TWI748827B - 用於閘極斷開的新穎的標準單元架構 - Google Patents

用於閘極斷開的新穎的標準單元架構 Download PDF

Info

Publication number
TWI748827B
TWI748827B TW109146595A TW109146595A TWI748827B TW I748827 B TWI748827 B TW I748827B TW 109146595 A TW109146595 A TW 109146595A TW 109146595 A TW109146595 A TW 109146595A TW I748827 B TWI748827 B TW I748827B
Authority
TW
Taiwan
Prior art keywords
gate
source
contact
drain
cell
Prior art date
Application number
TW109146595A
Other languages
English (en)
Other versions
TW202131469A (zh
Inventor
相東 陳
維努戈帕爾 波納帕里
林赫鎮
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202131469A publication Critical patent/TW202131469A/zh
Application granted granted Critical
Publication of TWI748827B publication Critical patent/TWI748827B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11809Microarchitecture
    • H01L2027/11829Isolation techniques
    • H01L2027/11831FET isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/11874Layout specification, i.e. inner core region
    • H01L2027/11875Wiring region, routing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

根據本案的某些態樣,一種晶片包括:第一閘極;第二閘極;第一源極;設置於第一源極上的第一源極接觸部;第一源極接觸部和第一閘極上方的金屬互連;將第一閘極電耦合到金屬互連的第一閘極接觸部;及將第一源極接觸部電耦合到金屬互連的第一過孔。該晶片亦包括電源軌、以及將第一源極接觸部電耦合到電源軌的第二過孔。第二閘極在第一源極和第一閘極之間,並且金屬互連在第二閘極之上通過。

