TWI755203B - 以相移達成高效的平行輸入與動態串接轉導放大電路 - Google Patents

以相移達成高效的平行輸入與動態串接轉導放大電路 Download PDF

Info

Publication number
TWI755203B
TWI755203B TW109144431A TW109144431A TWI755203B TW I755203 B TWI755203 B TW I755203B TW 109144431 A TW109144431 A TW 109144431A TW 109144431 A TW109144431 A TW 109144431A TW I755203 B TWI755203 B TW I755203B
Authority
TW
Taiwan
Prior art keywords
sub
transduction
circuit
current
amplifier circuit
Prior art date
Application number
TW109144431A
Other languages
English (en)
Other versions
TW202226748A (zh
Inventor
胡敏弘
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to TW109144431A priority Critical patent/TWI755203B/zh
Priority to US17/552,310 priority patent/US20220190788A1/en
Application granted granted Critical
Publication of TWI755203B publication Critical patent/TWI755203B/zh
Publication of TW202226748A publication Critical patent/TW202226748A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/54Two or more capacitor coupled amplifier stages in cascade
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45051Two or more differential amplifiers cascade coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45116Feedback coupled to the input of the differential amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一種平行輸入與動態串接轉導放大電路,包含:複數子轉導放大電路,根據複數對應的差動輸入電壓而產生複數對應的轉導輸出電流;以及至少一串接電容器,用以串接第一子轉導放大電路與第二子轉導放大電路;其中第二子轉導放大電路對應產生的第二轉導輸出電流通過對應的串接電容器而於第一子轉導放大電路中的一共模偏置節點產生一暫態偏置電流,以於第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將暫態偏置電流提供予第一子轉導放大電路中的一差動對電路,藉此於暫態時提升迴路頻寬以及反應速度。

