TWI754182B - 光學測量裝置以及光學測量方法 - Google Patents

光學測量裝置以及光學測量方法 Download PDF

Info

Publication number
TWI754182B
TWI754182B TW108138955A TW108138955A TWI754182B TW I754182 B TWI754182 B TW I754182B TW 108138955 A TW108138955 A TW 108138955A TW 108138955 A TW108138955 A TW 108138955A TW I754182 B TWI754182 B TW I754182B
Authority
TW
Taiwan
Prior art keywords
light
received light
amount
signal
distribution signal
Prior art date
Application number
TW108138955A
Other languages
English (en)
Other versions
TW202037880A (zh
Inventor
高嶋潤
金谷義宏
Original Assignee
日商歐姆龍股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商歐姆龍股份有限公司 filed Critical 日商歐姆龍股份有限公司
Publication of TW202037880A publication Critical patent/TW202037880A/zh
Application granted granted Critical
Publication of TWI754182B publication Critical patent/TWI754182B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本發明自受光量分布訊號獲得測定波形訊號。光學測量裝置100包括:光源10,向對象物TA發出光;受光部40,以多個畫素各自可檢測受光量的方式構成,且獲得每個畫素的受光量分布訊號;獲取部51,基於不存在對象物TA時的受光量分布訊號,自利用對象物TA所反射的反射光的受光量分布訊號獲取測量波形訊號MS;以及調整部53,於反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號MS的方式,調整對於反射光的受光量分布訊號的感度參數。

