之一局部化真空環境中。 圖11係說明含於含有x射線照明源110之一真空室160、含有聚焦光學器件111之真空室162及含有狹縫112及113之真空室163之一圖。各真空室之開口由真空窗覆蓋。例如,真空室160之開口由真空窗161覆蓋。類似地,真空室163之開口由真空窗164覆蓋。真空窗可由對於x射線輻射實質上透明之任何適合材料(例如Kapton、Beryllium等等)構成。一適合真空環境維持於各真空室內以最小化照明光束之散射。一適合真空環境可包含任何適合的真空程度、包含具有一小原子數之一氣體(例如氦)之任何適合淨化環境或其等之任何組合。依此方式,儘可能多的光束路徑位於真空中以最小化通量且最小化散射。 在一些實施例中,整個光學系統(包含樣品101)維持在真空中。然而,通常,與將樣品101維持在真空中相關聯之成本歸因於與樣品定位系統140之構造相關聯之複雜性而較高。 在另一進一步態樣中,光束塑形狹縫機構120與真空室163機械地整合以最小化經受大氣環境之光束路徑長度。通常,期望在使用樣品101入射之前在真空中囊封儘可能多的光束。在一些實施例中,真空光束線延伸至光束塑形狹縫機構120之輸入處之一空心圓柱形腔穴中。真空窗164位於光束塑形狹縫機構120內之真空室163之輸出處使得射入光束115保留在光束塑形狹縫機構120之一部分內之真空中,接著在與狹縫126至129及樣品101之任何者相互作用之前通過真空窗164。 在圖1中所描繪之實施例中,聚焦光學器件111、狹縫112及113及光束塑形狹縫機構120維持在一飛行管118內之一控制環境(例如真空)中。 在另一進一步態樣中,運算系統130經組態以產生一樣品之一經量測之結構之一結構模型(例如幾何模型、材料模型或組合幾何及材料模型),產生包含來自該結構模型之至少一幾何參數之一T-SAXS回應模型且藉由執行T-SAXS量測資料與該T-SAXS回應模型之一擬合分析而解析至少一樣品參數值。分析引擎用於比較模擬T-SAXS信號與經量測之資料,藉此允許判定幾何性質以及材料性質(諸如樣本之電子密度)。在圖1中所描繪之實施例中,運算系統130組態為經組態以實施模型構建及分析功能性之一模型構建及分析引擎,如本文所描述。 圖12係說明由運算系統130實施之一例示性模型構建及分析引擎180之一圖。如圖12中所描繪,模型構建及分析引擎180包含產生一樣品之一經量測之結構之一結構模型182之一結構模型構建模組181。在一些實施例中,結構模型182亦包含樣品之材料性質。結構模型182接收為至T-SAXS回應函數構建模組183之輸入。T-SAXS回應函數構建模組183至少部分地基於結構模型182而產生一T-SAXS回應函數模型184。在一些實例中,T-SAXS回應函數模型184基於x射線形式因數,
Figure 02_image013
(7) 其中F係形式因數,q係散射向量,且ρ(r)係球面座標中之樣品之電子密度。接著,由以下方程式給出x射線散射強度
Figure 02_image015
(8) T-SAXS回應函數模型184接收為至擬合分析模組185之輸入。擬合分析模組185比較模型化T-SAXS回應與對應量測資料以判定樣品之幾何形狀以及材料性質。 在一些實例中,藉由最小化一卡方值來達成模型化資料對於實驗資料之擬合。例如,就T-SAXS量測而言,一卡方值可界定為
Figure 02_image017
(9) 其中,
Figure 02_image019
係「通道」j中之經量測之T-SAXS信號126,其中指數j描述一組系統參數(諸如繞射級、能量、角座標等等)。
Figure 02_image021
(v1 ,…vL ) 係針對一組結構(目標)參數v1 ,…vL 估計之「通道」j之模型化T-SAXS信號Sj ,其中此等參數描述幾何形狀(CD、側壁角、重疊等等)及材料(電子密度等等)。σSAXS,j 係於第j通道相關聯之不確定性。NSAXS 係x射線計量中之通道之總數。L係特徵化計量目標之參數之數目。 方程式(9)假定與不同通道相關聯之不確定性係不相關的。在其中與不同通道相關聯之不確定性係相關的之實例中,可計算不確定性之間的一協方差。在此等實例中,T-SAXS量測之一卡方值可表達為
Figure 02_image023
其中,VSAXS 為SAXS通道不確定性之協方差矩陣,且T指示轉置。 在一些實例中,擬合分析模組185藉由使用T-SAXS回應模型184對T-SAXS量測資料135執行擬合分析來解析至少一樣品參數值。在一些實例中,最佳化
Figure 02_image025
。 如上文所描述,T-SAXS資料之擬合由卡方值之最小化達成。然而,通常,T-SAXS資料之擬合可由其他函數達成。 T-SAXS計量資料之擬合對於提供對所關注之幾何形狀及/或材料參數之敏感度之任何類型之T-SAXS技術係有利的。只要使用描述T-SAXS光束與樣品之相互作用之適當模型,樣品參數可係確定性的(例如CD、SWA等等)或統計的(例如側壁粗糙度之rms高度、粗糙度相關長度等等)。 通常,運算系統130經組態以採用即時臨界尺寸標註(RTCD)即時存取模型參數,或其可存取用於判定與樣品101相關聯之至少一樣品參數值之一值之預運算模型之程式庫。通常,一些形式之CD引擎可用於估計一樣品之指派CD參數與與經量測之樣品相關聯之CD參數之間的差值。2010年11月2日發佈之KLA-Tencor Corp.之美國專利第7,826,071號中描述用於運算樣品參數值之例示性方法及系統,該專利之全部內容以引用的方式併入本文中。 在一些實例中,模型構建及分析引擎180藉由側饋分析、前饋分析及平行分析之任何組合改良量測參數之準確度。側饋分析指稱在相同樣品之不同區域上採取多個資料集且將自第一資料集判定之共同參數傳遞至第二資料集上用於分析。前饋分析指稱在不同樣品上採取資料集且使用一逐步複製精確參數前饋方法前向傳遞共同參數至後續分析。平行分析指稱一非線性擬合方法之平行或同時應用於多個資料集,其中至少一共同參數在擬合期間耦合。 多個工具及結構分析指稱基於迴歸之一前饋、側饋或平行分析、一查找表(即「程式庫」匹配)或多個資料集之另一擬合程序。KLA-Tencor Corp.之2009年1月13日發佈之美國專利第7,478,019號中描述用於多個工具及結構分析之方法及系統,該專利之全部內容以引用的方式併入本文中。 在另一進一步態樣中,基於在相對於量測目標之入射x射線光束之一單一定向處執行之T-SAXS量測而判定所關注之一或多個參數之值之一初始估計。初始估計值實施為用於具有自多個定向處之T-SAXS量測收集之量測資料之量測模型之一迴歸的所關注之參數之起始值。依此方式,使用一較小運算工作量判定所關注之一參數之一近似估計,且藉由將此近似估計實施為一大很多之資料集上之一迴歸之起點,使用較少總體運算工作量獲得所關注之該參數之一精細估計。 在另一態樣中,計量工具100包含經組態以實施如本文所描述之光束控制功能之一運算系統(例如運算系統130)。在圖1中所描繪之實施例中,運算系統130組態為可操作以控制照明性質之任何者(諸如入射照明光束116之強度、發散、點大小、極性、光譜及定位)之一光束控制器。 如圖1中所繪示,運算系統130通信地耦合至偵測器119。運算系統130經組態以自偵測器119接收量測資料135。在一實例中,量測資料135包含樣品之量測回應之一指示(即繞射級之強度)。基於偵測器119之表面上之量測回應之分佈,入射於樣品101上之照明光束116之位置及區域由運算系統130判定。在一實例中,圖案辨識技術由運算系統130應用以基於量測資料135而判定入射於樣品101上之照明光束116之位置及區域。在一些實例中,運算系統130將命令信號137傳達至x射線照明源110以選擇所要照明波長,或重定向x射線發射。