Description

用於閘極斷開的新穎的標準單元架構
本專利申請案主張於2018年2月1日提出申請並轉讓給其受讓人的標題為「A NOVEL STANDARD CELL ARCHITECTURE FOR GATE TIE-OFF」的申請案第15/886,611號的優先權,在此經由引用之方式將該申請案明確併入本文中。
本案的各態樣大體而言係關於隔離結構,並且更特定言之係關於閘極斷開(tie-off)結構。
半導體晶片(晶粒)可以包括大量的電晶體以及用於在晶片上的電晶體之間提供電隔離的隔離結構。此種隔離結構的實例為閘極斷開結構,其中虛設閘極經電耦合(連接)至源極。
下文提供了一或多個實施例的簡化的發明內容,以便提供對此種實施例的基本理解。該發明內容不是所構思的所有實施例的詳盡概述,並且既非意欲識別所有實施例的關鍵或必要元素,亦非意欲劃出任何或全部實施例的範圍。其唯一目的是以簡化形式提供一或多個實施例的一些概念,作為稍晚提供的更詳細描述的前序。
第一態樣涉及一種晶片。該晶片包括:第一閘極;第二閘極;第一源極;設置於第一源極上的第一源極接觸部;第一源極接觸部和第一閘極上方的金屬互連;將第一閘極電耦合到金屬互連的第一閘極接觸部;及將第一源極接觸部電耦合到金屬互連的第一過孔。晶片亦包括電源軌、以及將第一源極接觸部電耦合到電源軌的第二過孔。第二閘極在第一源極和第一閘極之間,並且金屬互連在第二閘極之上通過。
第二態樣涉及一種晶片。該晶片包括:第一閘極;第一源極;設置於第一源極上的第一源極接觸部;第一源極接觸部和第一閘極上方的第一金屬互連;將第一閘極電耦合到第一金屬互連的第一閘極接觸部;及將第一源極接觸部電耦合到第一金屬互連的第一過孔。晶片亦包括:第二閘極;第二源極;設置於第二源極上的第二源極接觸部;第二源極接觸部和第二閘極上方的第二金屬互連;將第二閘極電耦合到第二金屬互連的第二閘極接觸部;及將第二源極接觸部電耦合到第二金屬互連的第二過孔。第一金屬互連和第二金屬互連之每一者沿第一橫向方向延伸,第一金屬互連在第二橫向方向上與第二金屬互連對準,並且第一橫向方向與第二橫向方向大致垂直。
為了實現前述和相關目的,一或多個實施例包括下文充分描述並且尤其在請求項中指出的特徵。以下描述和附圖詳細闡述了一或多個實施例的某些說明性態樣。該等態樣指示可以採用各實施例的原理的各種方式,然而,僅指示了幾種方式,並且所述實施例意欲包括所有此種態樣及其均等物。
下文結合附圖闡述的具體實施方式意欲作為各種配置的描述而並非意欲僅代表可以實踐本文所述的概念的配置。具體實施方式包括具體細節,以用於提供對各種概念的透徹理解的目的。然而,對本領域技藝人士將顯而易見的是,可以在沒有該等具體細節的情況下實踐該等概念。在一些情況下,以方塊圖形式示出公知的結構和元件,以避免使此種概念難以理解。
半導體晶片(晶粒)可以包括大量的電晶體以及用於在晶片上的電晶體之間提供電隔離的隔離結構。此種隔離結構的實例為閘極斷開結構,其中虛設閘極被電耦合(連接)到源極。將虛設閘極耦合到源極將虛設閘極下方的溝道關斷,由此在虛設閘極的相對側上的電晶體之間提供了電隔離。
圖1圖示根據本案的某些態樣的包括閘極斷開結構的單元105的實例的頂視圖。在該實例中,單元105包括主動區110和多個閘極120、122、124、126、128和130。對於鰭狀物型場效應電晶體(finFET)製程,主動區110可以包括在橫向方向150上跨越單元105延伸的多個鰭狀物。為了容易說明,圖1中未圖示個體的鰭狀物。如本文所用,術語「橫向」是指與晶片的基板平行延伸的方向。
主動區110和閘極122、126和128形成單元105中的電晶體。對於finFET製程的實例,每個閘極122、126和128形成於主動區110的鰭狀物的相應部分之上,並且在閘極和鰭狀物之間設置有薄介電質層。在該實例中,每個閘極122、126和128形成單元110中的電晶體的閘極,並且閘極的相對側上的鰭狀物的部分形成電晶體的源極和汲極。
在圖1中所示的實例中,閘極斷開結構包括閘極124以及將閘極124電耦合(連接)到鄰近(相鄰)源極140的接觸部135。接觸部135可以經由設置於源極140上的源極接觸部(圖1中未圖示)耦合到源極。將閘極124耦合到源極140將閘極124下方的溝道關斷,由此在閘極124的相對側上的電晶體之間提供電隔離。接觸部135由接觸層形成,接觸層亦可以用於形成用於將電晶體的閘極耦合到上互連金屬層(未圖示)的閘極接觸部(未圖示)。若源極140是p型場效應電晶體(PFET)的源極,則源極140可以耦合到電壓供應軌,並且若源極140是n型場效應電晶體(NFET)的源極,則源極140可以耦合到接地軌。
圖1中所示的閘極斷開結構在無需切斷(中斷)閘極124下方的鰭狀物的情況下在閘極124的相對側上的電晶體之間提供了電隔離。這是因為閘極斷開結構藉由將閘極124耦合(連接)到源極140而將閘極124下方的溝道關斷。結果,主動區110的鰭狀物可以在閘極124下方連續延展。
在替代的電隔離方式中,在閘極124下方切割鰭狀物以在閘極124的相對側上的電晶體之間提供電隔離。在該方式中,利用電隔離材料(例如,介電質材料)填充由於切割鰭狀物而形成的空間,這在對製程變化敏感的鰭狀物中引入了應力。鰭狀物中的應力改變了單元105中的電晶體的電氣特性。由於鰭狀物中的應力對製程變化敏感,所以電晶體的電氣特性的所產生的變化亦對製程變化敏感,這導致電晶體的電氣特性的不決定性。閘極斷開結構藉由在無需切斷(中斷)閘極124下方的鰭狀物的情況下在閘極124的相對側上的電晶體之間提供電隔離,而克服了該缺陷。
圖1中所示的示例性閘極斷開結構可以用於將彼此鄰接的兩個單元中的電晶體電隔離。就此而言,以下圖2A-圖2C圖示針對兩個單元的三種不同鄰接情形的實例。
圖2A圖示第一單元205和第二單元208的源極到源極鄰接的實例的頂視圖。第一單元205包括多個閘極210、212和214、源極(標記為「S」)和汲極(標記為「D」)。閘極212、源極和汲極形成了第一單元205中的電晶體。第一單元205亦包括設置於汲極上的汲極接觸部216和設置於源極上的源極接觸部218。汲極接觸部和源極接觸部216和218可以由接觸層形成,該接觸層可以與用於形成閘極接觸部(未圖示)的接觸層不同。第一單元205亦包括將源極接觸部218(因此亦源極)電耦合到電源軌224的過孔222,電源軌224位於源極接觸部218上方。對於源極為PFET的源極的實例,電源軌224可以是電壓供應軌,並且對於源極是NFET的源極的實例,電源軌可以是接地軌。需注意,電源軌224下方的結構在圖2A中以虛線示出。
第一單元205進一步包括閘極斷開結構,其包括閘極214和將閘極214電耦合(連接)到源極接觸部218(因此亦有第一單元205中的源極)的接觸部220。藉由將閘極214耦合到源極,閘極斷開結構將閘極214下方的溝道關斷,由此為第一單元205中的電晶體提供了電隔離。
第二單元208包括多個閘極226、228和230、源極(標記為「S」)和汲極(標記為「D」)。閘極228、源極和汲極形成了第二單元208中的電晶體。第二單元208亦包括設置於汲極上的汲極接觸部232和設置於源極上的源極接觸部234。汲極接觸部和源極接觸部232和234可以由與用於在第一單元205中形成汲極接觸部和源極接觸部216和218的接觸層相同的接觸層形成。第二單元208亦包括將源極接觸部234(因此亦源極)電耦合到電源軌240的過孔238,電源軌240位於源極接觸部234上方。需注意,電源軌240下方的結構在圖2A中以虛線示出。
第二單元208進一步包括閘極斷開結構,其包括閘極226和將閘極226電耦合(連接)到源極接觸部234(因此亦有第二單元208中的源極)的接觸部236。藉由將閘極226耦合到源極,閘極斷開結構將閘極226下方的溝道關斷,由此為第二單元208中的電晶體提供了電隔離。。
圖2A的右側圖示第一單元205的源極側鄰接第二單元208的源極側的實例。在該實例中,閘極214和226被合併成閘極242,其中閘極242經由接觸部220耦合到第一單元205中的源極,並經由接觸部236耦合到第二單元208中的源極。而且,第一和第二單元中的源極耦合到位於源極接觸部218和238上方的共用電源軌244。由於閘極242耦合(連接)到第一單元205和第二單元208中的源極,所以閘極242下方的溝道被關斷,由此在第一單元205和第二單元208中的電晶體之間提供了電隔離。在該實例中,閘極242是經由接觸部220和236耦合到兩個鄰近源極的虛設閘極。於是,圖1中所示的閘極斷開結構支援兩個單元的源極到源極鄰接。
圖2B圖示第一單元246和第二單元248的源極到汲極鄰接的實例的頂視圖。第一單元246在結構上與上文參考圖2A所述的第一單元205相同。因此,上文提供的第一單元205的描述適用於圖2B中的第一單元246。
第二單元248包括多個閘極250、252和254、源極(標記為「S」)和汲極(標記為「D」)。閘極252、源極和汲極形成了第二單元248中的電晶體。第二單元248亦包括設置於汲極上的汲極接觸部256和設置於源極上的源極接觸部258。第二單元248亦包括將源極接觸部258(因此亦源極)電耦合到電源軌266的過孔262,電源軌266位於源極接觸部258上方。需注意,電源軌266下方的結構以虛線示出。
第二單元248進一步包括閘極斷開結構,其包括閘極254和將閘極254電耦合(連接)到源極接觸部258(因此亦有第二單元248中的源極)的接觸部260。藉由將閘極254耦合到源極,閘極斷開結構將閘極254下方的溝道關斷,由此為第二單元248中的電晶體提供了電隔離。
圖2B的右側圖示第一單元246的源極側鄰接第二單元248的汲極側的實例。在該實例中,閘極214和250被合併成閘極268,其中閘極268經由接觸部220耦合到第一單元246中的源極。而且,第一和第二單元中的源極耦合到共用電源軌270。由於閘極268耦合(連接)到第一單元246中的源極,所以閘極268下方的溝道被關斷,由此在第一單元246和第二單元248中的電晶體之間提供了電隔離。在該實例中,閘極268是經由接觸部220耦合到兩個鄰近源極中的一個的虛設閘極。於是,圖1中所示的閘極斷開結構支援兩個單元的源極到汲極鄰接。
圖2C圖示第一單元272和第二單元274的汲極到汲極鄰接的實例的頂視圖。如下文進一步所解釋的,上文論述的閘極斷開結構不支援兩個單元的汲極到汲極鄰接。
第一單元272包括多個閘極276、278和280、源極(標記為「S」)和汲極(標記為「D」)。閘極278、源極和汲極形成了第一單元272中的電晶體。第一單元272亦包括設置於汲極上的汲極接觸部282和設置於源極上的源極接觸部284。汲極接觸部和源極接觸部282和284可以由接觸層形成,該接觸層可以與用於形成閘極接觸部(未圖示)的接觸層不同。第一單元272亦包括將源極接觸部284(因此亦源極)電耦合到電源軌290的過孔288,電源軌290位於源極接觸部284上方。需注意,電源軌290下方的結構在圖2C中以虛線示出。
