TWI733255B - 用於遙控直升機的驅動控制設備 - Google Patents

用於遙控直升機的驅動控制設備 Download PDF

Info

Publication number
TWI733255B
TWI733255B TW108142960A TW108142960A TWI733255B TW I733255 B TWI733255 B TW I733255B TW 108142960 A TW108142960 A TW 108142960A TW 108142960 A TW108142960 A TW 108142960A TW I733255 B TWI733255 B TW I733255B
Authority
TW
Taiwan
Prior art keywords
control
per minute
revolutions per
gyro
main rotor
Prior art date
Application number
TW108142960A
Other languages
English (en)
Other versions
TW202028058A (zh
Inventor
田中昌廣
Original Assignee
日商雙葉電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商雙葉電子工業股份有限公司 filed Critical 日商雙葉電子工業股份有限公司
Publication of TW202028058A publication Critical patent/TW202028058A/zh
Application granted granted Critical
Publication of TWI733255B publication Critical patent/TWI733255B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/06Helicopters with single rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/56Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
    • B64C27/57Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated automatic or condition responsive, e.g. responsive to rotor speed, torque or thrust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2203/00Flying model aircraft, flying toy aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Abstract

一種用於遙控直升機的驅動控制設備,包括檢測主旋翼的每分鐘轉數的每分鐘轉數檢測單元;檢測包括翻滾軸、俯仰軸以及偏航軸的控制軸的角速度的陀螺感測器;以及生成控制致動器的控制信號的控制單元,所述控制致動器用於基於由所述陀螺感測器檢測到的所述角速度和從發射器發送的轉向信號來控制所述控制軸的運動。所述控制單元具有關於所述控制軸的所述陀螺靈敏度的資訊和關於針對所述遙控直升機的所述多個飛行狀態中的每一個預設的所述主旋翼的設定每分鐘轉數的資訊,並且基於與所述多個飛行狀態之中選擇的飛行狀態相對應的所述設定每分鐘轉數與所述每分鐘轉數檢測單元檢測到的所述主旋翼的每分鐘轉數之間的差值來校正所述陀螺靈敏度。