Description

光學測量裝置以及光學測量方法
本發明是有關於一種光學測量裝置以及光學測量方法。
先前已知,於具備投光部、及藉由多個光電轉換元件的排列將伴隨受光的電荷蓄積規定時間後輸出的構成的受光部的反射型光學式感測器中,基於作為自開始向檢測對象物投光起至進行判定輸出為止的響應時間而容許的時間的長度、與包含投光及受光以及感度的調整處理的測定處理的週期的長度,而求出於響應時間內可實現的感度調整的最大次數,並以由該最大次數的感度調整所得的動態範圍(dynamic range)不超過由該最大次數及藉由一次感度調整處理所調整的最大倍率所決定的最大動態範圍作為條件,來設定曝光時間、投光強度及受光量放大率的各感度參數的調整範圍的組合(參照專利文獻1)。該光學式感測器可一方面遵守所要求的響應時間一方面儘可能地擴大動態範圍。
[現有技術文獻]
[專利文獻]
專利文獻1:日本專利特開2013-190378號公報
另一方面,已知於使用構成受光部的多個畫素來獲得每個畫素的受光量分布訊號的情形時,於受光量分布訊號,除了由對象物所反射的訊號光成分以外,還包含於光纖纜線(fibre cable)的連接部等反射的返回光成分。
為了去除該返回光成分,先前的光學測量裝置中,自於存在對象物的狀態下獲得的受光量分布訊號減去於不存在對象物的狀態下獲得的受光量分布訊號,獲得作為由對象物所反射的訊號光成分的測量波形訊號,基於該測量波形訊號而測量距對象物的距離。
然而,若使用在不存在對象物的狀態下獲得的受光量分布訊號的感度參數,於存在對象物的狀態下獲得受光量分布訊號,則有時其一部分受光量飽和,有時無法獲得測量波形訊號。
因此,本發明的目的在於提供一種可自受光量分布訊號獲得測定波形訊號的光學測量裝置以及光學測量方法。
本發明的一實施方式的光學測量裝置包括:投光部,向對象物發出光;受光部,以多個畫素各自可檢測受光量的方式構成,且獲得每個畫素的受光量分布訊號;獲取部,基於不存在對象物時的受光量分布訊號,自利用對象物所反射的反射光的受光量分布訊號獲取測量波形訊號;以及調整部,於反射光的受光量 分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號的方式,調整對於反射光的受光量分布訊號的感度參數。
根據所述實施方式,於由對象物所反射的反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號的方式,調整對於對象物的反射光的受光量分布訊號的感度參數。藉此,可於調整感度參數之後所得的對象物的反射光的受光量分布訊號中,使受光量小於規定值,例如不使受光量飽和,而於調整感度參數後的對象物的反射光的受光量分布訊號包含訊號光成分。因此,藉由調整由對象物所反射的反射光的受光量分布訊號的感度參數,而可自對象物的反射光的受光量分布訊號獲取測量波形訊號。
所述實施方式中,調整部亦可以獲取的測量波形訊號的波峰受光量成為規定值以上的方式,調整對於反射光的受光量分布訊號的感度參數。
根據該實施方式,以獲取的測量波形訊號的波峰受光量成為規定值以上的方式,調整對於對象物的反射光的受光量分布訊號的感度參數。藉此,例如藉由對測量波形訊號設定小於規定值的臨限值,而可排除由可能與測量波形訊號混雜的雜訊(noise)等所致的訊號。
所述實施方式中,調整部亦可基於對象物的反射率而設定調整感度參數的範圍。
根據該實施方式,基於對象物的反射率而設定調整感度 參數的範圍。藉此,可縮小(限定)感度參數的調整範圍,可縮短感度參數的調整所耗的時間。
所述實施方式中,調整部亦可基於獲取前一次測量波形訊號時的感度參數而設定調整感度參數的範圍。
根據該實施方式,基於獲取前一次測量波形訊號時的感度參數而設定調整感度參數的範圍。藉此,可縮小(限定)感度參數的調整範圍,可縮短感度參數的調整所耗的時間。
所述實施方式中,感度參數亦可包含光的投光量、光的投光功率、受光部的曝光時間及受光部的增益(gain)中的至少一個。
根據該實施方式,感度參數包含光的投光量、光的投光功率、受光部的曝光時間及受光部的增益中的至少一個。藉此,可於由對象物所反射的反射光的受光量分布訊號中,使受光量容易地變化。
所述實施方式中,受光量的規定值亦可為受光量飽和的值。
根據該實施方式,對象物的反射光的受光量分布訊號中的受光量的規定值為受光量飽和的值。藉此,可於調整感度參數之後所得的對象物的反射光的受光量分布訊號中,防止受光量的飽和。
所述實施方式中,亦可更包括:測量部,所述測量部基於測量波形訊號而測量自光學測量裝置至對象物為止的距離。
根據該實施方式,基於測量波形訊號而測量自光學測量裝置至對象物為止的距離。藉此,將對於測量波形訊號而言成為雜訊成分的受光量分布訊號所含的返回光成分去除,故而與以下情形相比較,即基於由對象物所反射的反射光的受光量分布訊號來測量自光學測量裝置至對象物為止的距離,可抑制雜訊的影響而測量距離。
所述實施方式中,亦可更包括:光學系統,使光產生沿著光軸方向的色差,將產生了色差的光照射於對象物,且光包含多個波長成分,光學系統將反射光聚光,受光部以可針對每個波長成分檢測受光量的方式構成。
根據該實施方式,使光產生沿著光軸方向的色差,將產生了色差的光照射於對象物,光包含多個波長成分,將反射光聚光,可針對每個波長成分檢測受光量。可容易地實現自對象物的反射光的受光量分布訊號獲得測量波形訊號的白色共焦點方式的光學測量裝置。
另外,本發明的另一實施方式的光學測量方法包括:投光步驟,向對象物發出光;受光步驟,獲得每個畫素的受光量分布訊號;獲取步驟,基於不存在對象物時的受光量分布訊號,自利用對象物所反射的反射光的受光量分布訊號獲取測量波形訊號;以及調整步驟,於反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號的方式,調整對於反射光的受光量分布訊號的感度參數。
根據所述實施方式,於由對象物所反射的反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號的方式,調整對於對象物的反射光的受光量分布訊號的感度參數。藉此,可於調整感度參數之後所得的對象物的反射光的受光量分布訊號中,使受光量小於規定值,例如不使受光量飽和,而於調整感度參數後的對象物的反射光的受光量分布訊號包含訊號光成分。因此,藉由調整由對象物所反射的反射光的受光量分布訊號的感度參數,而可自對象物的反射光的受光量分布訊號獲取測量波形訊號。
