TWI742188B - 非接觸電壓測量系統 - Google Patents

非接觸電壓測量系統 Download PDF

Info

Publication number
TWI742188B
TWI742188B TW106137570A TW106137570A TWI742188B TW I742188 B TWI742188 B TW I742188B TW 106137570 A TW106137570 A TW 106137570A TW 106137570 A TW106137570 A TW 106137570A TW I742188 B TWI742188 B TW I742188B
Authority
TW
Taiwan
Prior art keywords
voltage
subsystem
capacitance
capacitor
processor
Prior art date
Application number
TW106137570A
Other languages
English (en)
Other versions
TW201830031A (zh
Inventor
麥可 加拉文
保羅 林斯洛德
克拉克 修伯
Original Assignee
美商富克有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商富克有限公司 filed Critical 美商富克有限公司
Publication of TW201830031A publication Critical patent/TW201830031A/zh
Application granted granted Critical
Publication of TWI742188B publication Critical patent/TWI742188B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/22Tong testers acting as secondary windings of current transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/142Arrangements for simultaneous measurements of several parameters employing techniques covered by groups G01R15/14 - G01R15/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2503Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本發明題為:“非接觸電壓測量系統”。本發明提供了用於測量絕緣導體(例如,絕緣導線)的交流(AC)電壓而不需要所述導體與測試電極或探針之間的電流連接的系統和方法。非電流接觸(或“非接觸”)電壓測量系統包括可變電容子系統,所述可變電容子系統操作以在被測絕緣導體和接地之間生成可變電容電壓。在測量期間,所述非接觸電壓測量系統改變所述可變電容子系統的所述電容以改變所述被測絕緣導體和所述接地之間的電容分壓器電路的阻抗。通過在所述可變電容子系統上按順序進行兩次(或三次)測量,可以確定所述絕緣導體的所述AC電壓,而不需要與所述絕緣導體的任何電流連接。所述絕緣導體的所述確定的AC電壓然後可被呈現給操作者並且/或者傳送到外部設備。