Description

用於遙控直升機的驅動控制設備 發明領域
本公開涉及一種用於遙控直升機的驅動控制設備,所述遙控直升機諸如模型直升機、航空攝影直升機、農作物噴灑直升機等。
發明背景
例如,諸如模型直升機之類的遙控直升機11基本上具有圖3所示的構造。遙控直升機11的驅動由安裝在機身11a上的主旋翼12和安裝在尾部11b上的尾旋翼13控制。主旋翼12通過旋轉產生上升力,並且通過調節俯仰角來控制遙控直升機11的上升/下降、向前/向後以及向左/向右驅動。尾旋翼13具有抵消由主旋翼12的旋轉引起的反作用轉矩並控制遙控直升機11的水平旋轉的功能。
然而,在遙控直升機11中,如日本專利申請公開第2012-245906號中所公開的,陀螺設備(驅動控制設備)安裝在機身11a處以在飛行期間穩定姿勢。陀螺設備設置有陀螺感測器,用於檢測翻滾軸、俯仰軸以及偏航軸的角速度。陀螺設備將陀螺感測器檢測到的軸的角速度與轉 向信號進行比較,控制致動器受控於轉向信號,並控制遙控直升機11。
此外,具有用於發動機或電動機的調速器裝置的陀螺設備已經投入實際使用。根據具有調速器設備的陀螺設備,即使在遙控直升機11的飛行期間主旋翼12的負荷發生變化,主旋翼12的每分鐘轉數(rpm)也可以保持在恒定水平。
作為對遙控直升機11進行遙控的發射器,已知一種具有能夠切換陀螺靈敏度的設定的飛行條件(飛行模式)功能和陀螺設備的調速器功能的設備。
在該飛行條件功能中,根據遙控直升機11的飛行狀態(例如,懸停、環形飛行、翻滾飛行、自動旋轉等)來指定模式;該模式由發射器的開關設備進行切換;並且對於每種模式,主旋翼12的每分鐘轉數、三個軸(翻滾軸、俯仰軸、偏航軸)的移動量以及三個軸的陀螺靈敏度被預先設置。
具體地,當期望通過使用飛行條件功能牢固地保持遙控直升機11的姿勢時,懸停時的主旋翼12的每分鐘轉數被設定為比飛行期間的主旋翼12的每分鐘轉數低,並且陀螺靈敏度被設定為比飛行期間的陀螺靈敏度高。在需要比懸停更大的推力的飛行中,為了使遙控直升機的轉向變得容易且準確,主旋翼12的每分鐘轉數被設定為高於懸停期間的主旋翼12的每分鐘轉數,並且陀螺靈敏度被設定為低於懸停期間的陀螺靈敏度。
然而,在常規設置中,當遙控直升機11正在飛行並且在飛行期間由於在增加陀螺靈敏度的狀態下主旋翼12的每分鐘轉數增加而導致超速難以改變陀螺靈敏度時,陀螺靈敏度保持在較高水平並且由於尾旋翼13的振動姿勢可能會不穩定。另一方面,當主旋翼12的每分鐘轉數減小並且在飛行期間由於在陀螺靈敏度減小的狀態下施加的諸如沖天等的負載而難以改變陀螺靈敏度時,陀螺靈敏度保持在較低水平,並且由於陀螺靈敏度不足,遙控直升機11的機身11a可能會抖動。
此外,當遙控直升機11的發動機或電動機停止並且遙控直升機11由於慣性而下降和著陸時,可以通過操縱發射器的開關將飛行條件功能切換到自動旋轉設定。
然而,在自動旋轉的情況下,主旋翼12的每分鐘轉數減小,因此,通常將陀螺靈敏度設置為高水平以維持遙控直升機11的姿勢。因此,遙控直升機的轉向變得困難。然後,如果遙控直升機11的機身11a傾斜,則難以快速校正姿勢。因此,著陸可能會失敗或在著陸之後立即發生傾覆。
鑒於以上所述,本公開提供了一種驅動控制設備,與傳統情況相比,該驅動控制設備能夠更穩定地執行遙控直升機的遙控。
發明概要
根據本公開的一方面,提供了一種用於遙控直升機的 驅動控制設備,包括:每分鐘轉數檢測單元,用於檢測所述遙控直升機的主旋翼的每分鐘轉數;陀螺感測器,用於檢測包括翻滾軸、俯仰軸以及偏航軸的控制軸的角速度;以及控制單元,用於生成控制致動器的控制信號,所述控制致動器用於基於由所述陀螺感測器檢測到的所述角速度和從發射器發送的轉向信號來控制所述控制軸的運動,其中,所述控制單元具有關於針對所述遙控直升機的多個飛行狀態中的每一個預設的所述控制軸的陀螺靈敏度的資訊和關於針對所述遙控直升機的所述多個飛行狀態中的每一個預設的所述主旋翼的設定每分鐘轉數的資訊,並且基於與所述多個飛行狀態之中選擇的飛行狀態相對應的所述主旋翼的所述設定每分鐘轉數與所述每分鐘轉數檢測單元檢測到的所述主旋翼的每分鐘轉數之間的差值來校正所述陀螺靈敏度。
此外,所述控制單元可以使用通過將由所述每分鐘轉數檢測單元檢測到的所述主旋翼的所述每分鐘轉數與所述選擇的飛行狀態相對應的所述主旋翼的所述設定每分鐘轉數之間的所述差值乘以預定的校正係數得到的值來校正所述陀螺靈敏度。