在一些實例中,運算系統130將命令信號136傳達至光束塑形狹縫機構120以改變光束點大小使得入射照明光束116到達具有所要光束點大小及定向之樣品101。在一實例中,命令信號136引起圖5中所描繪之旋轉致動器122旋轉光束塑形狹縫機構120之相對於樣品101之一所要定向。在另一實例中,命令信號136引起與狹縫126至129之各者相關聯之致動器改變位置以將入射光束116重新塑形為一所要形狀及大小。在一些其他實例中,運算系統130將一命令信號傳達至晶圓定位系統140以定位及定向樣品101使得入射照明光束116到達相對於樣品101之所要位置及角定向。 在一進一步態樣中,T-SAXS量測資料用於基於經偵測之繞射級之經量測之強度而產生經量測之一結構之一影像。在一些實施例中,普遍化一T-SAXS回應函數模型以描述來自一同屬電子密度網格之散射。使此模型匹配於量測信號,同時約束此網格中之模型化電子密度以強制連續性及稀疏邊緣,提供樣本之一三維影像。 儘管對於基於T-SAXS量測之臨界尺寸(CD)計量,幾何、基於模型之參數反轉係較佳的,但當經量測之樣品與幾何模型之假設偏離時自相同T-SAXS量測資料產生之樣品之一映射對於識別及校準模型誤差係有用的。 在一些實例中,影像與由相同散射量測量測資料之一幾何、基於模型之參數反轉估計之結構特性相比較。偏差用於更新量測結構之幾何模型且改良量測效能。收歛於一準確參數量測模型上之能力在量測積體電路以控制、監視及對積體電路之製造程序進行故障檢修時係特別重要。 在一些實例中,影像係電子密度、吸收率、複雜折射率或此等材料特性之一組合之一二維(2-D)圖。在一些實例中,影像係電子密度、吸收率、複雜折射率或此等材料特性之一組合之一三維(3-D)圖。使用相對較少實體約束產生該圖。在一些實例中,直接自所得圖估計所關注之一或多個參數(諸如臨界尺寸(CD)、側壁角(SWA)、重疊、邊緣放置誤差、間距位移等等)。在一些其他實例中,該圖對於在樣本幾何形狀或材料偏離出由針對基於模型之CD量測採用之一參數結構模型預期之預期值之範圍時排除晶圓程序故障係有用的。在一實例中,圖與由根據其量測參數之參數結構模型預測之結構之一轉列之間的差異用於更新參數結構模型且改良其量測效能。美國專利公開案第2015/0300965號中描述進一步細節,該案之全部內容以引用的方式併入本文中。美國專利公開案第2015/0117610號中描述額外細節,該案之全部內容以引用的方式併入本文中。 在一進一步態樣中,採用模型構建及分析引擎180以產生組合x射線及光學量測分析之模型。在一些實例中,光學模擬係基於(例如)嚴密耦合波分析(RCWA),其中解答馬克士威爾(Maxwell's)方程式以計算光學信號(諸如對不同極性之反射率、橢偏儀參數、相變等等)。 基於複數個不同入射角處之x射線繞射級之經偵測之強度及使用一組合幾何參數化回應模型之經偵測之光學強度之一組合擬合分析而判定所關注之一或多個參數之值。光學強度由可或可不與一x射線計量系統(諸如圖1中所描繪之系統100)機械地整合之一光學計量工具量測。美國專利公開案第2014/0019097號及美國專利公開案第2013/0304424號中描述進一步細節,該等案之各者之全部內容以引用的方式併入本文中。 通常,一計量目標由界定為計量目標一最大高度尺寸(即垂直於晶圓表面之尺寸)除以一最大橫向延伸尺寸(即與晶圓表面對準之尺寸)之一縱橫比特徵化。在一些實施例中,量測下之計量目標具有至少20之一縱橫比。在一些實施例中,計量目標具有至少40之一縱橫比。 應認識到本發明中所描述之各種步驟可由一單一電腦系統130或替代地由一多個電腦系統130實施。再者,系統100之不同子系統(諸如樣品定位系統140)可包含適合於實施本文所描述之步驟之至少一部分之一電腦系統。因此,前述描述不應被解釋為對本發明之一限制而僅為一繪示。此外,該一或多個運算系統130可經組態以執行本文所描述之方法實施例之任何者之(若干)任何其他步驟。 另外,電腦系統130可以本技術中已知之任何方式通信地耦合至x射線照明源110、光束塑形狹縫機構120、樣品定位系統140及偵測器119。例如,該一或多個運算系統130可耦合至分別與x射線照明源110、光束塑形狹縫機構120、樣品定位系統140及偵測器119相關聯之運算系統。在另一實例中,x射線照明源110、光束塑形狹縫機構120、樣品定位系統140及偵測器119之任何者可由耦合至電腦系統130之一單一電腦系統直接控制。 電腦系統130可經組態以由可包含有線及/或無線部分之一傳輸媒體自系統之子系統(例如x射線照明源110、光束塑形狹縫機構120、樣品定位系統140及偵測器119及其類似者)接收及/或獲取資料或資訊。依此方式,傳輸媒體可充當電腦系統130與系統100之其他子系統之間的一資料鏈路。 計量系統100之電腦系統130可經組態以由可包含有線及/或無線部分之一傳輸媒體自其他系統接收及/或獲取資料或資訊(例如量測結果、模型化輸入、模型化結果等等)。依此方式,傳輸媒體可充當電腦系統130與其他系統(例如記憶體機上計量系統100、外部記憶體或外部系統)之間的一資料鏈路。例如,運算系統130可經組態以經由一資料鏈路自一儲存媒體(即記憶體132或190)接收量測資料(例如信號135)。例如,使用偵測器119獲得之光譜結果可儲存於一永久或半永久記憶體裝置(例如記憶體132或190)中。據此而言,量測結果可自機上記憶體或自一外部記憶體系統輸入。再者,電腦系統130可經由一傳輸媒體將資料發送至其他系統。例如,由電腦系統130判定之樣品參數值186可儲存於一永久或半永久記憶體裝置(例如記憶體190)中。據此而言,量測結果可輸出至另一系統。 運算系統130可包含(但不限於)一個人電腦系統、主機電腦系統、工作站、影像電腦、平行處理器或本技術中已知之任何其他裝置。通常,術語「運算系統」可經廣泛界定以涵蓋具有執行來自一記憶體媒體之指令之一或多個處理器之任何裝置。 實施方法之程式指令134 (諸如本文所描述之程式指令)可經由一傳輸媒體(諸如一線、電纜或無線傳輸鏈路)傳輸。例如,如圖1中所繪示,儲存於記憶體132中之程式指令經由匯流排133傳輸至處理器131。程式指令134儲存於一電腦可讀媒體(例如記憶體132)中。例示性電腦可讀媒體包含唯讀記憶體、一隨機存取記憶體、一磁碟或光碟或一磁帶。 圖13繪示適合於由本發明之計量系統100之實施方案之一方法200。在一態樣中,吾人已認識到可經由由運算系統130之一或多個處理器執行之一預先程式化演算法實施方法200之資料處理區塊。儘管在計量系統100之內文中呈現以下描述,但本文中應認識到計量系統100之特定結構態樣不表示限制且應解釋為僅具繪示性。 在區塊201中,將安置於一半導體晶圓上之一繞射光柵定位於依一第一方位角之複數個入射角處及亦依一第二方位角之該複數個入射角處之一x射線照明光束之一路徑中。該第一方位角及該第二方位角分離達180度。 在區塊202中,依該第一方位角及該第二方位角兩者偵測與該複數個入射角處之該繞射光柵之一量測相關聯之一繞射級回應信號。 在區塊203中,判定一入射角(AOI)偏移值。該AOI偏移係該x射線照明光束相對於該晶圓表面之一法線入射角與由將該繞射光柵定位於該x射線照明光束之該路徑中之一晶圓定位系統量測之零入射角之一值之間的角度。該AOI偏移值係由與與該第一方位角及該第二方位角相關聯之經偵測之繞射級回應信號之一交叉點相關聯之一對稱點處之該晶圓定位系統量測之入射角之值。 在一些實施例中,如本文所描述之散射量測量測實施為一製造程序工具之部分。製造程序工具之實例包含(但不限於)微影曝光工具、薄膜沈積工具、植入工具及蝕刻工具。依此方式,一T-SAXS分析之結果用於控制一製造程序。