第一單元272進一步包括閘極斷開結構,其包括閘極276和將閘極276電耦合(連接)到源極接觸部284(因此亦有第一單元272中的源極)的接觸部286。藉由將閘極276耦合到源極,閘極斷開結構將閘極276下方的溝道關斷,由此為第一單元272中的電晶體提供了電隔離。。
第二單元274在結構上與上文參考圖2B所述的第二單元248相同。因此,上文提供的第二單元248的描述適用於圖2C中的第二單元274。
圖2C的右側圖示第一單元272的汲極側鄰接第二單元274的汲極側的實例。閘極280和250被合併成閘極292,並且第一和第二單元中的源極耦合到共用電源軌294。在該實例中,閘極292在兩側上被汲極包圍,並且沒有鄰近源極。於是,閘極292不能使用接觸部耦合(連接)到源極以在第一單元272和第二單元274中的電晶體之間提供電隔離。因此,上文論述的閘極斷開結構不支援兩個單元的汲極到汲極鄰接。
上文論述的閘極斷開結構的另一個挑戰在於,可能難以控制將虛設閘極耦合到源極的接觸部的對準。接觸部未對準可能導致接觸部與相鄰電晶體的閘極接觸,從而將電晶體的閘極短接到源極。這可能永久地將電晶體關斷,由此使電晶體無法工作。
因此,需要克服上述缺陷中的一或多個的閘極斷開結構。
就此而言,圖3A圖示根據本案的某些態樣的用於晶片上的單元310的示例性閘極斷開結構的頂視圖。如前面進一步所述,圖3A中所示的示例性閘極斷開結構支援兩個單元的汲極到汲極鄰接。
在該實例中,單元310包括多個閘極312、314和316、源極(標記為「S」)和汲極(標記為「D」)。在該實例中,閘極312和316位於單元310的邊界上。閘極314、源極和汲極形成了單元310中的電晶體。單元310亦包括設置於汲極上的汲極接觸部318和設置於源極上的源極接觸部320。汲極接觸部和源極接觸部318和320可以由接觸層形成,該接觸層可以與用於形成閘極接觸部的接觸層不同。單元310亦包括將源極接觸部320(因此亦源極)電耦合到電源軌335的過孔330,電源軌335位於源極接觸部320上方。需注意,電源軌335下方的結構在圖3A中以虛線示出。對於單元310中的電晶體為PFET的實例,電源軌335可以是電壓供應軌(例如,Vdd軌),並且對於單元310中的電晶體為NFET的實例,電源軌335可以是接地軌(例如,Vss軌)。
閘極斷開結構包括金屬互連322,其可以由晶片(晶粒)的後段製程(BEOL)中的金屬層(亦即,最底部金屬層)形成。金屬互連322位於閘極312、314和316、汲極接觸部318和源極接觸部320上方。需注意,金屬互連322下方的結構是以虛線示出的。在圖3A的實例中,金屬互連322沿橫向方向340跨越單元310延伸。在一些態樣中,金屬互連322可以由與用於形成電源軌335(例如,使用光刻和蝕刻製程)的金屬層相同的金屬層形成,並且可以平行於電源軌335延展。例如,金屬互連322和電源軌335可以由晶片的BEOL中的相同金屬層(例如,最底部金屬層)形成。
閘極斷開結構亦包括設置於閘極312和金屬互連322之間的第一閘極接觸部324、設置於閘極316和金屬互連322之間的第二閘極接觸部326以及設置於源極接觸部320和金屬互連322之間的過孔328。在該實例中,第一閘極接觸部324將閘極312耦合到金屬互連322,第二閘極接觸部326將閘極316耦合到金屬互連322,並且過孔328將源極接觸部320耦合到金屬互連322。於是,閘極312經由第一閘極接觸部324、金屬互連322和過孔328電耦合至源極接觸部320(因此亦源極)。類似地,閘極316經由第二閘極接觸部326、金屬互連322和過孔328電耦合至源極接觸部320(因此亦源極)。於是,在該實例中,閘極312和316是經由金屬互連322電耦合(連接)到源極的虛設閘極。由於閘極312和316位於單元310的邊界上,所以經由金屬互連322將閘極312和316電耦合到源極為單元310中的電晶體與其他單元(未圖示)中的電晶體提供了電隔離。
圖3B圖示示例性閘極斷開結構的側視圖。如圖3B中所示,金屬互連322在汲極接觸部318之上通過(交叉),並在豎直方向344上與汲極接觸部318分開某一空間(間隙)。該空間可以用電隔離材料填充以將金屬互連322與汲極接觸部318電隔離,從而允許金屬互連322在汲極接觸部318之上通過而不會電短接到汲極接觸部318。金屬互連322亦在單元310中的電晶體的閘極314之上通過(交叉),並在豎直方向344上與電晶體的閘極314分開某一空間(間隙)。該空間可以用電隔離材料填充以將金屬互連322與閘極314電隔離,從而允許金屬互連322在閘極314之上通過而不會電短接到閘極314。如本文所用,術語「豎直」是指與晶片的基板垂直延展的方向。
於是,金屬互連322在電晶體的汲極接觸部318和閘極314之上通過(交叉)而不會電短接到電晶體的汲極接觸部318和閘極314。這允許金屬互連將虛設閘極316耦合到源極接觸部320(因此亦源極),即使虛設閘極316不與源極相鄰亦如此。相反,上文參考圖1之閘極斷開結構要求虛設閘極具有鄰近(相鄰)源極,以便將虛設閘極耦合(連接)到源極。圖3A和圖3B中所示的示例性閘極斷開結構沒有此種限制,從而允許汲極到汲極鄰接,如下文進一步所述。
在圖3B中所示的實例中,源極和汲極經繪示為用於平面電晶體的晶片(晶粒)的基板中的摻雜區。然而,應當瞭解到,對於finFET的實例,源極和汲極可以由在橫向方向340上跨越單元310延伸的多個鰭狀物(圖3B中未圖示)形成。因此,應當瞭解到,本案的各態樣既適用於平面電晶體又適用於finFET。
如圖3A所示,汲極接觸部318在橫向方向342上在金屬互連322下方延伸。這樣允許汲極接觸部318在汲極的更大區域之上延伸,這減小了汲極的接觸電阻。汲極接觸部318能夠在金屬互連322下方延伸,因為金屬互連322在豎直方向344上與汲極接觸部310分隔某一空間(間隙),其防止金屬互連322短接到汲極接觸部318。對於finFET製程,這樣允許汲極接觸部318在橫向方向342上跨越單元310延伸,並且與所有鰭狀物接觸,以實現低接觸電阻。
若金屬互連322和汲極接觸部318之間沒有空間(間隙),汲極接觸部318就不能在金屬互連322下方通過而不將汲極接觸部318短接到金屬互連322。在該情況下,汲極接觸部可以僅部分地在汲極之上延伸,其中汲極接觸部和金屬互連需要在橫向方向342上分隔某一裕量,以防止汲極接觸部短接到金屬互連。在該情況下,部分汲極接觸部與圖3A中所示的汲極接觸部318相比可以顯著增大汲極的接觸電阻,圖3A中所示的汲極接觸部318可以在橫向方向342上完全跨越汲極延伸以實現低接觸電阻。
在某些態樣中,閘極接觸部324和326是使用自對準接觸製程形成的自對準閘極接觸部。對於每個閘極,自對準接觸製程可以包括以下步驟。可以在閘極的相對側上形成間隔體(例如,氮化物間隔體),其中利用填充材料(例如,氧化物材料)填充間隔體之間的空間。隨後可以使用選擇性蝕刻製程去除填充材料,該製程蝕刻掉填充材料而不蝕刻掉間隔體,由此在間隔體之間產生開口。所得到的開口在閘極正上方並經由間隔體與鄰近的汲極/源極接觸部電隔離。隨後可以在開口中沉積金屬以形成相應的閘極接觸部。所得到的閘極接觸部是自對準的。這是因為間隔體(例如,氮化物間隔體)界定了其中形成閘極接觸部的開口,使得閘極接觸部的形成對閘極接觸部圖案化未對準的容忍度顯著增加。自對準的閘極接觸部有助於防止閘極接觸部的未對準,這促進閘極接觸部和鄰近的汲極/源極接觸部的並排置放,而不將閘極接觸部短接到鄰近的汲極/源極接觸部。
圖3B圖示閘極接觸部324和326直接耦合到金屬互連322的實例。然而,應當瞭解到,本案不限於該實例。例如,閘極接觸部324和326之每一者可以經由設置於閘極接觸部和金屬互連322之間的相應過孔而耦合到金屬互連322。
參考圖3A,應當瞭解到,汲極接觸部318可以耦合到信號路由結構(未圖示),以用於向及/或從汲極路由信號。路由結構可以包括設置於汲極接觸部318上的過孔(未圖示),其中過孔在橫向方向342上從金屬互連322偏移,以防止汲極短接到金屬互連322。類似地,要瞭解到,電晶體的閘極314可以耦合到信號路由結構(未圖示),以用於向及/或從閘極314路由信號。路由結構可以包括設置於閘極314上的閘極接觸部(未圖示),其中閘極接觸部在橫向方向342上從金屬互連322偏移,以防止閘極314短接到金屬互連322。
應當瞭解到,單元310可以包括閘極312和316之間的額外的電晶體,其中閘極312和316經由金屬互連322耦合到單元310中的電晶體中的至少一個的源極。由於閘極312和316位於單元310的邊界上,所以經由金屬互連322將閘極312和316耦合到電晶體中的至少一個的源極,將單元310中的電晶體與其他單元(未圖示)中的電晶體電隔離。在該實例中,金屬互連322可以在橫向方向340上在單元310中的電晶體之上延伸。
如前述,圖3A和圖3B中所示的示例性閘極斷開結構支援兩個單元的汲極到汲極鄰接。現在將在下文中參考圖4A和圖4B論述此種情況的實例。
圖4A圖示第一單元410和第二單元412的汲極到汲極鄰接的實例的頂視圖。第一單元410在結構上與上文參考圖3A和圖3B所述的單元310相同。因此,上文提供的單元310的描述適用於第一單元410。
第二單元412包括多個閘極414、416和418、源極(標記為「S」)和汲極(標記為「D」)。在該實例中,閘極414和418位於第二單元412的邊界上。閘極416、源極和汲極形成了第二單元412中的電晶體。第二單元412亦包括設置於汲極上的汲極接觸部420和設置於源極上的源極接觸部422。第二單元412亦包括將源極接觸部422(因此亦源極)電耦合到電源軌435的過孔432,電源軌435位於源極接觸部422上方。需注意,電源軌435下方的結構以虛線示出。
第二單元412進一步包括閘極斷開結構,該閘極斷開結構包括金屬互連424,其可以由與第一單元410的金屬互連322的金屬層相同的金屬層形成。金屬互連424位於閘極414、416和418、汲極接觸部420和源極接觸部422上方。需注意,金屬互連424下方的結構是以虛線示出的。在圖4A所示的實例中,金屬互連424在橫向方向460上跨越第二單元412延伸。
閘極斷開結構亦包括將閘極414耦合到金屬互連424的第一閘極接觸部428、將閘極418耦合到金屬互連424的第二閘極接觸部426、以及將源極接觸部422耦合到金屬互連424的過孔430。在該實例中,閘極414和418是經由金屬互連424電耦合(連接)到源極的虛設閘極。