Description

以相移達成高效的平行輸入與動態串接轉導放大電路
本發明係有關一種轉導放大電路,特別是指一種以相移達成高效的平行輸入與動態串接轉導放大電路。本發明也有關於一種配置前述轉導放大電路的調節電路。
與本案相關的前案有:  “Adaptive Biasing CMOS Amplifiers,” IEEE Journal of Solid-State Circuits, Vol. SC-17 No. 3, pp.522-528, June 1982, M. G. Degrauwe” (如圖1A與圖1B),以及“A Very-High-Slew-Rate CMOS Operational Amplifier, IEEE Journal of Solid-State Circuits, Vol. 24, No. 3, pp. 744-746, June 1989, R. Klinke” (如圖1C)。
圖1A顯示一種先前技術之轉導放大電路101A,轉導放大電路101A藉由2組額外的差動放大對91與92,於差動輸入端Vip與Vin的差動輸入電壓Vd不相等時提供額外的電流,藉此在暫態時加大主要差動放大對93的共模偏置電流Icb以提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性。
圖1B顯示另一種先前技術之轉導放大電路101B,轉導放大電路101B藉由主要差動放大對94的鏡像電流,於差動輸入端Vip與Vin的差動輸入電壓Vd不相等時提供額外的電流,藉此在暫態時加大主要差動放大對94的偏置電流以提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性。
圖1A~圖1B中的先前技術之轉導放大電路,其缺點在於所能額外提供的電流有限,且在此額外電流產生時仍會遭遇由於過多的電流鏡所造成的反應速度的問題,因此經常無法及時提供足夠的電流,而無法達成提升迴路頻寬以及反應速度的目標。
圖1C顯示又一種先前技術之轉導放大電路101C,轉導放大電路101C與圖1A的先前技術相似,其差別在於,轉導放大電路101C還藉由具有增益的放大電晶體MA1與MA2而產生額外的電流,藉此在暫態時加大主要差動放大對93的偏置電流以提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性。
圖1C中的先前技術之轉導放大電路,其缺點在於,為了提升偏置電流而引進的增益級,也會引進額外的穩定度的問題。
相較於圖1A~圖1B之先前技術,本發明的轉導放大電路可在暫態時以較大的幅度加大主要差動放大對的偏置電流以提升迴路頻寬以及反應速度。相較於圖1C之先前技術,本發明的轉導放大電路除了以較大的幅度加大主要差動放大對的偏置電流以提升迴路頻寬以及反應速度之外,還同時提升了穩定度。
就其中一個觀點言,本發明提供了一種平行輸入與動態串接轉導放大電路,包含:複數子轉導放大電路,其中每一該子轉導放大電路根據對應的一差動輸入電壓而產生對應的一轉導輸出電流,該複數子轉導放大電路包括一第一子轉導放大電路與一第二子轉導放大電路;以及至少一串接電容器,其中該串接電容器用以串接(cascade) 對應之兩該子轉導放大電路,該至少一串接電容器包括一第一串接電容器,串接該第一子轉導放大電路與第二子轉導放大電路;其中該第二子轉導放大電路對應產生的第二轉導輸出電流通過對應的該第一串接電容器而於該第一子轉導放大電路中的一共模偏置節點產生一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該暫態偏置電流提供予該第一子轉導放大電路中的一差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第二子轉導放大電路對應的差動輸入電壓。
在一較佳實施例中,該第一子轉導放大電路的一對差動輸入端與該第二子轉導放大電路的一對差動輸入端並聯。
在一較佳實施例中,該第二子轉導放大電路的轉導係數大於該第一子轉導放大電路的轉導係數。
在一較佳實施例中,該平行輸入與動態串接轉導放大電路更包括一直流偏壓負載,耦接於該第二子轉導放大電路的輸出端,且與該第一串接電容器耦接,其中該直流偏壓負載用以接收該第二轉導輸出電流以於該第二子轉導放大電路的輸出端提供一對應的直流偏壓。
在一較佳實施例中,該直流偏壓負載包括一MOS二極體。
在一較佳實施例中,每一該子轉導放大電路配置為一對差動輸入至單端輸出的轉導放大器,其中該第二子轉導放大電路對應的該直流偏壓負載之阻抗為足夠大,使得該第一串接電容器於該第一子轉導放大電路中的該共模偏置節點產生一極點為足夠低頻,進而使得該第一子轉導放大電路對應產生的一轉導電流Idp與轉導電流Idn之間具有一足夠大的相位差,藉此使得該平行輸入與動態串接轉導放大電路於單位增益頻寬下具有大於等於45度的相位餘裕。
在一較佳實施例中,該第一串接電容器於該第一子轉導放大電路的單位增益頻寬之前產生一零點使得該平行輸入與動態串接轉導放大電路於單位增益頻寬下具有大於等於45度的相位餘裕。
在一較佳實施例中,該複數子轉導放大電路的其中一子轉導放大電路配置為以下至少之一:(1)一單級差動輸入至單端輸出的轉導放大器,其中該單級差動輸入至單端輸出的轉導放大器包括一同相差動電晶體以及一反相差動電晶體,用以根據對應的該差動輸入電壓而分別產生一同相轉導電流與一反相轉導電流,其中該同相差動電晶體耦接於一MOS二極體;(2)一平衡差動輸入至單端輸出的轉導放大器,其中該平衡差動輸入至單端輸出的轉導放大器包括一同相差動電晶體以及一反相差動電晶體,用以根據對應的該差動輸入電壓而分別產生一同相轉導電流與一反相轉導電流,其中該同相差動電晶體與該反相差動電晶體分別耦接於各自對應的MOS二極體;或者(3)一摺疊疊接差動輸入至單端輸出的轉導放大器,其中該摺疊疊接差動輸入至單端輸出的轉導放大器包括一同相差動電晶體、一反相差動電晶體以及一疊接電流鏡電路,用以根據對應的該差動輸入電壓而分別產生一同相轉導電流與一反相轉導電流,其中該同相差動電晶體與該反相差動電晶體分別耦接於該疊接電流鏡電路中各自對應的疊接節點。
在一較佳實施例中,該子轉導放大電路包括一電流源電路,用以耦接於該同相差動電晶體、一反相差動電晶體,其中該共模偏置節點對應於以下之一:(1)該共模偏置節點對應於該電流源電路與該同相差動電晶體以及該反相差動電晶體之耦接節點;(2)該共模偏置節點對應於該電流源電路的一控制端;或者(3)該共模偏置節點對應於該電流源電路的一疊接節點,其中該電流源電路配置為一疊接電流源電路。
在一較佳實施例中,該第一子轉導放大電路更通過另一串接電容器而於另一共模偏置節點接收另一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該另一暫態偏置電流提供予該第一子轉導放大電路中的該差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該另一暫態偏置電流由以下之一配置而產生:(1)該第二子轉導放大電路更產生該另一暫態偏置電流;或者(2)該複數子轉導放大電路包括另一第三子轉導放大電路,其中該第三子轉導放大電路對應產生的第三轉導輸出電流通過對應的該另一串接電容器而於該第一子轉導放大電路中的該另一共模偏置節點產生該另一暫態偏置電流,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第三子轉導放大電路對應的差動輸入電壓。