此外,所述控制單元可以具有指示所述差值與所述陀螺靈敏度校正值之間的關係的控制資料,並且使用與所述設定每分鐘轉數和所述每分鐘轉數檢測單元檢測到的所述主旋翼的所述每分鐘轉數之間的所述差值相對應的所述控制資料的所述陀螺靈敏度校正值來校正所述陀螺 靈敏度。
此外,當所述主旋翼的所述每分鐘轉數小於或等於設定每分鐘轉數時,所述控制單元可以關閉陀螺功能。
此外,所述控制單元可以通過從比例-積分-微分控制切換到比例控制來校正所述陀螺靈敏度。
根據本公開的方面,基於與所選飛行狀態相對應的主旋翼的預設每分鐘轉數與主旋翼的實際每分鐘轉數之間的差值,對控制軸(翻滾軸、俯仰軸、偏航軸)的陀螺靈敏度進行校正,因此,與傳統情況相比,可以更穩定地執行遙控直升機的遙控。
1:陀螺設備
2:設定單元
3:轉數檢測單元
4:陀螺感測器
5:控制單元
5a:陀螺靈敏度校正單元
5b:致動器控制單元
6:發射器
7:接收器
8:控制致動器
8a:翻滾控制致動器
8b:俯仰控制致動器
8c:偏航控制致動器
11:遙控直升機
11a:機身
11b:尾部
12:主旋翼
13:尾旋翼
P:俯仰軸
R:翻滾軸
Y:偏航軸
通過以下結合附圖給出的實施例的描述,本公開的目的和特徵將變得顯而易見,其中:圖1是本公開的遙控直升機的驅動控制設備的框圖;圖2示出了指示陀螺靈敏度校正值相對於主旋翼的實際每分鐘轉數與主旋翼的設定每分鐘轉數之間的差值的控制資料的示例;以及圖3顯示了遙控直升機的機身和控制軸。
較佳實施例之詳細說明
在下文中,將參考附圖對實施例進行詳細描述。
如圖1所示,陀螺設備1除了具有陀螺功能之外,還具有調速器功能和飛行條件(飛行模式)功能。陀螺 設備1被配置為包括設定單元2、每分鐘轉數檢測單元3、陀螺感測器4以及控制單元5的驅動控制設備。如圖3所示,陀螺設備1安裝在例如遙控直升機11的機身11a上。
調速器功能是用於將主旋翼12的每分鐘轉數控制為預設每分鐘轉數的功能。
飛行條件功能是根據遙控直升機11的飛行狀態(例如,懸停、環形飛行、翻滾飛行、著陸期間的自動旋轉等)指定模式的功能。對於每種模式,預先設定主旋翼12的每分鐘轉數,控制軸的移動量和控制軸的陀螺靈敏度。飛行條件功能的模式基於發射器6發送的轉向信號進行切換,該發射器6發送的轉向信號與駕駛員的開關操作相對應。
如圖3所示,控制軸包括翻滾軸R(在前後方向上貫穿機身11a)、俯仰軸P(沿左右方向穿過機身11a)以及偏航軸Y(沿上下方向穿過機身11a)。
首先,將描述在本實施例中使用的陀螺靈敏度。陀螺靈敏度表示陀螺設備1的控制增益。通常,陀螺設備1通過使用陀螺感測器4來檢測機身11a的姿勢變化,並且將角速度信號(陀螺感測器信號)放大,以將與放大後的角速度信號的大小相對應的校正方向舵信號(即,後面描述的控制信號)傳送至後面描述的控制致動器8(伺服電動機等),從而停止機身11a的搖動。此時的角速度信號的放大程度(大小)為與陀螺靈敏度相對應的陀螺增益。
因此,隨著陀螺增益(陀螺靈敏度)的增加, 相對於機身11a的姿勢變化的校正方向舵的操作量增加。因此,對外部雜訊(例如,風和由於主旋翼12的旋轉引起的反作用轉矩的影響)的響應速度增加。然而,如果增益(靈敏度)過度增加,則發生波動現象(機身11a輕微振動的振盪現象),並且飛行變得不穩定。
另一方面,如果陀螺增益(陀螺靈敏度)較小,則難以充分獲得陀螺設備1的效果。因此,用於維持/保持姿勢的力變弱並且行為變得不穩定。因此,需要適當地控制陀螺增益(陀螺靈敏度)。適當的增益(靈敏度)根據所使用的控制致動器8(伺服電動機等)和機身11a的特性而變化,因此需要在需要時進行調整/校正。
參照圖1,發射器6將與駕駛員的操縱桿操作(油門操作、副翼操作、升降舵操作或方向舵操作)相對應的轉向信號作為無線電波發送,以執行遙控直升機11的遙控。接收器7接收來自發射器6的作為無線電波的轉向信號,將接收到的無線電波解調為原始轉向信號,並將該轉向信號輸出至陀螺設備1。
設定單元2針對每個飛行狀態(例如,懸停、環形飛行、翻滾飛行、著陸期間的自動旋轉等)設定陀螺功能的開/關、調速器功能的開/關、主旋翼12的設定每分鐘轉數值和控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的設定陀螺靈敏度值,以及後面描述的陀螺靈敏度的校正係數等。
設定陀螺靈敏度值表示基於控制軸的角速度(翻滾軸R、俯仰軸P以及偏航軸Y)而與需要保持遙控直 升機11的姿勢以便對控制致動器8進行控制以消除遙控直升機11的姿勢的改變的期望位置偏離的偏離量。具體地,在通過控制致動器8的伺服電動機的PWM控制改變旋轉斜盤的傾斜度來恢復遙控直升機11的姿勢的情況下,設定陀螺靈敏度值被設定為通過伺服電機針對特定軸的角速度的PWM控制來確定旋轉斜盤的移動量