在一實例中,將自一或多個目標收集之T-SAXS量測資料發送至一製造程序工具。如本文所描述分析T-SAXS量測資料且結果用於調整製造程序工具之操作。 如本文所描述之散射量測量測可用於判定多種半導體結構之特性。例示性結構包含(但不限於) FinFET、低尺寸結構(諸如奈米線或石墨烯)、亞10 nm結構、微影結構、貫通基板通孔(TSV)、記憶體結構(諸如DRAM、DRAM 4F2、FLASH、MRAM)及高縱橫比記憶體結構。例示性結構特性包含(但不限於)幾何參數(諸如線邊緣粗糙度量測、線寬粗糙度、孔徑大小、孔徑密度、側壁角、輪廓、臨界尺寸、間距、厚度、重疊)及材料參數(諸如電子密度、成分、晶粒結構、形態、應力、應變及元素識別)。在一些實施例中,計量目標係一週期性結構。在一些其他實施例中,計量目標係非週期的。 在一些實例中,使用如本文所描述之T-SAXS量測系統來執行包含(但不限於)自旋轉移扭矩隨機存取記憶體(STT-RAM)、三維NAND記憶體(3D-NAND)或垂直NAND記憶體(V-NAND)、動態隨機存取記憶體(DRAM)、三維FLASH記憶體(3D-FLASH)、電阻式隨機存取記憶體(Re-RAM)及相變隨機存取記憶體(PC-RAM)之高縱橫比半導體結構之臨界尺寸、厚度、重疊及材料性質之量測。 如本文所描述,術語「臨界尺寸」包含一結構之任何臨界尺寸(例如底部臨界尺寸、中間臨界尺寸、頂部臨界尺寸、側壁角、光柵高度等等)、任兩個或兩個以上結構之間的一臨界尺寸(例如兩個結構之間的距離)及兩個或兩個以上結構之間的一位移(例如重疊光柵結構之間的重疊位移等等)。結構可包含三維結構、圖案化結構、重疊結構等等。 如本文所描述,術語「臨界尺寸應用」或「臨界尺寸量測應用」包含任何臨界尺寸量測。 如本文所描述,術語「計量系統」包含至少部分地採用以在任何態樣中特徵化一樣品之任何系統,包含臨界尺寸應用及重疊計量應用。然而,此等技術術語不限制如本文所描述之術語「計量系統」之範疇。另外,本文所描述之計量系統可經組態用於圖案化晶圓及/或未圖案化晶圓之量測。計量系統可組態為一LED檢驗工具、邊緣檢驗工具、背面檢驗工具、巨檢驗工具或多模式檢驗工具(涉及同時來自一或多個平台之資料)及獲益於本文所描述之量測技術之任何其他計量或檢驗工具。 本文描述可用於處理一樣品之一半導體處理系統(例如一檢驗系統或一微影系統)之各種實施例。術語「樣品」在本文中用於支撐一晶圓、一倍縮光罩或由本技術中已知之方式處理(例如印刷或檢驗缺陷)之任何其他樣本。 如本文所描述,術語「晶圓」通常指稱由一半導體或非半導體材料形成之基板。實例包含(但不限於)單晶矽、砷化鎵及磷化銦。通常可在半導體製造設施中發現及/或處理此等基板。在一些情況中,一晶圓可僅包含基板(即裸晶圓)。替代地,一晶圓可包含形成於一基板上之一或多層不同材料。形成於一晶圓上之一或多層可「圖案化」或「未圖案化」。例如,一晶圓可包含具有可重複圖案特徵之複數個晶粒。 一「倍縮光罩」可為一倍縮光罩製造程序之任何階段中之一倍縮光罩,或可為可或可不釋放以用於一半導體製造設施中之一完整倍縮光罩。一倍縮光罩或一「遮罩」通常界定為具有形成於其上之實質上不透明區域且組態成一圖案之一實質上透明基板。基板可包含(例如)一玻璃材料(諸如非晶SiO2 )。在一微影程序之一曝光步驟期間,一倍縮光罩可安置於一覆蓋有光阻劑之晶圓上方使得該倍縮光罩上之圖案可轉移至光阻劑。 形成於一晶圓上之一或多層可圖案化或未圖案化。例如,一晶圓可包含複數個晶粒,各晶粒具有可重複圖案特徵。此等材料層之形成及處理可最終導致完整裝置。許多不同類型之裝置可形成於一晶圓上,且術語晶圓(如本文所使用)意欲涵蓋其上製造本技術中已知之任何類型之裝置之一晶圓。 在一或多個例示性實施例中,所描述之功能可硬體、軟體、韌體或其等任何組合中實施。若在軟體中實施,則功能可作為一或多個指令或碼儲存於一電腦可讀媒體上或可作為一或多個指令或碼經由一電腦可讀媒體傳輸。電腦可讀媒體包含電腦儲存媒體及通信媒體兩者,其包含促進一電腦程式自一位置轉移至另一位置之任何媒體。一儲存媒體可為可由一通用或專用電腦存取之任何可用媒體。舉實例而言(但不限於),此等電腦可讀媒體可包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存裝置或可用於以指令或資料結構之形式攜載或儲存所要程式碼構件且可由一通用或專用電腦存取之任何其他媒體或一通用或專用處理器。另外,任何連接適當地稱為一電腦可讀媒體。例如,若使用一同軸纜線、光纖電纜、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外線、無線電及微波)自一網站、伺服器或其他遠端源傳輸軟體,則該同軸纜線、光纖電纜、雙絞線、DSL或無線技術(諸如紅外線、無線電及微波)包含於媒體之定義中。如本文所使用,磁碟及光碟包含光碟(CD)、雷射光碟、XRF光碟、數位多功能光碟(DVD)、軟碟及藍光光碟,其中磁碟通常係磁性複製資料而光碟係使用雷射光學複製資料之。上述之組合亦應包含於電腦可讀媒體之範疇內。 儘管上文為了指示而描述某些特定實施例,但本專利文件之教示具有一般應用性且不受限於上述特定實施例。相應地,可在不背離申請專利範圍中所闡述之本發明之範疇之情況下實踐所描述之實施例之各種修改、適應及各種特徵之組合。
100:計量系統/透射、小角度X射線散射量測(T-SAXS)系統/記憶體機上計量系統 101:晶圓/樣品/半導體晶圓 102:檢驗區域/有限點大小/量測區域 110:x射線照明源 111:聚焦光學器件 112:光束發散控制狹縫 113:中間狹縫 114:x射線輻射/散射x射線 115:射入光束/x射線照明光束 116:x射線照明光束/出射光束 117:光線 118:飛行管 119:x射線偵測器 120:光束塑形狹縫機構/框架 122:旋轉致動器 126至129:光束塑形狹縫 130:運算系統/電腦系統 131:處理器 132:記憶體 133:匯流排 134:程式指令 135:輸出信號/透射、小角度X射線散射量測(T-SAXS)量測資料 136:命令信號 137:命令信號 140:樣品定位系統/載台定位系統 141:基底框架 142:橫向對準載台 143:載台參考框架 144:晶圓載台 145:致動器 146:旋轉致動器 147:晶圓載台致動器/X致動器 148:晶圓載台致動器/Y致動器 149:旋轉致動器 150A至150C:線性致動器 151:圓柱銷元件/圓柱銷狀元件/圓柱銷/刀刃 152:圓柱銷狀元件/圓柱銷元件 153:旋轉軸線 154:對準攝影機 155:信號/量測通量 156:翻轉-傾斜-Z向平移載台 157:基準標記/基準 158:旋轉載台 160:真空室 161:真空窗 162:真空室 163:真空室 164:真空窗 170:曲線圖 171:光柵結構 172:量測 173:量測 180:模型構建及分析引擎 181:結構模型構建模組 182:結構模型 183:透射、小角度X射線散射量測(T-SAXS)回應函數構建模組 184:透射、小角度X射線散射量測(T-SAXS)回應函數模型 185:擬合分析模組 186:樣品參數值 190:記憶體 200:方法 201:區塊 202:區塊 203:區塊 AOI:反射角 FMAX :最大通量值 FMIN :最小通量值 FMEAS :經量測之通量 L:吸收長度 XYZ:座標系 X’Y’Z’:座標系 XBF :座標 XNF :座標 XRF :座標 XSF :座標 YBF :座標 YNF :座標 YRF :座標 YSF :座標 ZBF :座標 ZNF :座標 ZRF :座標 ZSF :座標 α:斜角 θ:入射角 φ:方位角 ∂x:距離/位移 ∂z:距離/位移