在一較佳實施例中,該第一子轉導放大電路更包括一電流源電路,用以耦接於該第一子轉導放大電路的該差動對電路,其中該共模偏置節點對應於該電流源電路與該差動對電路之耦接節點,該另一共模偏置節點對應於該電流源電路的一疊接節點,其中該電流源電路配置為一疊接電流源電路。
在一較佳實施例中,該第一子轉導放大電路更通過該共模偏置節點而接收另一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該另一暫態偏置電流提供予該第一子轉導放大電路中的該差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該另一暫態偏置電流由以下之一配置而產生:(1)該第二子轉導放大電路更產生該另一暫態偏置電流;或者(2)該複數子轉導放大電路包括另一第三子轉導放大電路,其中該第三子轉導放大電路對應產生的第三轉導輸出電流而於該第一子轉導放大電路中的該共模偏置節點產生該另一暫態偏置電流,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第三子轉導放大電路對應的差動輸入電壓。
在一較佳實施例中,該第一子轉導放大電路更包括一電流源電路,用以耦接於該第一子轉導放大電路的該差動對電路,其中該共模偏置節點對應於該電流源電路與該差動對電路之耦接節點,其中另一共模偏置節點對應於該電流源電路的一疊接節點,其中該電流源電路配置為一疊接電流源電路;其中該第一子轉導放大電路更通過該另一共模偏置節點而接收另一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該另一暫態偏置電流提供予該第一子轉導放大電路中的該差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該另一暫態偏置電流由以下之一配置而產生:(1)該第二子轉導放大電路更產生該另一暫態偏置電流;或者(2)該複數子轉導放大電路包括另一第三子轉導放大電路,其中該第三子轉導放大電路對應產生的第三轉導輸出電流而於該第一子轉導放大電路中的該另一共模偏置節點產生該另一暫態偏置電流,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第三子轉導放大電路對應的差動輸入電壓。
就另一個觀點言,本發明也提供了一種調節電路(regulator circuit),包含:如前述的平行輸入與動態串接轉導放大電路;一輸出電晶體;以及一回授電路,其中該第一子轉導放大電路對應的差動輸入端之一端耦接於第一參考訊號,該第一子轉導放大電路對應的差動輸入端之另一端用以接收該回授訊號,以調節該輸出訊號至一目標值,其中該目標值相關於該第一參考訊號;其中該第二子轉導放大電路對應的差動輸入端之一端耦接於第二參考訊號,該第二子轉導放大電路對應的差動輸入端之另一端用以接收該輸出訊號,其中該第二參考訊號與該第一參考訊號的比值相關於該回授電路的一回授增益。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。
圖2A~圖2B顯示本發明之平行輸入與動態串接轉導放大電路之一實施例方塊圖與一實施例示意圖(轉導放大電路1002)。在一實施例中,如圖2A與2B所示,轉導放大電路1002具有複數對的差動輸入端(Vip_1, Vin_1)~(Vip_n, Vin_n),其中n為大於1的正整數,且根據差動輸入電壓Vd_1~Vd_n而產生放大輸出電壓Vo_1與轉導輸出電流Ido_1,其中差動輸入電壓Vd_1~Vd_n分別對應於差動輸入端的電壓差(Vd_1=Vip_1 -Vin_1,   …Vd_n=Vip_n-Vin_n)。
如圖2B所示,本實施例中,轉導放大電路1002包含複數子轉導放大電路100_1~100_n,子轉導放大電路100_1~100_n各自具有對應的轉導係數gm_1~gm_n,本實施例中,轉導放大電路1002的放大輸出電壓對應於子轉導放大電路100_1的子輸出電壓Vo_1。
本實施例中,根據本發明,複數子轉導放大電路100_1~100_n中至少有兩個子轉導放大電路之間,彼此以串接電容器串接(cascaded),以子轉導放大電路100_1~100_2具體舉例而言,彼此之間以串接電容器Cc_1串接,其中子轉導放大電路100_2的轉導輸出電流Ido_2通過串接電容器Cc_1而於子轉導放大電路100_1中的一個共模偏置節點產生一暫態偏置電流Ibtr_1,以於子轉導放大電路100_1的差動輸入電壓Vd_1發生變化時,將該暫態偏置電流提供予子轉導放大電路100_1中的差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性。
就一觀點而言,當差動輸入電壓(如Vd_1, Vd_2)發生變化時,串接電容器Cc_1係將子轉導放大電路100_2的轉導輸出電流Ido_2的交流成分饋送至子轉導放大電路100_1中的至少一個共模偏置節點而產生上述的暫態偏置電流(Ibtr_1)。
請繼續參閱圖2B,在一實施例中,如圖2B所示,用以產生上述的暫態偏置電流的前級子轉導放大電路(100_2~100_n)之輸出端分別耦接於對應的直流偏壓負載Z_1~Z_[n-1],其中直流偏壓負載Z_1~Z_[n-1]用以根據轉導輸出電流Ido_2~Ido_n而分別決定前級子轉導放大電路(100_2~ 100_n)的直流偏壓(亦即,子輸出電壓Vo_2~Vo_n)。
具體而言,如圖2C所示,在一實施例中,直流偏壓負載Z(對應於前述的Z_1~Z_[n-1])各自包括MOS二極體,藉此決定前述的直流偏壓。需說明的是,所述的MOS二極體例如圖2C所示,係為耦接成二極體形式的MOS電晶體Mz,其汲源極之間為短路或同相耦接,下同。
值得注意的是,差動輸入電壓發生變化時複數子轉導放大電路100_1~100_n的所有差動輸入電壓彼此相關,換言之,當子轉導放大電路100_1的差動輸入電壓Vd_1發生變化時,其他的子轉導放大電路100_2~100_n的差動輸入電壓Vd_2~Vd_n亦相關地發生變化。在一較佳實施例中,當子轉導放大電路100_1的差動輸入電壓Vd_1發生變化時,其他的子轉導放大電路100_2~100_n的差動輸入電壓Vd_2~Vd_n亦具有正相關的變化。
圖3A顯示本發明之平行輸入與動態串接轉導放大電路與線性穩壓電路之一實施例方塊圖(轉導放大電路1003A、線性穩壓電路300A)。在一實施例中,如圖3A所示,轉導放大電路1003A之所有的複數對的差動輸入端(Vip_1, Vin_1)~(Vip_n, Vin_n)彼此並聯,具體而言,本實施例中,所有的同相差動輸入端(Vip_1~Vip_n)皆彼此直接電性連接,而所有的反相差動輸入端(Vin_1~Vin_n)亦皆彼此直接電性連接。換言之,本實施的差動輸入電壓Vd_1~Vd_n皆完全相同。