每分鐘轉數檢測單元3測量主旋翼12的每分鐘轉數,主旋翼12是遙控直升機11的主旋翼葉片。每分鐘轉數檢測單元3檢測主旋翼12的每分鐘轉數,並向控制單元5輸出與檢測的每分鐘轉數(實際每分鐘轉數)相對應的主旋翼每分鐘轉數信號。
陀螺感測器4是用於檢測控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的角速度以檢測遙控直升機11的姿勢變化的角速度感測器。陀螺感測器4檢測遙控直升機11的翻滾軸R、俯仰軸P以及偏航軸Y的角速度,並且將與檢測的角速度相對應的角速度信號(翻滾軸角速度信號,俯仰軸角速度信號和偏航軸角速度信號)輸出到控制單元5(陀螺靈敏度校正單元5a)。
控制單元5控制陀螺設備1的整體功能,並且具有關於為遙控直升機11的每個飛行狀態(例如,懸停、環形飛行、翻滾飛行、著陸期間的自動旋轉等)預設的主旋翼12的設定每分鐘轉數值和控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的設定陀螺靈敏度值的資訊。
控制單元5通過使用基於來自設定單元2的 設定資訊、來自接收器7的轉向信號、來自每分鐘轉數檢測單元3的主旋翼的每分鐘轉數信號以及來自陀螺感測器4的控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的角速度信號而產生的控制信號來對控制致動器8進行控制。控制單元5包括陀螺靈敏度校正單元5a和致動器控制單元5b。
當啟用陀螺功能時,陀螺靈敏度校正單元5a通過使用以下描述的方法(1)至(4)中的任何一種來校正控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的陀螺靈敏度。
(1)基於與飛行狀態相對應的主旋翼12的設定每分鐘轉數值與由每分鐘轉數檢測單元3檢測到的主旋翼12的實際每分鐘轉數之間的差值,來校正控制軸的陀螺靈敏度。換句話說,當主旋翼12的實際每分鐘轉數和與發射器6的調速器功能相對應的設定每分鐘轉數值不同時,基於每分鐘轉數差值來校正控制軸的陀螺靈敏度。
以校正翻滾軸R的陀螺靈敏度的情況作為示例進行說明。假設根據飛行狀態設定的主旋翼12的設定每分鐘轉數值是RPMs;每分鐘轉數檢測單元3檢測到的實際每分鐘轉數為RPMx;根據飛行狀態而設定的翻滾軸R的設定陀螺靈敏度值是GAINr;並且根據飛行狀態設定的翻滾軸R的陀螺靈敏度校正係數(每1rpm的每分鐘轉數偏差的靈敏度校正值)為COMPr,校正後的翻滾軸R的陀螺靈敏度AGAINr被計算為AGAINr=(RPMs-RPMx)×COMPr+GAINr。
校正後的俯仰軸P和偏航軸Y的陀螺靈敏度 也可以與翻滾軸R相同的方式計算。
(2)通過使用由設定單元2在每個預定變化(例如,10rpm)中設置和存儲控制軸的陀螺靈敏度校正值,利用與由每分鐘轉數檢測單元3檢測到的主旋翼12的實際每分鐘轉數的變化相對應的陀螺靈敏度校正值來校正控制軸的陀螺靈敏度。
(3)使用對翻滾軸R、俯仰軸P以及偏航軸Y的控制資料集對控制軸的陀螺靈敏度進行校正。換句話說,將控制軸的陀螺靈敏度校正為與根據飛行狀態而設定的主旋翼12的設定每分鐘轉數值與由每分鐘轉數檢測單元3檢測出的主旋翼12的實際每分鐘轉數的差值相對應的控制資料的陀螺靈敏度。
圖2示出了指示陀螺靈敏度校正值相對於主旋翼12的實際每分鐘轉數與主旋翼12的設定每分鐘轉數之間的差值的翻滾軸R的控制資料的示例。
參照圖2,橫軸表示主旋翼12的實際每分鐘轉數和主旋翼12的設定每分鐘轉數值(實際每分鐘轉數-設定每分鐘轉數)之間的差值,並且縱軸表示翻滾軸R的陀螺靈敏度校正值,橫軸上的0rpm是根據飛行狀態而設定的主旋翼12的設定每分鐘轉數值(例如,1500rpm)。在圖2的示例中,在主旋翼12的每分鐘轉數增加的情況下,有必要將陀螺靈敏度降低得稍大些以抑制波動。因此,該圖在正值側和負值側是不對稱的。
在圖2中所示的校正翻滾軸R的陀螺靈敏度 情況下,當根據飛行狀態而設定的主旋翼12的設定每分鐘轉數值是1500rpm並且由每分鐘轉數檢測單元3檢測出的主旋翼12的實際每分鐘轉數是1560rpm時,主旋翼12的實際每分鐘轉數與主旋翼12的設定每分鐘轉數值之間的差值為60rpm,因此陀螺靈敏度校正值變為-10。通過將陀螺靈敏度校正值-10加到設定陀螺靈敏度值來校正翻滾軸R的陀螺靈敏度。
