KR20210044875A - 광학 계측 장치 및 광학 계측 방법 - Google Patents

광학 계측 장치 및 광학 계측 방법 Download PDF

Info

Publication number
KR20210044875A
KR20210044875A KR1020217008698A KR20217008698A KR20210044875A KR 20210044875 A KR20210044875 A KR 20210044875A KR 1020217008698 A KR1020217008698 A KR 1020217008698A KR 20217008698 A KR20217008698 A KR 20217008698A KR 20210044875 A KR20210044875 A KR 20210044875A
Authority
KR
South Korea
Prior art keywords
light
amount
signal
received
distribution signal
Prior art date
Application number
KR1020217008698A
Other languages
English (en)
Inventor
준 다카시마
요시히로 가네타니
Original Assignee
오므론 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오므론 가부시키가이샤 filed Critical 오므론 가부시키가이샤
Publication of KR20210044875A publication Critical patent/KR20210044875A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

수광량 분포 신호로부터 측정 파형 신호를 얻는다. 광학 계측 장치(100)는, 대상물(TA)을 향하여 광을 발하는 광원(10)과, 복수의 화소 각각이 수광량을 검출 가능하게 구성되는 수광부(40)로서, 화소마다의 수광량 분포 신호를 얻는 수광부(40)와, 대상물(TA)이 존재하지 않을 때의 수광량 분포 신호에 기초하여, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호로부터 계측 파형 신호(MS)를 취득하는 취득부(51)와, 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정부(53)를 구비한다.