Description

非接觸電壓測量系統
本公開整體涉及電特性的測量,並且更具體地,涉及交流(AC)電壓的非接觸測量。
電壓表是用於測量電路中電壓的儀器。測量不止一個電特性的儀器稱為萬用表或數字萬用表(DMM),並且操作以測量服務、故障排除和維護應用通常需要的許多參數。此類參數通常包括交流(AC)電壓和電流,直流(DC)電壓和電流,以及電阻或連續性。還可以測量其他參數,諸如功率特性、頻率、電容和溫度,以滿足特定應用的要求。   對於測量AC電壓的常規電壓表或萬用表,必須使至少一個測量電極或探針與導體電流接觸,這通常需要切除絕緣電線的絕緣部分,或提前提供測量端子。除了需要裸露導線或端子來進行電流接觸之外,將電壓表探針與剝離導線或端子接觸的步驟可能由於電擊或觸電的風險而相對危險。   非接觸電壓檢測器通常用於檢測交流(AC)電壓(通常為高電壓)的存在,而無需與電路電流接觸。當檢測到電壓時,通過諸如光、蜂鳴器或振動馬達之類的指示來警告用戶。然而,此類非接觸電壓檢測器僅提供AC電壓的存在或不存在的指示,而不提供AC電壓的實際幅值(例如,RMS值)的指示。   因此,需要AC電壓測量系統,其提供方便且準確的電壓測量,而不需要與被測電路電流接觸。
用以測量絕緣導體中的交流(AC)電壓的系統可以概括為包括:可鄰近絕緣導體定位而不與導體電流接觸的導電感測器,其中導電感測器與絕緣導體電容地耦合;可變電容子系統,該可變電容子系統包括第一電容子系統節點和第二電容子系統節點,該第一電容子系統節點電耦合到導電感測器,並且該第一電容子系統節點和第二電容子系統節點在其間具有電容,該電容在至少第一電容值(C1 )和第二電容值(C2 )之間選擇性地可變,該第二電容值(C2 )不同於第一電容值(C1 );電壓測量子系統,該電壓測量子系統在操作中檢測第一電容子系統節點和第二電容子系統節點之間的電壓;至少一個非暫態處理器可讀存儲介質,該非暫態處理器可讀存儲介質存儲處理器可執行指令或資料中的至少一者;以及至少一個處理器,該處理器通信地耦接到該至少一個非暫態處理器可讀存儲介質,並且在操作中,回應於處理器可執行指令或資料的執行,該至少一個處理器:使得可變電容子系統在第一電容子系統節點和第二電容子系統節點之間具有第一電容值(C1 );使得電壓測量子系統檢測第一電容子系統節點和第二電容子系統節點之間的第一電壓(VM1 );使得可變電容子系統在第一電容子系統節點和第二電容子系統節點之間具有第二電容值(C2 );使得電壓測量子系統檢測第一電容子系統節點和第二電容子系統節點之間的第二電壓(VM2 );以及至少部分地基於檢測到的第一電壓(VM1 )和檢測到的第二電壓(VM2 )來確定絕緣導體中的AC電壓(VAC )。   該至少一個處理器可以:根據下式確定絕緣導體中的AC電壓(VAC ):VAC = VM1 × [ (C1 /C2 ) - 1] / [ (C1 VM1 / C2 VM2 ) – 1 ]。電壓測量子系統可包括至少一個類比-數位轉換器(ADC)。電壓測量子系統可具有至少20比特的有效解析度。可變電容子系統可包括至少第一電容器和第二電容器,該第一電容器和第二電容器各自選擇性地電耦合在第一電容子系統節點和第二電容子系統節點之間。可變電容子系統可包括電耦合在第一電容子系統節點和第二電容子系統節點之間的第一電容器,以及選擇性地電耦合在第一電容子系統節點和第二電容子系統節點之間的第二電容器。第一電容值(C1 )和第二電容值(C2 )可滿足第一電容值(C1 )與第二電容值(C2 )的介於2:5和1:10(包括端值在內)之間的比率(C1 :C2 )。第一電容值(C1)可選擇性地可變以適應輸入信號和輸入電容的不同值。第一電容值(C1 )和第二電容值(C2 )中的一個可為第一電容值(C1 )和第二電容值(C2 )中的另一個的至少兩倍。第一電容值(C1 )和第二電容值(C2 )中的每個可介於1000皮法拉(pF)和5000pF之間。系統還可包括:通信地耦接到該至少一個處理器的使用者介面,其中該至少一個處理器經由使用者介面呈現所確定的AC電壓(VAC )。使用者介面可包括顯示器或多個光發射器中的至少一者。在操作中,第二電容子系統節點可經由作業系統的使用者的身體電耦合到參考節點。系統還可包括:將第二電容子系統節點電耦合到接地的參考連接件。第一電容子系統節點和第二電容子系統節點可在其間具有電容,該電容在至少第一電容值(C1 )、第二電容值(C2 )和第三電容值(C3 )之間進一步選擇性地可變,並且回應於非暫態處理器可讀存儲介質中的處理器可執行指令或資料的執行,該至少一個處理器可以:使得可變電容子系統在第一電容子系統節點和第二電容子系統節點之間具有第三電容值(C3 );使得電壓測量子系統檢測第一電容子系統節點和第二電容子系統節點之間的第三電壓(VM3 );以及至少部分地基於檢測到的第一電壓(VM1 )、第二電壓(VM2 )和第三電壓(VM3 )來確定絕緣導體中的AC電壓(VAC )。該至少一個處理器可以:根據下式確定絕緣導體中的AC電壓(VAC ):VAC = C3 VM3 × [ (VM2 – VM1 ) / (C1 VM1 – C2 VM2 )] + VM3 。   用以測量絕緣導體中的交流(AC)電壓的系統可以概括為包括:可鄰近絕緣導體定位而不與導體電流接觸的導電感測器,其中導電感測器與絕緣導體電容地耦合;可變電容子系統,該可變電容子系統電耦合到導電感測器;電壓測量子系統,該電壓測量子系統在操作中檢測可變電容子系統上的電壓;至少一個非暫態處理器可讀存儲介質,該非暫態處理器可讀存儲介質存儲處理器可執行指令或資料中的至少一者;以及至少一個處理器,該處理器通信地耦接到該至少一個非暫態處理器可讀存儲介質,並且在操作中,回應於處理器可執行指令或資料的執行,該至少一個處理器:使得可變電容子系統具有第一電容值(C1 );當導電感測器鄰近絕緣導體定位時,經由電壓測量子系統檢測可變電容子系統上的第一電壓(VM1 );使得可變電容子系統具有第二電容值(C2 );當導電感測器鄰近絕緣導體定位時,經由電壓測量子系統檢測可變電容子系統上的第二電壓(VM2 );以及至少部分地基於檢測到的第一電壓(VM1 )和檢測到的第二電壓(VM2 )來確定絕緣導體中的AC電壓(VAC )。   該至少一個處理器可以:根據下式確定絕緣導體中的AC電壓(VAC ):VAC = VM1 × [ (C1 /C2 ) - 1] / [ (C1 VM1 / C2 VM2 ) – 1 ]。電壓測量子系統可包括至少一個類比-數位轉換器(ADC),該類比-數位轉換器具有至少20比特的有效解析度。可變電容子系統可包括至少第一電容器、第二電容器、以及耦接到第一電容器和第二電容器中的至少一個的開關,其中該開關可由該至少一個處理器選擇性地操作以使得可變電容子系統具有第一電容值(C1 )和第二電容值(C2 )。   操作用以測量絕緣導體中的交流(AC)電壓的系統的方法,該系統可以概括為包括:可鄰近絕緣導體定位而不與導體電流接觸的導電感測器,以及電耦合到導電感測器的可變電容子系統,該方法包括:通過至少一個處理器使得可變電容子系統具有第一電容值(C1 );當導電感測器鄰近絕緣導體定位時,通過至少一個處理器檢測可變電容子系統上的第一電壓(VM1 );通過至少一個處理器使得可變電容子系統具有第二電容值(C2 );當導電感測器鄰近絕緣導體定位時,通過至少一個處理器檢測可變電容子系統上的第二電壓(VM2 );以及至少部分地基於檢測到的第一電壓(VM1 )和檢測到的第二電壓(VM2 )通過至少一個處理器來確定絕緣導體中的AC電壓(VAC )。   確定絕緣導體中的AC電壓(VAC )可包括根據下式確定絕緣導體中的AC電壓(VAC ):VAC = VM1 × [ (C1 /C2 ) - 1] / [ (C1 VM1 / C2 VM2 ) – 1 ]。檢測第一電壓(VM1 )和第二電壓(VM2 )中的每個可包括經由耦接到可變電容子系統的至少一個類比-數位轉換器(ADC)來檢測第一電壓(VM1 )和第二電壓(VM2 )中的每個。檢測第一電壓(VM1 )和第二電壓(VM2 )中的每個可包括以至少20比特的有效解析度檢測第一電壓(VM1 )和第二電壓(VM2 )中的每個。使得可變電容子系統具有第二電容值(C2 )可包括使得可變電容子系統具有第二電容值,該第二電容值為以下中的一個:第一電容值(C1 )的至少兩倍或者等於或小於第一電容值(C1 )的一半。該方法還可包括:通過該至少一個處理器經由使用者介面呈現確定的AC電壓(VAC )。該方法還可包括:通過至少一個處理器使得可變電容子系統具有第三電容值(C3 );當導電感測器鄰近絕緣導體定位時,通過至少一個處理器檢測可變電容子系統上的第三電壓(VM3 );以及至少部分地基於檢測到的第一電壓(VM1 )、第二電壓(VM2 )和第三電壓(VM3 )通過至少一個處理器確定絕緣導體中的AC電壓(VAC )。確定絕緣導體的AC電壓(VAC )可包括根據下式確定絕緣導體中的AC電壓(VAC ):VAC = C3 VM3 × [ (VM2 – VM1 ) / (C1 VM1 – C2 VM2 )] + VM3