圖4B圖示第二單元412的閘極斷開結構的側視圖。如圖4B中所示,金屬互連424在汲極接觸部420之上通過,並在豎直方向470上與汲極接觸部420分隔某一空間。這樣允許汲極接觸部420在橫向方向465上在金屬互連424下方延伸,以減小汲極接觸電阻。金屬互連424亦在第二單元412中的電晶體的閘極416之上通過,並在豎直方向470上與電晶體的閘極416分隔某一空間。
圖4A和圖4B的右側圖示第一單元410的汲極側鄰接第二單元412的汲極側的實例。閘極316和414被合併成閘極440,並且金屬互連322和424被組合成共用金屬互連445,其在橫向方向460上跨越第一和第二單元410和412延伸。在該實例中,閘極440經由設置於閘極440和金屬互連445之間的閘極接觸部442耦合到金屬互連445。此外,第一和第二單元中的源極耦合到共用電源軌450。
在該實例中,汲極到汲極鄰接處的閘極440經由金屬互連445耦合(連接)到第一和第二單元410和412中的源極。金屬互連445將閘極440耦合到源極,即使閘極440沒有鄰近的源極(亦即,閘極440在兩側上被汲極包圍)亦如此。這是因為互連445能夠在閘極314和416之上交叉,以將閘極440分別耦合到源極接觸部320和422。由於閘極440經由金屬互連445耦合(連接)到第一和第二單元的源極,所以閘極440下方的溝道被關斷,由此在第一和第二單元中的電晶體之間提供了電隔離。因此,根據本案的各態樣的示例性閘極斷開結構支援兩個單元的汲極到汲極鄰接。示例性閘極斷開結構亦支援源極到汲極鄰接和源極到源極鄰接,如下文進一步所述。
在圖4A中所示的實例中,源極接觸部320和422分別經由過孔330和432耦合到共用電源軌450。對於第一和第二單元中的電晶體為PFET的實例,電源軌450可以是電壓供應軌(例如,Vdd軌),並且對於第一和第二單元中的電晶體為NFET的實例,電源軌450可以是接地軌(例如,Vss軌)。在某些態樣中,電源軌450可以由與金屬互連445相同的金屬層(例如,BEOL的最底部金屬層)形成(例如,使用光刻和蝕刻製程),並且平行於金屬互連445延展。
圖5A圖示第一單元510和第二單元512的源極到汲極鄰接的實例的頂視圖。第一單元510包括多個閘極514、516和518、源極(標記為「S」)和汲極(標記為「D」)。在該實例中,閘極514和518位於第一單元510的邊界上。閘極516、源極和汲極形成了第一單元510中的電晶體。第一單元510亦包括設置於汲極上的汲極接觸部520和設置於源極上的源極接觸部522。第一單元510亦包括將源極接觸部522(因此亦源極)電耦合到電源軌535的過孔532,電源軌535位於源極接觸部522上方。需注意,電源軌535下方的結構以虛線示出。
第一單元510進一步包括閘極斷開結構,閘極斷開結構包括金屬互連524,其可以由晶片的BEOL中的金屬層(例如,最底部金屬層)形成。金屬互連524位於閘極514、516和518、汲極接觸部520和源極接觸部522上方。需注意,金屬互連524下方的結構以虛線示出。在圖5A所示的實例中,金屬互連524在橫向方向560上跨越第一單元510延伸。
閘極斷開結構亦包括將閘極514耦合到金屬互連524的第一閘極接觸部528、將閘極518耦合到金屬互連524的第二閘極接觸部526、以及將源極接觸部522耦合到金屬互連524的過孔530。在該實例中,閘極514和518是經由金屬互連524電耦合(連接)到源極的虛設閘極。
圖5B圖示第一單元510的閘極斷開結構的側視圖。如圖5B中所示,金屬互連524在汲極接觸部520之上通過,並在豎直方向570上與汲極接觸部520分隔某一空間。這樣允許汲極接觸部520在橫向方向565上在金屬互連524下方延伸,以減小汲極接觸電阻。金屬互連524亦在第一單元510中的電晶體的閘極516之上通過,並且在豎直方向570上與電晶體的閘極516分隔某一空間。
第二單元512在結構上與上文參考圖4A和圖4B所述的第二單元412相同。因此,上文提供的第二單元412的描述適用於圖5A和圖5B中的第二單元512。
圖5A和圖5B的右側圖示第一單元510的源極側鄰接第二單元512的汲極側的實例。閘極518和414被合併成閘極540,並且金屬互連424和524被組合成共用金屬互連545,其在橫向方向560上跨越第一和第二單元510和512延伸。在該實例中,閘極540經由設置於閘極540和金屬互連545之間的閘極接觸部542耦合到金屬互連545。此外,第一和第二單元中的源極耦合到共用電源軌550。
在該實例中,源極到汲極鄰接處的閘極540經由金屬互連545耦合(連接)到第一和第二單元510和512中的源極。由於閘極540經由金屬互連545耦合(連接)到第一和第二單元的源極,所以閘極540下方的溝道被關斷,由此在第一和第二單元中的電晶體之間提供了電隔離。因此,根據本案的各態樣的示例性閘極斷開結構支援兩個單元的源極到汲極鄰接。
在圖5A中所示的實例中,源極接觸部522和422分別經由過孔532和432耦合到共用電源軌550。對於第一和第二單元中的電晶體為PFET的實例,電源軌550可以是電壓供應軌(例如,Vdd軌),並且對於第一和第二單元中的電晶體為NFET的實例,電源軌550可以是接地軌(例如,Vss軌)。在某些態樣中,電源軌550可以由與金屬互連545相同的金屬層(例如,BEOL的最底部金屬層)形成(例如,使用光刻和蝕刻製程),並且平行於金屬互連545延展。
圖6A圖示第一單元610和第二單元612的源極到源極鄰接的實例的頂視圖。第一單元610在結構上與上文參考圖5A和圖5B所述的第一單元510相同。因此,上文提供的第一單元510的描述適用於圖6A和圖6B中的第一單元610。
第二單元612包括多個閘極614、616和618、源極(標記為「S」)和汲極(標記為「D」)。在該實例中,閘極614和618位於第二單元612的邊界上。閘極616、源極和汲極在第二單元612中形成電晶體。第二單元612亦包括設置於汲極上的汲極接觸部620和設置於源極上的源極接觸部622。第二單元612亦包括將源極接觸部622(因此亦源極)電耦合到電源軌635的過孔632,電源軌635位於源極接觸部622上方。需注意,電源軌635下方的結構以虛線示出。
第二單元612進一步包括閘極斷開結構,閘極斷開結構包括金屬互連624,其可以由與第一單元610的金屬互連524相同的金屬層形成。金屬互連624位於閘極614、616和618、汲極接觸部620和源極接觸部622上方。需注意,金屬互連624下方的結構以虛線示出。在圖6A所示的實例中,金屬互連624在橫向方向660上跨越第二單元612延伸。
閘極斷開結構亦包括將閘極614耦合到金屬互連624的第一閘極接觸部626、將閘極618耦合到金屬互連624的第二閘極接觸部628、以及將源極接觸部622耦合到金屬互連624的過孔630。在該實例中,閘極614和618是經由金屬互連624電耦合(連接)到源極的虛設閘極。
圖6B圖示第二單元612的閘極斷開結構的側視圖。如圖6B中所示,金屬互連624在汲極接觸部620之上通過,並在豎直方向670上與汲極接觸部620分隔某一空間。金屬互連624亦在第二單元612中的電晶體的閘極616之上通過,並在豎直方向670上與電晶體的閘極616分隔某一空間。
圖6A和圖6B的右側圖示第一單元610的源極側鄰接第二單元612的源極側的實例。閘極518和614被合併成閘極640,並且金屬互連524和624被組合成共用金屬互連645,其在橫向方向660上跨越第一和第二單元610和612延伸。在該實例中,閘極640經由設置於閘極640和金屬互連645之間的閘極接觸部642耦合到金屬互連645。此外,第一和第二單元中的源極耦合到共用電源軌650。
在該實例中,源極到源極鄰接處的閘極640經由金屬互連645耦合(連接)到第一和第二單元610和612中的源極。由於閘極640經由金屬互連645耦合(連接)到第一和第二單元的源極,所以閘極640下方的溝道被關斷,由此在第一和第二單元中的電晶體之間提供了電隔離。因此,根據本案的各態樣的示例性閘極斷開結構支援兩個單元的源極到源極鄰接。
在圖6A中所示的實例中,源極接觸部522和622分別經由過孔532和632耦合到共用電源軌650。對於第一和第二單元中的電晶體為PFET的實例,電源軌650可以是電壓供應軌(例如,Vdd軌),並且對於第一和第二單元中的電晶體為NFET的實例,電源軌650可以是接地軌(例如,Vss軌)。在某些態樣中,電源軌650可以由與金屬互連645相同的金屬層(例如,BEOL的最底部金屬層)形成(例如,使用光刻和蝕刻製程),並且平行於金屬互連645延展。
圖7A和圖7B分別圖示第一單元710和第二單元712的汲極到汲極鄰接的另一實例的頂視圖和側視圖。第一單元710類似於圖4A和圖4B中的第一單元410,其中單元710和410二者共用的元件由相同的元件符號識別。第一單元710與圖4A和圖4B中的第一單元410的不同之處在於,圖4A和圖4B中的閘極接觸部324被省略。結果,閘極312不被耦合到第一單元710的金屬互連722。而且,互連722與圖4A和圖4B中的互連322的不同之處在於,互連722不在閘極312之上延伸。
第二單元712類似於圖4A和圖4B中的第二單元412,其中單元712和412二者共用的元件由相同的元件符號識別。第二單元712與圖4A和圖4B中的第二單元412的不同之處在於,圖4A和圖4B中的閘極接觸部426被省略。結果,閘極418不被耦合到第二單元712的金屬互連724。而且,互連724與圖4A和圖4B中的互連424的不同之處在於,互連724不在閘極418之上延伸。
圖7A和圖7B的右側圖示第一單元710的汲極側鄰接第二單元712的汲極側的實例。閘極316和414被合併成閘極440,並且金屬互連722和724被組合成共用金屬互連745。在該實例中,閘極440經由設置於閘極440和金屬互連745之間的閘極接觸部442耦合到金屬互連745。如圖7A和圖7B中所示,汲極到汲極鄰接處的閘極440經由金屬互連745電耦合到第一和第二單元710和712中的源極。這將閘極440下方的溝道關斷,由此在第一和第二單元710和712中的電晶體之間提供了電隔離。如圖7B所示,互連745藉由在汲極接觸部318和420以及閘極314和416之上交叉而將閘極440耦合到源極,即使閘極440在兩側上皆被汲極接觸部318和420包圍亦如此。
圖8A和圖8B分別圖示第一單元810和第二單元812的源極到汲極鄰接的另一實例的頂視圖和側視圖。第一單元810類似於圖5A和圖5B中的第一單元510,其中單元810和510二者共用的元件由相同的元件符號識別。第一單元810與圖5A和圖5B中的第一單元510的不同之處在於,圖5A和圖5B中的閘極接觸部526被省略。結果,閘極518不被耦合到第一單元810的金屬互連824。而且,互連824與圖5A和圖5B中的互連524的不同之處在於,互連824不在閘極518之上延伸。