在圖2中,當差值超過±100rpm時,使用對應於±100rpm的陀螺靈敏度校正值。
(4)在使用方法(1)至(3)校正陀螺靈敏度的情況下,如果將主旋翼12的每分鐘轉數減小到設定每分鐘轉數(例如,100rpm),則控制軸的陀螺靈敏度被校正為0%(陀螺功能關閉)或低於預設的陀螺靈敏度設定值的最小值,以改善轉向效果(換句話說,是更精確地受控於發射器發出的轉向信號)。或者,通過從比例積分微分(proportional-integral-differential,PID)控制切換到比例(proportional,P)控制來校正控制軸的陀螺靈敏度。由於P控制不具有如PID控制中那樣反復積分誤差的積分功能,因此改善了轉向效果。因此,即使遙控直升機11的機身11a在著陸期間傾斜,也可以通過操縱發射器6的操縱桿來穩定姿勢。
致動器控制單元5b基於由陀螺靈敏度校正單元5a校正的控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的設定陀螺靈敏度值產生控制致動器8的控制信號,用於根 據陀螺感測器4檢測到的控制軸的角速度來對控制軸的運動進行控制,並且致動器控制單元5b通過使用控制信號來對控制致動器8進行控制以受控於轉向信號。
控制致動器8包括翻滾控制致動器8a、俯仰控制致動器8b以及偏航控制致動器8c。控制致動器8被配置為具有伺服電動機的驅動單元,其由致動器控制單元5b產生的控制信號進行PWM控制。驅動單元通過伺服電動機的旋轉來控制翻滾角、俯仰角以及偏航角以受控於轉向信號。
在圖1的示例中,設定單元2內置在陀螺設備1中。然而,本公開不限於此。例如,可以與陀螺設備1電連接的獨立設備可以用作設定單元2。另外,發射器6可以用作設定單元2,並且設定可以通過操縱發射器6的操縱桿和開關來通過接收器7來執行。
在對如上所述配置的陀螺設備1中的控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的陀螺靈敏度進行校正的情況下,使用飛行條件(飛行模式)功能預先設定根據飛行狀態的主旋翼12的設定每分鐘轉數、控制軸的設定陀螺靈敏度值以及控制軸的移動量。
當基於操作員的操縱桿操作生成的轉向信號作為無線電波從發射器6發送以執行遙控直升機11的遙控時,接收器7接收來自發射器6的無線電波,將接收到的無線電波調製為原始轉向信號,並且將該轉向信號輸入到陀螺設備1的陀螺靈敏度校正單元5a。此外,來自設定單元 2的設定資訊、來自每分鐘轉數檢測單元3的主旋翼每分鐘轉數信號以及來自陀螺感測器4的控制軸的角速度信號被輸入到陀螺靈敏度校正單元5a中。
陀螺靈敏度校正單元5a使用上述方法(1)至(4)中的任何一種來校正控制軸的陀螺靈敏度。然後,當通過陀螺靈敏度校正單元5a對控制軸的陀螺靈敏度進行校正時,致動器控制單元5b基於控制軸的校正後的陀螺靈敏度來產生根據陀螺感測器4檢測到的控制軸的角速度的控制致動器8的控制信號,並使用該控制信號來對控制致動器8進行控制以受控於轉向信號。
根據本實施例,控制軸(翻滾軸R、俯仰軸P以及偏航軸Y)的陀螺靈敏度基於選定的飛行狀態下的主旋翼12的設定值與由每分鐘轉數檢測單元3檢測到的主旋翼12的每分鐘轉數之間的差值來校正。因此,與傳統情況相比,可以更穩定地執行遙控直升機11的遙控。
具體地,當遙控直升機11由於主旋翼12的每分鐘轉數的增加而超速飛行時,陀螺靈敏度可以響應於每分鐘轉數的增加而降低。結果,可以在無需尾旋翼13的振動下實現穩定的飛行。
當遙控直升機11的發動機或電動機停止並且遙控直升機11使用自動旋轉功能著陸時,如果將主旋翼12的每分鐘轉數減小到一定水平(例如,100rpm),則控制軸的陀螺靈敏度被設定為0%(陀螺功能關閉)或低於預設的陀螺靈敏度設定值的最小值。或者,控制軸的陀螺靈敏 度通過P控制進行校正。因此,因此當遙控直升機著陸時可以降低陀螺靈敏度,並且由於可以更精確地受控於與駕駛員的操縱桿操作相對應的轉向信號,即使在遙控直升機11的機身11a傾斜的情況下姿勢可以得到校正。
儘管上面已經描述了本公開的遙控直升機驅動控制設備的實施例,但是本公開不限於此。換句話說,本領域技術人員基於上述實施例做出的其他實施例、示例以及操作技術也包括在本公開的範圍內。
1:陀螺設備
2:設定單元
3:轉數檢測單元
4:陀螺感測器
5:控制單元
5a:陀螺靈敏度校正單元
5b:致動器控制單元
6:發射器
7:接收器
8:控制致動器
8a:翻滾控制致動器
8b:俯仰控制致動器
8c:偏航控制致動器