Description

광학 계측 장치 및 광학 계측 방법
본 발명은, 광학 계측 장치 및 광학 계측 방법에 관한 것이다.
종래, 투광부(101)와, 복수의 광전 변환 소자의 배열에 의해 수광에 따른 전하를 소정 시간 축적하고 나서 출력하는 구성의 수광부(102)를 구비하는 반사형의 광학식 센서(1)에 있어서, 검출 대상물에의 투광이 개시되고 나서 판정 출력이 행해지기까지의 응답 시간으로서 허용되는 시간의 길이와, 투광 및 수광과 감도의 조정 처리를 포함한 측정 처리의 주기의 길이에 기초하여, 응답 시간 내에 실현 가능한 감도 조정의 최대 횟수를 구하고, 이 최대 횟수분의 감도 조정에 의한 다이내믹 레인지가, 상기 최대 횟수와 1회의 감도 조정 처리에 의해 조정되는 최대의 배율에 의해 정해지는 최대의 다이내믹 레인지를 넘지 않도록 하는 것을 조건으로, 노광 시간, 투광 강도, 및 수광량의 증폭율의 각 감도 파라미터의 조정 범위의 조합을 설정하는 것이 알려져 있다(특허문헌 1 참조). 이 광학식 센서는, 요구되는 응답 시간을 지키면서 다이내믹 레인지를 가능한 한 넓게 할 수 있다.
특허문헌 1: 일본공개특허 2013-190378호 공보
한편, 수광부를 구성하는 복수의 화소를 이용하여 화소마다의 수광량 분포 신호를 얻는 경우, 수광량 분포 신호에는, 대상물에 의해 반사된 신호광 성분 이외에, 파이버 케이블의 접속부 등에서 반사된 귀환광 성분이 포함되는 것이 알려졌다.
이 귀환광 성분을 제거하기 위해, 종래의 광학 계측 장치에서는, 대상물이 있는 상태에서 얻은 수광량 분포 신호로부터 대상물이 없는 상태에서 얻은 수광량 분포 신호를 빼어, 대상물에 의해 반사된 신호광 성분인 계측 파형 신호를 얻고, 이 계측 파형 신호에 기초하여 대상물까지의 거리를 계측하였다.
그러나, 대상물이 없는 상태에서 얻은 수광량 분포 신호의 감도 파라미터를 이용하여, 대상물이 있는 상태에서 수광량 분포 신호를 얻으면, 그 일부의 수광량이 포화되어 버리는 경우가 있어, 계측 파형 신호를 얻지 못하는 경우가 있었다.
그래서, 본 발명은, 수광량 분포 신호로부터 측정 파형 신호를 얻을 수 있는 광학 계측 장치 및 광학 계측 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 형태에 관한 광학 계측 장치는, 대상물을 향하여 광을 발하는 투광부와, 복수의 화소 각각이 수광량을 검출 가능하게 구성되는 수광부로서, 화소마다의 수광량 분포 신호를 얻는 수광부와, 대상물이 존재하지 않을 때의 수광량 분포 신호에 기초하여, 대상물에 의해 반사된 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득하는 취득부와, 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호가 취득되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정부를 구비한다.
이 형태에 의하면, 대상물에 의해 반사된 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호가 취득되도록, 대상물의 반사광의 수광량 분포 신호에 대한 감도 파라미터가 조정된다. 이에 의해, 감도 파라미터를 조정한 후에 얻은 대상물의 반사광의 수광량 분포 신호에 있어서, 수광량을 소정값 미만으로 하는 것, 예를 들어 수광량을 포화시키지 않는 것이 가능해지고, 감도 파라미터를 조정 후의 대상물의 반사광의 수광량 분포 신호에는, 신호광 성분이 포함된다. 따라서, 대상물에 의해 반사된 반사광의 수광량 분포 신호의 감도 파라미터를 조정함으로써, 대상물의 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득할 수 있다.
전술한 형태에 있어서, 조정부는, 취득되는 계측 파형 신호의 피크 수광량이 소정값 이상이 되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정해도 된다.
이 형태에 의하면, 취득되는 계측 파형 신호의 피크 수광량이 소정값 이상이 되도록, 대상물의 반사광의 수광량 분포 신호에 대한 감도 파라미터가 조정된다. 이에 의해, 예를 들어 계측 파형 신호에 대해, 소정값 미만의 문턱값을 설정함으로써, 계측 파형 신호와 혼동할 수 있는 잡음 등에 의한 신호를 제외할 수 있다.
전술한 형태에 있어서, 조정부는, 대상물의 반사율에 기초하여, 감도 파라미터를 조정하는 범위를 설정해도 된다.
이 형태에 의하면, 대상물의 반사율에 기초하여, 감도 파라미터를 조정하는 범위가 설정된다. 이에 의해, 감도 파라미터의 조정 범위를 좁힐(한정할) 수 있어, 감도 파라미터의 조정에 걸리는 시간을 단축할 수 있다.
전술한 형태에 있어서, 조정부는, 전회(前回)의 계측 파형 신호가 취득되었을 때의 감도 파라미터에 기초하여, 감도 파라미터를 조정하는 범위를 설정해도 된다.
이 형태에 의하면, 전회의 계측 파형 신호가 취득되었을 때의 감도 파라미터에 기초하여, 감도 파라미터를 조정하는 범위가 설정된다. 이에 의해, 감도 파라미터의 조정 범위를 좁힐(한정할) 수 있어, 감도 파라미터의 조정에 걸리는 시간을 단축할 수 있다.
전술한 형태에 있어서, 감도 파라미터는, 광의 투광량, 광의 투광 파워, 수광부의 노광 시간, 및 수광부의 게인 중 적어도 하나를 포함해도 된다.
이 형태에 의하면, 감도 파라미터는, 광의 투광량, 광의 투광 파워, 수광부의 노광 시간, 및 수광부의 게인 중 적어도 하나를 포함한다. 이에 의해, 대상물에 의해 반사된 반사광의 수광량 분포 신호에 있어서, 수광량을 용이하게 변화시킬 수 있다.
전술한 형태에 있어서, 수광량의 소정값은, 수광량이 포화되는 값이어도 된다.
이 형태에 의하면, 대상물의 반사광의 수광량 분포 신호에서의 수광량의 소정값은, 수광량이 포화되는 값이다. 이에 의해, 감도 파라미터를 조정한 후에 얻은 대상물의 반사광의 수광량 분포 신호에 있어서, 수광량의 포화를 방지할 수 있다.
전술한 형태에 있어서, 계측 파형 신호에 기초하여, 광학 계측 장치로부터 대상물까지의 거리를 계측하는 계측부를 더 구비해도 된다.
이 형태에 의하면, 계측 파형 신호에 기초하여, 광학 계측 장치로부터 대상물까지의 거리가 계측된다. 이에 의해, 계측 파형 신호에 있어서 잡음 성분이 되는, 수광량 분포 신호에 포함되는 귀환광 성분이 제거되므로, 대상물에 의해 반사된 반사광의 수광량 분포 신호에 기초하여 광학 계측 장치로부터 대상물까지의 거리를 계측하는 경우와 비교하여, 잡음의 영향을 억제하여 거리를 계측할 수 있다.
전술한 형태에 있어서, 광에 대해 광축 방향을 따르는 색수차를 발생시키고, 색수차를 발생시킨 광을 대상물에 조사하는 광학계를 더 구비하며, 광은 복수의 파장 성분을 포함하고, 광학계는 반사광을 집광하며, 수광부는 파장 성분마다 수광량을 검출 가능하게 구성되어도 된다.
이 형태에 의하면, 광에 대해 광축 방향을 따르는 색수차를 발생시키고, 색수차를 발생시킨 광이 대상물에 조사되며, 광은 복수의 파장 성분을 포함하고, 반사광이 집광되며, 파장 성분마다 수광량이 검출 가능해진다. 대상물의 반사광의 수광량 분포 신호로부터 계측 파형 신호를 얻는 백색 공초점 방식의 광학 계측 장치를 용이하게 실현할 수 있다.
또한, 본 발명의 다른 형태에 관한 광학 계측 방법은, 대상물을 향하여 광을 발하는 투광 단계와, 화소마다의 수광량 분포 신호를 얻는 수광 단계와, 대상물이 존재하지 않을 때의 수광량 분포 신호에 기초하여, 대상물에 의해 반사된 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득하는 취득 단계와, 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호가 취득되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정 단계를 포함한다.
이 형태에 의하면, 대상물에 의해 반사된 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호가 취득되도록, 대상물의 반사광의 수광량 분포 신호에 대한 감도 파라미터가 조정된다. 이에 의해, 감도 파라미터를 조정한 후에 얻은 대상물의 반사광의 수광량 분포 신호에 있어서, 수광량을 소정값 미만으로 하는 것, 예를 들어 수광량을 포화시키지 않는 것이 가능해지고, 감도 파라미터를 조정 후의 대상물의 반사광의 수광량 분포 신호에는, 신호광 성분이 포함된다. 따라서, 대상물에 의해 반사된 반사광의 수광량 분포 신호의 감도 파라미터를 조정함으로써, 대상물의 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득할 수 있다.
전술한 형태에 있어서, 조정 단계는, 취득되는 계측 파형 신호의 피크 수광량이 소정값 이상이 되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 것을 포함해도 된다.