圖1係說明經組態以根據本文所描述之方法執行各種系統參數之校準之一計量系統100之一圖。 圖2描繪呈一組態之光束塑形狹縫機構120之一端視圖。 圖3描繪呈另一組態之光束塑形狹縫機構120之一端視圖。 圖4描繪入射於由角度φ及θ描述之一特殊定向處之晶圓101上之x射線照明光束116。 圖5係說明具有移動至其中照明光束116入射於晶圓101上之一位置之晶圓載台之一樣品定位系統140之一圖。 圖6A描繪如圖5中所描繪之入射於晶圓101上之照明光束116之一俯視圖,其中旋轉軸線153與照明光束116之入射點處之照明光束116及晶圓101交叉。 圖6B描繪如圖5中所描繪之入射於晶圓101上之照明光束116之一俯視圖,其中旋轉軸線153在Z方向上與晶圓101之表面失準。 圖6C描繪如圖5中所描繪之入射於晶圓101上之照明光束116之一俯視圖,其中旋轉軸線153在X方向上自照明光束116偏移。 圖7係說明具有移動至其中照明光束116由一圓柱銷元件151遮擋之一位置之晶圓載台之樣品定位系統140之一圖。 圖8描繪說明量測通量依據一遮擋元件相對於照明光束116之相對位置之一曲線圖170。 圖9A描繪由一零方位角處之T-SAXS系統100量測之一光柵結構171。 圖9B描繪由一180度方位角處之T-SAXS系統100量測之相同光柵結構171。 圖10描繪指示由依一零方位角執行之一量測172及依一180度方位角執行之另一量測173之偵測器119偵測之一繞射級之量測強度的一曲線圖。 圖11係說明含於自樣品101分離之真空環境中之計量系統100之元件之一圖。 圖12係說明經組態以根據本文所描述之方法基於T-SAXS資料而解析樣品參數值之一模型構建及分析引擎180之一圖。 圖13描繪說明基於如本文所描述之多個入射角及方位角處之T-SAXS量測而校準一入射角偏移值之一例示性方法200之一流程圖。
101:晶圓/樣品/半導體晶圓
116:x射線照明光束/出射光束
118:飛行管
119:x射線偵測器
120:光束塑形狹縫機構/框架
122:旋轉致動器
140:樣品定位系統/載台定位系統
141:基底框架
142:橫向對準載台
143:載台參考框架
144:晶圓載台
145:致動器
146:旋轉致動器
147:晶圓載台致動器/X致動器
148:晶圓載台致動器/Y致動器
149:旋轉致動器
150A至150C:線性致動器
151:圓柱銷元件/圓柱銷狀元件/圓柱銷
152:圓柱銷狀元件/圓柱銷元件
153:旋轉軸線
154:對準攝影機
156:翻轉-傾斜-Z向平移級
157:基準標記/基準
158:旋轉載台
XNF:座標
XRF:座標
XSF:座標
YNF:座標
YRF:座標
YSF:座標
ZNF:座標
ZRF:座標
ZSF:座標

Claims (11)

  1. 一種用於改良量測準確度之方法,其包括: 依一第一方位角之複數個入射角處之一x射線照明光束照明安置於一半導體晶圓上之一週期性結構; 偵測與依該第一方位角之該複數個入射角之各者處之該週期性結構之一散射量測相關聯之一繞射級回應信號之至少一級; 判定該繞射級回應信號之該至少一級之一峰值,其中該峰值指示該週期性結構與該半導體晶圓之一表面法線之間之一傾角(tilt angle)。
  2. 如請求項1之方法,其進一步包括: 依一第二方位角之該複數個入射角處之該x射線照明光束照明該週期性結構,其中該第一方位角及該第二方位角分離達180度;及 偵測與依該第二方位角之該複數個入射角之各者處之該週期性結構之一量測相關聯之一繞射級回應信號之至少一級。
  3. 如請求項2之方法,其進一步包括: 判定該傾角之一值作為在與與該第一方位角相關聯之該經偵測繞射級回應信號之該峰值相關聯之入射角之一第一值和與與該第一方位角及該第二方位角相關聯之該經偵測繞射級回應信號之一交叉點相關聯之一對稱點之間的一差。
  4. 如請求項2之方法,其進一步包括: 判定該傾角之一值作為在與與該第二方位角相關聯之該經偵測繞射級回應信號之該峰值相關聯之入射角之一第二值和與與該第一方位角及該第二方位角相關聯之該經偵測繞射級回應信號之一交叉點相關聯之一對稱點之間的一差。
  5. 如請求項2之方法,其進一步包括: 基於與與該第一方位角相關聯之該經偵測繞射級回應信號之該峰值相關聯之入射角之一第一值和與與該第二方位角相關聯之該經偵測繞射級回應信號之該峰值相關聯之入射角之一第二值之間的一差判定該傾角之一值。
  6. 如請求項2之方法,其進一步包括: 判定該x射線照明光束相對於該晶圓表面之一法線入射角與由將該x射線照明光束之一路徑中之該週期性結構定位之一晶圓定位系統所量測之零入射角之一值之間之一入射角(AOI)偏移值,其中該AOI偏移值係由與與該第一方位角及該第二方位角相關聯之該經偵測繞射級回應信號之一交叉點相關聯之一對稱點處之該晶圓定位系統所量測之入射角之該值。
  7. 如請求項1之方法,其中該繞射級回應信號包含與多個繞射級相關聯之信號資訊。
  8. 一種用於改良量測準確度之方法,其包括: 將安置於一半導體晶圓上之一繞射光柵定位於依一第一方位角之複數個入射角處及依一第二方位角之該複數個入射角處之一x射線照明光束之一路徑中,其中該第一方位角及該第二方位角分離達180度; 偵測與依該第一方位角及該第二方位角兩者之該複數個入射角處之該繞射光柵之一量測相關聯之一繞射級回應信號;及 判定該x射線照明光束相對於該晶圓表面之一法線入射角與由將該繞射光柵定位於該x射線照明光束之該路徑中之一晶圓定位系統所量測之零入射角之一值之間之一入射角(AOI)偏移值,其中該AOI偏移值係由與與該第一方位角及該第二方位角相關聯之該經偵測繞射級回應信號之一交叉點相關聯之一對稱點處之該晶圓定位系統所量測之入射角的值。
  9. 如請求項8之方法,其中該繞射光柵包含經定向在相對於該半導體晶圓之一表面之一斜角(oblique angle)處之一週期性結構。
  10. 如請求項9之方法,其進一步包括: 判定該斜角之一值作為在與與該第一方位角或該第二方位角相關聯之該經偵測繞射級回應信號之一峰值相關聯之該晶圓定位系統所量測之入射角之一第一值和與該對稱點相關聯之該晶圓定位系統所量測之入射角之一第二值之間之一差。
  11. 如請求項8之方法,其中該繞射級回應信號包含與多個繞射級相關聯之信號資訊。
TW110123940A 2016-10-21 2017-10-23 基於小角度x射線散射量測之計量系統之校準 TWI758201B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662411152P 2016-10-21 2016-10-21
US62/411,152 2016-10-21
US15/789,992 2017-10-21
US15/789,992 US10481111B2 (en) 2016-10-21 2017-10-21 Calibration of a small angle X-ray scatterometry based metrology system

Publications (2)

Publication Number Publication Date
TW202138797A TW202138797A (zh) 2021-10-16
TWI758201B true TWI758201B (zh) 2022-03-11

Family

ID=61970143

Family Applications (3)

Application Number Title Priority Date Filing Date