Claims (5)

  1. 一種用於遙控直升機的驅動控制設備,包括: 每分鐘轉數(rpm)檢測單元,用於檢測所述遙控直升機的主旋翼的每分鐘轉數; 陀螺感測器,用於檢測包括翻滾軸、俯仰軸以及偏航軸的控制軸的角速度;以及 控制單元,用於生成控制致動器的控制信號,所述控制致動器用於基於由所述陀螺感測器檢測到的所述角速度和從發射器發送的轉向信號來控制所述控制軸的運動, 其中,所述控制單元具有關於針對所述遙控直升機的多個飛行狀態中的每一個預設的所述控制軸的陀螺靈敏度的資訊和關於針對所述遙控直升機的所述多個飛行狀態中的每一個預設的所述主旋翼的設定每分鐘轉數的資訊,並且基於與所述多個飛行狀態之中選擇的飛行狀態相對應的所述主旋翼的所述設定每分鐘轉數與所述每分鐘轉數檢測單元檢測到的所述主旋翼的每分鐘轉數之間的差值來校正所述陀螺靈敏度。
  2. 如請求項1所述的用於遙控直升機的驅動控制設備,其中,所述控制單元使用通過將由所述每分鐘轉數檢測單元檢測到的所述主旋翼的所述每分鐘轉數與所述選擇的飛行狀態相對應的所述主旋翼的所述設定每分鐘轉數之間的所述差值乘以預定的校正係數得到的值來校正所述陀螺靈敏度。
  3. 如請求項1所述的用於遙控直升機的驅動控制設備,其中,所述控制單元具有指示所述差值與所述陀螺靈敏度校正值之間的關係的控制資料,並且使用與所述設定每分鐘轉數和所述每分鐘轉數檢測單元檢測到的所述主旋翼的所述每分鐘轉數之間的所述差值相對應的所述控制資料的所述陀螺靈敏度校正值來校正所述陀螺靈敏度。
  4. 如請求項1所述的用於遙控直升機的驅動控制設備,其中,當所述主旋翼的所述每分鐘轉數小於或等於設定每分鐘轉數時,所述控制單元關閉陀螺功能。
  5. 如請求項1至3中任一項所述的用於遙控直升機的驅動控制設備,其中,所述控制單元通過從比例-積分-微分控制切換到比例控制來校正所述陀螺靈敏度。
TW108142960A 2018-11-27 2019-11-26 用於遙控直升機的驅動控制設備 TWI733255B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-221380 2018-11-27
JP2018221380A JP7139229B2 (ja) 2018-11-27 2018-11-27 遠隔制御ヘリコプタの駆動制御装置