第二單元812類似於圖5A和圖5B中的第二單元512,其中單元812和512二者共用的元件由相同的元件符號識別。第二單元812與圖5A和圖5B中的第二單元512的不同之處在於,圖5A和圖5B中的閘極接觸部426被省略。結果,閘極418不被耦合到第二單元812的金屬互連826。而且,互連826與圖5A和圖5B中的互連424的不同之處在於,互連826不在閘極418之上延伸。
圖8A和圖8B的右側圖示第一單元810的源極側鄰接第二單元812的汲極側的實例。閘極518和414被合併成閘極540,並且金屬互連824和826被組合成共用金屬互連845。在該實例中,閘極540經由設置於閘極540和金屬互連845之間的閘極接觸部542耦合到金屬互連845。如圖8A和圖8B中所示,源極到汲極鄰接處的閘極540經由金屬互連845電耦合到第一單元810和第二單元812中的源極。這將閘極440下方的溝道關斷,由此在第一單元810中的源極和第二單元812中的汲極之間提供了電隔離。
圖9A和圖9B分別圖示第一單元910和第二單元912的源極到源極鄰接的另一實例的頂視圖和側視圖。第一單元910類似於圖6A和圖6B中的第一單元610,其中單元910和610二者所共用的元件由相同的元件符號識別。第一單元910與圖6A和圖6B中的第一單元610的不同之處在於,圖6A和圖6B中的閘極接觸部526被省略。結果,閘極518不被耦合到第一單元910的金屬互連924。而且,互連924與圖6A和圖6B中的互連524的不同之處在於,互連924不在閘極518之上延伸。
第二單元912類似於圖6A和圖6B中的第二單元612,其中單元912和612二者所共用的元件由相同的元件符號識別。第二單元912與圖6A和圖6B中的第二單元612的不同之處在於,圖6A和圖6B中的閘極接觸部626被省略。結果,閘極614不被耦合到第二單元912的金屬互連926。而且,互連926與圖6A和圖6B中的互連624的不同之處在於,互連926不在閘極614之上延伸。
圖9A和圖9B的右側圖示第一單元910的源極側鄰接第二單元912的源極側的實例。在第一和第二單元910和912的源極到源極鄰接處,閘極518和614被合併成閘極640。在該實例中,閘極640是浮置的(亦即,不耦合到金屬互連924或金屬互連926)。而且,閘極640被第一和第二單元910和912中的源極包圍,其中源極被共用電源軌650(例如,Vdd或Vss)偏置在相同電勢。由於在該實例中第一和第二單元910和912中的源極處於相同電勢,所以閘極640不需要在源極之間提供電隔離,並且因此在該實例中,閘極640不需要被斷開。
根據本案的各態樣的閘極斷開結構可以用於單元內以將單元內的一或多個閘極斷開。就此而言,圖10A圖示示例性單元1010的頂視圖,單元1010包括多個閘極1012、1014、1016、1018、1020、1022和1024、源極(標記為「S」)和汲極(標記為「D」)。在該實例中,每個源極位於相應對的閘極之間,並且每個汲極位於相應對的閘極之間。單元1010亦包括汲極接觸部1026、1030、1032和1036,其中每個汲極接觸部設置於汲極中的相應一個上。單元1010亦包括源極接觸部1028和1034,其中每個源極接觸部設置於源極中的相應一個上。該單元進一步包括電源軌1060以及將源極接觸部1028和1034分別耦合到電源軌1060的過孔1040和1042。
單元1010包括閘極斷開結構,閘極斷開結構包括金屬互連1050,其可以由與電源軌1060相同的金屬層或不同的金屬層形成。金屬互連1050位於閘極1016和1018、汲極接觸部1030和源極接觸部1028上方。需注意,金屬互連1050下方的結構以虛線示出。在圖10A的實例中,金屬互連1050在橫向方向1062上部分地跨越單元1010延伸。
閘極斷開結構亦包括設置於閘極1018和金屬互連1050之間的閘極接觸部1054以及設置於源極接觸部1028和金屬互連1050之間的過孔1052。在該實例中,閘極接觸部1054將閘極1018耦合到金屬互連1050,並且過孔1052將源極接觸部1028耦合到金屬互連1050。於是,閘極1018經由閘極接觸部1054、金屬互連1050和過孔1052電耦合至源極接觸部1028(因此亦有相應源極)。於是,在該實例中,閘極1018是經由金屬互連1050電耦合(連接)到單元1010的源極中的一個以在閘極1018的相對側上的電晶體之間提供電隔離的虛設閘極。
圖10B圖示示例性閘極斷開結構的側視圖。如圖10B中所示,金屬互連1050在汲極接觸部1030之上通過(交叉),並且在豎直方向1066上與汲極接觸部1030分隔某一空間。類似地,金屬互連1050在閘極1016之上通過(交叉),並且在豎直方向1066上與閘極1016分隔某一空間。這樣允許金屬互連1050在汲極接觸部1030和閘極1016之上交叉以將閘極1018耦合到源極接觸部1028,而不將金屬互連1050短接到汲極接觸部1030和閘極1016。汲極接觸部1030和金屬互連1050之間的豎直空間允許汲極接觸部1030在橫向方向1064上在金屬互連1050下方延伸,如圖10A所示。
在圖10B中所示的實例中,源極和汲極被繪示為用於平面電晶體的晶片(晶粒)的基板中的摻雜區。然而,應當瞭解到,對於finFET的實例,源極和汲極可以由在橫向方向1062上跨越單元1010延伸的多個鰭狀物形成。就此而言,圖11圖示單元1010的一部分的透視圖,其中單元1010包括在橫向方向1062上跨越單元1010延伸的多個鰭狀物1110。在該實例中,閘極1016和1018之每一者形成於鰭狀物1110的相應部分之上,在閘極和鰭狀物1110之間設置有薄的介電質層(未圖示)。於是,在該實例中,鰭狀物經由閘極連續延展。汲極接觸部1030設置於鰭狀物1110的形成相應汲極的部分上,並且源極接觸部1028設置於鰭狀物1110的形成相應源極的部分上。
如圖11中所示,金屬互連1050和汲極接觸部1030之間在豎直方向1066上的豎直空間(間隙)允許汲極接觸部1030在橫向方向1064上在金屬互連1050下方延伸。汲極接觸部1030在橫向方向1064上延伸允許汲極接觸部1030與所有鰭狀物1110形成電接觸,以實現低汲極接觸電阻。可以利用電隔離材料填充汲極接觸部1030和金屬互連1050之間的空間(間隙)。
儘管圖11圖示單元1010包括三個鰭狀物的實例,但應當瞭解到,單元1010可以包括不同數量的鰭狀物。而且,儘管圖11圖示每個鰭狀物具有矩形截面的實例,但應當瞭解到,每個鰭狀物可以具有另一種截面形狀(例如,錐形形狀)。
應當瞭解到,可以將鰭狀物1110用於前述的任何實施例中,其中鰭狀物可以跨越一或多個單元延伸。對於兩個單元彼此鄰接的實例,鰭狀物可以經由位於單元的鄰接處的閘極(例如,閘極440、閘極540或閘極640)連續延展。在該情況下,可以使鄰接處的閘極斷開以在兩個單元之間提供電隔離而不切割(中斷)閘極下方的鰭狀物。
應當瞭解到,除了圖10A和圖10B中所示的示例性閘極斷開結構之外,單元1010亦可以包括一或多個額外的閘極斷開結構(未圖示)。在該情況下,一或多個額外的閘極斷開結構和圖10A和圖10B中所示的示例性閘極斷開結構可以共享在橫向方向1062上跨越單元1010延伸的共用金屬互連。
就此而言,圖12A圖示包括跨越單元1210延伸的金屬互連1250的示例性單元1210的頂視圖。單元1210類似於圖10A中的單元1010,其中單元1010和1210二者所共用的元件由相同的元件符號識別。
圖12A中的金屬互連1250與圖10A中的金屬互連1050的不同之處在於,金屬互連1250跨越單元1210延伸。金屬互連1250可以由與電源軌1060相同的金屬層或不同的金屬層形成。金屬互連1250位於閘極1012、1014、1016、1018、1020、1022和1024、汲極接觸部1026、1030、1032和1036以及源極接觸部1028和1034上方。需注意,金屬互連1250下方的結構以虛線示出。
如圖12A所示,閘極接觸部1054將閘極1018耦合到金屬互連1250,並且過孔1052將源極接觸部1028耦合到金屬互連1250,類似於圖10A中的單元1010。單元1250亦包括設置於閘極1012和金屬互連1250之間的閘極接觸部1252、以及耦合於閘極1024和金屬互連1250之間的閘極接觸部1254。閘極接觸部1252將閘極1012耦合到金屬互連1250,並且閘極接觸部1254將閘極1024耦合到金屬互連1250。於是,閘極1012經由金屬互連1250耦合到源極接觸部1028(因此亦有相應源極),並且閘極1024經由金屬互連1250耦合到源極接觸部1028(因此亦有相應源極)。由於閘極1012和1024位於單元1250的邊界上,所以經由金屬互連1250將閘極1012和1024電耦合到源極為單元1210中的電晶體與其他單元(未圖示)中的電晶體提供了電隔離。
圖12B圖示單元1210的側視圖。如圖12B中所示,金屬互連1250在汲極接觸部1026、1030、1032和1036之上通過(交叉),並且在豎直方向1066上與汲極接觸部分隔某一空間。這樣允許金屬互連1250在汲極接觸部之上交叉而不將金屬互連1250短接到汲極接觸部。而且,在該實例中,金屬互連1250在閘極1014、1016、1020和1022之上通過(交叉)並且在豎直方向1066上與該等閘極分隔某一空間。這樣允許金屬互連1250在該等閘極之上交叉而不會將金屬互連1250短接到該等閘極。
在上12A和圖12B中所示的實例中,單元1210亦包括將源極接觸部1034耦合到金屬互連1250的過孔1256。於是,在該實例中,閘極1018經由金屬互連1250耦合到兩個源極,其中閘極1018位於兩個源極之間。
在圖12A中所示的實例中,單元1210包括在橫向方向1062上跨越單元1210延伸的連續主動區1260(被表示為圖12A中的陰影區)。在該實例中,閘極1014、1016、1018、1020和1022之每一者、源極之每一者以及汲極之每一者的至少一部分處於連續主動區1260內。對於finFET製程,連續主動區1260包括在橫向方向1062上跨越單元1210延伸的鰭狀物。在該實例中,鰭狀物經由閘極1014、1016、1018、1020和1022連續延展,而在鰭狀物中沒有切口(中斷)。
可以在標準單元庫中預先定義上文論述的示例性單元,該庫定義了可以放置於某一半導體處理器的晶片(晶粒)上的各種單元。對於單元庫之每一者單元,單元庫可以定義單元中的電晶體的佈局、用於將單元中的電晶體互連的互連結構,及/或單元的閘極斷開結構。可以在晶片(晶粒)上置放單元庫中的單元的多個實例。