所述實施方式中,調整步驟亦可包含:以獲取的測量波形訊號的波峰受光量成為規定值以上的方式,調整對於反射光的受光量分布訊號的感度參數。
根據該實施方式,以獲取的測量波形訊號的波峰受光量成為規定值以上的方式,調整對於對象物的反射光的受光量分布訊號的感度參數。藉此,例如藉由對測量波形訊號設定小於規定值的臨限值,而可排除由可能與測量波形訊號混雜的雜訊等所致的訊號。
所述實施方式中,調整步驟亦可包含:基於對象物的反射率而設定調整感度參數的範圍。
根據該實施方式,基於對象物的反射率而設定調整感度參數的範圍。藉此,可縮小(限定)感度參數的調整範圍,可縮短感度參數的調整所耗的時間。
所述實施方式中,調整步驟亦可包含:基於獲取前一次測量波形訊號時的感度參數而設定調整感度參數的範圍。
根據該實施方式,基於獲取前一次測量波形訊號時的感度參數而設定調整感度參數的範圍。藉此,可縮小(限定)感度參數的調整範圍,可縮短感度參數的調整所耗的時間。
所述實施方式中,感度參數亦可包含光的投光量、光的投光功率、受光部的曝光時間及受光部的增益中的至少一個。
根據該實施方式,感度參數包含光的投光量、光的投光功率、受光部的曝光時間及受光部的增益中的至少一個。藉此,可於由對象物所反射的反射光的受光量分布訊號中,使受光量容易地變化。
所述實施方式中,受光量的規定值亦可為受光量飽和的值。
根據該實施方式,對象物的反射光的受光量分布訊號中的受光量的規定值為受光量飽和的值。藉此,可於調整感度參數之後所得的對象物的反射光的受光量分布訊號中,防止受光量的飽和。
所述實施方式中,亦可更包括:測量步驟,所述測量步驟基於測量波形訊號而測量自光學測量裝置至對象物為止的距離。
根據該實施方式,基於測量波形訊號而測量自光學測量裝置至對象物為止的距離。藉此,將對於測量波形訊號而言成為 雜訊成分的受光量分布訊號所含的返回光成分去除,故而與以下情形相比較,即基於由對象物所反射的反射光的受光量分布訊號來測量自光學測量裝置至對象物為止的距離,可抑制雜訊的影響而測量距離。
根據本發明,可自受光量分布訊號獲得測定波形訊號。
10:光源
20:導光部
21:第一纜線
22:第二纜線
23:第三纜線
24:光耦合器
30:感測器頭
31、41:準直透鏡
32:繞射透鏡
33:物鏡
40:受光部
42:繞射光柵
43:調整透鏡
44:受光感測器
45:處理電路
50:控制部
51:獲取部
52:測量部
53:調整部
60:儲存部
70:顯示部
80:操作部
100:光學測量裝置
AR1、AR2:調整範圍
L1、L2:光
MS:測量波形訊號
RC:返回光成分
SC:訊號光成分
TA:對象物
Tst、Vst:步幅
Vmin:下限值
Vpre:投光量
λ:波長
圖1為例示本實施形態的光學測量裝置的概略構成的構成圖。
圖2為例示由對象物所反射的反射光的受光量分布訊號的一例的波形圖。
圖3為例示不存在對象物時的受光量分布訊號的一例的波形圖。
圖4為例示測量波形訊號的一例的波形圖。
圖5為例示由對象物所反射的反射光的受光量分布訊號的另一例的波形圖。
圖6為例示圖1所示的調整部調整投光量的第一實施例的訊號圖。
圖7為例示圖1所示的調整部調整投光量的第二實施例的訊號圖。
圖8為例示圖1所示的調整部調整投光量的第三實施例的訊 號圖。
圖9為例示圖1所示的調整部調整投光量的第四實施例的訊號圖。
參照隨附圖式對本發明的合適的實施形態加以說明。再者,各圖中,標註相同符號的構件具有相同或同樣的構成。
首先,一方面參照圖1,一方面對本實施形態的光學測量裝置的構成進行說明。該圖為例示本實施形態的光學測量裝置100的概略構成的構成圖。
如圖1所示,光學測量裝置100包括光源10、導光部20、感測器頭30、受光部40、控制部50、儲存部60、顯示部70及操作部80。光學測量裝置100以規定的測量週期來測量自該裝置至對象物TA為止的距離,具體而言,以規定的測量週期來測量自感測器頭30至對象物TA為止的距離。另外,光學測量裝置100亦可以規定的測量週期來測量以某位置為基準的距離的變化、即位移。
光源10以發出包含多個波長成分的光的方式構成。自光源10發出的光朝向對象物TA。再者,本實施形態的光源相當於本發明的「投光部」的一例。
光源10基於自控制部50輸入的控制訊號,例如以相對於測量週期而投光時間規定的比率(以下,將投光時間相對於測量週期的比率稱為「投光量」(單位為%))被供給有規定的電流值, 發出規定功率(以下稱為「投光功率」)的光。投光量、投光功率等可基於控制訊號而變更。
光源10較佳為發出包含多個波長成分的光。此時,光源10例如包含白色發光二極體(Light Emitting Diode,LED),產生白色光。然而,光源10發出的光只要為包含涵蓋光學測量裝置100所要求的距離範圍的波長範圍的光即可,不限定於白色光。
導光部20用於傳播光。導光部20例如包括第一纜線21、第二纜線22、第三纜線23及光耦合器24。
第一纜線21的一端(圖1中為左端)與光源10光學連接。第二纜線22的一端(圖1中為右端)與感測器頭30光學連接。第三纜線23的一端(圖1中為左端)與受光部40光學連接。第一纜線21的另一端(圖1中為右端)及第三纜線23的另一端(圖1中為右端)與第二纜線22的另一端(圖1中為左端)經由光耦合器24而光學結合。
光耦合器24將自第一纜線21入射的光傳送至第二纜線22,並且將自第二纜線22入射的光分割並分別傳送至第一纜線21及第三纜線23。再者,藉由光耦合器24自第二纜線22傳送至第一纜線21的光於光源10終結。
光耦合器24例如包含熔合延伸型(熔融延伸型)的光耦合器。另一方面,第一纜線21、第二纜線22及第三纜線23分別例如由光纖構成。各光纖可為具有單一的芯(core)的單芯,亦可為具有多個芯的多芯。
感測器頭30用於向對象物TA照射光。另外,感測器頭30用於將來自對象物TA的反射光聚光。再者,本實施形態的感測器頭30相當於本發明的「光學系統」的一例。
感測器頭30例如包括準直透鏡31、繞射透鏡32及物鏡33。
準直透鏡31以將自第二纜線入射的光轉換為平行光的方式構成。準直透鏡31包含單一或多個透鏡。另外,準直透鏡31亦用於將入射至感測器頭30的光聚光。
繞射透鏡32以使平行光產生沿著光軸方向的色差的方式構成。物鏡33以將產生了色差的光聚集並照射於對象物TA的方式構成。因藉由繞射透鏡32產生軸上色差,故而自物鏡33照射的光的每個波長在不同距離(位置)具有焦點。
圖1所示的例子中,示出了焦點距離相對較長的第一波長的光L1、及焦點距離相對較短的第二波長的光L2。第一波長的光L1在對象物TA的表面對焦(聚焦),另一方面,第二波長的光L2在對象物TA的近前對焦(聚焦)。