本實施例中,如圖3A所示,轉導放大電路1003A以負回授的方式被配置為具有增益A=1+R1/R2的線性穩壓電路300A,用以產生調節輸出電壓VREG,其中所有的同相差動輸入端(Vip_1~Vip_n)皆直接電性連接於參考電壓VREF,而所有的反相差動輸入端(Vin_1~Vin_n)皆直接電性連接於回授電壓VFB,藉此,當回授電壓VFB由於例如負載的變化而與參考電壓VREF出現暫態的電壓差時,上述的子轉導放大電路100_2~100_n即根據參考電壓VREF與回授電壓VFB之間的暫態電壓差而通過前述的串接電容器Cc_1~Cc_[n-1]以分別產生暫態偏置電流Ibtr_1~Ibtr_[n-1],分別提供予子轉導放大電路100_1~100_[n-1]中的差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性。
圖3B顯示本發明之平行輸入與動態串接轉導放大電路與線性穩壓電路之一實施例方塊圖(轉導放大電路1003B、線性穩壓電路300B)。本實施例的線性穩壓電路300B與前述實施例線性穩壓電路300A相似,其差別在於本實施例中,轉導放大電路1003B的差動輸入電壓Vd_1對應於線性穩壓電路300B的參考電壓VREF1與回授電壓VFB的電壓差,而轉導放大電路1003B的差動輸入電壓Vd_2~Vd_n則對應於線性穩壓電路300B的參考電壓VREF2與調節輸出電壓VREG的電壓差,其中參考電壓VREF2與參考電壓VREF1對應於調節輸出電壓VREG與回授電壓VFB的比值,亦即:該比值等於前述的增益A=1+R1/R2。
請同參閱圖2B,在一實施中,彼此串接的前級的轉導放大電路中,前級的子轉導放大電路的轉導係數大於後級的子轉導放大電路的轉導係數,以子轉導放大電路100_1~100_2具體舉例而言,在一實施中,轉導係數gm_2大於轉導係數gm_1,藉此使得在差動輸入電壓發生變化時,前級的子轉導放大電路(如子轉導放大電路100_2)可更加即時地提供前述的暫態偏置電流至後級的子轉導放大電路(如子轉導放大電路100_1)。
圖4A~圖4C顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路之數種具體實施例的示意圖(子轉導放大電路104A~104C)。在一實施例中,如圖4A所示,子轉導放大電路104A配置為單級的差動輸入至單端輸出(differential input to single-ended output)的轉導放大器,差動放大對114A中的同相差動電晶體MP1與反相差動電晶體MP2根據差動輸入電壓Vd而分別產生轉導電流Idn與轉導電流Idp,進而產生轉導輸出電流Ido,具體而言,轉導輸出電流Ido為轉導電流Idp與轉導電流Idn之差值,且轉導輸出電流Ido等於差動輸入電壓Vd與子轉導放大電路104A的轉導係數gm之積,即:Ido=Vd*gm。需說明的是,此處轉導輸出電流Ido特別係指相關於差動輸入電壓Vd的輸出電流。
在一實施例中,如圖4A所示,於子轉導放大電路104A的共模偏置節點ncm1輸入前述的暫態偏置電流Ibtr,其中電流源130亦藉由共模偏置節點ncm1而提供靜態偏置電流Ibq。當差動輸入電壓Vd發生暫態的電壓差時,串接的前級子轉導放大電路所產生的暫態偏置電流Ibtr可提高差動放大對114A的偏置電流總量,因此,可於暫態時提升迴路頻寬以及反應速度,另一方面,在暫態結束而進入穩態時,暫態偏置電流Ibtr會漸趨於0,因此,偏置電流的總量會減少,因而可降低頻寬來提高穩定性。
需說明的是,上述的共模偏置節點ncm1僅為其中一例,藉由共模偏置節點輸入前述的暫態偏置電流Ibtr時,在低頻的成分中,可同時提高同相差動電晶體MP1與反相差動電晶體MP2的偏置電流,且也同時提高了轉導電流Idp與轉導電流Idn的低頻成分,因而對於直流或低頻成分而言,具有如此特性的節點即可做為「共模偏置節點」,共模偏置節點的其他實施例容後詳述。
就一觀點而言,本發明還根據以下配置而於暫態時提升迴路頻寬以及反應速度。在一實施例中,前級的子轉導放大電路(如圖2B中的子轉導放大電路100_2)所對應的直流偏壓負載(Z_1)之阻抗為足夠大,使得對應的串接電容器Cc_1於子轉導放大電路100_1中的該共模偏置節點(如ncm1)產生一極點Pl_1,且該極點為足夠低頻,進而使得子轉導放大電路100_1對應產生的轉導電流Idp與轉導電流Idn之間具有一足夠大的相位差(至少在單位增益頻寬之下而言),藉此於暫態時獲得較大的淨輸出電流,因而可有效提升迴路頻寬以及反應速度。
此外,還值得注意的是,本實施例中,反相差動電晶體MP2根據差動輸入電壓Vd而直接產生轉導電流Idp,同相差動電晶體MP1根據差動輸入電壓Vd產生轉導電流Idn’後,還經過了一級電流鏡120才產生了轉導電流Idn,因此,在本發明前述的基礎上,在子轉導放大電路104A配置為單級的差動輸入至單端輸出的轉導放大器(如子轉導放大電路104A)的情況下,還可在暫態時,於轉導電流Idp與轉導電流Idn之間造成進一步的相位差。
請參閱圖4B,在一實施例中,如圖4B所示,子轉導放大電路104B與子轉導放大電路104A相似,其差別在於,差動放大對114B中的同相差動電晶體MP1與反相差動電晶體MP2各自耦接於阻抗相同的MOS二極體MN1與MN2,接著經由電流鏡電路(121, 122, 123)而產生轉導電流Idp與轉導電流Idn,進而產生轉導輸出電流Ido。
在一實施例中,如圖4C所示,子轉導放大電路104C配置為摺疊疊接(folded cascode)轉導放大器,差動放大對114C中的同相差動電晶體MP1與反相差動電晶體MP2根據差動輸入電壓Vd而分別產生轉導電流Idp與轉導電流Idn”,其分別注入疊接電流鏡125的疊接節點ncp與ncn中,其中疊接電流鏡125接收轉導電流Idn”而產生轉導電流Idn。
與圖4A相似,如圖4B與圖4C所示,在這些實施例中,於子轉導放大電路104B或104C的共模偏置節點ncm1輸入前述的暫態偏置電流Ibtr,其中電流源130亦藉由共模偏置節點ncm1而提供靜態偏置電流Ibq。
圖5顯示對應於本發明之平行輸入與動態串接轉導放大電路之一實施例的開迴路頻率響應曲線,如圖5所示,相較於不具有暫態偏置電流Ibtr的轉導放大電路的開迴路特性(虛線),本發明在通過串接電容器而引入暫態偏置電流Ibtr的實施例中(實線),具有相似的單位增益頻寬,亦即,並不因串接電容器而造成頻寬的損失,此外,在引入暫態偏置電流Ibtr的本發明的實施例中(實線),相位邊際較高,亦即,更為穩定。具體以子轉導放大電路100_1舉例而言,前級對應的該串接電容器(如圖2B中的Cc_1),於子轉導放大電路100_1的單位增益頻寬之前產生一零點Zr_1,以提高子轉導放大電路的相位餘裕(phase margin, 或稱相位邊際)。換言之,從時域的角度來說,當差動輸入電壓Vd發生暫態的電壓差又由於回授而漸趨於0時,暫態偏置電流Ibtr也會漸趨於0,此時,除了由於回歸到較低的靜態偏置電流Ibq而降低頻寬來提高穩定性之外,前述的串接電容器(如Cc_1)亦持續地具有補償或穩定迴路的作用。需說明的是,上述零點Zr_1=Pl_1/N_1,其中N_1為大於1的實數,在一實施例中,適當地選擇N_1可使得子轉導放大電路100_1的相位餘裕達到45度或以上,在一實施例中,適當地選擇N_1可使得子轉導放大電路100_1的相位餘裕達到60度或以上。
