TWI732880B - 多層膜之成膜方法 - Google Patents

多層膜之成膜方法 Download PDF

Info

Publication number
TWI732880B
TWI732880B TW106118813A TW106118813A TWI732880B TW I732880 B TWI732880 B TW I732880B TW 106118813 A TW106118813 A TW 106118813A TW 106118813 A TW106118813 A TW 106118813A TW I732880 B TWI732880 B TW I732880B
Authority
TW
Taiwan
Prior art keywords
film
layer
multilayer film
value
film thickness
Prior art date
Application number
TW106118813A
Other languages
English (en)
Other versions
TW201819661A (zh
Inventor
首藤俊介
佐木暁
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW201819661A publication Critical patent/TW201819661A/zh
Application granted granted Critical
Publication of TWI732880B publication Critical patent/TWI732880B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

本發明於使構成多層膜之各層隔開時間間隔地逐層積層之多層膜之成膜方法中,實現不浪費材料與時間之各層之膜厚修正。 本發明之多層膜之成膜方法包含以下步驟:設定各層之膜厚之目標值(目標膜厚值);求出成膜後之多層膜6之各層之推定膜厚(推定膜厚值);求出用以使各層之目標膜厚值與推定膜厚值之差最小化之各層之成膜參數變更量;及隔開時間間隔,使各層之成膜參數以各層之成膜參數變更量依次變更。