經對象物TA的表面反射的光經由物鏡33及繞射透鏡32而由準直透鏡31聚光,入射至第二纜線22。反射光中的第一波長的光L1於成為共焦點的第二纜線22的端面對焦,其大部分入射至第二纜線22。另一方面,其他波長於第二纜線22的端面並未對焦,不入射至第二纜線22。入射至第二纜線22的反射光藉由光耦合器24而其一部分傳送至第三纜線23,射出至受光部40。
於第二纜線22為光纖的情形時,其芯相當於針孔(pin hole)。因此,藉由減小光纖的芯徑,而將反射光聚光的針孔變小,可穩定地檢測於對象物TA的表面對焦的波長的光。
受光部40用於針對經感測器頭30聚光的光獲得後述的受光量分布訊號。經感測器頭30聚光的光例如為由對象物TA所反射的反射光。受光部40例如包括準直透鏡41、繞射光柵42、調整透鏡43、受光感測器44及處理電路45。
準直透鏡41以將自第三纜線入射的光轉換為平行光的方式構成。繞射光柵42以將該平行光按每個波長成分進行分光(分離)的方式構成。調整透鏡43以調整經分光的各波長的光的點徑的方式構成。
受光感測器44以針對經分光的光而可對每個波長成分檢測受光量的方式構成。受光感測器44包含多個受光元件。各受光元件與繞射光柵42的分光方向對應地一維排列。藉此,各受光元件與經分光的各波長成分的光對應地配置,受光感測器44可對每個波長成分檢測受光量。
受光感測器44的一個受光元件對應於一個畫素。因此,受光感測器44亦可謂以多個畫素各自可檢測受光量的方式構成。再者,各受光元件不限定於一維排列的情形,亦可二維排列。各受光元件例如較佳為於包含繞射光柵42的分光方向的檢測面上二維排列。
各受光元件基於自處理電路45輸入的控制訊號,根據 於規定的曝光時間的期間接收的光的受光量而蓄積電荷。而且,各受光元件基於自處理電路45輸入的控制訊號,於曝光時間以外、即非曝光時間的期間,輸出與所蓄積的電荷相應的電訊號。藉此,於曝光時間接收的受光量轉換為電訊號。
處理電路45以控制受光感測器44所進行的受光的方式構成。另外,對於處理電路45而言,以對自受光感測器44的各受光元件輸入的電訊號進行用以輸出至控制部50的訊號處理的方式構成。處理電路45例如包含放大電路及類比-數位(Analog-to-Digital,A/D)轉換電路。放大電路將自各受光元件輸入的電訊號以規定的增益分別放大。而且,A/D轉換電路對經放大的各受光元件的電訊號進行採樣(sampling)、量化(quantization)及編碼(coding),轉換為數位訊號。如此,各受光元件所檢測的受光量轉換為數位值,而獲得每個受光元件、即每個畫素的受光量的分布訊號(以下簡稱為「受光量分布訊號」)。處理電路45將該受光量分布訊號輸出至控制部50。各受光元件的規定的曝光時間、放大電路的規定的增益等可基於控制訊號而變更。
控制部50以控制光學測量裝置100的各部的運作的方式構成。另外,控制部50以藉由執行儲存於儲存部60的程式等而實現後述各功能的方式構成。控制部50例如包含中央處理單元(Central Processing Unit,CPU)等微處理器及唯讀記憶體(Read Only Memory,ROM)、隨機存取記憶體(Random Access Memory, RAM)、緩衝記憶體(buffer memory)等記憶體。
儲存部60以儲存程式或資料等的方式構成。儲存部60例如包含硬碟驅動器(hard disc driver)、固態驅動器(solid state driver)等。儲存部60預先儲存控制部50執行的各種程式或執行程式所需要的資料等。另外,儲存部60以儲存由返回光所得的受光量分布訊號的方式構成。
此處,一方面參照圖2及圖3,一方面對藉由受光部40所得的受光量分布訊號的一例進行說明。圖2為例示由對象物TA所反射的反射光的受光量分布訊號的一例的波形圖。圖3為例示不存在對象物TA時的受光量分布訊號的一例的波形圖。圖2及圖3中,橫軸為畫素(受光感測器44的各受光元件),縱軸為受光量。
如圖2所示,由對象物TA所反射的反射光的受光量分布訊號包含作為來自對象物TA的反射光的訊號光成分SC、及作為光學測量裝置100內部的反射光的返回光成分RC。即,對於自光源10發出的光而言,其一部分未自感測器頭30射出,而於光學測量裝置100的內部反射而返回。該光被稱為返回光,返回光例如於第二纜線22與感測器頭30的連接部、第二纜線22與光耦合器24的連接部、第一纜線21與光耦合器24的連接部等產生。返回光於受光量分布訊號中以返回光成分RC的形式出現。
另一方面,返回光為光學測量裝置100內部的反射光,故而即便為不存在對象物TA而並無來自對象物TA的反射光的狀態,亦出現於受光量分布訊號。因此,如圖3所示,可認為不存 在對象物TA時的受光量分布訊號與圖2所示的返回光成分RC相同或大致相同。
因此,於不存在對象物TA的狀態下獲得圖3所示的受光量分布訊號,並作為由返回光所得的受光量分布訊號而預先儲存於儲存部60。而且,於存在對象物TA的狀態下獲得圖2所示的受光量分布訊號,例如自圖2所示的受光量分布訊號減去圖3所示的受光量分布訊號,藉此可去除返回光成分RC,獲取以訊號光成分SC作為主成分的測量波形訊號。
回到圖1的說明,控制部50例如包括獲取部51、測量部52及調整部53作為其功能構成。
獲取部51以基於圖3所示的受光量分布訊號,自圖2所示的受光量分布訊號獲取測量波形訊號的方式構成。
此處,一方面參照圖4,一方面對藉由獲取部51獲取的測量波形訊號進行說明。該圖為例示測量波形訊號的一例的波形圖。圖4中,橫軸為畫素(受光感測器44的各受光元件),縱軸為經歸一化的受光量(歸一化受光量)。
詳細而言,獲取部51首先自圖2所示的由對象物TA所反射的反射光的受光量分布訊號,針對每個畫素而減去圖3所示的不存在對象物TA時的受光量分布訊號(做減法)。繼而,獲取部51針對其相減結果,乘以相對於獲得圖3的受光量分布訊號時的曝光時間的獲得圖2的受光量分布訊號時的曝光時間,即乘以(圖2的受光量分布訊號的曝光時間)/(圖3的受光量分布訊號 的曝光時間)(做乘法)。藉此,將由曝光時間所引起的受光量的差異歸一化。再者,儲存部60將該曝光時間亦與圖3的受光量分布訊號一併預先儲存。繼而,獲取部51針對每個畫素,將其相乘結果除以圖3的受光量分布訊號(做除法)。藉此,修正由圖2所示的返回光成分RC引起的鈍化(rounding)。如此,獲取部51獲取圖4所示的測量波形訊號MS。