TW110123940A TWI758201B (zh) 2016-10-21 2017-10-23 基於小角度x射線散射量測之計量系統之校準
TW106136316A TWI739935B (zh) 2016-10-21 2017-10-23 計量系統
TW110146657A TWI806285B (zh) 2016-10-21 2017-10-23 計量系統及方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106136316A TWI739935B (zh) 2016-10-21 2017-10-23 計量系統
TW110146657A TWI806285B (zh) 2016-10-21 2017-10-23 計量系統及方法

Country Status (7)

Country Link
US (1) US10481111B2 (zh)
JP (1) JP6892921B2 (zh)
KR (2) KR102303132B1 (zh)
CN (1) CN109863583B (zh)
IL (3) IL285130B2 (zh)
TW (3) TWI758201B (zh)
WO (1) WO2018075999A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026373A1 (en) * 2016-08-04 2018-02-08 Kla-Tencor Corporation Method and computer program product for controlling the positioning of patterns on a substrate in a manufacturing process
KR102592905B1 (ko) * 2016-12-21 2023-10-23 삼성전자주식회사 엑스선 영상 촬영 장치 및 제어방법
US10522326B2 (en) * 2017-02-14 2019-12-31 Massachusetts Institute Of Technology Systems and methods for automated microscopy
US10816486B2 (en) 2018-03-28 2020-10-27 Kla-Tencor Corporation Multilayer targets for calibration and alignment of X-ray based measurement systems
US11164768B2 (en) * 2018-04-27 2021-11-02 Kla Corporation Process-induced displacement characterization during semiconductor production
CN108469446A (zh) * 2018-06-29 2018-08-31 天津敬慎坊科技有限公司 一种荧光x射线吸收谱探测器
KR20210028276A (ko) 2018-07-31 2021-03-11 램 리써치 코포레이션 고 종횡비 구조체들의 패터닝된 어레이들 내의 틸팅 각도 결정
EP3629088A1 (en) * 2018-09-28 2020-04-01 ASML Netherlands B.V. Providing a trained neural network and determining a characteristic of a physical system
KR102650008B1 (ko) 2019-03-28 2024-03-22 가부시키가이샤 리가쿠 투과형 소각 산란 장치
PL3719484T3 (pl) * 2019-04-04 2024-05-13 Malvern Panalytical B.V. Urządzenie i sposób kształtowania wiązki promieniowania rentgenowskiego
US11600497B2 (en) * 2019-04-06 2023-03-07 Kla Corporation Using absolute Z-height values for synergy between tools
JP7168985B2 (ja) * 2019-04-22 2022-11-10 株式会社リガク 微細構造の解析方法、装置およびプログラム
DE102019215972A1 (de) * 2019-10-17 2021-04-22 Carl Zeiss Smt Gmbh Verfahren zur Messung einer Reflektivität eines Objekts für Messlicht sowie Metrologiesystem zur Durchführung des Verfahrens
USD934194S1 (en) * 2019-10-22 2021-10-26 Lexon Speaker
US11520321B2 (en) 2019-12-02 2022-12-06 Kla Corporation Measurement recipe optimization based on probabilistic domain knowledge and physical realization
US11610297B2 (en) 2019-12-02 2023-03-21 Kla Corporation Tomography based semiconductor measurements using simplified models
USD938932S1 (en) * 2019-12-05 2021-12-21 Shenzhen Qiao Communication Tech Co., Ltd. Bluetooth speaker
US11513085B2 (en) * 2020-02-20 2022-11-29 Kla Corporation Measurement and control of wafer tilt for x-ray based metrology
US11761913B2 (en) * 2020-05-04 2023-09-19 Bruker Technologies Ltd. Transmission X-ray critical dimension (T-XCD) characterization of shift and tilt of stacks of high-aspect-ratio (HAR) structures
CN111983313B (zh) * 2020-07-23 2023-03-31 中国电子科技集团公司第十三研究所 噪声参数测量方法
CN111975191B (zh) * 2020-08-17 2023-01-24 北京中科镭特电子有限公司 一种加工腔组件及激光加工装置
US11530913B2 (en) 2020-09-24 2022-12-20 Kla Corporation Methods and systems for determining quality of semiconductor measurements
TWI812025B (zh) * 2021-02-25 2023-08-11 國立臺灣大學 全域式軸向可調色散鏡組及其彩色共焦量測系統
GB2605606B (en) 2021-04-06 2023-11-15 Halo X Ray Tech Limited A screening system