在某些態樣中,單元庫之每一者單元可以被配置為執行相應的邏輯功能。在該等態樣中,可以在設計階段期間將電路的功能分解成多個邏輯功能,其中每個邏輯功能可以由單元庫中的單元之一執行。隨後可以將執行邏輯功能的單元放置在晶片上並互連以實施晶片上的電路。單元可以由BEOL中的上金屬層互連。於是,在該實例中,單元充當電路的構建塊。
用於晶片上單元的佈局參數可以包括軌道,其定義了單元中可用於由特定金屬層(例如,BEOL的最底部金屬層)形成的金屬線的路徑。就此而言,圖13A圖示根據本案的某些態樣的示例性單元1310的多個軌道。在圖13A中,軌道被標記為T0到T7,並由在橫向方向1330上跨越單元1310延伸的多條線表示。軌道彼此平行地延展並在橫向方向1340上間隔開,其中橫向方向1340大致垂直於橫向方向1330。如本文所用,術語「大致垂直」指示兩個方向之間的角度在85度和95度之間。應當瞭解到,單元1310不限於圖13A中所示的示例性數量的軌道,並且單元1310可以具有不同數量的軌道。
軌道定義了單元1310中可用於由特定金屬層(例如,BEOL的最底部金屬層)形成的金屬線的路徑。換言之,軌道定義了可以在單元上的哪裡置放由金屬層形成的金屬線。在該實例中,金屬互連可以置放於軌道之一上以將單元1310中的一或多個閘極斷開,並且電源軌可以置於軌道中的不同軌道上。此外,可以將用於信號路由的金屬線置放在與用於金屬互連和電源軌的軌道不同的一或多個軌道上。例如,該等金屬線可以用於向或從單元中的汲極路由信號,及/或向或從單元中的閘極路由信號。
圖13B圖示位於晶片上的同一行中的多個單元1310到1330的多個軌道(標記為T0到T7)的實例,其中由圖13B中的虛線指示單元1310到1330的邊界。在該實例中,單元1320與單元1310和1330相鄰,並且位於單元1310和1330之間。
如圖13B所示,單元1310到1330具有相同數量的軌道和相同高度(標記為「H」)。在該實例中,圖13B中所示的軌道(標記為T0和T7)代表單元1310到1330中可用於放置由同一金屬層(例如,BEOL中的最底部金屬層)形成金屬線的路徑。單元1310到1330可以均包括用於閘極斷開的金屬互連(圖13B中未圖示),其中單元1310到1330的金屬互連被置於相同軌道上。於是,在該實例中,單元1310到1330的金屬互連沿橫向方向1330延伸並在橫向方向1340上彼此對準,因為其位於同一軌道上。通常,位於同一軌道上的金屬線在橫向方向1340上彼此對準。單元1310到1330的金屬互連可以被組合成跨越單元1310到1330延伸的一個連續金屬互連,或者可以是在橫向方向1330上由間隙間隔開的單獨的金屬互連。
圖13B中的單元1310到1330之每一者可以是圖3A、圖3B、圖4A、圖4B、圖5A、圖5B、圖6A、圖6B、圖7A、圖7B、圖8A、圖8B、圖9A、圖9B、圖10A和圖10B中所示的示例性單元中的任一個,其中橫向方向1330對應於橫向方向340、460、560、660和1062,並且橫向方向1340對應於橫向方向342、465、565、665和1066。單元1310到1330中的兩個或更多可以均為以上圖之一中所示的相同單元的單獨實例。
如前述,上述示例性金屬互連中的任一個可以由晶片的BEOL中的最底部金屬層形成(例如,使用光刻和蝕刻製程)。根據金屬層在BEOL中的名稱開始於M0或M1,最底部金屬層可以稱為金屬層M0或金屬層M1。
儘管圖3B、圖4B、圖5B、圖6B、圖7B、圖8B、圖9B和圖10B圖示閘極接觸部直接耦合到金屬互連的實例,但應當瞭解到,本案不限於該實例。例如,該等閘極接觸部之每一者可以經由設置於閘極接觸部和相應金屬互連之間的相應過孔耦合到金屬互連。
在本案內,使用「示例性」一詞意謂「充當示例、實例或例示」。本文描述為「示例性」的任何實施方式或態樣不一定被解釋為相對於本案的其他態樣是優選的或有利的。同樣,術語「態樣」不需要本案的所有態樣皆包括所論述的特徵、優點或操作模式。本文使用術語「耦合」是指兩個結構之間的直接或間接耦合。
本文中使用諸如「第一」、「第二」等名稱的元件的任何引用通常皆不限制彼等元件的數量或次序。相反,本文將該等名稱用作在兩個或更多個元件或元件實例之間進行區分的方便方式。於是,對第一和第二元件的引用不表示僅可以採用兩個元件,或者第一元件必須要在第二元件之前。
應當理解,本案不限於上文用於描述本案的各態樣的術語。例如,主動區亦可以稱為擴散區或另一術語。在另一個實例中,電源軌亦可以稱為電網或另一術語。
提供本案的前述描述以使本領域的任何技藝人士能夠做出或使用本案。對本案的各種修改對於本領域的技藝人士而言將是顯而易見的,並且可以將本文定義的一般性原理應用於其他變化而不脫離本案的精神或範圍。於是,本案並非要限於本文描述的實例,而是要根據與本文揭示的原理和新穎特徵一致的最寬範圍。
105:單元 110:主動區 120:閘極 122:閘極 124:閘極 126:閘極 128:閘極 130:閘極 135:接觸部 140:源極 150:橫向方向 205:第一單元 208:第二單元 210:閘極 212:閘極 214:閘極 216:汲極接觸部 218:源極接觸部 220:接觸部 222:過孔 224:電源軌 226:閘極 228:閘極 230:閘極 232:汲極接觸部 234:源極接觸部 236:接觸部 238:源極接觸部 240:電源軌 242:閘極 244:共用電源軌 246:第一單元 248:第二單元 250:閘極 252:閘極 254:閘極 256:汲極接觸部 258:源極接觸部 260:接觸部 262:過孔 266:電源軌 268:閘極 270:共用電源軌 272:第一單元 274:第二單元 276:閘極 278:閘極 280:閘極 282:汲極接觸部 284:源極接觸部 286:接觸部 288:過孔 290:電源軌 292:閘極 294:共用電源軌 310:單元 312:閘極 314:閘極 316:閘極 318:汲極接觸部 320:源極接觸部 322:金屬互連 324:第一閘極接觸部 326:第二閘極接觸部 328:過孔 330:過孔 335:電源軌 340:橫向方向 342:橫向方向 344:豎直方向 410:第一單元 412:第二單元 414:閘極 416:閘極 418:閘極 420:汲極接觸部 422:源極接觸部 424:金屬互連 426:第二閘極接觸部 428:第一閘極接觸部 430:過孔 432:過孔 435:電源軌 440:閘極 442:閘極接觸部 445:金屬互連 450:共用電源軌 460:橫向方向 465:橫向方向 470:豎直方向 510:第一單元 512:第二單元 514:閘極 516:閘極 518:閘極 520:汲極接觸部 522:源極接觸部 524:金屬互連 526:第二閘極接觸部 528:第一閘極接觸部 530:過孔 532:過孔 535:電源軌 540:閘極 542:閘極接觸部 545:金屬互連 550:共用電源軌 560:橫向方向 565:橫向方向 570:豎直方向 610:第一單元 612:第二單元 614:閘極 616:閘極 618:閘極 620:汲極接觸部 622:源極接觸部 624:金屬互連 626:第一閘極接觸部 628:第二閘極接觸部 630:過孔 632:過孔 635:電源軌 642:閘極接觸部 645:金屬互連 650:共用電源軌 660:橫向方向 665:橫向方向 670:豎直方向 710:第一單元 712:第二單元 722:金屬互連 724:金屬互連 745:共用金屬互連 810:第一單元 812:第二單元 824:金屬互連 826:金屬互連 845:金屬互連 910:第一單元 912:第二單元 924:金屬互連 926:金屬互連 1010:單元 1012:閘極 1014:閘極 1016:閘極 1018:閘極 1020:閘極 1022:閘極 1024:閘極 1026:汲極接觸部 1028:源極接觸部 1030:汲極接觸部 1032:汲極接觸部 1034:源極接觸部 1036:汲極接觸部 1040:過孔 1042:過孔 1050:金屬互連 1052:過孔 1054:閘極接觸部 1060:電源軌 1062:橫向方向 1064:橫向方向 1066:橫向方向 1110:鰭狀物 1210:單元 1250:金屬互連 1252:閘極接觸部 1254:閘極接觸部 1256:過孔 1260:連續主動區 1310:單元 1320:單元 1330:單元 1340:橫向方向 S:源極 D:汲極
圖1圖示根據本案的某些態樣的閘極斷開結構的實例。
圖2A圖示根據本案的某些態樣的兩個單元的源極到源極鄰接的實例。
圖2B圖示根據本案的某些態樣的兩個單元的源極到汲極鄰接的實例。
圖2C圖示根據本案的某些態樣的兩個單元的汲極到汲極鄰接的實例。
圖3A圖示根據本案的某些態樣的包括金屬互連的示例性閘極斷開結構的頂視圖。
圖3B圖示圖3A中所示的示例性閘極斷開結構的側視圖。
圖4A圖示根據本案的某些態樣的第一單元和第二單元的汲極到汲極鄰接的實例的頂視圖。
圖4B圖示圖4A中所示的汲極到汲極鄰接的側視圖。
圖5A圖示根據本案的某些態樣的第一單元和第二單元的源極到汲極鄰接的實例的頂視圖。
圖5B圖示圖5A中所示的源極到汲極鄰接的側視圖。
圖6A圖示根據本案的某些態樣的第一單元和第二單元的源極到源極鄰接的實例的頂視圖。
圖6B圖示圖6A中所示的源極到源極鄰接的側視圖。
圖7A圖示根據本案的某些態樣的第一單元和第二單元的汲極到汲極鄰接的另一實例的頂視圖。
圖7B圖示圖7A中所示的汲極到汲極鄰接的側視圖。
圖8A圖示根據本案的某些態樣的第一單元和第二單元的源極到汲極鄰接的另一實例的頂視圖。
圖8B圖示圖8A中所示的源極到汲極鄰接的側視圖。
圖9A圖示根據本案的某些態樣的第一單元和第二單元的源極到源極鄰接的另一實例的頂視圖。
圖9B圖示圖9A中所示的源極到源極鄰接的側視圖。
圖10A圖示根據本案的某些態樣的包括閘極斷開結構的單元的實例的頂視圖。
圖10B圖示圖10A中所示的單元的側視圖。
圖11圖示根據本案的某些態樣的圖10A中的單元包括多個鰭狀物的實例的透視圖。
圖12A圖示根據本案的某些態樣的包括閘極斷開結構的單元的另一實例的頂視圖。
圖12B圖示圖12A中所示的單元的側視圖。
圖13A圖示根據本案的某些態樣的用於單元的多個軌道的實例。
圖13B圖示根據本案的某些態樣的用於多個單元的多個軌道的實例。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
310:單元
312:閘極
314:閘極
316:閘極
318:汲極接觸部
320:源極接觸部
322:金屬互連
324:第一閘極接觸部
326:第二閘極接觸部
328:過孔
330:過孔
335:電源軌
340:橫向方向