回到圖1的說明,測量部52以基於藉由獲取部51獲取的測量波形訊號MS來測量自光學測量裝置100至對象物TA為止的距離,準確而言測量自感測器頭30至對象物TA為止的距離的方式構成。圖1所示的例子中,該距離為Z軸方向的距離。
如圖4所示,通常測量波形訊號MS具有某畫素的受光量成為波峰的波形。如上文所述,自感測器頭30至對焦的點為止的距離視波長而不同,故而測量波形訊號MS的波峰受光量的畫素為與自感測器頭30照射並於對象物TA對焦的光的波長對應的畫素。而且,該波長對應於自感測器頭30至對象物TA為止的距離。圖1所示的例子中,於對象物TA的表面對焦的第一波長的光L1作為受光量分布訊號的波峰受光量的波長而出現。
具體而言,於將測量波形訊號MS的波峰受光量設為100%時,求出50%的受光量的線與測量波形訊號MS的兩個交點的中間點,獲得與該中間點的畫素對應的波長λ。
波長λ與距離的關係(對應)預先儲存於控制部50的記憶體或儲存部60等。測量部52藉由參照該關係,而基於測量 波形訊號MS來測量自感測器頭30至對象物TA為止的距離。
如此,藉由基於測量波形訊號MS來測量自光學測量裝置100至對象物TA為止的距離,而將對於測量波形訊號MS而言成為雜訊成分的圖2所示的受光量分布訊號所含的返回光成分RC去除,因此與以下情形相比較,即基於由對象物TA所反射的反射光的受光量分布訊號來測量自光學測量裝置100至對象物TA為止的距離,可抑制雜訊的影響而測量距離。
調整部53以下述方式構成,即:於由對象物TA所反射的反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號MS的方式,調整對於對象物TA的反射光的受光量分布訊號的感度參數。
此處,一方面參照圖5,一方面對藉由受光部40所得的受光量分布訊號的另一例進行說明。該圖為例示由對象物TA所反射的反射光的受光量分布訊號的另一例的波形圖。圖5中,橫軸為畫素(受光感測器44的各受光元件),縱軸為受光量。
對象物TA的反射光的受光量分布訊號中,有時其一部分受光量成為規定值以上。其結果為,如圖5所示,受光量分布訊號包含受光量保持規定值而不變得更大的部分。此時,圖5所示的受光量分布訊號不含圖2所示的受光量分布訊號般的訊號光成分SC,故而獲取部51無法自圖5所示的受光量分布訊號獲取測量波形訊號MS。
因此,調整部53於存在對象物TA時的受光量分布訊號 中,於如圖5所示般其一部分受光量為規定值以上時,調整對於對象物TA的反射光的受光量分布訊號的感度參數。此處,例如藉由調整投光量等感度參數,而可使受光量分布訊號的受光量變化。藉由調整部53調整感度參數,而受光部40可獲取圖2所示般的包含訊號光成分SC的受光量分布訊號,而藉由獲取部51獲取測量波形訊號MS。因此,於由對象物TA所反射的反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號MS的方式,調整部53調整對於對象物TA的反射光的受光量分布訊號的感度參數,藉此可於調整感度參數之後所得的對象物TA的反射光的受光量分布訊號中,使受光量小於規定值,例如不使受光量飽和,而於調整感度參數後的對象物TA的反射光的受光量分布訊號包含圖2所示的訊號光成分SC。因此,藉由調整由對象物TA所反射的反射光的受光量分布訊號的感度參數,而可自對象物TA的反射光的受光量分布訊號獲取測量波形訊號。
圖5所示的例子中,於對象物TA的反射光的受光量分布訊號中,受光量的規定值為藉由受光部40可接收的受光量飽和的值。藉此,可於調整感度參數之後所得的對象物TA的反射光的受光量分布訊號中,防止受光量的飽和。
為了辨識藉由獲取部51獲取的測量波形訊號MS與由雜訊等所致的訊號,調整部53較佳為以獲取的測量波形訊號MS的波峰受光量成為規定值以上的方式,調整對於對象物TA的反射光的受光量分布訊號的感度參數。藉此,例如藉由對測量波形訊 號MS設定小於規定值的臨限值,而可排除由可能與測量波形訊號MS混雜的雜訊等所致的訊號。
對於對象物TA的反射光的受光量分布訊號的感度參數包含光源10的投光量、光源10的投光功率、受光感測器44的各受光元件的曝光時間、及處理電路45中的放大電路的增益中的至少一個。藉此,可於由對象物TA所反射的反射光的受光量分布訊號中,使受光量容易地變化。
以下,作為由對象物TA所反射的反射光的受光量分布訊號的感度參數,使用投光量來進行說明。
此處,一方面參照圖6至圖9,一方面對由調整部53進行的對於對象物TA的反射光的受光量分布訊號的感度參數的調整進行說明。圖6為例示圖1所示的調整部53調整投光量的第一實施例的訊號圖。圖7為例示圖1所示的調整部53調整投光量的第二實施例的訊號圖。圖8為例示圖1所示的調整部53調整投光量的第三實施例的訊號圖。圖9為例示圖1所示的調整部53調整投光量的第四實施例的訊號圖。圖5至圖9中,橫軸為時間,縱軸為投光量[%]。
(第一實施例)
例如如圖6所示,調整部53使投光量階段性地增加直至藉由獲取部51獲取測量波形訊號MS為止。投光量的步幅Vst例如設定為10[%],該投光量的投光時間的步幅Tst例如設定為測量週期的3倍(3週期份)。設定為投光量的步幅Vst及投光時間的步幅 Tst的值亦可顯示於後述的顯示部70,且藉由操作部80而可變更。
於即便階段性地增加的投光量達到規定值、圖6所示的例子中為100[%]但亦未獲取測量波形訊號MS的情形時,調整部53使投光量降低至下限值Vmin為止。投光量的下限值Vmin例如設定為10[%]。設定為投光量的下限值Vmin的值亦可與投光量的步幅Vst及投光時間的步幅Tst同樣地顯示於顯示部70,且藉由操作部80而可變更。
使投光量降低至下限值Vmin為止後,調整部53再次使投光量階段性地增加直至藉由獲取部51獲取測量波形訊號MS為止。
(第二實施例)
例如如圖7所示,調整部53使投光量階段性地降低直至藉由獲取部51獲取測量波形訊號MS為止。投光量的步幅Vst例如設定為10[%],該投光量的投光時間的步幅Tst例如設定為測量週期的3倍(3週期份)。設定為投光量的步幅Vst及投光時間的步幅Tst的值亦可與第一實施例同樣地顯示於顯示部70,且藉由操作部80而可變更。
於即便階段性地降低的投光量達到預先設定的下限值Vmin、例如10[%]但亦未獲取測量波形訊號MS的情形時,調整部53使投光量增加至規定值、圖6所示的例子中為100[%]為止。設定為投光量的下限值Vmin的值亦可與第一實施例同樣地顯示於顯示部70,且藉由操作部80而可變更。