CN113376190B (zh) * 2021-06-03 2022-12-02 中国科学院高能物理研究所 光阑及光学装置
EP4373968A1 (en) * 2021-07-21 2024-05-29 Element Biosciences, Inc. Optical systems for nucleic acid sequencing and methods thereof
US12085515B2 (en) 2021-08-25 2024-09-10 Kla Corporation Methods and systems for selecting wafer locations to characterize cross-wafer variations based on high-throughput measurement signals
US12019030B2 (en) 2022-01-18 2024-06-25 Kla Corporation Methods and systems for targeted monitoring of semiconductor measurement quality
US20240085321A1 (en) * 2022-09-09 2024-03-14 Kla Corporation Methods And Systems For Model-less, Scatterometry Based Measurements Of Semiconductor Structures
CN116106347B (zh) * 2022-11-07 2023-06-20 成都物熙科技有限公司 一种二阶x射线荧光仪及其测量方法
CN116608816B (zh) * 2023-07-18 2023-09-26 东营市工业产品检验与计量检定中心 一种用于小角度测量仪器检定装置的校准方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060213537A1 (en) * 2005-03-23 2006-09-28 Thu Anh To Vertical wafer platform systems and methods for fast wafer cleaning and measurement
TW201602567A (zh) * 2014-06-18 2016-01-16 喬丹菲利半導體有限公司 使用多光源/多偵測器於高通量x光拓樸量測
TW201614227A (en) * 2014-10-14 2016-04-16 Rigaku Denki Co Ltd X-ray thin film inspection apparatus
TW201614226A (en) * 2014-10-14 2016-04-16 Rigaku Denki Co Ltd X-ray thin film inspection apparatus
TW201634917A (zh) * 2011-03-15 2016-10-01 荏原製作所股份有限公司 光電子產生裝置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608526A (en) 1995-01-19 1997-03-04 Tencor Instruments Focused beam spectroscopic ellipsometry method and system
US6023338A (en) 1996-07-12 2000-02-08 Bareket; Noah Overlay alignment measurement of wafers
US5859424A (en) 1997-04-08 1999-01-12 Kla-Tencor Corporation Apodizing filter system useful for reducing spot size in optical measurements and other applications
US6256092B1 (en) 1997-11-28 2001-07-03 Hitachi, Ltd. Defect inspection apparatus for silicon wafer
KR20010083041A (ko) 1998-06-02 2001-08-31 추후 파수 도메인 반사측정과 배경 진폭 감소 및 보상을 사용한공초점 간섭 마이크로스코피용 방법 및 장치
IL130874A (en) * 1999-07-09 2002-12-01 Nova Measuring Instr Ltd System and method for measuring pattern structures
US6429943B1 (en) 2000-03-29 2002-08-06 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
US6787773B1 (en) 2000-06-07 2004-09-07 Kla-Tencor Corporation Film thickness measurement using electron-beam induced x-ray microanalysis
US7541201B2 (en) 2000-08-30 2009-06-02 Kla-Tencor Technologies Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
US7317531B2 (en) 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US7068833B1 (en) 2000-08-30 2006-06-27 Kla-Tencor Corporation Overlay marks, methods of overlay mark design and methods of overlay measurements
US20030002043A1 (en) 2001-04-10 2003-01-02 Kla-Tencor Corporation Periodic patterns and technique to control misalignment
US6947520B2 (en) * 2002-12-06 2005-09-20 Jordan Valley Applied Radiation Ltd. Beam centering and angle calibration for X-ray reflectometry
US6716646B1 (en) 2001-07-16 2004-04-06 Advanced Micro Devices, Inc. Method and apparatus for performing overlay measurements using scatterometry
JP4938219B2 (ja) 2001-12-19 2012-05-23 ケーエルエー−テンカー コーポレイション 光学分光システムを使用するパラメトリック・プロフィーリング
US6778275B2 (en) 2002-02-20 2004-08-17 Micron Technology, Inc. Aberration mark and method for estimating overlay error and optical aberrations