Description

多層膜之成膜方法
本發明係關於一種多層膜之成膜方法。
多層膜係將複數個膜積層之膜。將構成多層膜之各膜稱為各層。多層膜係於基材將各層依次成膜而製造。於成膜多層膜時,並不限定於可將各層始終以目標之厚度成膜。因此,一面調整各層之成膜參數且修正各層之厚度一面進行成膜。例如,專利文獻1(日本專利特開2006-71402)揭示了利用已完成成膜之多層膜之光學特性修正各層之成膜參數的手法。 於專利文獻1中,於長條膜上依次成膜第1TiO2 膜、第1SiO2 膜、第2TiO2 膜、第2SiO2 膜之4個層。然後,根據已完成成膜之多層膜之反射光之色相,推定第1TiO2 膜、第1SiO2 膜、第2TiO2 膜、第2SiO2 膜之膜厚,求出各層之厚度之修正值。其次,根據各層之厚度之修正值進行成膜參數之變更。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2006-71402號公報
[發明所欲解決之問題] 本發明之目的為,於使構成多層膜之各層隔開時間間隔地逐層積層之多層膜之成膜方法中,實現不浪費材料與時間之各層之膜厚修正。 [解決問題之技術手段] (1)本發明之多層膜之成膜方法係使構成多層膜之各層隔開時間間隔地逐層積層之多層膜之成膜方法。本發明之多層膜之成膜方法包含以下步驟。設定各層之膜厚之目標值(目標膜厚值)之步驟。求出成膜後之多層膜之各層之推定膜厚(推定膜厚值)的步驟。求出用以使各層之目標膜厚值與推定膜厚值之差最小化之各層之成膜參數變更量的步驟。隔開時間間隔,使實際之成膜中所使用之各層之成膜參數以各層之成膜參數變更量依次變更的步驟。 (2)於本發明之多層膜之成膜方法中,於求出多層膜之推定膜厚值時,使用多層膜之分光反射率。 (3)於本發明之多層膜之成膜方法中,於求出多層膜之推定膜厚值時,使用多層膜之反射光之色相。 (4)於本發明之多層膜之成膜方法中,構成多層膜之各層係藉由濺鍍裝置而成膜。 (5)於本發明之多層膜之成膜方法中,成膜參數係濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上。 (6)於本發明之多層膜之成膜方法中,濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上係由電漿發射監控(PEM)控制系統、或阻抗控制系統反饋控制。 (7)於本發明之多層膜之成膜方法中,多層膜係成膜於長條之基材膜之表面。 (8)於本發明之多層膜之成膜方法中,以成膜有多層膜之長條之基材膜之長邊方向之特定間隔測定實測光學值。 (9)於本發明之多層膜之成膜方法中,多層膜為多層光學膜。 [發明之效果] 根據本發明,於使構成多層膜之各層隔開時間間隔地逐層積層之多層膜之成膜方法中,實現不浪費材料與時間之各層之膜厚修正。例如,於多層膜成膜於長條膜之情形時,自長條膜之長度方向之1個部位,獲得所有層之成膜參數變更之多層膜。因此,例如,於必須變更第1層與第2層之成膜參數時,不會出現如第1層之成膜參數被變更但第2層之成膜參數未變更之類的無法使用之多層膜。因此,不會產生基材及成膜材料之浪費,亦不會產生時間之浪費。
[多層膜] 圖1中模式性地表示本發明之多層膜之一例。多層膜6之層數並無限定,圖1表示5層之情形。圖1(a)係用以將多層膜6積層之基材7。作為基材7之材質,例如,可列舉玻璃板、玻璃膜、塑膠板、塑膠膜、金屬線圈、金屬板等。基材7之材質、厚度、形狀(平面、曲面、單片或長條膜等)等並無限定。 圖1(b)係表示於基材7成膜第1層1之狀態。作為第1層1,例如可列舉透明導電膜、光觸媒膜、阻氣膜、光干涉膜等,膜之種類並無限定。作為第1層1之成膜方法,例如,可列舉濺鍍法、蒸鍍法、CVD(chemical vapor deposition,化學氣相沈積)法等,成膜方法並無限定。 圖1(c)係表示於第1層1之上成膜第2層2之狀態。圖1(d)係表示於第2層2之上成膜第3層3之狀態。圖1(e)係表示於第3層3之上成膜第4層4之狀態。圖1(f)係表示於第4層4之上成膜第5層5之狀態。第2層2~第5層5之膜之種類、成膜方法與第1層1相同。 第1層1~第5層5之材質、功能、厚度、成膜方法等係根據多層膜6之用途等而適當設計。於多層膜之用途為光學用途時,將多層膜稱為多層光學膜。多層光學膜廣泛使用於抗反射膜等。作為多層膜之成膜方法,自可使用多樣之膜材料之方面、獲得硬度較高之膜質之方面、以大面積獲得較高之膜厚精度之方面等而言,較多使用濺鍍法。 於成膜多層膜時,難以使各層之膜厚與目標膜厚值完全一致。例如,於濺鍍法之情形時,各層之膜厚例如受濺鍍氣體之分壓之影響。然而,即便使濺鍍氣體之流量計之設定固定,實際之濺鍍氣體之分壓亦根據溫度或壓力而變動。各層之膜厚係與濺鍍氣體之分壓之變動對應地變化。此種變動不僅於濺鍍氣體之分壓,且於反應性氣體之流量及分壓、陰極電壓、靶殘量、成膜輥與靶之距離、成膜輥之溫度、基材膜之移行速度等多數之成膜參數亦不可避免地產生。