在下面的描述中,闡述了某些具體細節以便提供對各種所公開的實施方式的徹底理解。然而,相關領域的技術人員將認識到,可以在沒有這些具體細節中的一個或多個的情況下,或者利用其他方法、部件、材料等來實現實施方式。在其他情況下,與電腦系統、伺服器電腦和/或通信網路相關聯的公知結構尚未被詳細地示出或描述,以避免不必要地模糊實施方式的描述。   除非上下文另有要求,否則在整個說明書和隨後的權利要求書中,單詞“包含”與“包括”是同義的,並且是包含性或開放式的(即,不排除附加的、未被引用的元件或方法動作)。   本說明書通篇對“一個實施方式”或“實施方式”的引用意指結合該實施方式描述的特定特徵、結構或特性包括在至少一個實施方式中。因此,本說明書通篇各個地方出現的短語“在一個實施方式中”或“在實施方式中”不一定全部指代相同的實施方式。此外,在一個或多個實施方式中,特定特徵、結構或特性可以任何合適的方式組合。   如在本說明書和所附權利要求中所用,單數形式“一種”、“一個”和“該”包括複數指示物,除非上下文另有明確指示。還應指出的是,除非該上下文另外明確地指示,否則術語“或”通常以其包括“和/或”的含義使用。   本文提供的標題和說明書摘要僅是為了方便,而不是解釋實施方式的範圍或意義。   本公開的一個或多個實施方式涉及用於測量絕緣導體(例如,絕緣導線)的交流(AC)電壓而不需要導體與測試電極或探針之間的電流連接的系統和方法。一般來講,提供了非電流接觸(或“非接觸”)電壓測量系統,該電壓測量系統包括可變電容子系統,該可變電容子系統操作以在被測絕緣導體和接地之間生成可變電容電壓。在測量期間,非接觸電壓測量系統改變可變電容子系統的電容以改變被測絕緣導體和接地之間的電容分壓器電路的阻抗。通過在可變電容子系統上按順序進行兩次(或三次)測量,可以確定絕緣導體的AC電壓,而不需要與絕緣導體的任何電流連接。不需要電流連接的此類系統在本文中稱為“非接觸”。如本文所用,除非另有說明,否則“電耦合”包括直接和間接電耦合。   圖1是環境100的示意圖,其中本公開的非接觸電壓測量系統102可由操作者104使用以測量存在於絕緣導線106中的AC電壓,而不需要非接觸電壓測量系統和導線106之間的電流接觸。圖2是圖1的非接觸電壓測量系統102的俯視平面圖。非接觸電壓測量系統102包括殼體或主體108,該殼體或主體包括夾持部分或端部110以及與夾持部分相對的探針部分或端部112。殼體108還可包括使用者介面114,該使用者介面便於與非接觸電壓測量系統102的使用者交互。使用者介面114可包括任何數量的輸入端(例如,按鈕、轉盤、開關、觸摸感測器)和任何數量的輸出端(例如,顯示器、LED、揚聲器、蜂鳴器)。   在至少一些實施方式中,如圖2最佳所示,探針部分或端部112可包括由第一延伸部分118和第二延伸部分120限定的凹陷部分116。凹陷部分116接收絕緣導線106。絕緣導線106包括導體122和圍繞導體122的絕緣體124。凹陷部分116可包括感測器或電極126,當絕緣導線定位在非接觸電壓測量系統102的凹陷部分116內時,該感測器或電極鄰近或基本上鄰近絕緣導線106的絕緣體124坐置。   如圖1所示,在使用中,操作者104可抓握殼體108的夾持部分110並且將探針部分112放置在絕緣導線106附近,使得非接觸電壓測量系統102可以精確地測量存在於導線中的相對於接地(或另一個參考節點)的AC電壓。雖然探針部分或端部112被示出為具有凹陷部分116,但是在其他實施方式中,探針部分112可以被不同地配置。例如,在至少一些實施方式中,探針部分112可包括選擇性地可移動的夾具、鉤、包括感測器的平坦或弓形表面、或者允許非接觸電壓測量系統102的感測器鄰近絕緣導線106定位的其他類型的介面。   如下文進一步討論,在至少一些實施方式中,非接觸電壓測量系統102可在AC電壓測量期間使用操作者104和地128之間的體電容(CB )。下文參考圖3-圖7討論由用以測量AC電壓的非接觸電壓測量系統102使用的特定系統和方法。   圖3是非接觸電壓測量系統300的高級框圖。非接觸電壓測量系統300可與上文討論的圖1和圖2的非接觸電壓測量系統102相似或相同。   非接觸電壓測量系統300包括導電感測器或電極302,該導電感測器或電極的大小、尺寸和位置被設計成當操作者104將探針部分或端部112(圖1)定位在導線附近時與絕緣導線106相鄰。例如,感測器302可與圖2的感測器126相似或相同。當非接觸電壓測量系統300在感測器302與導線相鄰的情況下定位在絕緣導線106附近時,感測器與絕緣導線電容地耦合。換句話講,感測器302的導電部分包括感測器電容器(CS )的一半,其中絕緣導線106(圖2)的導體122包括感測器電容器的另一半。在至少一些實施方式中,感測器302可被設計成使得對於感測器的面向絕緣導線106的一側上的電磁場的敏感度大於對於感測器的不面向絕緣導線的另一側上的電磁場的敏感度。   非接觸電壓測量系統300還包括可變電容子系統304,該可變電容子系統電耦合到導電感測器302。可變電容子系統304具有電容值,該電容值在至少第一電容值(C1 )和第二電容值(C2 )之間選擇性地可變,其中第二電容值(C2 )不同於第一電容值(C1 )。在至少一些實施方式中,可變電容子系統304可被控制以選擇性地具有電容值,該電容值在至少第一電容值(C1 )、第二電容值(C2 )和第三電容值(C3 )之間可變,其中第一電容值、第二電容值和第三電容值中的每一個彼此不同。如下文進一步討論,可變電容子系統304用於改變串聯電容電路的電容,該串聯電容電路從絕緣導線106延伸穿過非接觸電壓測量系統300到接地128或其他參考節點。   在至少一些實施方式中,電容值中的至少一個(例如,電容值C1 )可以選擇性地可變以適應輸入信號和輸入電容的變化值。例如,系統300可確定輸入信號對於準確測量過大還是過小,並且可選擇性地調整電容值中的一個或多個以使得可以獲得準確的信號測量。因此,電容值中的一個或多個(例如,C1 )可使用多個物理電容器實現,所述物理電容器可以選擇性地組合以提供適用於特定輸入信號和輸入電容的期望電容值。   非接觸電壓測量系統300還包括電壓測量子系統306,該電壓測量子系統可操作以感測電壓,或指示可變電容子系統304上的電壓的信號。在至少一些實施方式中,電壓測量子系統306可包括類比-數位轉換器(ADC),該類比-數位轉換器將類比電壓信號轉換為數位信號。例如,電壓測量子系統306可包括ADC,該ADC具有相對高的有效解析度,諸如20或更多比特(例如,22比特)的解析度,這有利於高度準確的測量。在至少一些實施方式中,電壓測量子系統306可包括調節電路(例如,一個或多個放大器和/或濾波器)以緩衝、成形並且/或者放大來自可變電容子系統304的檢測到的電壓,然後使用ADC將信號轉換為數位形式。   非接觸電壓測量系統300還可包括控制器308,該控制器通信地耦接到電壓測量子系統306和可變電容子系統304。控制器308可以是任何合適的硬體、軟體或它們的組合。作為例子,控制器308可包括一個或多個處理器以及通信地耦接到一個或多個處理器的一個或多個非暫態處理器可讀存儲介質。非暫態處理器可讀存儲介質可存儲指令和/或資料,當由一個或多個處理器執行時,該指令和/或資料使得一個或多個處理器實現本文討論的功能(例如,測量絕緣導線106中的AC電壓)。   控制器308可包括任何類型的處理單元,諸如一個或多個中央處理單元(CPU)、數位訊號處理器(DSP)、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、可程式設計邏輯控制器(PLC)、人工神經網路電路或系統,或任何其他邏輯部件。耦合到控制器308的非暫態處理器可讀存儲介質可包括任何類型的非暫態的易失性和/或非易失性記憶體。   非接觸電壓測量系統300還可包括通信地耦接到控制器308的使用者介面310。使用者介面310可包括任何數量的輸入端(例如,按鈕、轉盤、開關、觸摸感測器)和任何數量的輸出端(例如,顯示器、LED、揚聲器、蜂鳴器)。在至少一些實施方式中,控制器308和/或使用者介面310可包括一個或多個有線和/或無線通訊介面(例如,USB、Bluetooth® 、WiFi® ),所述通信介面允許在非接觸電壓測量系統300與一個或多個外部設備之間傳送資料和/或指令。   在操作中,操作者104可將非接觸電壓測量系統300定位在絕緣導線106附近,使得感測器302與導線電容地耦合以形成感測器電容器CS 。當感測器302被如此定位時,控制器308可使得可變電容子系統304具有不同電容值,並且可在不同電容值中的每個處從電壓測量子系統306獲得測量結果。控制器308然後可基於所獲得的測量結果確定存在於絕緣導線106中的AC電壓的幅值,並且經由使用者介面310將結果呈現給操作者104。關於非接觸電壓測量系統300的特定實施方式的附加細節在下文參考圖4-圖6進行討論。   圖4是非接觸電壓測量系統400的示意圖,該非接觸電壓測量系統包括可變電容子系統402,該可變電容子系統使用指定為電容器401和403的兩個電容器。電容器401和403可具有彼此相同或彼此不同的電容值。作為非限制性例子,電容器401和403可各自具有1000皮法拉(pF)的電容值。作為另一個例子,電容器401可具有1000pF的電容值,並且電容器403可具有2000pF的電容值。   可變電容子系統402包括第一電容子系統節點404和第二電容子系統節點406。電容器401電耦合在第一電容子系統節點404和第二電容子系統節點406之間。第一電容子系統節點404進一步電耦合到導電感測器408,該導電感測器可分別與上文討論的圖2和圖3的非接觸電壓測量系統102和300的導電感測器126和302相似或相同。如上所述,當非接觸電壓測量系統400鄰近絕緣導線106定位時,導電感測器408形成感測器電容器CS 的一半,其中導線106的導體122(圖2)形成感測器電容器CS 的另一半。   可變電容子系統402還包括開關S1 ,該開關操作以選擇性地將電容器403與電容器401並聯電耦合。因此,通過選擇性地控制開關S1 ,第一電容子系統節點404和第二電容子系統節點406之間的電容值在電容器401的電容值與電容器401和403的電容值的總和之間選擇性地可變。在電容器401和403具有相同電容值(例如,1000pF)的情況下,在開關S1 閉合時可變電容子系統402的電容是在開關S1 打開時可變電容子系統402的電容的兩倍(例如,2000pF相對於1000pF)。   第二電容子系統節點406可經由體電容CB 電耦合到地128,該體電容為在操作期間保持非接觸電壓測量系統400的操作者104(圖1和圖2)的電容。