이 형태에 의하면, 취득되는 계측 파형 신호의 피크 수광량이 소정값 이상이 되도록, 대상물의 반사광의 수광량 분포 신호에 대한 감도 파라미터가 조정된다. 이에 의해, 예를 들어 계측 파형 신호에 대해, 소정값 미만의 문턱값을 설정함으로써, 계측 파형 신호와 혼동할 수 있는 잡음 등에 의한 신호를 제외할 수 있다.
전술한 형태에 있어서, 조정 단계는, 대상물의 반사율에 기초하여, 감도 파라미터를 조정하는 범위를 설정하는 것을 포함해도 된다.
이 형태에 의하면, 대상물의 반사율에 기초하여, 감도 파라미터를 조정하는 범위가 설정된다. 이에 의해, 감도 파라미터의 조정 범위를 좁힐(한정할) 수 있어, 감도 파라미터의 조정에 걸리는 시간을 단축할 수 있다.
전술한 형태에 있어서, 조정 단계는, 전회의 계측 파형 신호가 취득되었을 때의 감도 파라미터에 기초하여, 감도 파라미터를 조정하는 범위를 설정하는 것을 포함해도 된다.
이 형태에 의하면, 전회의 계측 파형 신호가 취득되었을 때의 감도 파라미터에 기초하여, 감도 파라미터를 조정하는 범위가 설정된다. 이에 의해, 감도 파라미터의 조정 범위를 좁힐(한정할) 수 있어, 감도 파라미터의 조정에 걸리는 시간을 단축할 수 있다.
전술한 형태에 있어서, 감도 파라미터는, 광의 투광량, 광의 투광 파워, 수광부의 노광 시간, 및 수광부의 게인 중 적어도 하나를 포함해도 된다.
이 형태에 의하면, 감도 파라미터는, 광의 투광량, 광의 투광 파워, 수광부의 노광 시간, 및 수광부의 게인 중 적어도 하나를 포함한다. 이에 의해, 대상물에 의해 반사된 반사광의 수광량 분포 신호에 있어서, 수광량을 용이하게 변화시킬 수 있다.
전술한 형태에 있어서, 수광량의 소정값은, 수광량이 포화되는 값이어도 된다.
이 형태에 의하면, 대상물의 반사광의 수광량 분포 신호에서의 수광량의 소정값은, 수광량이 포화되는 값이다. 이에 의해, 감도 파라미터를 조정한 후에 얻은 대상물의 반사광의 수광량 분포 신호에 있어서, 수광량의 포화를 방지할 수 있다.
전술한 형태에 있어서, 계측 파형 신호에 기초하여, 광학 계측 장치로부터 대상물까지의 거리를 계측하는 계측 단계를 더 포함해도 된다.
이 형태에 의하면, 계측 파형 신호에 기초하여, 광학 계측 장치로부터 대상물(TA)까지의 거리가 계측된다. 이에 의해, 계측 파형 신호에 있어서 잡음 성분이 되는, 수광량 분포 신호에 포함되는 귀환광 성분이 제거되므로, 대상물에 의해 반사된 반사광의 수광량 분포 신호에 기초하여 광학 계측 장치로부터 대상물까지의 거리를 계측하는 경우와 비교하여, 잡음의 영향을 억제하여 거리를 계측할 수 있다.
본 발명에 의하면, 수광량 분포 신호로부터 측정 파형 신호를 얻을 수 있다.
도 1은, 본 실시형태에 관한 광학 계측 장치의 개략 구성을 예시하는 구성도이다.
도 2는, 대상물에 의해 반사된 반사광의 수광량 분포 신호의 일례를 예시하는 파형도이다.
도 3은, 대상물이 존재하지 않을 때의 수광량 분포 신호의 일례를 예시하는 파형도이다.
도 4는, 계측 파형 신호의 일례를 예시하는 파형도이다.
도 5는, 대상물에 의해 반사된 반사광의 수광량 분포 신호의 다른 예를 예시하는 파형도이다.
도 6은, 도 1에 도시된 조정부가 투광량을 조정하는 제1 실시예를 예시하는 신호도이다.
도 7은, 도 1에 도시된 조정부가 투광량을 조정하는 제2 실시예를 예시하는 신호도이다.
도 8은, 도 1에 도시된 조정부가 투광량을 조정하는 제3 실시예를 예시하는 신호도이다.
도 9는, 도 1에 도시된 조정부가 투광량을 조정하는 제4 실시예를 예시하는 신호도이다.
첨부 도면을 참조하여, 본 발명의 적합한 실시형태에 대해 설명한다. 또, 각 도면에 있어서, 동일한 부호를 부여한 것은, 동일 또는 마찬가지의 구성을 가진다.
우선, 도 1을 참조하면서, 본 실시형태에 관한 광학 계측 장치의 구성에 대해 설명한다. 도 1은, 본 실시형태에 관한 광학 계측 장치(100)의 개략 구성을 예시하는 구성도이다.
도 1에 도시된 바와 같이, 광학 계측 장치(100)는, 광원(10)과, 도광부(20)와, 센서 헤드(30)와, 수광부(40)와, 제어부(50)와, 기억부(60)와, 표시부(70)와, 조작부(80)를 구비한다. 광학 계측 장치(100)는, 이 장치로부터, 구체적으로는 센서 헤드(30)로부터 대상물(TA)까지의 거리를 소정의 계측 주기로 계측한다. 또한, 광학 계측 장치(100)는, 어떤 위치를 기준으로 한 거리의 변화, 즉 변위를 소정의 계측 주기로 계측해도 된다.
광원(10)은, 복수의 파장 성분을 포함한 광을 발하도록 구성되어 있다. 광원(10)으로부터 발한 광은, 대상물(TA)로 향한다. 또, 본 실시형태에 관한 광원은, 본 발명의 「투광부」의 일례에 상당한다.
광원(10)은, 제어부(50)로부터 입력되는 제어 신호에 기초하여, 예를 들어, 계측 주기에 대해 투광 시간이 소정의 비율(이하, 계측 주기에 대한 투광 시간의 비율을 「투광량」이라고 함(단위는 %))로, 소정의 전류값이 공급되어 소정 파워(이하, 「투광 파워」라고 함)의 광을 발한다. 투광량, 투광 파워 등은, 제어 신호에 기초하여 변경하는 것이 가능하다.
광원(10)은, 복수의 파장 성분을 포함한 광을 발하는 것이 바람직하다. 이 경우, 광원(10)은, 예를 들어 백색 LED(Light Emitting Diode)를 포함하여 구성되고, 백색광을 발생시킨다. 단, 광원(10)이 발하는 광은, 광학 계측 장치(100)에 요구되는 거리 범위를 커버하는 파장 범위를 포함하는 광이면 되고, 백색광에 한정되는 것은 아니다.
도광부(20)는, 광을 전반(傳搬)하기 위한 것이다. 도광부(20)는, 예를 들어, 제1 케이블(21)과, 제2 케이블(22)과, 제3 케이블(23)과, 광 커플러(24)를 구비한다.
제1 케이블(21)은, 그 일단(도 1에서 좌단)이 광원(10)과 광학적으로 접속되어 있다. 제2 케이블(22)은, 그 일단(도 1에서 우단)이 센서 헤드(30)와 광학적으로 접속되어 있다. 제3 케이블(23)은, 그 일단(도 1에서 좌단)이 수광부(40)와 광학적으로 접속되어 있다. 제1 케이블(21)의 타단(도 1에서 우단) 및 제3 케이블(23)의 타단(도 1에서 우단)과, 제2 케이블(22)의 타단(도 1에서 좌단)은, 광 커플러(24)를 개재하여 광학적으로 결합되어 있다.
광 커플러(24)는, 제1 케이블(21)로부터 입사된 광을 제2 케이블(22)에 전송함과 아울러, 제2 케이블(22)로부터 입사된 광을 분할하여 제1 케이블(21) 및 제3 케이블(23)에 각각 전송한다. 또, 광 커플러(24)에 의해 제2 케이블(22)로부터 제1 케이블(21)에 전송된 광은, 광원(10)에서 종단된다.
광 커플러(24)는, 예를 들어 융착 연신형(용융 연신형)의 광 커플러를 포함하여 구성된다. 한편, 제1 케이블(21), 제2 케이블(22), 및 제3 케이블(23)은, 각각, 예를 들어 광파이버로 구성된다. 각 광파이버는, 단일의 코어를 갖는 싱글 코어이어도 되고, 복수의 코어를 갖는 멀티 코어이어도 된다.
센서 헤드(30)는, 대상물(TA)에 광을 조사하기 위한 것이다. 또한, 센서 헤드(30)는, 대상물(TA)로부터의 반사광을 집광하기 위한 것이기도 하다. 또, 본 실시형태에 관한 센서 헤드(30)는, 본 발명의 「광학계」의 일례에 상당한다.
센서 헤드(30)는, 예를 들어, 콜리메이터 렌즈(31)와, 회절 렌즈(32)와, 대물 렌즈(33)를 구비한다.
콜리메이터 렌즈(31)는, 제2 케이블로부터 입사된 광을 평행광으로 변환하도록 구성되어 있다. 콜리메이터 렌즈(31)는, 단일 또는 복수의 렌즈를 포함하여 구성된다. 또한, 콜리메이터 렌즈(31)는, 센서 헤드(30)에 입사하는 광을 집광하기 위한 것이기도 하다.
회절 렌즈(32)는, 평행광에 광축 방향을 따르는 색수차를 발생시키도록 구성되어 있다. 대물 렌즈(33)는, 색수차를 발생시킨 광을 대상물(TA)에 모아 조사하도록 구성되어 있다. 회절 렌즈(32)에 의해 축상 색수차를 발생시키고 있으므로, 대물 렌즈(33)로부터 조사되는 광은, 파장마다 다른 거리(위치)에 초점을 가진다.
도 1에 도시된 예에서는, 초점 거리가 상대적으로 긴 제1 파장의 광(L1)과, 초점 거리가 상대적으로 짧은 제2 파장의 광(L2)을 나타내고 있다. 제1 파장의 광(L1)은 대상물(TA)의 표면에서 초점이 맞는(초점을 맺는) 반면, 제2 파장의 광(L2)은 대상물(TA) 앞쪽에서 초점이 맞는다(초점을 맺는다).
대상물(TA)의 표면에서 반사된 광은, 대물 렌즈(33) 및 회절 렌즈(32)를 지나 콜리메이터 렌즈(31)에서 집광되어, 제2 케이블(22)에 입사한다. 반사광 중 제1 파장의 광(L1)은, 공초점이 되는 제2 케이블(22)의 단면에서 초점이 맞아서, 그 대부분이 제2 케이블(22)에 입사한다. 한편, 그 밖의 파장은, 제2 케이블(22)의 단면에서 초점이 맞지 않아서, 제2 케이블(22)에 입사하지 않는다. 제2 케이블(22)에 입사한 반사광은, 광 커플러(24)에 의해 그 일부가 제3 케이블(23)에 전송되어, 수광부(40)에 출사된다.