因此,即便使成膜參數固定亦不可避免各層之膜厚經時變化。 [多層膜之膜厚推定] 多層膜之各層之膜厚若利用電子顯微鏡觀察多層膜之剖面,則可精度良好地獲知。然而,尤其於在長條膜成膜多層膜之情形時,自長條膜頻繁地切出樣品進行剖面觀察並不實際。因此,藉由非破壞性之方法推定多層膜之各層之膜厚。 於本發明中,作為非破壞性之方法之一例,對成膜後之多層膜照射光,使用其反射光或透過光之光學值推定各層之膜厚。用於各層之膜厚之推定之光學值例如為分光反射率、反射光之色相、分光透過率、或透過光之色相。 於在長條之基材膜成膜多層膜時,各層之膜厚不可避免地經時變化,故而以成膜有多層膜之長條之基材膜之長邊方向之特定間隔,測定實測光學值。 [各層之膜厚推定] 以下說明本發明中所使用之膜厚推定方法之一例。於該膜厚推定方法中,首先假設各層之推定膜厚值,藉由理論計算求出相對於其之理論光學值。於第1次之理論計算時,將各層之推定膜厚值設為目標膜厚值(設計膜厚值)。其次,將理論光學值與實測光學值進行比較。使各層之推定膜厚值變化而使將理論光學值與實測光學值進行比較之步驟反覆進行n次(n=1、2、3、4、…),直至光學值差(實測光學值與理論光學值之差)滿足預先設定之收斂條件(例如,分光反射率之實測值與理論值之差之規格值)為止。將光學值差滿足預先設定之收斂條件時之各層之推定膜厚值設為各層之最準確的推定膜厚值(「最準確推定膜厚值」)。於以下之說明中,作為一例,敍述使將理論光學值與實測光學值進行比較之步驟反覆進行3次(n=3)時光學值差滿足收斂條件之情形。 (1)根據多層膜之目的,基於理論計算設定各層之目標膜厚值。例如,若多層膜為透明導電膜,則基於光之透過率或電阻值之規格值進行理論計算以設定各層之目標膜厚值。若多層膜為抗反射用之光干涉膜,則例如以反射光之強度極小化之方式設定各層之目標膜厚值。各層之目標膜厚值亦稱為各層之設計膜厚值。 (2)藉由理論計算,求出各層之膜厚為目標膜厚值時之多層膜之理論性的光學值(例如分光反射率或反射光之色相)。於本發明中,將各層之膜厚為目標膜厚值時之理論性的光學值稱為「第1理論光學值」。於理論計算時,視需要考慮基材之反射率或透過率。 (3)對實際成膜之多層膜照射光,測定其反射光之光學值(例如分光反射率或反射光之色相)或透過光之光學值(例如分光透過率或透過光之色相)。於本發明中,將自實際成膜之多層膜藉由測定而獲得之光學值稱為「實測光學值」。 (4)實際成膜之多層膜之各層之膜厚未知,為了推進膜厚推定製程,必須假設某些膜厚。因此,於本發明中,將各層之膜厚之最初之推定值設為上述目標膜厚值(設計膜厚值)。於本發明中,將第1次之計算用之各層之膜厚之推定值稱為「第1推定膜厚值」。因此,各層之「第1推定膜厚值」成為目標膜厚值。由於各層之第1推定膜厚值與目標膜厚值相同,故而與其對應之理論光學值成為「第1理論光學值」。 (5)於本發明中,將實測光學值與第1理論光學值之差稱為「第1光學值差」。第1光學值差於光學值為分光反射率之情形時,為分光反射率之實測值與第1次之理論值之差,於光學值為反射光之色相之情形時,為反射光之色相之實測值與第1次之理論值之差。 (6)若第1光學值差滿足預先設定之收斂條件,則將第1推定膜厚值設為各層之最準確的推定膜厚值,結束膜厚推定製程。於本發明中,將各層之最準確的推定膜厚值稱為「最準確推定膜厚值」。因此,此時第1推定膜厚值成為最準確推定膜厚值。於第1光學值差不滿足預先設定之收斂條件時,繼續進行膜厚推定製程。於光學值為分光反射率之情形時,預先設定之收斂條件係分光反射率之實測值與第1次之理論值之差為預先設定之規格值以下。於光學值為反射光之色相之情形時,預先設定之收斂條件係反射光之色相之實測值與第1次之理論值之差為預先設定之規格值以下。 (7)於第1光學值差不滿足預先設定之收斂條件時,設定預測獲得小於第1光學值差之光學值差之各層之膜厚之第2推定膜厚值。於本發明中,將第2次之計算用之各層之膜厚之推定值稱為「第2推定膜厚值」。第2推定膜厚值可基於第1次之理論值與實測值之比較結果,例如使用曲線擬合法而求出。 (8)藉由理論計算,求出各層之膜厚為第2推定膜厚值時之理論光學值(例如分光反射率或反射光之色相)。於本發明中,將該理論光學值稱為「第2理論光學值」。 (9)求出實測光學值與第2理論光學值之差。於本發明中,將實測光學值與第2理論光學值之差稱為「第2光學值差」。第2光學值差於光學值為分光反射率之情形時,為分光反射率之實測值與第2次之理論值之差,於光學值為反射光之色相之情形時,為反射光之色相之實測值與第2次之理論值之差。 (10)若第2光學值差滿足預先設定之收斂條件,則將第2推定膜厚值設為各層之最準確推定膜厚值,結束膜厚推定製程。於第2光學值差不滿足預先設定之收斂條件時,繼續進行膜厚推定製程。預先設定之收斂條件與第1光學值差時相同。 (11)於第2光學值差不滿足預先設定之收斂條件時,設定預測獲得小於第2光學值差之光學值差之各層之膜厚之第3推定膜厚值。於本發明中,將第3次之各層之膜厚之推定值稱為「第3推定膜厚值」。