圖6顯示對應於本發明之平行輸入與動態串接轉導放大電路之一實施例的閉迴路暫態響應波形,如圖6所示,相較於不具有暫態偏置電流Ibtr的轉導放大電路的暫態響應(虛線),本發明在通過串接電容器而引入暫態偏置電流Ibtr的實施例中(實線),可在較短的時間內回復穩定。
圖7顯示對應於本發明之平行輸入與動態串接轉導放大電路之一實施例的開迴路小訊號暫態響應波形,如圖7所示,相較於不具有暫態偏置電流Ibtr的轉導放大電路的開迴路小訊號暫態響應(虛線),本發明在通過串接電容器而引入暫態偏置電流Ibtr的實施例中(實線),可產生較大的轉導電流Idp, Idn,且由於轉導電流差(Idp-Idn)具有較小的相位延遲,因此小訊號輸出電壓上亦展現出較高的相位餘裕。
圖8A~圖8D顯示本發明之平行輸入與動態串接轉導放大電路中,用以提供靜態偏置電流Ibq的電流源之數種具體實施例的示意圖(電流源138A~138D),在一實施例中,如圖8A所示,電流源138A包括用以鏡像電流的鏡像電晶體Mm1,其電流輸出端耦接於共模偏置節點ncm1以產生靜態偏置電流Ibq,本實施例中,串接電容器Cc電性耦接於鏡像電晶體Mm1的電流輸出端,亦即,共模偏置節點ncm1,以接收前級的轉導輸出電流(如Ido_2)而於共模偏置節點ncm1提供暫態偏置電流Ibtr予差動放大對118。
在一實施例中,如圖8B所示,電流源138B包括用以鏡像電流的鏡像電晶體Mm1,其電流輸出端耦接於共模偏置節點ncm1以產生靜態偏置電流Ibq,本實施例中,串接電容器Cc電性耦接於鏡像電晶體Mm1的控制端(閘極),亦即,共模偏置節點ncm2,本實施例中,暫態偏置電流Ibtr通過共模偏置節點ncm2以控制鏡像電晶體Mm1而產生暫態偏置電流Ibtr’予差動放大對118,換言之,此時鏡像電晶體Mm1同時鏡像而產生了靜態偏置電流Ibq,且同時通過串接電容器Cc耦接前級的轉導輸出電流(如Ido_2)而控制鏡像電晶體Mm1的控制端進而產生暫態偏置電流Ibtr’,進而將二者提供予差動放大對118。當然,本實施例中,前級的子轉導放大電路的同相與反相輸入端需適應性調整。
在一實施例中,如圖8C所示,電流源138C包括用以鏡像電流的鏡像電晶體Mm1以及用以提升輸出阻抗的疊接電晶體Mc1,鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接於供應電壓與共模偏置節點ncm1之間(即,疊接於節點ncm3),疊接電晶體Mc1受疊接偏置電壓Vbc所偏置,本實施例中,串接電容器Cc電性耦接於疊接電晶體Mc1的電流輸出端,亦即,共模偏置節點ncm1,以於共模偏置節點ncm1提供暫態偏置電流Ibtr予差動放大對118。
在一實施例中,如圖8D所示,電流源138D包括用以鏡像電流的鏡像電晶體Mm1以及用以提升輸出阻抗的疊接電晶體Mc1,鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接於供應電壓與共模偏置節點ncm1之間,疊接電晶體Mc1受疊接偏置電壓所偏置,本實施例中,串接電容器Cc電性耦接於鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接的節點,亦即,共模偏置節點ncm3,以於共模偏置節點ncm3提供暫態偏置電流Ibtr予差動放大對118(同時也經由共模偏置節點ncm1)。
圖9A~圖9B顯示本發明之平行輸入與動態串接轉導放大電路之實施例方塊圖(轉導放大電路109A~109B)。根據本發明之精神,暫態偏置電流並不限於僅於子轉導放大電路的單個共模偏置節點注入複數暫態偏置電流,在一實施例中,轉導放大電路其中的一子轉導放大電路可藉由複數串接電容器而於該子轉導放大電路的複數共模偏置節點接收複數暫態偏置電流。
在一實施例中,如圖9A所示,子轉導放大電路100_1於其中的複數共模偏置節點接收來自不同的前級子轉導放大電路100_2與100_3的暫態偏置電流Ibtr_2與Ibtr_3。在另一實施例中,如圖9B所示,子轉導放大電路100_1,藉由串接電容器Cc_2a與Cc_2b而於複數共模偏置節點接收來自子轉導放大電路100_2’的暫態偏置電流Ibtr_2a與Ibtr_2b,本實施例中,子轉導放大電路100_2’輸出可獨立調整的轉導輸出電流Ido_2a與Ido_2b,藉此,可單獨調整電流比例以及Z_2a與Z_2b的阻抗值以設計不同的極點與零點位置,而不互相影響。
圖9C顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路之一具體實施例示意圖(子轉導放大電路100_2’),本實施例中,前級子轉導放大電路100_2’中藉由電流鏡電路123’產生獨立調整的轉導輸出電流Ido_2a與Ido_2b。
圖10A顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供靜態偏置電流的電流源之一種具體實施例的示意圖(電流源1310)。在一實施例中,子轉導放大電路100之電流源(1310)配置為前述的疊接式電流源,如圖10A所示,電流源1310包括用以鏡像電流的鏡像電晶體Mm1以及用以提升輸出阻抗的疊接電晶體Mc1,鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接於供應電壓與共模偏置節點ncm1之間,疊接電晶體Mc1受疊接偏置電壓Vbc所偏置,本實施例中,共模偏置節點接收來自不同的串接電容器Cc_a與Cc_b的暫態偏置電流Ibtr_a與Ibtr_b,其中,串接電容器Cc_a電性耦接於鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接的節點,亦即,共模偏置節點ncm3,以於共模偏置節點ncm3提供暫態偏置電流Ibtr_a予差動放大對1110(同時也流經共模偏置節點ncm1),串接電容器Cc_b電性耦接於疊接電晶體Mc1的電流輸出節點,亦即,共模偏置節點ncm1,以於共模偏置節點ncm1提供暫態偏置電流Ibtr_b予差動放大對1110。上述暫態偏置電流Ibtr_a與Ibtr_b例如可分別對應於前述圖9A實施例中的暫態偏置電流Ibtr_2與Ibtr_3,或是分別對應於前述圖9B實施例中的暫態偏置電流Ibtr_2a與Ibtr_2b。
圖10B顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供靜態偏置電流的電流源之另一種具體實施例的示意圖(電流源1310, 1310’)。在一實施例中,子轉導放大電路100’之電流源(1310, 1310’)配置為前述的疊接式電流源,如圖10B所示,電流源1310與1310’分別包括用以鏡像電流的鏡像電晶體Mm1、Mm1’,以及用以提升輸出阻抗的疊接電晶體Mc1、Mc1’,鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接於供應電壓與共模偏置節點ncm1之間,鏡像電晶體Mm1’與疊接電晶體Mc1’彼此疊接於供應電壓與共模偏置節點ncm1之間,疊接電晶體Mc1與疊接電晶體Mc1’分別受疊接偏置電壓Vbc與Vbc’所偏置,本實施例中,共模偏置節點接收來自不同的串接電容器Cc_a與Cc_b的暫態偏置電流Ibtr_a與Ibtr_b,其中,串接電容器Cc_a電性耦接於鏡像電晶體Mm1與疊接電晶體Mc1彼此疊接的節點,亦即,共模偏置節點ncm3,以於共模偏置節點ncm3提供暫態偏置電流Ibtr_a予差動放大對1110(同時也流經共模偏置節點ncm1),串接電容器Cc_b電性耦接於偏置節點ncm3’,以於共模偏置節點ncm3’提供暫態偏置電流Ibtr_b予差動放大對1110(同時也流經共模偏置節點ncm1)。