제2 케이블(22)이 광파이버인 경우, 그 코어는 핀홀에 상당한다. 따라서, 광파이버의 코어 지름을 작게 함으로써, 반사광을 집광하는 핀홀이 작아지고, 대상물(TA)의 표면에 초점이 맞는 파장의 광을 안정적으로 검출할 수 있다.
수광부(40)는, 센서 헤드(30)에서 집광된 광에 대해, 후술하는 수광량 분포 신호를 얻기 위한 것이다. 센서 헤드(30)에서 집광된 광은, 예를 들어, 대상물(TA)에 의해 반사된 반사광이다. 수광부(40)는, 예를 들어, 콜리메이터 렌즈(41)와, 회절 격자(42)와, 조정 렌즈(43)와, 수광 센서(44)와, 처리 회로(45)를 구비한다.
콜리메이터 렌즈(41)는, 제3 케이블로부터 입사된 광을 평행광으로 변환하도록 구성되어 있다. 회절 격자(42)는, 이 평행광을 파장 성분마다 분광(분리)하도록 구성되어 있다. 조정 렌즈(43)는, 분광된 파장별 광의 스폿 지름을 조정하도록 구성되어 있다.
수광 센서(44)는, 분광된 광에 대해, 파장 성분마다 수광량을 검출 가능하게 구성되어 있다. 수광 센서(44)는, 복수의 수광 소자를 포함하여 구성된다. 각 수광 소자는, 회절 격자(42)의 분광 방향에 대응시켜 1차원으로 배열되어 있다. 이에 의해, 각 수광 소자는 분광된 각 파장 성분의 광에 대응하여 배치되고, 수광 센서(44)는 파장 성분마다 수광량을 검출 가능해진다.
수광 센서(44)의 일 수광 소자는, 일 화소에 대응한다. 따라서, 수광 센서(44)는, 복수의 화소 각각이 수광량을 검출 가능하게 구성되어 있다고도 할 수 있다. 또, 각 수광 소자는, 1차원으로 배열되는 경우에 한정되는 것은 아니고, 2차원으로 배열되어 있어도 된다. 각 수광 소자는, 예를 들어 회절 격자(42)의 분광 방향을 포함하는 검출면 상에, 2차원으로 배열되는 것이 바람직하다.
각 수광 소자는, 처리 회로(45)로부터 입력되는 제어 신호에 기초하여, 소정의 노광 시간 동안에 수광한 광의 수광량에 따라 전하를 축적한다. 그리고, 각 수광 소자는, 처리 회로(45)로부터 입력되는 제어 신호에 기초하여, 노광 시간 이외, 즉 비노광 시간 동안에, 축적한 전하에 따른 전기 신호를 출력한다. 이에 의해, 노광 시간에 수광한 수광량이 전기 신호로 변환된다.
처리 회로(45)는, 수광 센서(44)에 의한 수광을 제어하도록 구성되어 있다. 또한, 처리 회로(45)에는, 수광 센서(44)의 각 수광 소자로부터 입력되는 전기 신호에 대해, 제어부(50)에 출력하기 위한 신호 처리를 행하도록 구성되어 있다. 처리 회로(45)는, 예를 들어, 증폭 회로와, A/D(Analog-to-Digital) 변환 회로를 포함하여 구성된다. 증폭 회로는, 각 수광 소자로부터 입력된 전기 신호를 소정의 게인으로 각각 증폭한다. 그리고, A/D 변환 회로는, 증폭된 각 수광 소자의 전기 신호에 대해, 표본화, 양자화, 및 부호화를 행하여, 디지털 신호로 변환한다. 이와 같이 하여, 각 수광 소자가 검출한 수광량이 디지털 값으로 변환되고, 수광 소자마다, 즉 화소마다의 수광량의 분포 신호(이하, 단순히단순히광량 분포 신호」라고 함)를 얻을 수 있다. 처리 회로(45)는, 이 수광량 분포 신호를 제어부(50)에 출력한다. 각 수광 소자의 소정의 노광 시간, 증폭 회로의 소정의 게인 등은, 제어 신호에 기초하여 변경하는 것이 가능하다.
제어부(50)는, 광학 계측 장치(100)의 각 부의 동작을 제어하도록 구성되어 있다. 또한, 제어부(50)는, 기억부(60)에 기억된 프로그램을 실행하는 등에 의해, 후술하는 각 기능을 실현하도록 구성되어 있다. 프로그램을 실행하는 등에 의해, 후술하는 각 기능을 실현하도록 구성되어 있다. 제어부(50)는, 예를 들어, CPU(Central Processing Unit) 등의 마이크로프로세서와, ROM(Read Only Memory), RAM(Random Access Memory), 버퍼 메모리 등의 메모리를 포함하여 구성된다.
기억부(60)는, 프로그램이나 데이터 등을 기억하도록 구성되어 있다. 기억부(60)는, 예를 들어, 하드 디스크 드라이브, 솔리드 스테이트 드라이브 등을 포함하여 구성된다. 기억부(60)는, 제어부(50)가 실행하는 각종 프로그램이나 프로그램의 실행에 필요한 데이터 등을 미리 기억하고 있다. 또한, 기억부(60)는, 귀환광에 의한 수광량 분포 신호를 기억하도록 구성되어 있다.
여기서, 도 2 및 도 3을 참조하면서, 수광부(40)에 의해 얻어지는 수광량 분포 신호의 일례에 대해 설명한다. 도 2는, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 일례를 예시하는 파형도이다. 도 3은, 대상물(TA)이 존재하지 않을 때의 수광량 분포 신호의 일례를 예시하는 파형도이다. 도 2 및 도 3에 있어서, 가로축은 화소(수광 센서(44)의 각 수광 소자)이며, 세로축은 수광량이다.
도 2에 도시된 바와 같이, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호는, 대상물(TA)로부터의 반사광인 신호광 성분(SC)과, 광학 계측 장치(100) 내부의 반사광인 귀환광 성분(RC)을 포함하고 있다. 즉, 광원(10)으로부터 발한 광은, 그 일부가 센서 헤드(30)로부터 출사하지 않고, 광학 계측 장치(100)의 내부에서 반사되어 되돌아와 버린다. 이 광은 귀환광이라고 불리며, 귀환광은, 예를 들어, 제2 케이블(22)과 센서 헤드(30)의 접속부, 제2 케이블(22)과 광 커플러(24)의 접속부, 제1 케이블(21)과 광 커플러(24)의 접속부 등에서 발생한다. 귀환광은, 수광량 분포 신호에 있어서 귀환광 성분(RC)으로서 나타난다.
한편, 귀환광은, 광학 계측 장치(100) 내부의 반사광이기 때문에, 대상물(TA)이 존재하지 않고, 대상물(TA)로부터의 반사광이 없는 상태에서도, 수광량 분포 신호에 나타난다. 그 때문에, 도 3에 도시된 바와 같이, 대상물(TA)이 존재하지 않을 때의 수광량 분포 신호는, 도 2에 도시된 귀환광 성분(RC)과 동일 또는 거의 동일하다고 생각된다.
따라서, 대상물(TA)이 존재하지 않는 상태에서 도 3에 도시된 수광량 분포 신호를 얻어, 귀환광에 의한 수광량 분포 신호로서 기억부(60)에 미리 기억해 둔다. 그리고, 대상물(TA)이 존재하는 상태에서 도 2에 도시된 수광량 분포 신호를 얻어, 예를 들어, 도 2에 도시된 수광량 분포 신호로부터 도 3에 도시된 수광량 분포 신호를 뺌으로써, 귀환광 성분(RC)이 제거되고, 신호광 성분(SC)을 주성분으로 하는 계측 파형 신호를 취득하는 것이 가능해진다.
도 1의 설명으로 되돌아가면, 제어부(50)는, 그 기능 구성으로서, 예를 들어, 취득부(51)와, 계측부(52)와, 조정부(53)를 구비한다.
취득부(51)는, 도 3에 도시된 수광량 분포 신호에 기초하여, 도 2에 도시된 수광량 분포 신호로부터 계측 파형 신호를 취득하도록 구성되어 있다.
여기서, 도 4를 참조하면서, 취득부(51)에 의해 취득되는 계측 파형 신호에 대해 설명한다. 도 4는, 계측 파형 신호의 일례를 예시하는 파형도이다. 도 4에 있어서, 가로축은 화소(수광 센서(44)의 각 수광 소자)이며, 세로축은 정규화된 수광량(정규화 수광량)이다.
상세하게는, 취득부(51)는, 우선, 도 2에 도시된, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호로부터, 도 3에 도시된, 대상물(TA)이 존재하지 않을 때의 수광량 분포 신호를, 화소마다 뺀다. 다음에, 취득부(51)는, 이 감산 결과에, 도 3의 수광량 분포 신호를 얻었을 때의 노광 시간에 대한 도 2의 수광량 분포 신호를 얻었을 때의 노광 시간, 즉 (도 2의 수광량 분포 신호에서의 노광 시간)/(도 3의 수광량 분포 신호에서의 노광 시간)을 곱한다. 이에 의해, 노광 시간에 기인하는 수광량의 차이가 정규화된다. 또, 기억부(60)는, 도 3의 수광량 분포 신호와 함께, 그 노광 시간도 미리 기억해 둔다. 그리고, 취득부(51)는, 이 곱셈 결과를, 도 3의 수광량 분포 신호로 화소마다 나눈다. 이에 의해, 도 2에 도시된 귀환광 성분(RC)에 기인하는 둔화가 보정된다. 이와 같이 하여, 취득부(51)는, 도 4에 도시된 계측 파형 신호(MS)를 취득한다.
도 1의 설명으로 되돌아가면, 계측부(52)는, 취득부(51)에 의해 취득된 계측 파형 신호(MS)에 기초하여, 광학 계측 장치(100)로부터 대상물(TA)까지의 거리, 정확하게는 센서 헤드(30)로부터 대상물(TA)까지의 거리를 계측하도록 구성되어 있다. 도 1에 도시된 예에 있어서, 이러한 거리는 Z축 방향의 거리이다.