US6992764B1 (en) 2002-09-30 2006-01-31 Nanometrics Incorporated Measuring an alignment target with a single polarization state
CN1725988A (zh) 2002-11-13 2006-01-25 斯特根有限公司 具有多孔层的医用装置及其制造方法
US7842933B2 (en) 2003-10-22 2010-11-30 Applied Materials Israel, Ltd. System and method for measuring overlay errors
US6937337B2 (en) * 2003-11-19 2005-08-30 International Business Machines Corporation Overlay target and measurement method using reference and sub-grids
US7321426B1 (en) 2004-06-02 2008-01-22 Kla-Tencor Technologies Corporation Optical metrology on patterned samples
DK1808129T3 (en) * 2004-09-24 2017-08-28 Icat Corp Device for detecting cross-sectional information
US7478019B2 (en) 2005-01-26 2009-01-13 Kla-Tencor Corporation Multiple tool and structure analysis
JP4585926B2 (ja) 2005-06-17 2010-11-24 株式会社日立ハイテクノロジーズ パターンレイヤーデータ生成装置、それを用いたパターンレイヤーデータ生成システム、半導体パターン表示装置、パターンレイヤーデータ生成方法、及びコンピュータプログラム
US7659975B1 (en) 2005-09-21 2010-02-09 Kla-Tencor Technologies Corp. Methods and systems for inspection of a wafer or setting up an inspection process
US7554656B2 (en) 2005-10-06 2009-06-30 Kla-Tencor Technologies Corp. Methods and systems for inspection of a wafer
US7567351B2 (en) 2006-02-02 2009-07-28 Kla-Tencor Corporation High resolution monitoring of CD variations
JP4887062B2 (ja) 2006-03-14 2012-02-29 株式会社日立ハイテクノロジーズ 試料寸法測定方法、及び試料寸法測定装置
US7406153B2 (en) 2006-08-15 2008-07-29 Jordan Valley Semiconductors Ltd. Control of X-ray beam spot size
US7873585B2 (en) 2007-08-31 2011-01-18 Kla-Tencor Technologies Corporation Apparatus and methods for predicting a semiconductor parameter across an area of a wafer
US7929667B1 (en) 2008-10-02 2011-04-19 Kla-Tencor Corporation High brightness X-ray metrology
US8605275B2 (en) 2009-01-26 2013-12-10 Kla-Tencor Corp. Detecting defects on a wafer
US8068662B2 (en) 2009-03-30 2011-11-29 Hermes Microvision, Inc. Method and system for determining a defect during charged particle beam inspection of a sample
JP5764380B2 (ja) 2010-04-29 2015-08-19 エフ イー アイ カンパニFei Company Sem画像化法
US8502987B1 (en) 2011-02-01 2013-08-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for measuring near-angle scattering of mirror coatings
US9046475B2 (en) 2011-05-19 2015-06-02 Applied Materials Israel, Ltd. High electron energy based overlay error measurement methods and systems
US10107621B2 (en) 2012-02-15 2018-10-23 Nanometrics Incorporated Image based overlay measurement with finite gratings
US10801975B2 (en) 2012-05-08 2020-10-13 Kla-Tencor Corporation Metrology tool with combined X-ray and optical scatterometers
US10013518B2 (en) 2012-07-10 2018-07-03 Kla-Tencor Corporation Model building and analysis engine for combined X-ray and optical metrology
US9129715B2 (en) 2012-09-05 2015-09-08 SVXR, Inc. High speed x-ray inspection microscope
WO2014062972A1 (en) 2012-10-18 2014-04-24 Kla-Tencor Corporation Symmetric target design in scatterometry overlay metrology
US9581430B2 (en) 2012-10-19 2017-02-28 Kla-Tencor Corporation Phase characterization of targets
US9217717B2 (en) 2012-12-17 2015-12-22 Kla-Tencor Corporation Two dimensional optical detector with multiple shift registers
US10769320B2 (en) 2012-12-18 2020-09-08 Kla-Tencor Corporation Integrated use of model-based metrology and a process model