值得注意的是,於暫態時,差動放大對1110實際上接收了暫態偏置電流Ibtr_a與暫態偏置電流Ibtr_b之和,因此,可於暫態時更有效地提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性。此外,由於暫態偏置電流Ibtr_a與暫態偏置電流Ibtr_b分別注入疊接電晶體Mc1的兩端,疊接電晶體Mc1或Mc1’此時還提供了串接電容器Cc_a與串接電容器Cc_b之間的阻抗緩衝作用。
圖11顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供偏置電流的電流源之一種具體實施例的示意圖(電流源1311)。在一實施例中,如圖11所示,轉導放大電路1011更包含又一子轉導放大電路100_m,其中,m為不等於1~n的正整數,子轉導放大電路100_m與前述的子轉導放大電路100_1~100_n相似,其不同之處在於,子轉導放大電路100_m的轉導輸出電流Ido_m直接電性耦接於例如圖11所示的子轉導放大電路100_1的共模偏置節點nm1。
換言之,本實施例中,子轉導放大電路100_m的轉導輸出電流Ido_m與子轉導放大電路100_2的轉導輸出電流Ido_2分別注入於串接電容器Cc_2的兩端。在此情況下,串接電容器Cc_2的兩端同時接收同相且大小相近的電流,就一觀點而言,串接電容器Cc_2並不會對轉導輸出電流Ido_2造成負載效應,亦即,不響應於共模訊號,而僅響應於差模訊號,藉此可更有效地達成前述所提到的功效。
圖12A與圖12B顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供偏置電流的電流源之兩種具體實施例的示意圖(電流源1312A與電流源1312B)。在一實施例中,與圖11的實施例類似,轉導放大電路1012A或1012B更包含又一子轉導放大電路100_m,其不同之處在於,子轉導放大電路100_m的轉導輸出電流Ido_m與子轉導放大電路100_2的轉導輸出電流Ido_2分別注入所示的子轉導放大電路100_1的共模偏置節點ncm1與共模偏置節點ncm3,或分別注入所示的子轉導放大電路100_1的共模偏置節點ncm3與共模偏置節點ncm1。
圖12C顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供偏置電流的電流源之另一具體實施例的示意圖(電流源1312C)。本實施例相似於圖12B之實施例,其差別在於,子轉導放大電路100_2的轉導輸出電流Ido_2先注入電流源1312C’的共模偏置節點ncm3’,才通過疊接電晶體Mc1’而注入共模偏置節點ncm1,以使轉導輸出電流Ido_m與轉導輸出電流Ido_2可有效隔離,而得以分別獨立設計,不互相影響。
當然,在其他實施例中,也可以將轉導輸出電流Ido_m與轉導輸出電流Ido_2交換所注入的共模偏置節點,在此不予贅述。
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。
100_1~100_n,100_m,100-2’:子轉導放大電路 101A,101B,101C:轉導放大電路 104A~104C:子轉導放大電路 109A~109B,1002,1003A,1003B:轉導放大電路 91,92,93,94:差動放大對 114A,114B,114C,118,1110:差動放大對 120:電流鏡 121,122,123,123’:電流鏡電路 125:疊接電流鏡 130,1310,1310’,1311,1312A,1312B,1312C,1312C’:電流源 138A~138D:電流源 300A,300B:線性穩壓電路 Cc,Cc_1~Cc_[n-1]:串接電容器 gm_1~gm_n:轉導係數 Ibq:靜態偏置電流 Ibtr_1~Ibtr_[n-1],Ibtr’:暫態偏置電流 Icb:共模偏置電流 Ido_2~Ido_n,Ido_m,Ido_2a,Ido_2b:轉導輸出電流 Idp,Idn,Idn’:轉導電流 Ido:轉導輸出電流 MA1,MA2:放大電晶體 Mc1,Mc1’:疊接電晶體 Mm1,Mm1’:鏡像電晶體 MN1與MN2:MOS二極體 MP1,MP24:差動電晶體 Mz:MOS電晶體 ncm1,ncm2,ncm3,ncm3’:共模偏置節點 ncp,ncn:疊接節點 Vbc,Vbc’:偏置電壓 Vd,Vd_1~Vd_n:差動輸入電壓 VFB:回授電壓 Vip,Vin,Vip_1,Vin_1~Vip_n,Vin_n:差動輸入端 VREG:調節輸出電壓 VREF,VREF1,VREF2:參考電壓 Z_1~Z_[n-1]:直流偏壓負載
圖1A~圖1C顯示先前技術之轉導放大電路。
圖2A~圖2B顯示本發明之平行輸入與動態串接轉導放大電路之一實施例方塊圖與一實施例示意圖。
圖2C顯示本發明之平行輸入與動態串接轉導放大電路中,直流偏壓負載之一具體實施例示意圖。
圖3A~圖3B顯示本發明之平行輸入與動態串接轉導放大電路與線性穩壓電路之兩種實施例方塊圖。
圖4A~圖4C顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路之數種具體實施例的示意圖。
圖5顯示對應於本發明之平行輸入與動態串接轉導放大電路之一實施例的開迴路頻率響應曲線。
圖6顯示對應於本發明之平行輸入與動態串接轉導放大電路之一實施例的閉迴路暫態響應波形圖。
圖7顯示對應於本發明之平行輸入與動態串接轉導放大電路之一實施例的開迴路小訊號暫態響應波形圖。
圖8A~圖8D顯示本發明之平行輸入與動態串接轉導放大電路中,用以提供靜態偏置電流Ibq的電流源之數種具體實施例的示意圖。
圖9A~圖9B顯示本發明之平行輸入與動態串接轉導放大電路之實施例方塊圖。
圖9C顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路之一具體實施例示意圖。
圖10A~圖10B顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供靜態偏置電流的電流源之兩種具體實施例的示意圖。
圖11顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供偏置電流的電流源之一種具體實施例的示意圖。
圖12A~圖12C顯示本發明之平行輸入與動態串接轉導放大電路中,子轉導放大電路與其中用以提供偏置電流的電流源之數種具體實施例的示意圖。
100_1~100_n:子轉導放大電路
1002:轉導放大電路
Cc_1~Cc_[n-1]:串接電容器
Ibtr_1~Ibtr_[n-1]:暫態偏置電流
Ido_2~Ido_n:轉導輸出電流
Vd_1~Vd_n:差動輸入電壓
Z_1~Z_[n-1]:直流偏壓負載