도 4에 도시된 바와 같이, 통상, 계측 파형 신호(MS)는, 어떤 화소의 수광량이 피크가 되는 파형을 가진다. 전술한 바와 같이, 센서 헤드(30)로부터 초점이 맞는 점까지의 거리는 파장에 따라 다르므로, 계측 파형 신호(MS)에서의 피크 수광량의 화소는, 센서 헤드(30)로부터 조사되어, 대상물(TA)에서 초점이 맞는 광의 파장에 대응하는 화소이다. 그리고, 이러한 파장은, 센서 헤드(30)로부터 대상물(TA)까지의 거리에 대응한다. 도 1에 도시된 예에서는, 대상물(TA)의 표면에서 초점이 맞는 제1 파장의 광(L1)이, 수광량 분포 신호의 피크 수광량의 파장으로서 나타난다.
구체적으로는, 계측 파형 신호(MS)의 피크 수광량을 100%로 하였을 때에, 50%의 수광량의 선과 계측 파형 신호(MS)의 2개의 교점에서의 중간점을 구하여, 이 중간점의 화소에 대응하는 파장(λ)을 얻는다.
파장(λ)과 거리의 관계(대응)는, 제어부(50)의 메모리나 기억부(60) 등에 미리 기억된다. 계측부(52)가 이 관계를 참조함으로써, 계측 파형 신호(MS)에 기초하여, 센서 헤드(30)로부터 대상물(TA)까지의 거리가 계측된다.
이와 같이, 계측 파형 신호(MS)에 기초하여, 광학 계측 장치(100)로부터 대상물(TA)까지의 거리를 계측함으로써, 계측 파형 신호(MS)에 있어서 잡음 성분이 되는, 도 2에 도시된 수광량 분포 신호에 포함되는 귀환광 성분(RC)이 제거되므로, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호에 기초하여 광학 계측 장치(100)로부터 대상물(TA)까지의 거리를 계측하는 경우와 비교하여, 잡음의 영향을 억제하여 거리를 계측할 수 있다.
조정부(53)는, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하도록 구성되어 있다.
여기서, 도 5를 참조하면서, 수광부(40)에 의해 얻어지는 수광량 분포 신호의 다른 예에 대해 설명한다. 도 5는, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 다른 예를 예시하는 파형도이다. 도 5에 있어서, 가로축은 화소(수광 센서(44)의 각 수광 소자)이며, 세로축은 수광량이다.
대상물(TA)의 반사광의 수광량 분포 신호에 있어서, 그 일부의 수광량이 소정값 이상이 되는 경우가 있다. 그 결과, 도 5에 도시된 바와 같이, 수광량 분포 신호는, 수광량이 소정값인 채로 그 이상이 되지 않는 부분을 포함해 버린다. 이 경우, 도 5에 도시된 수광량 분포 신호에는, 도 2에 도시된 수광량 분포 신호와 같은 신호광 성분(SC)이 포함되지 않으므로, 취득부(51)는, 도 5에 도시된 수광량 분포 신호로부터 계측 파형 신호(MS)를 취득할 수 없다.
그래서, 조정부(53)는, 대상물(TA)이 존재할 때의 수광량 분포 신호에 있어서, 도 5에 도시된 바와 같이, 그 일부의 수광량이 소정값 이상일 때에, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정한다. 여기서, 예를 들어 투광량 등의 감도 파라미터를 조정함으로써, 수광량 분포 신호에서의 수광량을 변화시키는 것이 가능하다. 조정부(53)가 감도 파라미터를 조정함으로써, 수광부(40)는, 도 2에 도시된 바와 같은, 신호광 성분(SC)을 포함한 수광량 분포 신호를 얻을 수 있고, 취득부(51)에 의해 계측 파형 신호(MS)가 취득된다. 따라서, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 조정부(53)가 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정함으로써, 감도 파라미터를 조정한 후에 얻은 대상물(TA)의 반사광의 수광량 분포 신호에 있어서, 수광량을 소정값 미만으로 하는 것, 예를 들어 수광량을 포화시키지 않는 것이 가능해지고, 감도 파라미터를 조정 후의 대상물(TA)의 반사광의 수광량 분포 신호에는, 도 2에 도시된 신호광 성분(SC)이 포함된다. 따라서, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 감도 파라미터를 조정함으로써, 대상물(TA)의 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득할 수 있다.
도 5에 도시된 예에서는, 대상물(TA)의 반사광의 수광량 분포 신호에 있어서, 수광량의 소정값은, 수광부(40)에 의해 수광 가능한 수광량이 포화되는 값이다. 이에 의해, 감도 파라미터를 조정한 후에 얻은 대상물(TA)의 반사광의 수광량 분포 신호에 있어서, 수광량의 포화를 방지할 수 있다.
취득부(51)에 의해 취득되는 계측 파형 신호(MS)와 잡음 등에 의한 신호를 식별하기 위해, 조정부(53)는, 취득되는 계측 파형 신호(MS)의 피크 수광량이 소정값 이상이 되도록, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 것이 바람직하다. 이에 의해, 예를 들어 계측 파형 신호(MS)에 대해, 소정값 미만의 문턱값을 설정함으로써, 계측 파형 신호(MS)와 혼동할 수 있는 잡음 등에 의한 신호를 제외할 수 있다.
대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터는, 광원(10)에서의 투광량, 광원(10)에서의 투광 파워, 수광 센서(44)에서의 각 수광 소자의 노광 시간, 및 처리 회로(45)에서의 증폭 회로의 게인 중 적어도 하나를 포함한다. 이에 의해, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호에 있어서, 수광량을 용이하게 변화시킬 수 있다.
이하에서, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 감도 파라미터로서, 투광량을 이용하여 설명한다.
여기서, 도 6부터 도 9를 참조하면서, 조정부(53)에 의한 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터의 조정에 대해 설명한다. 도 6은, 도 1에 도시된 조정부(53)가 투광량을 조정하는 제1 실시예를 예시하는 신호도이다. 도 7은, 도 1에 도시된 조정부(53)가 투광량을 조정하는 제2 실시예를 예시하는 신호도이다. 도 8은, 도 1에 도시된 조정부(53)가 투광량을 조정하는 제3 실시예를 예시하는 신호도이다. 도 9는, 도 1에 도시된 조정부(53)가 투광량을 조정하는 제4 실시예를 예시하는 신호도이다. 도 5부터 도 9에 있어서, 가로축은 시간이며, 세로축은 투광량[%]이다.
(제1 실시예)
조정부(53)는, 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 예를 들어 도 6에 도시된 바와 같이, 투광량을 단계적으로 증가시킨다. 투광량의 단계폭(Vst)은, 예를 들어 10[%]으로 설정되고, 이러한 투광량의 투광 시간의 단계폭(Tst)은, 예를 들어 계측 주기의 3배(3주기분)로 설정되어 있다. 투광량의 단계폭(Vst) 및 투광 시간의 단계폭(Tst)으로 설정되는 값은, 후술하는 표시부(70)에 표시되고, 조작부(80)에 의해 변경 가능한 것이도 된다.
단계적으로 증가시킨 투광량이 소정값, 도 6에 도시된 예에서는 100[%]에 도달해도 계측 파형 신호(MS)가 취득되지 않는 경우, 조정부(53)는, 투광량을 하한값(Vmin)까지 저하시킨다. 투광량의 하한값(Vmin)은, 예를 들어 10[%]으로 설정되어 있다. 투광량의 하한값(Vmin)으로 설정되는 값은, 투광량의 단계폭(Vst) 및 투광 시간의 단계폭(Tst)과 마찬가지로, 표시부(70)에 표시되고, 조작부(80)에 의해 변경 가능한 것이도 된다.
투광량을 하한값(Vmin)까지 저하시킨 후, 조정부(53)는, 다시 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 투광량을 단계적으로 증가시킨다.
(제2 실시예)
조정부(53)는, 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 예를 들어 도 7에 도시된 바와 같이, 투광량을 단계적으로 저하시킨다. 투광량의 단계폭(Vst)은, 예를 들어 10[%]으로 설정되고, 이러한 투광량의 투광 시간의 단계폭(Tst)은, 예를 들어 계측 주기의 3배(3주기분)로 설정되어 있다. 투광량의 단계폭(Vst) 및 투광 시간의 단계폭(Tst)으로 설정되는 값은, 제1 실시예와 마찬가지로, 표시부(70)에 표시되고, 조작부(80)에 의해 변경 가능한 것이도 된다.
단계적으로 저하시킨 투광량이 미리 설정된 하한값(Vmin), 예를 들어 10[%]에 도달해도 계측 파형 신호(MS)가 취득되지 않는 경우, 조정부(53)는, 투광량을 소정값, 도 6에 도시된 예에서는 100[%]까지 증가시킨다. 투광량의 하한값(Vmin)으로 설정되는 값은, 제1 실시예와 마찬가지로, 표시부(70)에 표시되고, 조작부(80)에 의해 변경 가능한 것이도 된다.
투광량을 소정값까지 증가시킨 후, 조정부(53)는, 다시 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 투광량을 단계적으로 저하시킨다.