於使投光量增加至規定值為止後,調整部53再次使投光量階段性地降低直至藉由獲取部51獲取測量波形訊號MS為止。
(第三實施例)
於預先得知對象物TA的反射率的情形時,對於對象物TA的反射光的受光量分布訊號的感度參數只要於規定範圍內調整便足矣。此時,例如如圖8所示,調整部53於調整範圍AR1內使投光量階段性地增加直至藉由獲取部51獲取測量波形訊號MS為止。調整範圍AR1為基於對象物TA的反射率而設定的投光量的範圍,例如為以與對象物TA的反射率對應的投光量作為中央值的範圍。調整範圍AR1顯示於顯示部70,且藉由操作部80而指定。
與第一實施例同樣地,調整部53使投光量以投光量的步幅Vst及投光時間的步幅Tst階段性地增加,於即便投光量達到調整範圍AR1的上限值但亦未獲取測量波形訊號MS的情形時,調整部53使投光量降低至調整範圍AR1的下限值為止。其後,調整部53再次於調整範圍AR1內使投光量階段性地增加直至藉由獲取部51獲取測量波形訊號MS為止。
第三實施例中,示出了調整部53於調整範圍AR1內使投光量階段性地增加的示例,但不限定於此。亦可與第二實施例同樣地,調整部53於調整範圍AR1內使投光量階段性地降低。此時,於即便投光量達到調整範圍AR1的下限值但亦未獲取測量波形訊號MS的情形時,調整部53使投光量增加至調整範圍AR1 的上限值為止。
如此,藉由基於對象物TA的反射率來設定感度參數的調整範圍AR1,而可縮小(限定)感度參數的調整範圍,可縮短感度參數的調整所耗的時間。
(第四實施例)
於藉由獲取部51可獲取測量波形訊號MS時,於將對於對象物TA的反射光的受光量分布訊號的感度參數儲存於控制部50的記憶體或儲存部60等的情形時,感度參數只要於規定範圍內調整便足矣。此時,例如如圖9所示,調整部53於調整範圍AR2內使投光量階段性地增加直至藉由獲取部51獲取測量波形訊號MS為止。調整範圍AR2為基於獲取前一次測量波形訊號MS時的投光量Vpre而設定的投光量的範圍,例如為以獲取前一次測量波形訊號MS時的投光量作為中央值的範圍。
與第一實施例同樣地,調整部53使投光量以投光量的步幅Vst及投光時間的步幅Tst階段性地增加,於即便投光量達到調整範圍AR2的上限值但亦未獲取測量波形訊號MS的情形時,調整部53使投光量降低至調整範圍AR2的下限值為止。其後,調整部53再次於調整範圍AR2內使投光量階段性地增加直至藉由獲取部51獲取測量波形訊號MS為止。
第四實施例中,示出了調整部53於調整範圍AR2內使投光量階段性地增加的示例,但不限定於此。亦可與第二實施例同樣地,調整部53於調整範圍AR2內使投光量階段性地降低。此 時,於即便投光量達到調整範圍AR2的下限值但亦未獲取測量波形訊號MS的情形時,調整部53使投光量增加至調整範圍AR2的上限值為止。
如此,藉由基於獲取前一次測量波形訊號MS時的感度參數來設定感度參數的調整範圍AR2,而可縮小(限定)感度參數的調整範圍,可縮短感度參數的調整所耗的時間。
回到圖1的說明,顯示部70用於輸出資訊。詳細而言,顯示部70例如以顯示設定內容、運作狀態、通訊狀態等的方式構成。顯示部70例如包含多位數的七段顯示器或十一段顯示器、及以多色發光的顯示燈。
操作部80用於藉由利用者(用戶)的操作而輸入資訊。操作部80例如包含按鈕、開關等。此時,於利用者操作按鈕、開關等時,與操作相應的訊號輸入至控制部50。繼而,控制部50生成與該訊號對應的資料,藉此可向光學測量裝置100輸入資訊。
本實施形態中,示出了光學測量裝置100為白色共焦點方式的示例,但不限定於此。本發明的光學測量裝置例如亦可為三角測距方式。此時,光學測量裝置只要包括下述構件即可:投光部,向對象物發出光;受光部,獲得每個畫素的受光量分布訊號;獲取部,基於不存在對象物TA時的受光量分布訊號,自利用對象物TA所反射的反射光的受光量分布訊號獲取測量波形訊號;以及調整部53,於由對象物TA所反射的反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號MS 的方式,調整對於對象物TA的反射光的受光量分布訊號的感度參數。
如此,根據本實施形態的光學測量裝置100以及光學測量方法,於由對象物TA所反射的反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號MS的方式,調整對於對象物TA的反射光的受光量分布訊號的感度參數。藉此,可於調整感度參數之後所得的對象物TA的反射光的受光量分布訊號中,使受光量小於規定值,例如不使受光量飽和,而於調整感度參數後的對象物TA的反射光的受光量分布訊號包含圖2所示的訊號光成分SC。因此,藉由調整由對象物TA所反射的反射光的受光量分布訊號的感度參數,而可自對象物TA的反射光的受光量分布訊號獲取測量波形訊號。
以上說明的實施形態是為了使本發明的理解容易,而非用於限定性地解釋本發明。實施形態所包括的各要素及其配置、材料、條件、形狀以及尺寸等不限定於例示,可適當變更。另外,可將不同實施形態所示的構成彼此局部地置換或組合。
(附記)
1.一種光學測量裝置(100),包括:光源(10),向對象物(TA)發出光;受光部(40),以多個畫素各自可檢測受光量的方式構成,且獲得每個畫素的受光量分布訊號;獲取部(51),基於不存在對象物(TA)時的受光量分布訊 號,自利用對象物(TA)所反射的反射光的受光量分布訊號獲取測量波形訊號MS;以及調整部(53),於反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號(MS)的方式,調整對於反射光的受光量分布訊號的感度參數。
9.一種光學測量方法,包括:投光步驟,向對象物(TA)發出光;受光步驟,獲得每個畫素的受光量分布訊號;獲取步驟,基於不存在對象物(TA)時的受光量分布訊號,自利用對象物(TA)所反射的反射光的受光量分布訊號獲取測量波形訊號(MS);以及調整步驟,於反射光的受光量分布訊號的一部分受光量為規定值以上時,以獲取測量波形訊號(MS)的方式,調整對於反射光的受光量分布訊號的感度參數。
10:光源
20:導光部
21:第一纜線
22:第二纜線
23:第三纜線
24:光耦合器
30:感測器頭
31、41:準直透鏡
32:繞射透鏡
33:物鏡
40:受光部
42:繞射光柵
43:調整透鏡
44:受光感測器
45:處理電路
50:控制部
51:獲取部
52:測量部
53:調整部
60:儲存部
70:顯示部
80:操作部
100:光學測量裝置
L1、L2:光
TA:對象物