Publications (2)

Publication Number Publication Date
TW202028058A TW202028058A (zh) 2020-08-01
TWI733255B true TWI733255B (zh) 2021-07-11

Family

ID=70545808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108142960A TWI733255B (zh) 2018-11-27 2019-11-26 用於遙控直升機的驅動控制設備

Country Status (5)

Country Link
US (1) US11592840B2 (zh)
JP (1) JP7139229B2 (zh)
CN (1) CN111216887B (zh)
DE (1) DE102019008219B4 (zh)
TW (1) TWI733255B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413656B1 (en) * 1989-08-14 1993-12-01 United Technologies Corporation Programmable, linear collective control system for a helicopter
WO1995019592A1 (fr) * 1994-01-12 1995-07-20 Bernard Durand Pilote automatique pour helicopteres a objectif vitesse air
CN101833336A (zh) * 2010-04-28 2010-09-15 北京航空航天大学 一种共轴式无人直升机的双余度姿态控制系统及调试方法
CN202538354U (zh) * 2012-01-11 2012-11-21 深圳市艾特航模股份有限公司 一种模型的平衡锤加ccpm控制方式的操纵机构和直升机模型
US9041519B2 (en) * 2009-02-04 2015-05-26 Mikado Model Helicopters GmbH Model helicopter attitude control and receiving device with reduced size and self-learning features
CN107065906A (zh) * 2017-04-12 2017-08-18 南京航空航天大学 一种双余度传感器的微小型无人直升机自动飞行控制系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980835A (en) * 1988-10-13 1990-12-25 United Technologies Corporation Control law system for X-Wing aircraft
US5730349A (en) * 1994-10-04 1998-03-24 Canon Kabushiki Kaisha Tape guide mechanism having vibration mechanism
JP3615305B2 (ja) * 1996-05-29 2005-02-02 富士通テン株式会社 角速度センサの誤差補正方法および装置ならびにナビゲーションシステム
FR2844607B1 (fr) 2002-09-16 2004-12-10 Centre Nat Rech Scient Systeme d'assistance au pilotage de l'altitude et de la vitesse horizontale, perpendiculaire a l'aplomb, d'un aeronefs equipes de ce systeme
JP4356332B2 (ja) * 2003-02-21 2009-11-04 セイコーエプソン株式会社 浮揚体
CN100390020C (zh) 2003-12-22 2008-05-28 上海雏鹰科技有限公司 超视距自主飞行无人驾驶直升机系统
JP2005247008A (ja) 2004-03-01 2005-09-15 Yamaha Motor Co Ltd 無人ヘリコプタ用制御装置
US20060271251A1 (en) * 2005-02-17 2006-11-30 Hopkins Jeffrey A Unmanned vehicle control
JP2008201183A (ja) * 2007-02-17 2008-09-04 Morioka Seiko Instruments Inc 姿勢制御装置
JP2012076628A (ja) * 2010-10-01 2012-04-19 Univ Of Tokushima 無人無線操縦ヘリコプタ
JP5595978B2 (ja) 2011-05-28 2014-09-24 双葉電子工業株式会社 遠隔制御機器の駆動制御装置
DE102013201553B3 (de) 2013-01-30 2014-05-28 PowerBox-Systems GmbH Verfahren und Vorrichtung zur Stabilisierung der Fluglage eines ferngesteuerten Flächenflugzeugs
US8818571B1 (en) * 2013-03-13 2014-08-26 HPI Racing & HB Steering control system for radio control vehicle and a radio controlled car comprising the same
CN105974935B (zh) * 2016-07-14 2019-10-29 安徽科技学院 一种四旋翼农用遥控飞行器及其控制方法
US11640178B2 (en) * 2016-12-13 2023-05-02 Acsl Ltd. Unmanned aircraft, device for controlling unmanned aircraft, method for controlling unmanned aircraft, and device for detecting failure of unmanned aircraft
US10989563B2 (en) * 2018-06-25 2021-04-27 CloudNav Inc. Automatic calibration of rate gyroscope sensitivity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0413656B1 (en) * 1989-08-14 1993-12-01 United Technologies Corporation Programmable, linear collective control system for a helicopter
WO1995019592A1 (fr) * 1994-01-12 1995-07-20 Bernard Durand Pilote automatique pour helicopteres a objectif vitesse air
US9041519B2 (en) * 2009-02-04 2015-05-26 Mikado Model Helicopters GmbH Model helicopter attitude control and receiving device with reduced size and self-learning features
CN101833336A (zh) * 2010-04-28 2010-09-15 北京航空航天大学 一种共轴式无人直升机的双余度姿态控制系统及调试方法
CN202538354U (zh) * 2012-01-11 2012-11-21 深圳市艾特航模股份有限公司 一种模型的平衡锤加ccpm控制方式的操纵机构和直升机模型
CN107065906A (zh) * 2017-04-12 2017-08-18 南京航空航天大学 一种双余度传感器的微小型无人直升机自动飞行控制系统