(제3 실시예)
대상물(TA)의 반사율을 미리 알고 있는 경우, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터는, 소정 범위에서 조정하면 충분하다. 이 경우, 조정부(53)는, 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 예를 들어 도 8에 도시된 바와 같이, 조정 범위(AR1)에서 투광량을 단계적으로 증가시킨다. 조정 범위(AR1)는, 대상물(TA)의 반사율에 기초하여 설정되는 투광량의 범위이며, 예를 들어, 대상물(TA)의 반사율에 대응하는 투광량을 중앙값으로 하는 범위이다. 조정 범위(AR1)는, 표시부(70)에 표시되고, 조작부(80)에 의해 지정된다.
조정부(53)는, 제1 실시예와 마찬가지로, 투광량의 단계폭(Vst) 및 투광 시간의 단계폭(Tst)으로 투광량을 단계적으로 증가시켜, 투광량이 조정 범위(AR1)의 상한값에 도달해도 계측 파형 신호(MS)가 취득되지 않는 경우, 조정부(53)는, 투광량을 조정 범위(AR1)의 하한값까지 저하시킨다. 그 후, 조정부(53)는, 다시 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 조정 범위(AR1)에서 투광량을 단계적으로 증가시킨다.
제3 실시예에서는, 조정부(53)가 조정 범위(AR1)에서 투광량을 단계적으로 증가시키는 예를 나타내었지만, 이에 한정되는 것은 아니다. 조정부(53)는, 제2 실시예와 마찬가지로, 조정 범위(AR1)에서 투광량을 단계적으로 저하시켜도 된다. 이 경우, 투광량이 조정 범위(AR1)의 하한값에 도달해도 계측 파형 신호(MS)가 취득되지 않는 경우, 조정부(53)는, 투광량을 조정 범위(AR1)의 상한값까지 증가시킨다.
이와 같이, 대상물(TA)의 반사율에 기초하여, 감도 파라미터의 조정 범위(AR1)를 설정함으로써, 감도 파라미터의 조정 범위를 좁힐(한정할) 수 있어, 감도 파라미터의 조정에 걸리는 시간을 단축할 수 있다.
(제4 실시예)
취득부(51)에 의해 계측 파형 신호(MS)가 취득되었을 때에, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터를 제어부(50)의 메모리나 기억부(60) 등에 기억하는 경우, 감도 파라미터는, 소정 범위에서 조정하면 충분하다. 이 경우, 조정부(53)는, 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 예를 들어 도 9에 도시된 바와 같이, 조정 범위(AR2)에서 투광량을 단계적으로 증가시킨다. 조정 범위(AR2)는, 전회의 계측 파형 신호(MS)가 취득되었을 때의 투광량(Vpre)에 기초하여 설정되는 투광량의 범위이며, 예를 들어, 전회의 계측 파형 신호(MS)가 취득되었을 때의 투광량을 중앙값으로 하는 범위이다.
조정부(53)는, 제1 실시예와 마찬가지로, 투광량의 단계폭(Vst) 및 투광 시간의 단계폭(Tst)으로 투광량을 단계적으로 증가시켜, 투광량이 조정 범위(AR2)의 상한값에 도달해도 계측 파형 신호(MS)가 취득되지 않는 경우, 조정부(53)는, 투광량을 조정 범위(AR2)의 하한값까지 저하시킨다. 그 후, 조정부(53)는, 다시 취득부(51)에 의해 계측 파형 신호(MS)가 취득될 때까지, 조정 범위(AR2)에서 투광량을 단계적으로 증가시킨다.
제4 실시예에서는, 조정부(53)가 조정 범위(AR2)에서 투광량을 단계적으로 증가시키는 예를 나타내었지만, 이에 한정되는 것은 아니다. 조정부(53)는, 제2 실시예와 마찬가지로, 조정 범위(AR2)에서 투광량을 단계적으로 저하시켜도 된다. 이 경우, 투광량이 조정 범위(AR2)의 하한값에 도달해도 계측 파형 신호(MS)가 취득되지 않는 경우, 조정부(53)는, 투광량을 조정 범위(AR2)의 상한값까지 증가시킨다.
이와 같이, 전회의 계측 파형 신호(MS)가 취득되었을 때의 감도 파라미터에 기초하여, 감도 파라미터의 조정 범위(AR2)를 설정함으로써, 감도 파라미터의 조정 범위를 좁힐(한정할) 수 있어, 감도 파라미터의 조정에 걸리는 시간을 단축할 수 있다.
도 1의 설명으로 되돌아가면, 표시부(70)는, 정보를 출력하기 위한 것이다. 상세하게는, 표시부(70)는, 예를 들어, 설정 내용, 동작 상태, 통신 상태 등을 표시하도록 구성되어 있다. 표시부(70)는, 예를 들어, 복수 자릿수의 7 또는 11 세그먼트 디스플레이와, 복수 색으로 발광하는 표시등을 포함하여 구성된다.
조작부(80)는, 이용자(유저)의 조작에 의해 정보를 입력하기 위한 것이다. 조작부(80)는, 예를 들어, 버튼, 스위치 등을 포함하여 구성된다. 이 경우, 이용자가, 버튼, 스위치 등을 조작하였을 때에, 조작에 따른 신호가 제어부(50)에 입력된다. 그리고, 제어부(50)가 이 신호에 대응하는 데이터를 생성함으로써, 광학 계측 장치(100)에 정보를 입력하는 것이 가능해진다.
본 실시형태에서는, 광학 계측 장치(100)가 백색 공초점 방식인 예를 나타내었지만, 이에 한정되는 것은 아니다. 본 발명의 광학 계측 장치는, 예를 들어 삼각 측거 방식이어도 된다. 이 경우, 광학 계측 장치는, 대상물을 향하여 광을 발하는 투광부와, 화소마다의 수광량 분포 신호를 얻는 수광부와, 대상물(TA)이 존재하지 않을 때의 수광량 분포 신호에 기초하여, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득하는 취득부와, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정부(53)를 구비하고 있으면 된다.
이와 같이, 본 실시형태의 광학 계측 장치(100) 및 광학 계측 방법에 의하면, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 대상물(TA)의 반사광의 수광량 분포 신호에 대한 감도 파라미터가 조정된다. 이에 의해, 감도 파라미터를 조정한 후에 얻은 대상물(TA)의 반사광의 수광량 분포 신호에 있어서, 수광량을 소정값 미만으로 하는 것, 예를 들어 수광량을 포화시키지 않는 것이 가능해지고, 감도 파라미터를 조정 후의 대상물(TA)의 반사광의 수광량 분포 신호에는, 도 2에 도시된 신호광 성분(SC)이 포함된다. 따라서, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호의 감도 파라미터를 조정함으로써, 대상물(TA)의 반사광의 수광량 분포 신호로부터 계측 파형 신호를 취득할 수 있다.
이상 설명한 실시형태는, 본 발명의 이해를 용이하게 하기 위한 것으로, 본 발명을 한정하여 해석하기 위한 것은 아니다. 실시형태가 구비하는 각 요소 및 그 배치, 재료, 조건, 형상 및 크기 등은, 예시한 것에 한정되는 것은 아니고 적절히 변경할 수 있다. 또한, 다른 실시형태에서 나타낸 구성끼리를 부분적으로 치환 또는 조합하는 것이 가능하다.
(부기)
1. 대상물(TA)을 향하여 광을 발하는 광원(10)과,
복수의 화소 각각이 수광량을 검출 가능하게 구성되는 수광부(40)로서, 화소마다의 수광량 분포 신호를 얻는 수광부(40)와,
대상물(TA)이 존재하지 않을 때의 수광량 분포 신호에 기초하여, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호로부터 계측 파형 신호(MS)를 취득하는 취득부(51)와,
반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정부(53)를 구비하는, 광학 계측 장치(100).
9. 대상물(TA)을 향하여 광을 발하는 투광 단계와,
화소마다의 수광량 분포 신호를 얻는 수광 단계와,
대상물(TA)이 존재하지 않을 때의 수광량 분포 신호에 기초하여, 대상물(TA)에 의해 반사된 반사광의 수광량 분포 신호로부터 계측 파형 신호(MS)를 취득하는 취득 단계와,
반사광의 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 계측 파형 신호(MS)가 취득되도록, 반사광의 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정 단계를 포함하는, 광학 계측 방법.
10…광원, 20…도광부, 21…제1 케이블, 22…제2 케이블, 23…제3 케이블, 24…광 커플러, 30…센서 헤드, 31…콜리메이터 렌즈, 32…회절 렌즈, 33…대물 렌즈, 40…수광부, 41…콜리메이터 렌즈, 42…회절 격자, 43…조정 렌즈, 44…수광 센서, 45…처리 회로, 50…제어부, 51…취득부, 52…계측부, 53…조정부, 60…기억부, 70…표시부, 80…조작부, 100…광학 계측 장치, AR1, AR2…조정 범위, L1, L2…광, MS…계측 파형 신호, RC…귀환광 성분, SC…신호광 성분, TA…대상물, Tst…단계폭, Vmin…하한값, Vpre…투광량, Vst…단계폭, λ…파장.