Claims (15)

  1. 一種光學測量裝置,包括:投光部,向對象物發出光;受光部,以多個畫素各自能夠檢測受光量的方式構成,且獲得所述每個畫素的受光量分布訊號;獲取部,自利用所述對象物所反射的反射光的所述受光量分布訊號,基於針對所述每個畫素而減去不存在所述對象物時的所述受光量分布訊號的相減結果,獲取測量波形訊號;以及調整部,於所述反射光的所述受光量分布訊號的一部分受光量為規定值以上時,以獲取所述測量波形訊號的方式,調整對於所述反射光的所述受光量分布訊號的感度參數,所述調整部以獲取的所述測量波形訊號的波峰受光量成為規定值以上的方式,調整對於所述反射光的所述受光量分布訊號的感度參數。
  2. 如申請專利範圍第1項所述的光學測量裝置,其中所述調整部於所述反射光的所述受光量分布訊號的一部分受光量為規定值以上時,以獲取所述測量波形訊號的方式,階段性地調整對於所述反射光的所述受光量分布訊號的感度參數。
  3. 如申請專利範圍第1項或第2項所述的光學測量裝置,其中所述調整部基於所述對象物的反射率而設定調整所述感度參數的範圍。
  4. 如申請專利範圍第1項或第2項所述的光學測量裝置,其中所述調整部基於獲取前一次所述測量波形訊號時的所述感度參數而設定調整所述感度參數的範圍。
  5. 如申請專利範圍第1項或第2項所述的光學測量裝置,其中所述感度參數包含所述光的投光量、所述光的投光功率、所述受光部的曝光時間及所述受光部的增益中的至少一個。
  6. 如申請專利範圍第1項或第2項所述的光學測量裝置,其中所述受光量的規定值為受光量飽和的值。
  7. 如申請專利範圍第1項或第2項所述的光學測量裝置,更包括:測量部,所述測量部基於所述測量波形訊號而測量自所述光學測量裝置至所述對象物為止的距離。
  8. 如申請專利範圍第1項或第2項所述的光學測量裝置,更包括:光學系統,使所述光產生沿著光軸方向的色差,將產生了色差的光照射於所述對象物,且所述光包含多個波長成分,所述光學系統將所述反射光聚光,所述受光部以能夠針對所述每個波長成分檢測所述受光量的 方式構成。
  9. 一種光學測量方法,包括:投光步驟,向對象物發出光;受光步驟,獲得每個畫素的受光量分布訊號;獲取步驟,自利用所述對象物所反射的反射光的所述受光量分布訊號,基於針對所述每個畫素而減去不存在所述對象物時的所述受光量分布訊號的相減結果,獲取測量波形訊號;以及調整步驟,於所述反射光的所述受光量分布訊號的一部分受光量為規定值以上時,以獲取所述測量波形訊號的方式,調整對於所述反射光的所述受光量分布訊號的感度參數,所述調整步驟以獲取的所述測量波形訊號的波峰受光量成為規定值以上的方式,調整對於所述反射光的所述受光量分布訊號的感度參數。
  10. 如申請專利範圍第9項所述的光學測量方法,其中所述調整步驟於所述反射光的所述受光量分布訊號的一部分受光量為規定值以上時,以獲取所述測量波形訊號的方式,階段性地調整對於所述反射光的所述受光量分布訊號的感度參數。
  11. 如申請專利範圍第9項或第10項所述的光學測量方法,其中所述調整步驟包含:基於所述對象物的反射率而設定調整所述感度參數的範圍。
  12. 如申請專利範圍第9項或第10項所述的光學測量方 法,其中所述調整步驟包含:基於獲取前一次所述測量波形訊號時的所述感度參數而設定調整所述感度參數的範圍。
  13. 如申請專利範圍第9項或第10項所述的光學測量方法,其中所述感度參數包含所述光的投光量、所述光的投光功率、受光部的曝光時間及所述受光部的增益中的至少一個。
  14. 如申請專利範圍第9項或第10項所述的光學測量方法,其中所述受光量的規定值為受光量飽和的值。
  15. 如申請專利範圍第9項或第10項所述的光學測量方法,更包括:測量步驟,所述測量步驟基於所述測量波形訊號而測量自光學測量裝置至所述對象物為止的距離。
TW108138955A 2018-11-08 2019-10-29 光學測量裝置以及光學測量方法 TWI754182B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-210436 2018-11-08
JP2018210436A JP2020076653A (ja) 2018-11-08 2018-11-08 光学計測装置及び光学計測方法