第3推定膜厚值可基於第2次之理論值與實測值之比較結果,例如使用曲線擬合法而求出。 (12)藉由理論計算,求出各層之膜厚為第3推定膜厚值時之理論光學值(例如分光反射率或反射光之色相)。於本發明中,將該理論光學值稱為「第3理論光學值」。 (13)求出實測光學值與第3理論光學值之差。於本發明中,將實測光學值與第3理論光學值之差稱為「第3光學值差」。第3光學值差於光學值為分光反射率之情形時,為分光反射率之實測值與第3次之理論值之差,於光學值為反射光之色相之情形時,為反射光之色相之實測值與第3次之理論值之差。 (14)若第3光學值差滿足預先設定之收斂條件,則將第3推定膜厚值設為各層之最準確推定膜厚值,結束膜厚推定製程。預先設定之收斂條件與第1光學值差時相同。於第3光學值差不滿足預先設定之收斂條件時,繼續進行膜厚推定製程。此處,設第3光學值差滿足預先設定之收斂條件。因此,將第3推定膜厚值設為各層之最準確推定膜厚值,結束膜厚推定製程。 實際上,直至第n次(n=1、2、3、4、5、…)之實測光學值與第n理論光學值之差(將其稱為「第n光學值差」)滿足預先設定之收斂條件為止,反覆地進行上述步驟,最終獲得各層之最準確推定膜厚值。預先設定之收斂條件與第1光學值差時相同。 若膜厚推定完成,則以使各層之最準確推定膜厚值與各層之目標膜厚值之差最小化之方式變更成膜參數以使各層之膜厚最佳化。 亦可包含以下步驟:於推定各層之膜厚時,參照分光反射率或反射光之色相算出各層之最佳之膜厚,基於最佳之膜厚決定於各層之中應變更膜厚之層。藉此,可使變更成膜參數之層為必要最小限度。 [各層之膜厚修正] 利用使用濺鍍裝置於長條膜成膜多層膜之例對多層膜之各層之膜厚修正方法進行說明。圖2係本發明之多層膜之濺鍍裝置之模式圖。濺鍍裝置10係於長條膜11成膜多層膜之裝置。於圖2中,細實線表示電氣配線或氣體配管,虛線表示分光反射率、電漿發光強度、陰極電壓、氣體流量等之信號線。再者,圖2係於長條膜11成膜多層膜之過程中之圖。 濺鍍裝置10係於真空槽12內,具備長條膜11之供給輥13、引導長條膜11之移行之導輥14、將長條膜11捲繞不到1周之圓筒形之成膜輥15、及收納長條膜11之收納輥16。成膜輥15圍繞其中心軸自轉。成膜過程中成膜輥15自轉,長條膜11與成膜輥15之自轉同步地移行。 於成膜輥15之周圍,以與成膜輥15對向之方式設置有靶17。靶17與成膜輥15隔開特定之距離配置。成膜輥15之中心軸與靶17平行。於圖2中,靶17為5根,但靶17之根數並無限制。於靶17之外側(成膜輥15之相反側),與靶17密接設置有陰極18。靶17與陰極18係機械地、電性地結合。 於各陰極18連接有濺鍍電源20。由於陰極18與靶17係相同之電位,故而濺鍍電源20會連接於靶17。於RF(Radio Frequency,射頻)區域之交流(RF-AC)之情形時,需要於陰極18與濺鍍電源20之間插入匹配盒(未圖示),調整自濺鍍電源20側觀察之靶17之阻抗,使來自靶17之反射電力(無效電力)最小,但於濺鍍電源20為直流(DC,脈衝DC)或MF(Middle Frequency,中頻)區域之交流(MF-AC)之情形時沒有必要。 各靶17所需要之濺鍍氣體或反應性氣體之種類、壓力、供給量有時不同。因此,以將各靶17分離之方式將真空槽12由間隔壁24間隔開,形成分割槽25。於各分割槽25,自氣體供給裝置26(GAS)連接有配管27,濺鍍氣體(例如氬)或反應性氣體(例如氧)以特定之流量供給。濺鍍氣體或反應性氣體之流量係由流量計28(質量流量控制器:MFC)控制。 圖示雖省略,但亦可於1個分割槽25設置複數個靶17。於該情形時,可於同一之氣體環境中進行不同之材料之濺鍍。又,於該分割槽25之材料之濺鍍速度較其他分割槽25之材料之濺鍍速度慢時,為了維持長條膜11之移行速度,亦能於該分割槽25中使用同一材料之複數個靶17進行濺鍍。 於與成膜輥15之自轉同步地移行之長條膜11之表面,於與靶17對向之位置附著濺鍍膜。於圖2中,成膜輥15為1根,但成膜輥15亦可為2根以上(未圖示)。 作為長條膜11,一般而言,使用包括聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚醯胺、聚氯乙烯、聚碳酸酯、聚苯乙烯、聚丙烯、聚乙烯等均聚物或共聚物之透明膜。長條膜11既可為單層膜,亦可為與具有光學功能之偏光膜等積層而成之積層膜。作為積層膜,並無特別限定,例如可列舉包含偏光層與至少1層之保護層之偏光膜,或於上述偏光膜進而包含相位差膜之積層體。長條膜11之厚度並無限定,通常為6 μm~250 μm左右。 於濺鍍裝置10中,於氬等濺鍍氣體中,使成膜輥15為陽極電位,使靶17為陰極電位,對成膜輥15與靶17之間施加濺鍍電壓。藉此,於長條膜11與靶17之間產生濺鍍氣體之電漿。電漿中之濺鍍氣體離子與靶17碰撞,擊出靶17之構成物質。被擊出之靶17之構成物質於長條膜11上堆積而成為濺鍍膜。 