Claims (14)

  1. 一種平行輸入與動態串接轉導放大電路,包含: 複數子轉導放大電路,其中每一該子轉導放大電路根據對應的一差動輸入電壓而產生對應的一轉導輸出電流,該複數子轉導放大電路包括一第一子轉導放大電路與一第二子轉導放大電路;以及 至少一串接電容器,其中該串接電容器用以串接(cascade)對應之兩該子轉導放大電路,該至少一串接電容器包括一第一串接電容器,串接該第一子轉導放大電路與該第二子轉導放大電路; 其中該第二子轉導放大電路對應產生的第二轉導輸出電流通過對應的該第一串接電容器而於該第一子轉導放大電路中的一共模偏置節點產生一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該暫態偏置電流提供予該第一子轉導放大電路中的一差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第二子轉導放大電路對應的差動輸入電壓。
  2. 如請求項1之平行輸入與動態串接轉導放大電路,其中該第一子轉導放大電路的一對差動輸入端與該第二子轉導放大電路的一對差動輸入端並聯。
  3. 如請求項1之平行輸入與動態串接轉導放大電路,其中該第二子轉導放大電路的轉導係數大於該第一子轉導放大電路的轉導係數。
  4. 如請求項1之平行輸入與動態串接轉導放大電路,更包括一直流偏壓負載,耦接於該第二子轉導放大電路的輸出端,且與該第一串接電容器耦接,其中該直流偏壓負載用以接收該第二轉導輸出電流以於該第二子轉導放大電路的輸出端提供一對應的直流偏壓。
  5. 如請求項4之平行輸入與動態串接轉導放大電路,其中該直流偏壓負載包括一MOS二極體。
  6. 如請求項4之平行輸入與動態串接轉導放大電路,其中每一該子轉導放大電路配置為一對差動輸入至單端輸出的轉導放大器,其中該第二子轉導放大電路對應的該直流偏壓負載之阻抗為足夠大,使得該第一串接電容器於該第一子轉導放大電路中的該共模偏置節點產生一極點為足夠低頻,進而使得該第一子轉導放大電路對應產生的一轉導電流Idp與轉導電流Idn之間具有一足夠大的相位差,藉此使得該平行輸入與動態串接轉導放大電路於單位增益頻寬下具有大於等於45度的相位餘裕。
  7. 如請求項6之平行輸入與動態串接轉導放大電路,其中該第一串接電容器於該第一子轉導放大電路的單位增益頻寬之前產生一零點,藉此使得該平行輸入與動態串接轉導放大電路於單位增益頻寬下具有大於等於45度的相位餘裕。
  8. 如請求項1之平行輸入與動態串接轉導放大電路,其中該複數子轉導放大電路的其中一子轉導放大電路配置為以下至少之一: (1)一單級差動輸入至單端輸出的轉導放大器,其中該單級差動輸入至單端輸出的轉導放大器包括一同相差動電晶體以及一反相差動電晶體,用以根據對應的該差動輸入電壓而分別產生一同相轉導電流與一反相轉導電流,其中該同相差動電晶體耦接於一MOS二極體; (2) 一平衡差動輸入至單端輸出的轉導放大器,其中該平衡差動輸入至單端輸出的轉導放大器包括一同相差動電晶體以及一反相差動電晶體,用以根據對應的該差動輸入電壓而分別產生一同相轉導電流與一反相轉導電流,其中該同相差動電晶體與該反相差動電晶體分別耦接於各自對應的MOS二極體;或者 (3) 一摺疊疊接差動輸入至單端輸出的轉導放大器,其中該摺疊疊接差動輸入至單端輸出的轉導放大器包括一同相差動電晶體、一反相差動電晶體以及一疊接電流鏡電路,用以根據對應的該差動輸入電壓而分別產生一同相轉導電流與一反相轉導電流,其中該同相差動電晶體與該反相差動電晶體分別耦接於該疊接電流鏡電路中各自對應的疊接節點。
  9. 如請求項8之平行輸入與動態串接轉導放大電路,其中該子轉導放大電路包括一電流源電路,用以耦接於該同相差動電晶體、一反相差動電晶體,其中該共模偏置節點對應於以下之一: (1) 該共模偏置節點對應於該電流源電路與該同相差動電晶體以及該反相差動電晶體之耦接節點; (2) 該共模偏置節點對應於該電流源電路的一控制端;或者 (3) 該共模偏置節點對應於該電流源電路的一疊接節點,其中該電流源電路配置為一疊接電流源電路。
  10. 如請求項1之平行輸入與動態串接轉導放大電路,其中該第一子轉導放大電路更通過另一串接電容器而於另一共模偏置節點接收另一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該另一暫態偏置電流提供予該第一子轉導放大電路中的該差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該另一暫態偏置電流由以下之一配置而產生: (1) 該第二子轉導放大電路更產生該另一暫態偏置電流;或者 (2) 該複數子轉導放大電路包括另一第三子轉導放大電路,其中該第三子轉導放大電路對應產生的第三轉導輸出電流通過對應的該另一串接電容器而於該第一子轉導放大電路中的該另一共模偏置節點產生該另一暫態偏置電流,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第三子轉導放大電路對應的差動輸入電壓。
  11. 如請求項10之平行輸入與動態串接轉導放大電路,其中該第一子轉導放大電路更包括一電流源電路,用以耦接於該第一子轉導放大電路的該差動對電路,其中該共模偏置節點對應於該電流源電路與該差動對電路之耦接節點,該另一共模偏置節點對應於該電流源電路的一疊接節點,其中該電流源電路配置為一疊接電流源電路。
  12. 如請求項1之平行輸入與動態串接轉導放大電路,其中該第一子轉導放大電路更通過該共模偏置節點而接收另一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該另一暫態偏置電流提供予該第一子轉導放大電路中的該差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該另一暫態偏置電流由以下之一配置而產生: (1) 該第二子轉導放大電路更產生該另一暫態偏置電流;或者 (2) 該複數子轉導放大電路包括另一第三子轉導放大電路,其中該第三子轉導放大電路對應產生的第三轉導輸出電流而於該第一子轉導放大電路中的該共模偏置節點產生該另一暫態偏置電流,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第三子轉導放大電路對應的差動輸入電壓。
  13. 如請求項1之平行輸入與動態串接轉導放大電路,其中該第一子轉導放大電路更包括一電流源電路,用以耦接於該第一子轉導放大電路的該差動對電路,其中該共模偏置節點對應於該電流源電路與該差動對電路之耦接節點,其中另一共模偏置節點對應於該電流源電路的一疊接節點,其中該電流源電路配置為一疊接電流源電路;其中該第一子轉導放大電路更通過該另一共模偏置節點而接收另一暫態偏置電流,以於該第一子轉導放大電路對應的差動輸入電壓發生暫態變化時,將該另一暫態偏置電流提供予該第一子轉導放大電路中的該差動對電路,藉此於暫態時提升迴路頻寬以及反應速度,並在穩態時降低偏置電流以降低頻寬來提高穩定性,其中該另一暫態偏置電流由以下之一配置而產生: (1) 該第二子轉導放大電路更產生該另一暫態偏置電流;或者 (2) 該複數子轉導放大電路包括另一第三子轉導放大電路,其中該第三子轉導放大電路對應產生的第三轉導輸出電流而於該第一子轉導放大電路中的該另一共模偏置節點產生該另一暫態偏置電流,其中該第一子轉導放大電路對應的差動輸入電壓相關於該第三子轉導放大電路對應的差動輸入電壓。
  14. 一種調節電路(regulator circuit),包含: 如請求項1~13項中所述任一項的平行輸入與動態串接轉導放大電路; 一輸出電晶體;以及 一回授電路, 其中該第一子轉導放大電路對應的差動輸入端之一端耦接於第一參考訊號,該第一子轉導放大電路對應的差動輸入端之另一端用以接收該回授訊號,以調節該輸出訊號至一目標值,其中該目標值相關於該第一參考訊號; 其中該第二子轉導放大電路對應的差動輸入端之一端耦接於第二參考訊號,該第二子轉導放大電路對應的差動輸入端之另一端用以接收該輸出訊號,其中該第二參考訊號與該第一參考訊號的比值相關於該回授電路的一回授增益。
TW109144431A 2020-12-16 2020-12-16 以相移達成高效的平行輸入與動態串接轉導放大電路 TWI755203B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109144431A TWI755203B (zh) 2020-12-16 2020-12-16 以相移達成高效的平行輸入與動態串接轉導放大電路
US17/552,310 US20220190788A1 (en) 2020-12-16 2021-12-15 Parallel input and dynamic cascaded operational transconductance amplifier achieving high precision with phase shifting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109144431A TWI755203B (zh) 2020-12-16 2020-12-16 以相移達成高效的平行輸入與動態串接轉導放大電路