Claims (15)

  1. 대상물을 향하여 광을 발하는 투광부와,
    복수의 화소 각각이 수광량을 검출 가능하게 구성되는 수광부로서, 상기 화소마다의 수광량 분포 신호를 얻는 수광부와,
    상기 대상물이 존재하지 않을 때의 상기 수광량 분포 신호에 기초하여, 상기 대상물에 의해 반사된 반사광의 상기 수광량 분포 신호로부터 계측 파형 신호를 취득하는 취득부와,
    상기 반사광의 상기 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 상기 계측 파형 신호가 취득되도록, 상기 반사광의 상기 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정부를 구비하는, 광학 계측 장치.
  2. 청구항 1에 있어서,
    상기 조정부는, 취득되는 상기 계측 파형 신호의 피크 수광량이 소정값 이상이 되도록, 상기 반사광의 상기 수광량 분포 신호에 대한 감도 파라미터를 조정하는, 광학 계측 장치.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 조정부는, 상기 대상물의 반사율에 기초하여, 상기 감도 파라미터를 조정하는 범위를 설정하는, 광학 계측 장치.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 조정부는, 전회의 상기 계측 파형 신호가 취득되었을 때의 상기 감도 파라미터에 기초하여, 상기 감도 파라미터를 조정하는 범위를 설정하는, 광학 계측 장치.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 감도 파라미터는, 상기 광의 투광량, 상기 광의 투광 파워, 상기 수광부의 노광 시간, 및 상기 수광부의 게인 중 적어도 하나를 포함하는, 광학 계측 장치.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,
    상기 수광량의 소정값은, 수광량이 포화되는 값인, 광학 계측 장치.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,
    상기 계측 파형 신호에 기초하여, 상기 광학 계측 장치로부터 상기 대상물까지의 거리를 계측하는 계측부를 더 구비하는, 광학 계측 장치.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    상기 광에 대해 광축 방향을 따르는 색수차를 발생시키고, 색수차를 발생시킨 광을 상기 대상물에 조사하는 광학계를 더 구비하며,
    상기 광은 복수의 파장 성분을 포함하고,
    상기 광학계는 상기 반사광을 집광하며,
    상기 수광부는 상기 파장 성분마다 수광량을 검출 가능하게 구성되는, 광학 계측 장치.
  9. 대상물을 향하여 광을 발하는 투광 단계와,
    화소마다의 수광량 분포 신호를 얻는 수광 단계와,
    상기 대상물이 존재하지 않을 때의 상기 수광량 분포 신호에 기초하여, 상기 대상물에 의해 반사된 반사광의 상기 수광량 분포 신호로부터 계측 파형 신호를 취득하는 취득 단계와,
    상기 반사광의 상기 수광량 분포 신호의 일부의 수광량이 소정값 이상일 때에, 상기 계측 파형 신호가 취득되도록, 상기 반사광의 상기 수광량 분포 신호에 대한 감도 파라미터를 조정하는 조정 단계를 포함하는, 광학 계측 방법.
  10. 청구항 9에 있어서,
    상기 조정 단계는, 취득되는 상기 계측 파형 신호의 피크 수광량이 소정값 이상이 되도록, 상기 반사광의 상기 수광량 분포 신호에 대한 감도 파라미터를 조정하는 것을 포함하는, 광학 계측 방법.
  11. 청구항 9 또는 청구항 10에 있어서,
    상기 조정 단계는, 상기 대상물의 반사율에 기초하여, 상기 감도 파라미터를 조정하는 범위를 설정하는 것을 포함하는, 광학 계측 방법.
  12. 청구항 9 또는 청구항 10에 있어서,
    상기 조정 단계는, 전회의 상기 계측 파형 신호가 취득되었을 때의 상기 감도 파라미터에 기초하여, 상기 감도 파라미터를 조정하는 범위를 설정하는 것을 포함하는, 광학 계측 방법.
  13. 청구항 9 내지 청구항 12 중 어느 한 항에 있어서,
    상기 감도 파라미터는, 상기 광의 투광량, 상기 광의 투광 파워, 수광부의 노광 시간, 및 상기 수광부의 게인 중 적어도 하나를 포함하는, 광학 계측 방법.
  14. 청구항 9 내지 청구항 13 중 어느 한 항에 있어서,
    상기 수광량의 소정값은, 수광량이 포화되는 값인, 광학 계측 방법.
  15. 청구항 9 내지 청구항 14 중 어느 한 항에 있어서,
    상기 계측 파형 신호에 기초하여, 광학 계측 장치로부터 상기 대상물까지의 거리를 계측하는 계측 단계를 더 포함하는, 광학 계측 방법.
KR1020217008698A 2018-11-08 2019-10-21 광학 계측 장치 및 광학 계측 방법 KR20210044875A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-210436 2018-11-08
JP2018210436A JP2020076653A (ja) 2018-11-08 2018-11-08 光学計測装置及び光学計測方法
PCT/JP2019/041343 WO2020095667A1 (ja) 2018-11-08 2019-10-21 光学計測装置及び光学計測方法