於濺鍍裝置10中,將成膜前之長條膜11自供給輥13連續地拉出,於成膜輥15捲繞不到1周,使成膜輥15旋轉而使長條膜11與成膜輥15同步地送出。長條膜11捲取於收納輥16。 於濺鍍裝置10中,由於靶17為5根,故而自接近供給輥13之側,於長條膜11依次成膜第1層、第2層、第3層、第4層、第5層。由於各層之成膜位置不同,故而於各自之各層之成膜之間存在時間間隔。相鄰之層之成膜之時間間隔係成膜輥15旋轉1圈之時間之約1/5,各層之時間間隔並不限定於相同。例如,亦有第1層與第2層之時間間隔不同於第2層與第3層之時間間隔之情形。 濺鍍裝置10具備測定形成於長條膜11之多層膜之分光反射率之分光反射率計29。於圖2之情形時分光反射率計29為1台即可。然而,雖未圖示,但於成膜輥15為2根以上之情形時,亦可於各成膜輥15之下游側設置分光反射率計29。於該情形時,分光反射率計29為2台以上。 由濺鍍裝置10製造之多層膜為5層。根據藉由分光反射率計29而測定出之多層膜之分光反射率,利用分析裝置30,例如求出反射光之色相之實測值。於多層膜之反射光中亦包含來自長條膜11(基材)之反射光。於分析裝置30中,藉由上述膜厚推定方法,而求出實際成膜之多層膜之各層之推定膜厚值。所求出之各層之推定膜厚值自分析裝置30傳送至控制裝置31。 反應性氣體之流量係由流量計28(MFC)針對每個靶進行控制。電漿發光強度係由電漿發光強度測定器32針對各靶17進行測定。 陰極電壓係由陰極電壓計33針對每個靶17進行控制。藉由變更電漿發光強度或陰極電壓之設置點,濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上變更,藉此各層之膜厚變化。 於控制裝置31中,記憶有對該濺鍍裝置10實驗性地求出之第1層~第5層之成膜參數(例如,濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上)之變更量與第1層~第5層之膜厚之變化量的關係。藉由控制裝置31,以各層之膜厚接近目標膜厚值之方式,隔開時間間隔地依次變更第1層~第5層之成膜參數。作為要變更之成膜參數,例如有電漿發光強度、陰極電壓。 使用電漿發光強度作為電漿發射監控(PEM)控制系統之輸入信號,濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上由電漿發射監控(PEM)控制系統反饋控制。陰極電壓由阻抗控制系統控制,濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上由阻抗控制系統反饋控制。 例如,若第1層與第2層之成膜之時間間隔為30秒,則將第1層之成膜參數變更後於30秒後變更第2層之成膜參數。若第2層與第3層之成膜之時間間隔為35秒,則將第2層之成膜參數變更後於35秒後變更第3層之成膜參數。若第3層與第4層之成膜之時間間隔為28秒,則將第3層之成膜參數變更後於28秒後變更第4層之成膜參數。若第4層與第5層之成膜之時間間隔為33秒,則將第4層之成膜參數變更後於33秒後變更第5層之成膜參數。 若如此結合各層之成膜之時間間隔依次變更成膜參數,則自長條膜之長度方向之1個部位,獲得所有層之成膜參數被變更之多層膜。因此,例如,於必須變更第1層與第2層之成膜參數時,不會出現如第1層之成膜參數被變更但第2層之成膜參數未變更之類的無法使用之多層膜。因此,不會產生基材及成膜材料之浪費,亦不會產生時間之浪費。 於在長條膜11成膜多層膜時,經驗性地獲知各層之膜厚之變動於長邊方向上哪種程度之長度處於該多層膜之容許範圍。基於長條膜11之各層之膜厚之變動處於容許範圍的長邊方向之長度決定長邊方向之特定間隔,每隔長邊方向之上述特定間隔測定一次實測光學值。藉此,可防止未注意到各層之膜厚之變動超過容許範圍之狀況。 由於長條膜11及多層膜之寬度較寬,故而亦於寬度方向預測各層之膜厚之不均時,於寬度方向之複數個部位測定實測光學值,於寬度方向之複數個部位求出各層之最準確推定膜厚值,於寬度方向之複數個部位進行分割而變更成膜參數。藉此,對於多層膜之寬度方向,亦能使各層之膜厚接近目標膜厚值。 [產業上之可利用性] 本發明之多層膜之成膜方法之利用並無限制,尤其較佳地用於在長條膜成膜多層膜時。
1‧‧‧第1層2‧‧‧第2層3‧‧‧第3層4‧‧‧第4層5‧‧‧第5層6‧‧‧多層膜7‧‧‧基材10‧‧‧濺鍍裝置11‧‧‧長條膜12‧‧‧真空槽13‧‧‧供給輥14‧‧‧導輥15‧‧‧成膜輥16‧‧‧收納輥17‧‧‧靶18‧‧‧陰極20‧‧‧濺鍍電源24‧‧‧間隔壁25‧‧‧分割槽26‧‧‧氣體供給裝置27‧‧‧配管28‧‧‧流量計29‧‧‧分光反射率計30‧‧‧分析裝置31‧‧‧控制裝置32‧‧‧電漿發光強度測定器33‧‧‧陰極電壓計
圖1(a)~(f)係本發明之多層膜之模式圖。 圖2係本發明之多層膜之濺鍍裝置之模式圖。
1‧‧‧第1層
2‧‧‧第2層
3‧‧‧第3層
4‧‧‧第4層
5‧‧‧第5層
6‧‧‧多層膜
7‧‧‧基材