Also Published As

Publication number Publication date
JP2020083104A (ja) 2020-06-04
CN111216887A (zh) 2020-06-02
US11592840B2 (en) 2023-02-28
DE102019008219A1 (de) 2020-05-28
CN111216887B (zh) 2023-04-18
DE102019008219B4 (de) 2021-11-11
TW202028058A (zh) 2020-08-01
JP7139229B2 (ja) 2022-09-20
US20200166955A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
JP5837376B2 (ja) 複数のローターを有する回転翼無人機を操縦する方法
US11208205B2 (en) System and method for rotorcraft autorotation entry assist
EP0003947B1 (en) Pitch bias actuator system for helicopter longitudinal cyclic pitch
US7809480B2 (en) Autonomous flight for flight platforms
US6227482B1 (en) Gyroscope for remote-controlled helicopters
CN110196600B (zh) 旋翼飞行器、飞行控制计算机和飞行控制方法
CN108693886B (zh) 用于旋翼飞行器的飞行控制系统计算机及其操作方法
JP2004268730A (ja) 無人ヘリコプタの姿勢制御方法
TWI733255B (zh) 用於遙控直升機的驅動控制設備
JP3185081B2 (ja) 無人ヘリコプタの姿勢制御装置
JP3162164B2 (ja) 遠隔操縦式ヘリコプタの制御装置
JPH0733159B2 (ja) 回転翼型航空機の燃料制御装置
EP3677979B1 (en) System and method for controlling rotorcraft
JP4369261B2 (ja) 無人ヘリコプタ用制御装置
JPH07300096A (ja) 無人ヘリコプタの姿勢制御装置
JPH08239096A (ja) 無人ヘリコプタのメインロータ制御装置
JP2000225997A (ja) プロペラ航空機の操縦制御装置
JP2004268715A (ja) 無人ヘリコプタのエンジン回転制御方法
RU2380280C2 (ru) Автоматическая система управления скоростью для воздушного судна