一般來講,操作者的身體可被建模為相對於地128由薄的絕緣體覆蓋的導體。通常,根據各種因素,體電容CB 在數十到數百皮法拉(例如,50-300pF)的範圍內。在至少一些實施方式中,不同於使用體電容CB ,第二電容子系統節點406可經由非接觸電壓測量系統400與地之間的合適的電連接任選地電耦合到地128。   控制器308被耦合以選擇性地控制開關S1 的操作,該開關繼而選擇性地控制可變電容子系統402的電容值以成為電容值C1 或電容值C2 。在該例子中,電容值C1 等於電容器401的電容,並且電容值C2 等於電容器401和403的電容的總和。在其他例子中,根據電容器和一個或多個開關在第一電容子系統節點404和第二電容子系統節點406之間的佈置,可變電容子系統402中的不同電容值C1 和C2 可選擇性地獲得。   非接觸電壓測量系統400還包括ADC 410,該ADC電耦合到第一電容子系統節點404和第二電容子系統節點406。ADC 410經由合適的介面(例如,同步序列介面(SSI))通信地耦接到控制器308。ADC 410可操作以將第一電容子系統節點404和第二電容子系統節點406之間的類比電壓轉換為數位信號,並且向控制器308提供數位信號。在至少一些實施方式中,ADC 410可具有相對高的有效解析度,諸如20或更多比特(例如,22比特、24比特、30比特)的解析度。雖然為了清楚起見未示出,但ADC 410可包括或者耦合到調節電路(例如,一個或多個放大器和/或濾波器)以緩衝、成形並且/或者放大來自可變電容子系統402的檢測到的電壓,然後將信號轉換為數位形式。另外,雖然控制器308和ADC 410被示意性地示為單獨的部件,但是在至少一些實施方式中,功能中的一些或全部可被組合成單個系統或部件(例如,單個積體電路)。   當感測器408鄰近導線定位以使得感測器和導線形成感測器電容器CS 時,為了測量導線106中的AC電壓,控制器308可首先使得可變電容子系統402在第一電容子系統節點404和第二電容子系統節點406之間具有第一電容值C1 。例如,控制器308可通過打開開關S1 來實現這一點,這使得可變電容子系統402的電容值等於電容器401的電容。   接下來,在可變電容子系統402具有第一電容值C1 時,控制器308可使得ADC 410捕獲或測量第一電容子系統節點404和第二電容子系統節點406之間的第一電壓VM1 。這樣的電壓VM1 可由控制器308存儲在非暫態處理器可讀存儲介質中以供後續使用。   接下來,在獲得第一電壓VM1 的測量結果之後,控制器308可使得可變電容子系統402在第一電容子系統節點404和第二電容子系統節點406之間具有第二電容值C2 。例如,控制器308可通過閉合開關S2 來實現這一點以將電容器403與電容器401並聯放置,這使得可變電容子系統402的電容值等於電容器401和403的電容值的總和。   在可變電容子系統402具有第二電容值C2 時,控制器308可使得ADC 410捕獲或測量第一電容子系統節點404和第二電容子系統節點406之間的第二電壓VM2 。   接下來,控制器308可至少部分地基於檢測到的第一電壓VM1 、檢測到的第二電壓VM2 、第一電容值C1 和第二電容值C2 來確定絕緣導線106中的AC電壓。下文參考圖5討論用於確定絕緣導線106中的AC電壓的示例性過程。   圖5示出圖4的非接觸電壓測量系統400的示意性電路圖。在該例子中,絕緣導線106的AC電壓由AC源(VAC )表示。串聯電容電路在AC源(VAC )、感測器電容器CS 、測量電容CM 和操作者104(圖1和圖2)的體電容CB 之間形成,該測量電容為電容值C1 或電容值C2 ,這取決於開關S1 的狀態。如上所述,ADC 410在可變電容子系統402具有第一電容值(即,CM = C1 )時獲得節點404和406上的第一電壓測量結果VM1 ,並且在可變電容子系統具有第二電容值(即,CM = C2 )時獲得節點404和406上的第二電壓測量結果VM2 。測量的電壓VM 等於節點404處的電壓(V404 )和節點406處的電壓(V406 )之間的電勢差(即,VM = V404 – V406 )。   節點404處的電流可由以下等式表示:
Figure 02_image001
電流(ICS )由以下等式給出:
Figure 02_image003
其中(VAC − V404 )是感測器電容器CS 上的電壓,s是拉普拉斯變數,並且(1/(s×CS ))是感測器電容器CS 的阻抗。電流(ICM )由以下等式給出:
Figure 02_image005
其中(V404 − V406 )是電容器CM 上的電壓,並且(1/(s×CM ))是電容CM 的阻抗。   類似地,節點406處的電流可由以下等式表示:
Figure 02_image007
電流(ICB )由以下等式給出:
Figure 02_image009
其中(V406 − 0)是體電容器CB 上的電壓,並且(1/(s×CB ))是體電容CB 的阻抗。電流(ICM )在上文提供。   使用上述等式(1)和(4),以及VM = V404 – V406 ,VM 可由以下等式表示:
Figure 02_image011
其中
Figure 02_image013
如上所述,ADC 410在可變電容系統402具有電容值C1 時獲得第一電壓測量結果VM1 ,並且在可變電容系統402具有電容值C2 時獲得第二電壓測量結果VM2 。因此,VM1 和VM2 可由以下等式表示:
Figure 02_image015
Figure 02_image017
等式(8)和(9)可對於絕緣導線106中的AC電壓(VAC )進行求解,該電壓由以下等式提供:
Figure 02_image019
如從等式(10)可見,可以在執行時間期間僅使用已知的電容值C1 和C2 (或電容值C1 和C2 之間的比率)和測量的電壓VM1 和VM2 來確定AC電壓(VAC )。也就是說,不需要確定感測器電容器CS 和體電容CB 來獲得絕緣導線106中的AC電壓(VAC )。還要注意的是,AC電壓的頻率不出現在等式中,但是系統400的總阻抗取決於電路中最小電容器的頻率和電容。例如,利用在電路中為最小電容器的1pF的感測器電容CS ,電路的阻抗在50Hz下為大約3.5GΩ。   圖6是非接觸電壓測量系統600的示意圖,該非接觸電壓測量系統包括可變電容子系統601,該可變電容子系統使用三個電容器(即,電容器602,604和606)。非接觸電壓測量系統600與上文討論的非接觸電壓測量系統相似或相同,因此為了簡明起見僅在下文討論實質上的差異。   非接觸電壓測量系統600包括電耦合到感測器408的第一電容子系統節點608,以及經由操作者104(圖1和圖2)的體電容CB 電耦合到地128的第二電容子系統節點610。在至少一些實施方式中,第二電容子系統節點610可經由合適的電連接612(“參考連接件”)任選地直接電耦合到地128。   電容器602可經由可由控制器308控制的開關S2 選擇性地串聯耦合在節點608和610之間。電容器604可經由可由控制器308控制的開關S3 選擇性地串聯耦合在節點608和610之間。電容器606可經由可由控制器308控制的開關S4 選擇性地串聯耦合在節點608和610之間。在至少一些實施方式中,控制器308一次閉合開關S2 、S3 和S4 中的一個,以一次將電容器中的一個串聯耦合在節點608和610之間。在此類情況下,電容器602, 604和606中的每個可具有彼此不同的電容值。例如,電容器602可具有1000pF的電容值,電容器604可具有2000pF的電容值,並且電容器606可具有4000pF的電容值。一般來講,電容值應被選擇為在電容器中的每個接入電路時在電壓測量中提供相對較大的變化。   當感測器408鄰近導線106定位以使得感測器和導線形成感測器電容器CS 時,為了測量導線106中的AC電壓(VAC ),控制器308可首先使得可變電容子系統402在第一電容子系統節點608和第二電容子系統節點610之間具有第一電容值C1 。例如,控制器308可通過閉合開關S2 並且打開開關S3 和S4 來實現這一點,這使得可變電容子系統601的電容值等於電容器602的電容。   接下來,在可變電容子系統402具有第一電容值C1 時,控制器308可使得ADC 410捕獲第一電容子系統節點608和第二電容子系統節點610之間的第一測量電壓VM1 。這樣的電壓VM1 可由控制器308存儲在非暫態處理器可讀存儲介質中以供後續使用。   接下來,在獲得第一電壓VM1 的測量結果之後,控制器308可使得可變電容子系統601在第一電容子系統節點608和第二電容子系統節點610之間具有第二電容值C2 。例如,控制器308可通過閉合開關S3 並且打開開關S2 和S4 來實現這一點,這使得可變電容子系統601的電容值等於電容器604的電容值。   在可變電容子系統601具有第二電容值C2 時,控制器308可使得ADC 410捕獲第一電容子系統節點608和第二電容子系統節點610之間的第二測量電壓VM2 。   在獲得第二電壓VM2 的測量結果之後,控制器308可使得可變電容子系統601在第一電容子系統節點608和第二電容子系統節點610之間具有第三電容值C3 。例如,控制器308可通過閉合開關S4 並且打開開關S2 和S3 來實現這一點,這使得可變電容子系統601的電容值等於電容器606的電容值。   在可變電容子系統601具有第三電容值C3 時,控制器308可使得ADC 410捕獲第一電容子系統節點608和第二電容子系統節點610之間的第三測量電壓VM3 。   接下來,控制器308可至少部分地基於檢測到的第一電壓VM1 、檢測到的第二電壓VM2 、檢測到的第三電壓VM3 、第一電容值C1 、第二電容值C2 和第三電容值C3 來確定絕緣導線106中的AC電壓(VAC )。下文討論用於確定絕緣導線106中的AC電壓(VAC )的示例性過程。   當開關S2 閉合並且開關S3 和S4 打開時,絕緣導線106中的AC電壓(VAC )可由以下等式表示:
Figure 02_image021
其中I1 是串聯電流,ZS 是感測器電容器CS 的未知阻抗,ZB 是操作者104(圖1和圖2)的體電容CB 的未知阻抗,並且Z602 是電容器602的阻抗。   當開關S3 閉合並且開關S2 和S4 打開時,絕緣導線106中的AC電壓可由以下等式表示:
Figure 02_image023
其中I2 是串聯電流,ZS 是感測器電容器CS 的未知阻抗,ZB 是操作者104(圖1和圖2)的體電容CB 的未知阻抗,並且Z604 是電容器604的阻抗。   當開關S4 閉合並且開關S2 和S3 打開時,絕緣導線106中的AC電壓(VAC )可由以下等式表示:
Figure 02_image025
其中I3 是串聯電流,ZS 是感測器電容器CS 的未知阻抗,ZB 是操作者104(圖1和圖2)的體電容CB 的未知阻抗,並且Z606 是電容器606的阻抗。   將等式(11)和(12)設定為彼此相等,並且對於ZS + ZB 進行求解給出以下等式:
Figure 02_image027
將等式(14)代入等式(13)給出以下等式:
Figure 02_image029
代入IX = VX / ZX 和ZX = 1/(2πωCX )並簡化結果,絕緣導線106中的AC電壓(VAC )可由以下等式表示:
Figure 02_image031
絕緣導線106的確定的AC電壓然後可被呈現給操作者或者經由合適的通信介面傳送到外部設備。   圖7是操作用以測量絕緣導線中的AC電壓而無需電流接觸的非接觸電壓測量系統的方法700的流程圖。非接觸電壓測量系統可與上文討論的非接觸電壓測量系統的實施方式中的任一種相似或相同,並且/或者可包括此類非接觸電壓測量系統的各種組合。   當操作者將非接觸電壓測量系統的導電感測器鄰近待測量的絕緣導線定位時,方法700可開始於702。如上所述,當導電感測器鄰近絕緣導線定位時,感測器和絕緣導線中的導體電容地耦合在一起以形成感測器電容器CS 。   在704處,非接觸電壓測量系統的至少一個處理器(控制器)可使得可變電容子系統電耦合到感測器以具有第一電容值。在至少一些實施方式中,可變電容子系統包括例如至少第一電容器、第二電容器和處理器控制的開關。   在706處,該至少一個處理器可檢測或測量可變電容子系統上的第一電壓並且將第一測量電壓存儲在非暫態處理器可讀存儲介質中。如上所述,在至少一些實施方式中,該至少一個處理器可經由具有相對高的有效解析度(例如,20比特、22比特)的ADC檢測或測量可變電容子系統上的電壓。   在708處,非接觸電壓測量系統的該至少一個處理器可使得可變電容子系統具有不同於第一電容值的第二電容值。在至少一些實施方式中,第一電容值和第二電容值中的一個可為第一電容值和第二電容值中的另一個的至少兩倍。作為非限制性例子,第一電容值和第二電容值中的每個可介於1000pF和5000pF之間。   在710處,該至少一個處理器可檢測或測量可變電容子系統上的第二電壓並且將第二測量電壓存儲在非暫態處理器可讀存儲介質中。   在712處,該至少一個處理器可至少部分地基於第一測量電壓和第二測量電壓以及第一電容值和第二電容值來確定絕緣導體中的AC電壓。例如,如上所述,該至少一個處理器可根據以下等式確定絕緣導體中的AC電壓(VAC ):
Figure 02_image033
其中C1 和C2 分別是第一電容值和第二電容值,並且VM1 和VM2 是可變電容子系統上的第一測量電壓和第二測量電壓。   在確定絕緣導體中的AC電壓之後,該至少一個處理器可經由通信地耦接到該至少一個處理器的使用者介面將結果呈現給操作者。使用者介面可包括視覺部件(例如,顯示器、光發射器(例如,LED)、多個光發射器(例如,LED))和/或音訊部件(例如,揚聲器,蜂鳴器)。除此之外或作為另外一種選擇,該至少一個處理器可經由合適的有線和/或無線通訊介面將結果傳送到外部設備。   在至少一些實施方式中,在獲得第二測量電壓之後,該至少一個處理器可使得可變電容子系統具有第三電容值。在此類情況下,該至少一個處理器然後可檢查或測量可變電容子系統上的第三測量電壓。   然後,該至少一個處理器可至少部分地基於第一測量電壓(VM1 )、第二測量電壓(VM2 )、第三測量電壓(VM3 )、第一電容值(C1 )、第二電容值(C2 )和第三電容值(C3 )來確定絕緣導體中的AC電壓(VAC )。例如,該至少一個處理器可根據以下等式確定絕緣導體中的AC電壓(VAC ):
Figure 02_image035
確定的AC電壓(VAC )然後可經由合適的介面呈現給操作者並且/或者經由有線和/或無線通訊介面傳送到外部設備。   上述詳細描述已經通過使用框圖、示意圖和例子闡述了設備和/或過程的各種實施方式。只要此類框圖、示意圖和例子包含一個或多個功能和/或操作,本領域技術人員將會理解,此類框圖、流程圖或例子中的每個功能和/或操作可通過寬範圍的硬體、軟體、固件或它們的幾乎任何組合來單獨地和/或共同地實現。在一個實施方式中,本發明主題可通過專用積體電路(ASIC)來實現。然而,本領域技術人員將認識到,本文中公開的實施方式可全部或部分地在標準積體電路中等同地實現為在一個或多個電腦上運行的一個或多個電腦程式(例如,實現為在一個或多個電腦系統上運行的一個或多個程式),實現為在一個或多個控制器(例如,微控制器)上運行的一個或多個程式,實現為在一個或多個處理器(例如,微處理器)上運行的一個或多個程式,實現為固件,或實現為它們的幾乎任何組合,並且根據本公開,設計電路並且/或者編寫軟體和/或固件的代碼將在本領域普通技術人員的技術範圍內。   本領域技術人員將認識到,本文中提出的方法或演算法中的許多可採用附加動作,可省略某些動作,並且/或者可以與所指定不同的順序來執行動作。例如,在可變電容子系統中可以包括四個或更多個電容器,其中在用於確定VAC 的式中進行適當的數學調整以考慮附加電容和電壓測量。   作為另一個例子,在至少一些實施方式中,非接觸電壓測量系統可以不使用處理器來執行指令。例如,非接觸電壓測量系統可以是硬連線的,以提供本文討論的功能中的一些或全部。另外,在至少一些實施方式中,非接觸電壓測量系統可以不使用處理器來導致或引發本文所討論的不同測量。例如,這樣的非接觸電壓測量系統可依賴於一個或多個單獨的輸入端,諸如使得不同電容出現在可變電容子系統中並進行隨後測量的使用者致動的按鈕。   此外,本領域技術人員將理解,本文教導的機制能夠以各種形式作為程式產品分發,並且示例性實施方式同樣適用,而不管用於實際執行分發的信號承載介質的特定類型。信號承載介質的例子包括但不限於以下:可記錄型介質,諸如軟碟、硬碟驅動器、CD ROM、數位磁帶和電腦記憶體。   鑒於上文的詳細描述,可以對實施方式做出這些和其他改變。一般來講,在隨後的權利要求中,使用的術語不應解釋成將權利要求限制在本說明書和權利要求書中公開的具體實施方式中,而應解釋成包括所有可能的實施方式以及此類權利要求賦予的等效物的全部範圍。因此,權利要求並不受本公開內容所限定。
100‧‧‧環境102‧‧‧非接觸電壓測量系統104‧‧‧操作者106‧‧‧導線108‧‧‧殼體110‧‧‧夾持部分112‧‧‧探針部分114‧‧‧使用者介面116‧‧‧凹陷部分118‧‧‧第一延伸部分120‧‧‧第二延伸部分122‧‧‧導體124‧‧‧絕緣體126‧‧‧感測器128‧‧‧地300‧‧‧非接觸電壓測量系統302‧‧‧感測器304‧‧‧可變電容子系統306‧‧‧電壓測量子系統308‧‧‧控制器310‧‧‧使用者介面400‧‧‧非接觸電壓測量系統401‧‧‧電容器402‧‧‧可變電容子系統403‧‧‧電容器404‧‧‧第一電容子系統節點406‧‧‧第二電容子系統節點408‧‧‧感測器410‧‧‧類比數位轉換器600‧‧‧非接觸電壓測量系統601‧‧‧可變電容子系統602‧‧‧電容器604‧‧‧電容器606‧‧‧電容器608‧‧‧節點610‧‧‧節點612‧‧‧電連接700‧‧‧方法702‧‧‧定位感測器鄰近絕緣導體704‧‧‧使得可變電容子系統具有第一電容值706‧‧‧檢測可變電容子系統上的第一電壓708‧‧‧使得可變電容子系統具有第二電容值710‧‧‧檢測可變電容子系統上的第二電壓712‧‧‧基於第一電壓、第二電壓、第一電容值和第二電容值來確定絕緣導體中的AC電壓
在附圖中,相同的附圖標記指示相似的元件或動作。附圖中的元件的大小和相對位置不一定按比例繪製。例如,各種元件的形狀以及角度未必按比例繪製,並且這些元件中的一些可以隨意地放大和定位,以提高附圖易讀性。另外,如所繪製的元件的特定形狀不一定旨在傳達關於特定元件的實際形狀的任何資訊,並且可以僅被選擇以便於在附圖中進行識別。   圖1是根據一個所示實施方式的環境的示意圖,其中非接觸電壓測量系統可由操作者使用以測量絕緣導線中存在的AC電壓而不需要與導線電流接觸。   圖2是根據一個所示實施方式的圖1的非接觸電壓測量系統的俯視平面圖。   圖3是根據一個所示實施方式的非接觸電壓測量系統的高級框圖。   圖4是根據一個所示實施方式的非接觸電壓測量系統的示意圖,該非接觸電壓測量系統包括使用兩個電容器的可變電容子系統。   圖5是根據一個所示實施方式的圖4的非接觸電壓測量系統的示意性電路圖。   圖6是根據一個所示實施方式的非接觸電壓測量系統的示意圖,該非接觸電壓測量系統包括使用三個電容器的可變電容子系統。   圖7是根據一個所示實施方式的操作用以測量絕緣導線中的AC電壓而不與導線電流接觸的非接觸電壓測量系統的方法的流程圖。
100‧‧‧環境
102‧‧‧非接觸電壓測量系統
104‧‧‧操作者
106‧‧‧導線
108‧‧‧殼體
110‧‧‧夾持部分
112‧‧‧探針部分
114‧‧‧使用者介面
128‧‧‧地