Claims (16)

  1. 一種晶片,包括:一第一虛設閘極,該第一虛設閘極沿著一第二橫向方向延伸;一或多個閘極,該一或多個閘極沿著該第二橫向方向延伸,其中該一或多個閘極不是虛設閘極;一源極,該源極電耦合至一電源軌,其中該源極鄰近於該一或多個閘極之其中至少一者,且其中該源極不鄰近於該第一虛設閘極;及一金屬互連,該金屬互連沿著大致垂直於該第二橫向方向的一第一橫向方向延伸,其中該金屬互連位於該第一虛設閘極、該一或多個閘極、及該源極上方,且其中該金屬互連經配置以電耦合該第一虛設閘極至該源極,且其中該第一虛設閘極的至少一部分、該一或多個閘極的至少一部分、該源極、及該金屬互連的至少一部分在一連續主動區內。
  2. 如請求項1所述之晶片,其中該金屬互連在該連續主動區內。
  3. 如請求項1所述之晶片,其中該第一虛設閘極位於一單元的一邊界上。
  4. 如請求項3所述之晶片,進一步包括一第二虛設閘極,該第二虛設閘極沿著該第二橫向方向延伸且位於該單元的一相對邊界上。
  5. 如請求項4所述之晶片,其中該第二虛設閘極是浮置的。
  6. 如請求項4所述之晶片,其中該金屬互連在該第二虛設閘極之上延伸且經配置以耦合該第二虛設閘極至該電源軌。
  7. 如請求項1所述之晶片,進一步包括一第一汲極,該第一汲極鄰近於該第一虛設閘極且在該第一虛設閘極及該一或多個閘極之間,其中該金屬互連在該第一汲極上方。
  8. 如請求項7所述之晶片,進一步包括一第二汲極,該第二汲極鄰近於該第一虛設閘極,其中該第一虛設閘極在該第一汲極及該第二汲極之間。
  9. 如請求項1所述之晶片,進一步包括一第一閘極接觸部,該第一閘極接觸部在該第一虛設閘極上且在該金屬互連下方,其中該金屬互連經配置以經由該第一閘極接觸部耦合至該第一虛設閘極。
  10. 如請求項1所述之晶片,進一步包括一第一閘極接觸部及第一過孔,該第一閘極接觸部在該第一虛設閘極上,該第一過孔在該第一閘極接觸部上且在該金屬互連下方,其中該金屬互連經配置以經由該第一過孔及該第一閘極接觸部耦合至該第一虛設閘極。
  11. 如請求項10所述之晶片,其中該第一閘極接觸部是一自對準接觸部。
  12. 如請求項1所述之晶片,進一步包括一源極 接觸部、一第一過孔、及一第二過孔,該源極接觸部在該源極上,該第一過孔在該源極接觸部上且在該金屬互連下方,該第二過孔在該源極接觸部上且在該電源軌下方,其中該金屬互連經配置以經由該第一過孔、該源極接觸部、及該第二過孔耦合至該電源軌。
  13. 如請求項1所述之晶片,其中該金屬互連在BEOL的一最底部金屬層。
  14. 如請求項1所述之晶片,其中該電源軌沿著該第一橫向方向延伸。
  15. 如請求項1所述之晶片,其中該電源軌及該金屬互連在相同金屬層中。
  16. 如請求項1所述之晶片,其中該電源軌是一接地軌。
TW109146595A 2018-02-01 2018-12-13 用於閘極斷開的新穎的標準單元架構 TWI748827B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/886,611 2018-02-01
US15/886,611 US10600866B2 (en) 2018-02-01 2018-02-01 Standard cell architecture for gate tie-off