Claims (9)

  1. 一種多層膜之成膜方法,其係使構成多層膜之各層逐層積層,且相鄰之層之成膜之間存在時間間隔者,且包含以下步驟:設定上述各層之膜厚之目標值(目標膜厚值);求出成膜後之多層膜之各層之推定膜厚(推定膜厚值);求出用以使上述各層之上述目標膜厚值與上述推定膜厚值之差最小化之上述各層之成膜參數變更量;及隔開上述時間間隔,使實際之成膜中所使用之上述各層之成膜參數以上述各層之成膜參數變更量依次變更。
  2. 如請求項1之多層膜之成膜方法,其中於求出上述多層膜之推定膜厚值時,使用上述多層膜之分光反射率。
  3. 如請求項1之多層膜之成膜方法,其中於求出上述多層膜之推定膜厚值時,使用上述多層膜之反射光之色相。
  4. 如請求項1之多層膜之成膜方法,其中構成上述多層膜之各層係藉由濺鍍裝置成膜。
  5. 如請求項1之多層膜之成膜方法,其中上述成膜參數為濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上。
  6. 如請求項5之多層膜之成膜方法,其中上述濺鍍氣體之流量、反應性氣體之流量、及濺鍍電力之一個以上係由電漿發射監控(PEM)控制系統、或阻抗控制系統反饋控制。
  7. 如請求項1之多層膜之成膜方法,其中上述多層膜係於長條之基材膜之表面成膜。
  8. 如請求項7之多層膜之成膜方法,其中以成膜有上述多層膜之上述長條之基材膜之長邊方向之特定間隔測定上述實測光學值。
  9. 如請求項1之多層膜之成膜方法,其中上述多層膜為多層光學膜。
TW106118813A 2016-06-07 2017-06-07 多層膜之成膜方法 TWI732880B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113713A JP6852987B2 (ja) 2016-06-07 2016-06-07 多層膜の成膜方法
JP2016-113713 2016-06-07