Claims (26)

  1. 一種用以測量絕緣導體中的交流(AC)電壓的系統,所述系統包括:   導電感測器,所述導電感測器可鄰近所述絕緣導體定位而不與所述導體電流接觸,其中所述導電感測器與所述絕緣導體電容地耦合;   可變電容子系統,所述可變電容子系統包括第一電容子系統節點和第二電容子系統節點,所述第一電容子系統節點電耦合到所述導電感測器,並且所述第一電容子系統節點和所述第二電容子系統節點在其間具有電容,所述電容在至少第一電容值(C1 )和第二電容值(C2 )之間選擇性地可變,所述第二電容值(C2 )不同於所述第一電容值(C1 );   電壓測量子系統,所述電壓測量子系統在操作中檢測所述第一電容子系統節點和所述第二電容子系統節點之間的電壓;   至少一個非暫態處理器可讀存儲介質,所述非暫態處理器可讀存儲介質存儲處理器可執行指令或資料中的至少一者;以及   至少一個處理器,所述至少一個處理器通信地耦接到所述至少一個非暫態處理器可讀存儲介質,並且在操作中,回應於所述處理器可執行指令或資料的執行,所述至少一個處理器:   使得所述可變電容子系統在所述第一電容子系統節點和所述第二電容子系統節點之間具有所述第一電容值(C1 );   使得所述電壓測量子系統檢測所述第一電容子系統節點和所述第二電容子系統節點之間的第一電壓(VM1 );   使得所述可變電容子系統在所述第一電容子系統節點和所述第二電容子系統節點之間具有所述第二電容值(C2 );   使得所述電壓測量子系統檢測所述第一電容子系統節點和所述第二電容子系統節點之間的第二電壓(VM2 );以及   至少部分地基於所述檢測到的第一電壓(VM1 )和所述檢測到的第二電壓(VM2 )來確定所述絕緣導體中的所述AC電壓(VAC )。
  2. 根據申請專利範圍第1項所述的系統,其中所述至少一個處理器:   根據下式確定所述絕緣導體中的所述AC電壓(VAC ):VAC = VM1 × [ (C1 /C2 ) - 1] / [ (C1 VM1 / C2 VM2 ) – 1 ]。
  3. 根據申請專利範圍第1項所述的系統,其中所述電壓測量子系統包括至少一個模擬-數位轉換器(ADC)。
  4. 根據申請專利範圍第1項所述的系統,其中所述測量子系統具有至少20比特的有效解析度。
  5. 根據申請專利範圍第1項所述的系統,其中所述可變電容子系統包括至少第一電容器和第二電容器,所述第一電容器和所述第二電容器各自選擇性地電耦合在所述第一電容子系統節點和所述第二電容子系統節點之間。
  6. 根據申請專利範圍第1項所述的系統,其中所述可變電容子系統包括電耦合在所述第一電容子系統節點和所述第二電容子系統節點之間的第一電容器,以及選擇性地電耦合在所述第一電容子系統節點和所述第二電容子系統節點之間的第二電容器。
  7. 根據申請專利範圍第1項所述的系統,其中所述第一電容值(C1 )與所述第二電容值(C2 )的比率(C1 :C2 )介於2:5和1:10(包括端值在內)之間。
  8. 根據申請專利範圍第1項所述的系統,其中所述第一電容值(C1 )選擇性地可變以適應輸入信號和輸入電容的不同值。
  9. 根據申請專利範圍第1項所述的系統,還包括:   通信地耦接到所述至少一個處理器的使用者介面,其中所述至少一個處理器經由所述使用者介面呈現所述確定的AC電壓(VAC )。
  10. 根據申請專利範圍第9項所述的系統,其中所述使用者介面包括顯示器或多個光發射器中的至少一者。
  11. 根據申請專利範圍第1項所述的系統,其中在操作中,所述第二電容子系統節點經由操作所述系統的使用者的身體電耦合到參考節點。
  12. 根據申請專利範圍第1項所述的系統,還包括:   參考連接件,所述參考連接件將所述第二電容子系統節點電耦合到接地。
  13. 根據申請專利範圍第1項所述的系統,其中所述第一電容子系統節點和所述第二電容子系統節點在其間具有電容,所述電容在至少所述第一電容值(C1 )、所述第二電容值(C2 )和第三電容值(C3 )之間進一步選擇性地可變,並且回應於所述非暫態處理器可讀存儲介質中的所述處理器可執行指令或資料的執行,所述至少一個處理器:   使得所述可變電容子系統在所述第一電容子系統節點和所述第二電容子系統節點之間具有所述第三電容值(C3 );   使得所述電壓測量子系統檢測所述第一電容子系統節點和所述第二電容子系統節點之間的第三電壓(VM3 );以及   至少部分地基於所述檢測到的第一電壓(VM1 )、第二電壓(VM2 )和第三電壓(VM3 )來確定所述絕緣導體中的所述AC電壓(VAC )。
  14. 根據申請專利範圍第13項所述的系統,其中所述至少一個處理器:   根據下式確定所述絕緣導體中的所述AC電壓(VAC ):VAC = C3 VM3 × [ (VM2 – VM1 ) / (C1 VM1 – C2 VM2 )] + VM3
  15. 一種用以測量絕緣導體中的交流(AC)電壓的系統,所述系統包括:   導電感測器,所述導電感測器可鄰近絕緣導體定位而不與所述導體電流接觸,其中所述導電感測器與所述絕緣導體電容地耦合;   可變電容子系統,所述可變電容子系統電耦合到所述導電感測器;   電壓測量子系統,所述電壓測量子系統在操作中檢測所述可變電容子系統上的電壓;   至少一個非暫態處理器可讀存儲介質,所述非暫態處理器可讀存儲介質存儲處理器可執行指令或資料中的至少一者;以及   至少一個處理器,所述至少一個處理器通信地耦接到所述至少一個非暫態處理器可讀存儲介質,並且在操作中,回應於所述處理器可執行指令或資料的執行,所述至少一個處理器:   使得所述可變電容子系統具有第一電容值(C1 );   當所述導電感測器鄰近所述絕緣導體定位時,經由所述電壓測量子系統檢測所述可變電容子系統上的第一電壓(VM1 );   使得所述可變電容子系統具有第二電容值(C2 );   當所述導電感測器鄰近所述絕緣導體定位時,經由所述電壓測量子系統檢測所述可變電容子系統上的第二電壓(VM2 );以及   至少部分地基於所述檢測到的第一電壓(VM1 )和所述檢測到的第二電壓(VM2 )來確定所述絕緣導體中的所述AC電壓(VAC )。
  16. 根據申請專利範圍第15項所述的系統,其中所述至少一個處理器:   根據下式確定所述絕緣導體中的所述AC電壓(VAC ):VAC = VM1 × [ (C1 /C2 ) - 1] / [ (C1 VM1 / C2 VM2 ) – 1 ]。
  17. 根據申請專利範圍第15項所述的系統,其中所述電壓測量子系統具有至少20比特的有效解析度。
  18. 根據申請專利範圍第15項所述的系統,其中所述可變電容子系統包括至少第一電容器、第二電容器、以及耦接到所述第一電容器和所述第二電容器中的至少一個的開關,其中所述開關可由所述至少一個處理器選擇性地操作以使得所述可變電容子系統具有所述第一電容值(C1 )和所述第二電容值(C2 )。
  19. 一種操作用以測量絕緣導體中的交流(AC)電壓的系統的方法,所述系統包括可鄰近絕緣導體定位而不與所述導體電流接觸的導電感測器,以及電耦合到所述導電感測器的可變電容子系統,所述方法包括:   通過至少一個處理器使得所述可變電容子系統具有第一電容值(C1 );   當所述導電感測器鄰近所述絕緣導體定位時,通過至少一個處理器檢測所述可變電容子系統上的第一電壓(VM1 );   通過至少一個處理器使得所述可變電容子系統具有第二電容值(C2 );   當所述導電感測器鄰近所述絕緣導體定位時,通過至少一個處理器檢測所述可變電容子系統上的第二電壓(VM2 );以及   至少部分地基於所述檢測到的第一電壓(VM1 )和所述檢測到的第二電壓(VM2 )通過至少一個處理器來確定所述絕緣導體中的所述AC電壓(VAC )。
  20. 根據申請專利範圍第19項所述的方法,其中確定所述絕緣導體中的所述AC電壓(VAC )包括根據下式確定所述絕緣導體中的所述AC電壓(VAC ):VAC = VM1 × [ (C1 /C2 ) - 1] / [ (C1 VM1 / C2 VM2 ) – 1 ]。
  21. 根據申請專利範圍第19項所述的方法,其中檢測所述第一電壓(VM1 )和所述第二電壓(VM2 )中的每個包括經由耦接到所述可變電容子系統的至少一個模擬-數位轉換器(ADC)來檢測所述第一電壓(VM1 )和所述第二電壓(VM2 )中的每個。
  22. 根據申請專利範圍第19項所述的方法,其中檢測所述第一電壓(VM1 )和所述第二電壓(VM2 )中的每個包括以至少20比特的有效解析度檢測所述第一電壓(VM1 )和所述第二電壓(VM2 )中的每個。
  23. 根據申請專利範圍第19項所述的方法,其中使得所述可變電容子系統具有第二電容值(C2 )包括使得所述可變電容子系統具有第二電容值,其中所述第一電容值(C1)與所述第二電容值(C2)的比率(C1 :C2 )介於2:5和1:10(包括端值在內)之間。
  24. 根據申請專利範圍第19項所述的方法,還包括:   通過所述至少一個處理器經由使用者介面呈現所述確定的AC電壓(VAC )。
  25. 根據申請專利範圍第19項所述的方法,還包括:   通過至少一個處理器使得所述可變電容子系統具有第三電容值(C3 );   當所述導電感測器鄰近所述絕緣導體定位時,通過至少一個處理器檢測所述可變電容子系統上的第三電壓(VM3 );以及   至少部分地基於所述檢測到的第一電壓(VM1 )、第二電壓(VM2 )和第三電壓(VM3 )通過至少一個處理器確定所述絕緣導體中的所述AC電壓(VAC )。
  26. 根據申請專利範圍第25項所述的方法,其中確定所述絕緣導體的所述AC電壓(VAC )包括根據下式確定所述絕緣導體中的所述AC電壓(VAC ):VAC = C3 VM3 × [ (VM2 – VM1 ) / (C1 VM1 – C2 VM2 )] + VM3
TW106137570A 2016-11-07 2017-10-31 非接觸電壓測量系統 TWI742188B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/345,256 2016-11-07
US15/345,256 US10119998B2 (en) 2016-11-07 2016-11-07 Variable capacitance non-contact AC voltage measurement system

Publications (2)

Publication Number Publication Date
TW201830031A TW201830031A (zh) 2018-08-16
TWI742188B true TWI742188B (zh) 2021-10-11

Family

ID=60269731

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137570A TWI742188B (zh) 2016-11-07 2017-10-31 非接觸電壓測量系統

Country Status (5)

Country Link
US (1) US10119998B2 (zh)
EP (1) EP3318883B1 (zh)
JP (1) JP2018105848A (zh)
CN (1) CN108072782B (zh)
TW (1) TWI742188B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10359494B2 (en) * 2016-11-11 2019-07-23 Fluke Corporation Proving unit for non-contact voltage measurement systems
US10352967B2 (en) * 2016-11-11 2019-07-16 Fluke Corporation Non-contact electrical parameter measurement systems
US10254375B2 (en) * 2016-11-11 2019-04-09 Fluke Corporation Proving unit for voltage measurement systems
US10539643B2 (en) 2017-09-01 2020-01-21 Fluke Corporation Proving unit for use with electrical test tools
US10802072B2 (en) * 2018-05-11 2020-10-13 Fluke Corporation Non-contact DC voltage measurement device with oscillating sensor
CN110274630B (zh) * 2019-07-02 2024-06-18 凯铭诺(深圳)科技有限公司 一种低压配电线路分路监测装置及其监测方法
US11112433B2 (en) 2019-08-08 2021-09-07 Fluke Corporation Non-contact electrical parameter measurement device with clamp jaw assembly
US11662368B2 (en) 2020-02-05 2023-05-30 Fluke Corporation Non-contact voltage measurement with adjustable size Rogowski coil
EP3862761B1 (en) 2020-02-05 2024-04-24 Fluke Corporation Sensor probe with clamp having adjustable interior region for non-contact electrical measurement
KR102283940B1 (ko) * 2021-05-28 2021-07-30 주식회사 호연 상하 슬라이드 유동에 기반한 모터검사장치
CN113341203B (zh) * 2021-06-11 2022-04-08 南方电网数字电网研究院有限公司 电压测量装置、电压测量方法和存储介质
CN113238093B (zh) * 2021-06-11 2022-07-05 广西电网有限责任公司电力科学研究院 非接触电压测量方法、装置、计算机设备和存储介质
CN113447698B (zh) * 2021-06-11 2022-03-08 南方电网数字电网研究院有限公司 电压测量电路、方法及设备
US11821925B2 (en) 2021-11-08 2023-11-21 Fluke Corporation Accessory for utilization with non-contact electrical detector
CN114441838B (zh) * 2022-04-07 2022-07-12 南方电网数字电网研究院有限公司 电压测量方法、装置以及电压传感器
US12009660B1 (en) 2023-07-11 2024-06-11 T-Mobile Usa, Inc. Predicting space, power, and cooling capacity of a facility to optimize energy usage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW378275B (en) * 1997-10-29 2000-01-01 Fluke Corp Multimeter with current sensor
TW200639415A (en) * 2005-05-10 2006-11-16 Picotest Corp Voltage measurement apparatus for filter module with adjustable planarity
TW200817709A (en) * 2006-10-11 2008-04-16 Hon Hai Prec Ind Co Ltd System and method for measuring digital multimeters automatically
WO2012104270A1 (en) * 2011-01-31 2012-08-09 Eliwell Controls S.R.L. Con Unico Socio Device and method for measuring an alternating voltage
TW201409037A (zh) * 2012-08-30 2014-03-01 Hycon Technology Corp 用於交流電壓量測並具有可程式化電容陣列的補償電路
TW201437644A (zh) * 2013-03-29 2014-10-01 Toshiba Mitsubishi Elec Inc 電壓測量裝置
CN106030320A (zh) * 2014-03-13 2016-10-12 欧姆龙株式会社 非接触式电压测量装置