US9291554B2 (en) 2013-02-05 2016-03-22 Kla-Tencor Corporation Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection
US10101670B2 (en) 2013-03-27 2018-10-16 Kla-Tencor Corporation Statistical model-based metrology
US9696264B2 (en) 2013-04-03 2017-07-04 Kla-Tencor Corporation Apparatus and methods for determining defect depths in vertical stack memory
US9846132B2 (en) 2013-10-21 2017-12-19 Kla-Tencor Corporation Small-angle scattering X-ray metrology systems and methods
US9885962B2 (en) * 2013-10-28 2018-02-06 Kla-Tencor Corporation Methods and apparatus for measuring semiconductor device overlay using X-ray metrology
JP2015118081A (ja) * 2013-11-12 2015-06-25 キヤノン株式会社 放射線検出システムおよび放射線撮像装置
US9494535B2 (en) 2014-04-21 2016-11-15 Kla-Tencor Corporation Scatterometry-based imaging and critical dimension metrology
US10324050B2 (en) 2015-01-14 2019-06-18 Kla-Tencor Corporation Measurement system optimization for X-ray based metrology
WO2016176502A1 (en) 2015-04-28 2016-11-03 Kla-Tencor Corporation Computationally efficient x-ray based overlay measurement
US10352695B2 (en) * 2015-12-11 2019-07-16 Kla-Tencor Corporation X-ray scatterometry metrology for high aspect ratio structures
JP6821700B2 (ja) * 2016-04-22 2021-01-27 ケーエルエー コーポレイション 小スポットサイズ透過型小角x線スキャタロメトリ用ビーム整形スリット
US10775323B2 (en) * 2016-10-18 2020-09-15 Kla-Tencor Corporation Full beam metrology for X-ray scatterometry systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060213537A1 (en) * 2005-03-23 2006-09-28 Thu Anh To Vertical wafer platform systems and methods for fast wafer cleaning and measurement
TW201634917A (zh) * 2011-03-15 2016-10-01 荏原製作所股份有限公司 光電子產生裝置
TW201602567A (zh) * 2014-06-18 2016-01-16 喬丹菲利半導體有限公司 使用多光源/多偵測器於高通量x光拓樸量測
TW201614227A (en) * 2014-10-14 2016-04-16 Rigaku Denki Co Ltd X-ray thin film inspection apparatus
TW201614226A (en) * 2014-10-14 2016-04-16 Rigaku Denki Co Ltd X-ray thin film inspection apparatus

Also Published As

Publication number Publication date
IL302957A (en) 2023-07-01
IL302957B1 (en) 2024-03-01
IL265798A (en) 2019-06-30
TW202212817A (zh) 2022-04-01
IL285130A (en) 2021-08-31
TWI806285B (zh) 2023-06-21
TW201821791A (zh) 2018-06-16
JP6892921B2 (ja) 2021-06-23
CN109863583A (zh) 2019-06-07
IL285130B2 (en) 2024-09-01
IL285130B1 (en) 2024-05-01
JP2020502486A (ja) 2020-01-23
CN109863583B (zh) 2020-11-06
IL302957B2 (en) 2024-07-01
TW202138797A (zh) 2021-10-16
US20180113084A1 (en) 2018-04-26
IL265798B (en) 2022-02-01
US10481111B2 (en) 2019-11-19
WO2018075999A1 (en) 2018-04-26
TWI739935B (zh) 2021-09-21
KR102548653B1 (ko) 2023-06-27
KR102303132B1 (ko) 2021-09-15
KR20210090292A (ko) 2021-07-19
KR20190059990A (ko) 2019-05-31

Similar Documents

Publication Publication Date Title
TWI758201B (zh) 基於小角度x射線散射量測之計量系統之校準
TWI806803B (zh) 計量系統及用於計量系統之方法
KR102184603B1 (ko) 송신, 소형 각도 x선 스캐터로메트리의 작은 스폿 크기를 위한 빔 성형 슬릿
US10816486B2 (en) Multilayer targets for calibration and alignment of X-ray based measurement systems
IL265745B1 (en) Full beam metrology for x-ray scattering measurement systems
WO2017099870A1 (en) X-ray scatterometry metrology for high aspect ratio structures
US10859518B2 (en) X-ray zoom lens for small angle x-ray scatterometry
TW201842353A (zh) 傳輸小角度x射線散射度量系統