Publications (2)

Publication Number Publication Date
TWI755203B true TWI755203B (zh) 2022-02-11
TW202226748A TW202226748A (zh) 2022-07-01

Family

ID=81329472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144431A TWI755203B (zh) 2020-12-16 2020-12-16 以相移達成高效的平行輸入與動態串接轉導放大電路

Country Status (2)

Country Link
US (1) US20220190788A1 (zh)
TW (1) TWI755203B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100134190A1 (en) * 2008-12-03 2010-06-03 Infineon Technologies Ag Programmable Compensation Network for Operational Amplifiers
TWI365598B (en) * 2007-01-02 2012-06-01 Mstar Semiconductor Inc Dynamic bandwidth compensating method and associated apparatus
TWI527369B (zh) * 2014-01-16 2016-03-21 國立臺灣科技大學 轉導放大器、轉導電容濾波器以及可編程重組之高階濾波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635239A1 (en) * 2004-09-14 2006-03-15 Dialog Semiconductor GmbH Adaptive biasing concept for current mode voltage regulators
US8289009B1 (en) * 2009-11-09 2012-10-16 Texas Instruments Incorporated Low dropout (LDO) regulator with ultra-low quiescent current
EP3454164B1 (en) * 2017-09-12 2023-06-28 Nxp B.V. Voltage regulator circuit and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI365598B (en) * 2007-01-02 2012-06-01 Mstar Semiconductor Inc Dynamic bandwidth compensating method and associated apparatus
US20100134190A1 (en) * 2008-12-03 2010-06-03 Infineon Technologies Ag Programmable Compensation Network for Operational Amplifiers
TWI527369B (zh) * 2014-01-16 2016-03-21 國立臺灣科技大學 轉導放大器、轉導電容濾波器以及可編程重組之高階濾波器

Also Published As

Publication number Publication date
TW202226748A (zh) 2022-07-01
US20220190788A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
EP0639889B1 (en) Low voltage fully differential operational amplifiers
TWI309501B (en) Miller-compensated amplifier
TWI495262B (zh) 多重電源域運算放大器及使用其之電壓產生器
US8228120B2 (en) Negative capacitance synthesis for use with differential circuits
TW201012050A (en) Three-stage frequency-compensated operational amplifier
TWI494735B (zh) 補償模組及電壓調整器
TW202013115A (zh) 低壓降穩壓電路及其穩壓方法
US8169263B2 (en) Differential gm-boosting circuit and applications
US20190207564A1 (en) Negative capacitance circuits including temperature-compensation biasings
US7091785B2 (en) Load and line regulation using operational transconductance amplifier and operational amplifier in tandem
TWI755203B (zh) 以相移達成高效的平行輸入與動態串接轉導放大電路
US6727757B1 (en) Biasing circuit for transconductors
KR101800899B1 (ko) 연산 증폭기
CN113805637B (zh) 一种低压差电压调节器
CN216721300U (zh) 一种带有自适应负载变化的频率补偿电路的稳定电路
CN114696748A (zh) 以相移实现高效的平行输入与动态串接转导放大电路
US8138833B1 (en) Common-mode feedback amplifier
KR101592500B1 (ko) 저전압 강하 레귤레이터
WO2020156161A9 (zh) 数字模拟转换器、数字功放子系统、数字功放系统
JP2014082535A (ja) 演算増幅器
JP5320503B2 (ja) 増幅回路
US20080284513A1 (en) Fully differential amplifier
Yen et al. A High Slew Rate, Low Power, Compact Operational Amplifier Based on the Super-Class AB Recycling Folded Cascode
TW201709004A (zh) 電壓翻轉式零點補償電路
JP2008092310A (ja) 電圧制御電流源回路