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658961A (ja) * 1992-08-12 1994-03-04 Kansai Electric Power Co Inc:The 誘導判別型検電器
US5473244A (en) 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JPH06222087A (ja) 1993-01-27 1994-08-12 Hamamatsu Photonics Kk 電圧検出装置
US5973501A (en) 1993-10-18 1999-10-26 Metropolitan Industries, Inc. Current and voltage probe for measuring harmonic distortion
JPH09184866A (ja) 1995-12-28 1997-07-15 Sumitomo Electric Ind Ltd ケーブルの活線下劣化診断方法
US6118270A (en) 1998-02-17 2000-09-12 Singer; Jerome R. Apparatus for fast measurements of current and power with scaleable wand-like sensor
US6177800B1 (en) 1998-11-10 2001-01-23 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system
IL127699A0 (en) 1998-12-23 1999-10-28 Bar Dov Aharon Method and device for non contact detection of external electric or magnetic fields
JP2001255342A (ja) * 2000-03-08 2001-09-21 Hitachi Ltd 電圧センサ
US6812685B2 (en) 2001-03-22 2004-11-02 Actuant Corporation Auto-selecting, auto-ranging contact/noncontact voltage and continuity tester
JP3761470B2 (ja) 2001-04-04 2006-03-29 北斗電子工業株式会社 非接触電圧計測方法及び装置並びに検出プローブ
JP2003028900A (ja) * 2001-07-11 2003-01-29 Yokogawa Electric Corp 非接触電圧測定方法およびその装置
EP1704417A1 (en) 2004-01-07 2006-09-27 Suparules Limited Voltage measuring device
US7256588B2 (en) 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
JP4611774B2 (ja) 2005-03-04 2011-01-12 東日本電信電話株式会社 非接触型電圧検出方法及び非接触型電圧検出装置
US7466145B2 (en) 2005-10-12 2008-12-16 Hioki Denki Kabushiki Kaisha Voltage measuring apparatus and power measuring apparatus
JP4607752B2 (ja) 2005-12-16 2011-01-05 日置電機株式会社 可変容量回路、電圧測定装置および電力測定装置
JP4607753B2 (ja) 2005-12-16 2011-01-05 日置電機株式会社 電圧測定装置および電力測定装置
JP4713358B2 (ja) 2006-02-08 2011-06-29 日置電機株式会社 電圧検出装置
JP4648228B2 (ja) 2006-03-24 2011-03-09 日置電機株式会社 電圧検出装置および初期化方法
JP5106798B2 (ja) 2006-06-22 2012-12-26 日置電機株式会社 電圧測定装置
JP4726722B2 (ja) 2006-07-03 2011-07-20 日置電機株式会社 電圧測定装置
JP4726721B2 (ja) 2006-07-03 2011-07-20 日置電機株式会社 電圧測定装置
JP4629625B2 (ja) 2006-07-12 2011-02-09 日置電機株式会社 電圧測定装置
GB0614261D0 (en) 2006-07-18 2006-08-30 Univ Sussex The Electric Potential Sensor
JP2008107289A (ja) * 2006-10-27 2008-05-08 Hioki Ee Corp 検電器
JP5106909B2 (ja) 2007-04-10 2012-12-26 日置電機株式会社 線間電圧測定装置
JP5144110B2 (ja) 2007-04-13 2013-02-13 日置電機株式会社 電圧測定装置
JP4927632B2 (ja) 2007-04-13 2012-05-09 日置電機株式会社 電圧測定装置
JP5160248B2 (ja) 2008-01-18 2013-03-13 日置電機株式会社 電圧検出装置
US20100090682A1 (en) 2008-02-14 2010-04-15 Armstrong Eric A Multi-Meter Test Lead Probe For Hands-Free Electrical Measurement of Control Panel Industrial Terminal Blocks
US8222886B2 (en) * 2008-06-18 2012-07-17 Hioki Denki Kabushiki Kaisha Voltage detecting apparatus and line voltage detecting apparatus having a detection electrode disposed facing a detected object
JP5389389B2 (ja) 2008-07-22 2014-01-15 日置電機株式会社 線間電圧測定装置およびプログラム
JP2010127725A (ja) * 2008-11-27 2010-06-10 Hioki Ee Corp 非接触電圧測定装置および非接触電圧測定方法
CN101881791B (zh) 2009-04-30 2015-08-05 日置电机株式会社 电压检测装置
JP5340817B2 (ja) 2009-06-11 2013-11-13 日置電機株式会社 電圧検出装置
JP5420387B2 (ja) 2009-12-09 2014-02-19 日置電機株式会社 電圧検出装置
WO2011092980A1 (ja) * 2010-01-28 2011-08-04 株式会社村田製作所 可変容量装置
JP5474707B2 (ja) 2010-08-30 2014-04-16 日置電機株式会社 電圧検出装置用の検出回路および電圧検出装置
US9063184B2 (en) 2011-02-09 2015-06-23 International Business Machines Corporation Non-contact current-sensing and voltage-sensing clamp
US8680845B2 (en) 2011-02-09 2014-03-25 International Business Machines Corporation Non-contact current and voltage sensor
JP5834663B2 (ja) 2011-04-06 2015-12-24 富士通株式会社 交流電力測定装置
US20140035607A1 (en) 2012-08-03 2014-02-06 Fluke Corporation Handheld Devices, Systems, and Methods for Measuring Parameters
US9007077B2 (en) 2012-08-28 2015-04-14 International Business Machines Corporation Flexible current and voltage sensor
JP5981271B2 (ja) 2012-08-28 2016-08-31 日置電機株式会社 電圧測定用センサおよび電圧測定装置
JP5981270B2 (ja) 2012-08-28 2016-08-31 日置電機株式会社 電圧測定用センサおよび電圧測定装置
JP6104578B2 (ja) 2012-11-30 2017-03-29 日置電機株式会社 検査装置および検査方法
JP6065671B2 (ja) * 2013-03-15 2017-01-25 オムロン株式会社 計測装置および取付けユニット
WO2014176685A1 (en) * 2013-05-02 2014-11-06 Awesense Wireless Inc. A voltage sensing unit for sensing voltage of high-power lines using a single-contact point and method of use thereof
WO2015053761A1 (en) * 2013-10-09 2015-04-16 Schneider Electric USA, Inc. Self-contained branch circuit monitor
CN103595290B (zh) * 2013-10-25 2016-01-20 西安交通大学 一种高压振荡波发生器用模块化电子开关
JP5727074B1 (ja) * 2014-06-04 2015-06-03 長谷川電機工業株式会社 直流電圧検出器
JP6210938B2 (ja) 2014-06-18 2017-10-11 日置電機株式会社 非接触型電圧検出装置
EP3179256A4 (en) * 2014-08-08 2018-03-28 Iida Electronics Co., Ltd. Non-contact ac voltage measurement device
TWI649568B (zh) 2014-10-17 2019-02-01 日商日置電機股份有限公司 Voltage detecting device
CN205355795U (zh) * 2015-12-31 2016-06-29 上海联影医疗科技有限公司 检测igbt母线电容电流的装置和igbt保护电路
CN205643503U (zh) * 2016-05-30 2016-10-12 石家庄汇点科技有限公司 开启式全息高压无线电流互感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW378275B (en) * 1997-10-29 2000-01-01 Fluke Corp Multimeter with current sensor
TW200639415A (en) * 2005-05-10 2006-11-16 Picotest Corp Voltage measurement apparatus for filter module with adjustable planarity
TW200817709A (en) * 2006-10-11 2008-04-16 Hon Hai Prec Ind Co Ltd System and method for measuring digital multimeters automatically
WO2012104270A1 (en) * 2011-01-31 2012-08-09 Eliwell Controls S.R.L. Con Unico Socio Device and method for measuring an alternating voltage
TW201409037A (zh) * 2012-08-30 2014-03-01 Hycon Technology Corp 用於交流電壓量測並具有可程式化電容陣列的補償電路
TW201437644A (zh) * 2013-03-29 2014-10-01 Toshiba Mitsubishi Elec Inc 電壓測量裝置
CN106030320A (zh) * 2014-03-13 2016-10-12 欧姆龙株式会社 非接触式电压测量装置

Also Published As

Publication number Publication date
EP3318883B1 (en) 2020-05-06
TW201830031A (zh) 2018-08-16
US10119998B2 (en) 2018-11-06
JP2018105848A (ja) 2018-07-05
EP3318883A1 (en) 2018-05-09
CN108072782A (zh) 2018-05-25
US20180128858A1 (en) 2018-05-10
CN108072782B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
TWI742188B (zh) 非接觸電壓測量系統
TWI764953B (zh) 非接觸式測量系統及其方法
TWI790244B (zh) 用於電壓測量裝置之校準系統
TWI744409B (zh) 使用參考信號的非接觸式電壓測量系統
TWI791002B (zh) 使用多個電容器的非接觸式電壓測量系統
JP7166750B2 (ja) 非接触電流測定システム
TW201947229A (zh) 具有振盪感測器之非接觸式dc電壓測量裝置
TWI785078B (zh) 多階段測量裝置
TWI821286B (zh) 位置相依的非接觸式電壓及電流測量
TWI780327B (zh) 用於非接觸式電壓測量裝置之多感測器掃描器組態
TWI790376B (zh) 用於非接觸式電壓測量裝置之多感測器組態
JP7219669B2 (ja) 非接触電気的パラメータ測定用可撓性ジョープローブ
JP6421012B2 (ja) 回路素子測定装置における配線ケーブル長の判別方法