Publications (2)

Publication Number Publication Date
TW202037880A TW202037880A (zh) 2020-10-16
TWI754182B true TWI754182B (zh) 2022-02-01

Family

ID=70612374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138955A TWI754182B (zh) 2018-11-08 2019-10-29 光學測量裝置以及光學測量方法

Country Status (7)

Country Link
US (1) US20220075062A1 (zh)
EP (1) EP3879224A4 (zh)
JP (1) JP2020076653A (zh)
KR (1) KR20210044875A (zh)
CN (1) CN112654834A (zh)
TW (1) TWI754182B (zh)
WO (1) WO2020095667A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704387B2 (ja) * 1995-02-23 2005-10-12 オリンパス株式会社 共焦点走査型光学顕微鏡およびこの顕微鏡を使用した測定方法
CN103162617A (zh) * 2011-12-09 2013-06-19 陈亮嘉 彩色共焦显微系统及其信号处理方法
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
WO2017110837A1 (ja) * 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
JP2017116507A (ja) * 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
US20180274903A1 (en) * 2015-12-25 2018-09-27 Keyence Corporation Confocal Displacement Sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809081B2 (ja) * 1993-12-27 1998-10-08 日本電気株式会社 露光装置
JP4133884B2 (ja) * 2004-03-18 2008-08-13 株式会社ミツトヨ 光学的変位測定器
US8860931B2 (en) * 2012-02-24 2014-10-14 Mitutoyo Corporation Chromatic range sensor including measurement reliability characterization
JP5974561B2 (ja) 2012-03-15 2016-08-23 オムロン株式会社 光学式センサおよび感度調整制御のための設定方法
JP6045963B2 (ja) * 2013-04-05 2016-12-14 日立マクセル株式会社 光測距装置
US9958266B2 (en) * 2015-07-09 2018-05-01 Mitutoyo Corporation Chromatic range sensor including dynamic intensity compensation function
JP6493265B2 (ja) * 2016-03-24 2019-04-03 オムロン株式会社 光学計測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704387B2 (ja) * 1995-02-23 2005-10-12 オリンパス株式会社 共焦点走査型光学顕微鏡およびこの顕微鏡を使用した測定方法
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
CN103162617A (zh) * 2011-12-09 2013-06-19 陈亮嘉 彩色共焦显微系统及其信号处理方法
WO2017110837A1 (ja) * 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
JP2017116507A (ja) * 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
US20180274903A1 (en) * 2015-12-25 2018-09-27 Keyence Corporation Confocal Displacement Sensor

Also Published As

Publication number Publication date
EP3879224A4 (en) 2022-08-10
EP3879224A1 (en) 2021-09-15
TW202037880A (zh) 2020-10-16
JP2020076653A (ja) 2020-05-21
US20220075062A1 (en) 2022-03-10
KR20210044875A (ko) 2021-04-23
WO2020095667A1 (ja) 2020-05-14
CN112654834A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
JP2019002720A (ja) 共焦点変位計
JP2017138251A (ja) クロマティック共焦点センサ及び測定方法
JP2017116508A (ja) 共焦点変位計
TWI754182B (zh) 光學測量裝置以及光學測量方法
JP2017116509A (ja) 共焦点変位計
JP6722450B2 (ja) 共焦点変位計
KR102612466B1 (ko) 광학 계측 장치 및 광학 계측 방법
TWI723324B (zh) 光學測量裝置以及光學測量方法
TWI755690B (zh) 光學測量裝置、光學測量方法以及光學測量程式
TWI667464B (zh) 光學測量裝置及光學測量方法
JP6928688B2 (ja) 共焦点変位計
WO2020145172A1 (ja) 光学計測装置及び光学計測方法