Publications (1)

Publication Number Publication Date
KR20210044875A true KR20210044875A (ko) 2021-04-23

Family

ID=70612374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217008698A KR20210044875A (ko) 2018-11-08 2019-10-21 광학 계측 장치 및 광학 계측 방법

Country Status (7)

Country Link
US (1) US20220075062A1 (ko)
EP (1) EP3879224A4 (ko)
JP (1) JP2020076653A (ko)
KR (1) KR20210044875A (ko)
CN (1) CN112654834A (ko)
TW (1) TWI754182B (ko)
WO (1) WO2020095667A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190378A (ja) 2012-03-15 2013-09-26 Omron Corp 光学式センサおよび感度調整制御のための設定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809081B2 (ja) * 1993-12-27 1998-10-08 日本電気株式会社 露光装置
JP3704387B2 (ja) * 1995-02-23 2005-10-12 オリンパス株式会社 共焦点走査型光学顕微鏡およびこの顕微鏡を使用した測定方法
JP4133884B2 (ja) * 2004-03-18 2008-08-13 株式会社ミツトヨ 光学的変位測定器
JP5790178B2 (ja) * 2011-03-14 2015-10-07 オムロン株式会社 共焦点計測装置
CN103162617B (zh) * 2011-12-09 2015-08-26 陈亮嘉 彩色共焦显微系统及其信号处理方法
US8860931B2 (en) * 2012-02-24 2014-10-14 Mitutoyo Corporation Chromatic range sensor including measurement reliability characterization
JP6045963B2 (ja) * 2013-04-05 2016-12-14 日立マクセル株式会社 光測距装置
US9958266B2 (en) * 2015-07-09 2018-05-01 Mitutoyo Corporation Chromatic range sensor including dynamic intensity compensation function
CN108474646B (zh) * 2015-12-25 2021-07-23 株式会社基恩士 共焦位移计
WO2017110838A1 (ja) * 2015-12-25 2017-06-29 株式会社キーエンス 共焦点変位計
JP6722450B2 (ja) * 2015-12-25 2020-07-15 株式会社キーエンス 共焦点変位計
JP6493265B2 (ja) * 2016-03-24 2019-04-03 オムロン株式会社 光学計測装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190378A (ja) 2012-03-15 2013-09-26 Omron Corp 光学式センサおよび感度調整制御のための設定方法

Also Published As

Publication number Publication date
TWI754182B (zh) 2022-02-01
JP2020076653A (ja) 2020-05-21
CN112654834A (zh) 2021-04-13
WO2020095667A1 (ja) 2020-05-14
EP3879224A1 (en) 2021-09-15
EP3879224A4 (en) 2022-08-10
US20220075062A1 (en) 2022-03-10
TW202037880A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP5060678B2 (ja) 光学式変位計
JP2017138251A (ja) クロマティック共焦点センサ及び測定方法
JP2017116508A (ja) 共焦点変位計
JP2017116509A (ja) 共焦点変位計
JP6722450B2 (ja) 共焦点変位計
KR102049285B1 (ko) 광학 계측 장치 및 광학 계측 방법
KR20210044875A (ko) 광학 계측 장치 및 광학 계측 방법
KR102182547B1 (ko) 광학 계측 장치 및 광학 계측 방법
TWI755690B (zh) 光學測量裝置、光學測量方法以及光學測量程式
KR102612466B1 (ko) 광학 계측 장치 및 광학 계측 방법
US9612112B2 (en) Optical system and optical quality measuring apparatus
WO2020145172A1 (ja) 光学計測装置及び光学計測方法
JP2020106550A (ja) 共焦点変位計

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application