Publications (2)

Publication Number Publication Date
TW202131469A TW202131469A (zh) 2021-08-16
TWI748827B true TWI748827B (zh) 2021-12-01

Family

ID=64901102

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109146595A TWI748827B (zh) 2018-02-01 2018-12-13 用於閘極斷開的新穎的標準單元架構
TW107144984A TWI719370B (zh) 2018-02-01 2018-12-13 用於閘極斷開的新穎的標準單元架構

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107144984A TWI719370B (zh) 2018-02-01 2018-12-13 用於閘極斷開的新穎的標準單元架構

Country Status (5)

Country Link
US (3) US10600866B2 (zh)
EP (1) EP3740970B1 (zh)
CN (3) CN113327910B (zh)
TW (2) TWI748827B (zh)
WO (1) WO2019152093A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600866B2 (en) 2018-02-01 2020-03-24 Qualcomm Incorporated Standard cell architecture for gate tie-off
US11862637B2 (en) * 2019-06-19 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Tie off device
US20220223623A1 (en) * 2021-01-11 2022-07-14 Mediatek Inc. Logic cell with small cell delay
US11723194B2 (en) * 2021-03-05 2023-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit read only memory (ROM) structure
KR20220159589A (ko) 2021-05-26 2022-12-05 삼성전자주식회사 표준 셀을 포함하는 집적회로 칩
US20240079407A1 (en) * 2022-09-07 2024-03-07 Qualcomm Incorporated Folded series switches

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124868A1 (en) * 2012-11-07 2014-05-08 Qualcomm Incorporated Shared-diffusion standard cell architecture
US20160336183A1 (en) * 2015-05-14 2016-11-17 Globalfoundries Inc. Methods, apparatus and system for fabricating finfet devices using continuous active area design
TWI719370B (zh) * 2018-02-01 2021-02-21 美商高通公司 用於閘極斷開的新穎的標準單元架構

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570176A (en) 1984-04-16 1986-02-11 At&T Bell Laboratories CMOS Cell array with transistor isolation
JP2003100899A (ja) * 2001-09-27 2003-04-04 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP4543061B2 (ja) 2007-05-15 2010-09-15 株式会社東芝 半導体集積回路
KR20100006063A (ko) * 2008-07-08 2010-01-18 삼성전자주식회사 게이트 드라이버 및 이를 갖는 표시장치
DE102011004323B4 (de) * 2011-02-17 2016-02-25 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Halbleiterbauelement mit selbstjustierten Kontaktelementen und Verfahren zu seiner Herstellung
US8716124B2 (en) * 2011-11-14 2014-05-06 Advanced Micro Devices Trench silicide and gate open with local interconnect with replacement gate process
KR101396942B1 (ko) * 2012-03-21 2014-05-19 엘지디스플레이 주식회사 게이트 구동부 및 이를 포함하는 액정표시장치
US8618607B1 (en) * 2012-07-02 2013-12-31 Globalfoundries Inc. Semiconductor devices formed on a continuous active region with an isolating conductive structure positioned between such semiconductor devices, and methods of making same
JP6024425B2 (ja) 2012-12-03 2016-11-16 株式会社デンソー ナビゲーションシステム
US20140159157A1 (en) * 2012-12-07 2014-06-12 Altera Corporation Antenna diode circuitry and method of manufacture
US9231106B2 (en) * 2013-03-08 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with an asymmetric source/drain structure and method of making same
US9379058B2 (en) * 2014-02-14 2016-06-28 Qualcomm Incorporated Grounding dummy gate in scaled layout design
US9318476B2 (en) 2014-03-03 2016-04-19 Qualcomm Incorporated High performance standard cell with continuous oxide definition and characterized leakage current
US9640625B2 (en) 2014-04-25 2017-05-02 Globalfoundries Inc. Self-aligned gate contact formation
US20150311122A1 (en) * 2014-04-28 2015-10-29 Globalfoundries Inc. Forming gate tie between abutting cells and resulting device
US9379236B2 (en) * 2014-06-04 2016-06-28 Broadcom Corporation LDMOS device and structure for bulk FinFET technology
US10361195B2 (en) 2014-09-04 2019-07-23 Samsung Electronics Co., Ltd. Semiconductor device with an isolation gate and method of forming
US20160079167A1 (en) * 2014-09-12 2016-03-17 Qualcomm Incorporated Tie-off structures for middle-of-line (mol) manufactured integrated circuits, and related methods
US9773772B2 (en) * 2015-04-09 2017-09-26 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9911697B2 (en) * 2016-05-02 2018-03-06 Taiwan Semiconductor Manufacturing Co., Ltd. Power strap structure for high performance and low current density
DE102016114779A1 (de) * 2016-05-19 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Struktur und Verfahren für ein Halbleiter-Bauelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124868A1 (en) * 2012-11-07 2014-05-08 Qualcomm Incorporated Shared-diffusion standard cell architecture
US20160336183A1 (en) * 2015-05-14 2016-11-17 Globalfoundries Inc. Methods, apparatus and system for fabricating finfet devices using continuous active area design
TWI719370B (zh) * 2018-02-01 2021-02-21 美商高通公司 用於閘極斷開的新穎的標準單元架構

Also Published As

Publication number Publication date
US10784345B2 (en) 2020-09-22
CN113314501B (zh) 2024-03-01
TW202131469A (zh) 2021-08-16
US20200176562A1 (en) 2020-06-04
CN113327910A (zh) 2021-08-31
TWI719370B (zh) 2021-02-21
CN111684592A (zh) 2020-09-18
US10777640B2 (en) 2020-09-15
US10600866B2 (en) 2020-03-24
CN113314501A (zh) 2021-08-27
WO2019152093A1 (en) 2019-08-08
EP3740970B1 (en) 2022-03-16
EP3740970A1 (en) 2020-11-25
CN113327910B (zh) 2023-10-31
TW201941389A (zh) 2019-10-16
US20190237542A1 (en) 2019-08-01
CN111684592B (zh) 2021-05-11
US20200176563A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
TWI748827B (zh) 用於閘極斷開的新穎的標準單元架構
CN107785371B (zh) 静态随机存取记忆体装置
US9418728B2 (en) Dual-port static random-access memory cell
KR20180107057A (ko) 파워 혼 및 스마크 금속 절단부를 가진 표준-셀 레이아웃 구조물
US20060220134A1 (en) CMOS SRAM cells employing multiple-gate transistors and methods fabricating the same
US8803202B2 (en) Layout methods of integrated circuits having unit MOS devices
US20110018064A1 (en) Sram cell comprising finfets
US9768179B1 (en) Connection structures for routing misaligned metal lines between TCAM cells and periphery circuits
TWI685088B (zh) 靜態隨機存取記憶體單元結構以及靜態隨機存取記憶體佈局結構
US8872277B2 (en) Sense amplifier structure for a semiconductor integrated circuit device
JP2001358232A (ja) 半導体記憶装置
TW201813106A (zh) 鰭式場效電晶體結構上的選擇性sac覆蓋及相關方法
US20040203196A1 (en) Semiconductor integrated circuit
TWI829397B (zh) 半導體裝置及其形成方法、及其佈局設計修改方法
TWI720336B (zh) 在採用高密度金屬佈線中之高效能電池設計
US20230361205A1 (en) Circuit cell for a standard cell semiconductor device
TW202410304A (zh) 交錯間距堆疊之垂直傳輸場效電晶體
JP2008147689A (ja) 半導体装置