Publications (2)

Publication Number Publication Date
TW201819661A TW201819661A (zh) 2018-06-01
TWI732880B true TWI732880B (zh) 2021-07-11

Family

ID=60578664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118813A TWI732880B (zh) 2016-06-07 2017-06-07 多層膜之成膜方法

Country Status (6)

Country Link
US (1) US20190218659A1 (zh)
JP (1) JP6852987B2 (zh)
KR (2) KR20220038178A (zh)
CN (1) CN109312454A (zh)
TW (1) TWI732880B (zh)
WO (1) WO2017213041A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605202B1 (en) * 2018-07-31 2022-11-09 Essilor International Method and system for determining a lens of customized color
CN110983253B (zh) * 2019-11-21 2022-06-14 天津津航技术物理研究所 一种高性能窄带滤光薄膜的制备方法
CN112126907B (zh) * 2020-08-28 2021-10-08 佛山市博顿光电科技有限公司 真空镀膜控制系统及其控制方法、真空镀膜设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201516172A (zh) * 2013-07-17 2015-05-01 Applied Materials Inc 串聯式沉積控制設備及串聯式沉積控制之方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225057A (en) * 1988-02-08 1993-07-06 Optical Coating Laboratory, Inc. Process for depositing optical films on both planar and non-planar substrates
JP4345158B2 (ja) * 1999-10-15 2009-10-14 ソニー株式会社 光学部品の製造装置及び製造方法
WO2002063064A1 (fr) * 2001-02-07 2002-08-15 Asahi Glass Company, Limited Dispositif de projection et procede pour realiser un film de projection
FR325790A (fr) * 2002-03-28 1903-05-08 Kempshall Eleazer Balle perfectionnée pour le jeu de golf
JP2004285412A (ja) * 2003-03-20 2004-10-14 Dainippon Printing Co Ltd 光学機能性フィルムの製造方法及び製造装置
JP2006071316A (ja) * 2004-08-31 2006-03-16 Technos Kk 膜厚取得方法
JP2006071402A (ja) 2004-09-01 2006-03-16 Toppan Printing Co Ltd 多層膜の膜厚制御方法及び成膜装置
US20060049036A1 (en) * 2004-09-09 2006-03-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for real-time control and monitor of deposition processes
JP4530776B2 (ja) * 2004-09-14 2010-08-25 株式会社昭和真空 多層膜形成用スパッタリング装置及びその膜厚制御方法
US20080121513A1 (en) * 2006-11-24 2008-05-29 Tdk Corporation Processing condition obtaining method and thin-film forming method
DK1970465T3 (da) * 2007-03-13 2013-10-07 Jds Uniphase Corp Fremgangsmåde og system til katodeforstøvning til aflejring af et lag, der består af en blanding af materialer og har et på forhånd defineret brydningsindeks
EP2753960B1 (en) * 2011-09-07 2016-12-07 Applied Materials, Inc. Method and system for manufacturing a transparent body for use in a touch panel
JP6619934B2 (ja) * 2015-01-07 2019-12-11 日東電工株式会社 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置
JP6619935B2 (ja) * 2015-01-08 2019-12-11 日東電工株式会社 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201516172A (zh) * 2013-07-17 2015-05-01 Applied Materials Inc 串聯式沉積控制設備及串聯式沉積控制之方法

Also Published As

Publication number Publication date
JP2017218628A (ja) 2017-12-14
US20190218659A1 (en) 2019-07-18
KR20190017730A (ko) 2019-02-20
KR20220038178A (ko) 2022-03-25
WO2017213041A1 (ja) 2017-12-14
JP6852987B2 (ja) 2021-03-31
CN109312454A (zh) 2019-02-05
TW201819661A (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
TWI732880B (zh) 多層膜之成膜方法
JP6704343B2 (ja) インライン堆積制御装置及びインライン堆積制御方法
EP2402481A1 (en) Method and system for manufacturing a transparent body for use in a touch panel
EP3631835B1 (en) Feedback system and vacuum deposition system with the same, and associated method
JP6619934B2 (ja) 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置
US20140216924A1 (en) Method and system for manufacturing a transparent body for use in a touch panel
JP2019163545A (ja) 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置
JP6619935B2 (ja) 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置
EP3050073B1 (en) Method for controlling a gas supply to a process chamber, controller for controlling a gas supply to a process chamber, and apparatus thereof
TWI781105B (zh) 多層膜之成膜方法
JP6601950B2 (ja) 膜厚検査装置、膜厚検査方法、膜構造体の製造装置、および膜構造体の製造方法
TW202240022A (zh) 非化學計量的金屬化合物層之沉積
JP2010189757A (ja) 薄膜製造方法および薄膜製造装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees